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ABSTRACT

In the presence of strong magnetic fields, the vacuum becomes a birefringent
medium. We show that this QED effect decouples the polarization modes of photons
leaving the NS surface. Both the total intensity and the intensity in each of the two
modes is preserved along a ray’s path through the neutron-star magnetosphere. We
analyze the consequences that this effect has on aligning the observed polarization
vectors across the image of the stellar surface to generate large net polarizations.
Counter to previous predictions, we show that the thermal radiation of NSs should
be highly polarized even in the optical. When detected, this polarization will be the
first demonstration of vacuum birefringence. It could be used as a tool to prove the
high magnetic field nature of AXPs and it could also be used to constrain physical NS
parameters, such as R/M , to which the net polarization is sensitive.

1. Introduction

The thermal radiation of isolated NS stars has the potential of teaching us much about
the properties of NSs. Its advantage over non-thermal emission (in radio, optical, X-rays, and
gamma-rays) is that the theory behind the emission is significantly better understood and the
radiation actually comes from the surface of the compact object. Because the thermal emission
is expected to be intrinsically polarized, more information could potentially be learned by the
detection and analysis of polarization measurements. Recent observations with the ROSAT,
ASCA, Chandra and XMM-Newton missions have shown that some of these sources are bright
enough to be potential candidates for X-ray polarimetry in future missions. Moreover, the thermal
radiation of some of the isolated NSs can even be detected in optical wavelengths. Thus, it is
worthwhile understanding how this polarization is generated and conserved, and what additional
information can actually be extracted from its measurement.
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In the presence of strong magnetic fields, the opacity of ionized matter to the transfer of
photons becomes polarization dependent (, ). This is chiefly because it is easier to scatter electrons
in the direction along the magnetic field than it is in a perpendicular direction. Thus, the opacity
of light rays with their electric vector polarized perpendicular to the magnetic field would be
significantly reduced. A typical photon with this polarization is emitted or scattered last deeper
in the atmosphere than one in the other mode. The deeper regions of the atmosphere are hotter,
so more flux emerges in this polarization state. Nearly complete polarization can result for the
thermal emission (, , ).

An observer will see photons originating from the entire surface of the NS hemisphere facing
her. Thus, the different polarizations should be added together appropriately. If nothing happens
to the photons and their polarization as they propagate from the NS surface, then the polarizations
observed at infinity can be added rather simply, as was done by in a simple model for the
atmosphere. used a more realistic atmosphere and calculated the net observed polarization while
taking the effects that GR has on the magnetic field and on light ray bending. In both cases, net
polarizations of order 5% to 30% are obtained because the polarizations of the radiation arriving
from different regions of the surface tends to cancel each other.

The above analyses, however, did not consider the effects of QED-induced vacuum
birefringence. When QED is coupled to strong magnetic fields, several interesting consequences
are obtained. For example, it was shown by and that QED has to be taken into account when
calculating the appropriate opacity, especially near the cyclotron resonance. This is the case even
though a priori it appears that the plasma effects should dominate. More relevant to us is the fact
that QED turns the vacuum into a birefringent medium when strong magnetic fields are present
(, ).

In a series of recent papers, we have examined several consequences of vacuum birefringence in
neutron-star magnetospheres. When the fields are significantly stronger than the critical QED field
of BQED = 4.4× 1013 G then the index of refraction of one polarization state can be significantly
different from unity and magnetic lensing can result (). The main result of this lensing effect is
that the effective surface area of the NS as measured by the two polarization states is different.

When weaker fields are present, the birefringence can still have interesting implications. At
a particular frequency, the vacuum will only decouple the polarization modes out to a particular
distance from the surface of the star. Up to this radius, radiation polarized perpendicular to the
magnetic field will remain perpendicular to the local direction of the magnetic field even if the
direction of the field changes along the path. If the modes only begin to mix at a significant
fraction of the distance to the light cylinder, even if the intrinsic polarization at the surface is
constant over energy, photons of different energies will exhibit different directions of polarization
after passing through the magnetosphere () and a circular component of the polarization will
develop. Similar effects arise at lower frequencies, when plasma birefringence is considered (, ).

In , we showed that QED birefringence is also important for the polarization evolution close to
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the NS. When it is properly taken into account, a very large net polarization should be observed.
This is counter to previous predictions (e.g. ). As a result, larger polarization signals will be
observable which will allow more information to be extracted from the observation of the thermal
radiation. Measurement of the high polarization will also serve as the first direct evidence of the
birefringence of the magnetized vacuum due to QED and a direct probe of the behavior of the
vacuum at magnetic fields of order of and above the critical QED field of BQED = 4.4 × 1013 G.
This should be contrasted with the decades of Earth based experiments which have not succeeded
thus far in detecting the vacuum birefringence induced by strong magnetic fields (, , , ).

We begin in §2 with the description of the physics needed to calculate the polarization to
be observed at infinity. In §3, we elaborate the results presented in and build upon them to
understand the observational signatures of vacuum polarization in rotating neutron stars. §3.3.2
estimates the strength of the polarized signal averaged over the rotation of the star for the subset
of radio pulsars for which we know the geometry of the dipole field. We end in §4 with a discussion
of the ramifications of this effect.

2. Calculations

Several ingredients are needed for the calculation of the net polarization to be observed
at infinity. First, the structure of the magnetic field must be specified. We assume that the
magnetic field is a centered dipole. Second, we need a model for the intrinsic polarization
emitted by a magnetized atmosphere. For simplicity, we assume here that the atmospheres emit
completely (linearly) polarized radiation. In a large frequency range, it is more than an adequate
approximation because the effective temperature for the two polarizations will be markedly
different if high magnetic fields are present. For example, at photon energies Eγ much below
the electron rest energy and cyclotron energy Ecyc,e, but much above the ion cyclotron energy,
the typical degree of linear polarization pL should be 1 − pL ∼ O(Eγ/Ecyc,e)2, unless the angle
between the magnetic field B and the photon wavevector k is very small ().

To calculate the observed polarization at infinity, we need to calculate the trajectories of the
light rays, which due to GR are bent. Along these trajectories, we have to solve for the evolution
of the polarization. This will be dominated by the vacuum birefringence.

2.1. Photon Trajectories

In calculating the trajectories of the photons we assume that the field is sufficiently weak such
that the index of refraction for both modes is approximately unity throughout the magnetosphere
(c.f. ). We also neglect the effect of the rotation of the star on the spacetime surrounding it.

Without rotation, all planes that pass through the center of the star are equivalent, so we can
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integrate the equations of motion for a photon in the equatorial plane of the Schwarzschild metric.
The trajectory is determined uniquely by the impact parameter b. To integrate the polarization,
we require the position of the photon as a function of the proper length along its path. give the
differential equations for the trajectory
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where M is the gravitational mass of the star. Combining Equation (2) and Equation (4) yields
a separable equation for φ(r) which is useful for quickly determining to which part of the star a
region of the image corresponds ()
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]−1/2

du, (6)

where x ≡ b/R∞ and R∞ ≡ R (1− 2M/R)−1/2 and R is the circumferential radius of the star.

2.2. Polarization Trajectories

The polarization lies in the plane perpendicular to the trajectory of the photon. Unlike in
flat spacetime, because the photon travels along a curved path, the orientation of this plane with
respect to a distant observer necessarily varies along the path. Under the assumption that space
surrounding the neutron star is devoid of material and nongravitational fields, the polarization
is constant, if it is defined in a basis consisting a vector in the plane of the trajectory and one
perpendicular to that plane ().

To naturally include the standard general relativistic result, we calculate the evolution of the
polarization due to the birefringence of the vacuum in the aforementioned basis. Figure 1 shows an
example trajectory along with the polarization basis at a particular point. α is the angle between
the magnetic dipole (~m) and the line of sight ( ~O), and β is the angle between the trajectory plane
and the ~m− ~O−plane.

find that the evolution of the polarization of a wave traveling through a birefringent and
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dichroic medium in the limit of geometric optics is given by

∂s
∂l

= Ω̂× s +
(
T̂× s

)
× s, (7)

where l is the proper distance along the trajectory, s is the normalized Stokes vector (), and Ω̂
and T̂ are the birefringent and dichroic vectors. The Stokes vector consists of the four Stokes
parameters, S0, S1, S2 and S3. The vector s consists of S1/S0, S2/S0 and S3/S0. The result was
found by for any dielectric medium and it was extended for a medium that is both dielectric and
permeable by .

As argue, QED decouples the polarization states in the vacuum for sufficiently strong fields.
Here we will restrict ourselves to fields substantially less than BQED ≈ 4.4 × 1013 G. A field
of 1012 G is sufficient to decouple the polarization states at the surface of a neutron star for
ν ∼> 1012 Hz. A plasma with the Goldreich-Julian density decouples the polarization states of
photons with ν ∼< 1014 Hz. Here we will focus on ultraviolet through X-ray radiation, so the
plasma contribution to the index of refraction may be neglected. We will consider photons with
ν ∼< 1014 Hz (i.e. for which the plasma would be important) but we will also neglect the plasma
contribution so we can connect our results with those of who neglect the birefringence of the
magnetosphere entirely.

If one neglects the plasma and takes the weak-field limit, the dichroic vector vanishes and the
magnitude of the birefringent vector is

∣∣∣Ω̂∣∣∣ = 2
15
αQED

4π
ω

c

(
B⊥
BQED

)2

, (8)

and it points in the direction of the projection of the magnetic field onto the Poincaré sphere. B⊥
is the strength of the magnetic field perpendicular to the direction of the photon’s propagation.
We assume that the magnetic field is a centered dipole and we neglect the distortion of the
magnetic field due to general relativity. For the masses and radii that we are considering, the
perturbation to the field strength is at most a factor of two and the change in the direction of
the field is less than 5◦ throughout (). Both the value of the polarization-limiting radius and the
emergent flux depend weakly on the strength of the magnetic field at the surface – both increase
as B0.4; therefore, this simplification does not have an important effect on the results.

find that the polarization states are decoupled as long as the gradient of the index of refraction
is not too large, specifically ∣∣∣∣∣∣Ω̂

(
1
|Ω̂|

∂|Ω̂|
∂l

)−1
∣∣∣∣∣∣ ∼> 0.5 . (9)

For radial trajectories this yields
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Fig. 1.— The geometry of the photon trajectory and the polarization basis.
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where µ is the magnetic dipole moment of the star and ν is the frequency of the photon. Also,
µ30 = µ/(1030 G cm3) and ν17 = ν/1017Hz.

If this condition is not met, the polarization remains constant, i.e. the polarization modes
are coupled. Figure 2 depicts the radii within which either the plasma or the vacuum effectively
decouples the polarization modes in the magnetosphere – we have assumed that the plasma density
is given by the result. At distances closer to the star than the polarization-limiting radius (rpl),
the polarization of the radiation remains in one of the two polarization modes of the strongly
magnetized plasma or vacuum.

If the entire surface emits in one polarization mode, i.e. the surface emission is initially
fully polarized, the radiation will remain in that mode until the polarization-limiting radius, so
one can estimate the observed extent of the polarization geometrically by calculating the solid
angle subtended by the image of the surface of the star at the polarization-limiting radius. As
the angular size of the image at rpl vanishes, the polarized fraction approaches unity. Numerical
integration of the photon paths bears this out.

3. Results

These results assume that B � BQED at the decoupling radius. This is always the case for
the photon energies of interest, because even if the field on the surface is greater than the QED
value, as is the case in magnetars, the decoupling takes place far enough from the surface such
that the r−3 term will make the field significantly sub-critical.

3.1. Effects along a trajectory

We begin by integrating the photon light trajectories for specific photons leaving the NS
surface and following the evolution of their polarization. Because the QED vacuum is not dichroic
by itself, eq. (7) dictates that the amplitude of s does not change along a ray. In the course of
evolution, however, the linear component of s, i.e. , the 1-2 components, may change direction,
and the amount of circular component s3 can change as well. The top part of figure 3 depicts the
evolution of the angle of s in the 1-2 plane of the Poincaré Space, together with the angle of the
birefringent vector Ω̂ (determined by the magnetic field component perpendicular to the ray).

As the particular photon leaves the surface, the magnetic field orientation rotates by about
2.2 radians which corresponds to 4.4 radians in the 1-2 plane of the Poincaré Space. Because the
coupling is weaker at lower frequencies, the lower frequency photons follow the direction of the
magnetic field up to a smaller distance. Beyond the polarization-limiting distance, the polarization
direction freezes. Its direction roughly corresponds to the direction of the magnetic field where
the modes couple. Because modes couple gradually, the direction of the magnetic field can change
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during the coupling process. If the change in direction is rapid, a large circular polarization results.
This is seen in the bottom part of figure 3. For the low frequency and high frequency photons,
the coupling takes place before the magnetic field can significantly change or after it has stopped
changing, so for these frequencies, the circular component obtained is small. For the intermediate
frequency, which for 1012 G NSs corresponds to the optical or UV region, the coupling takes place
while the direction of the magnetic field is changing and a large circular component is generated.

At high frequencies (hard X-ray to γ-rays), the coupling can take place at a significant
fraction of the light cylinder radius. In this case, it was shown by that one should take into
account the rotation of the NS. Because the modes of higher frequencies couple farther from the
NS, the directions of the rotating magnetic field at the polarization-limiting radii are different for
different photon energies, such that phase leads between different wave bands can result. Because
coupling takes place while the NS is rotating, circular polarization can again result.

3.2. The Polarization “Image” of a NS

The next step is to construct a polarization “image” of a NS. The apparent surface is
projected onto a surface perpendicular to the NS-observer direction. The image is then divided
into elements of equal solid angle. Next, light rays are followed from each element of the apparent
surface to the observer taking into account GR light bending (eq. 6) and polarization evolution
(eq. 7), as is described in §3.1.

Typical results are portrayed in figure 4, which shows the polarization observed at infinity
overlaying the GR lensed image of the NS. The typical polarization is an ellipse. The major
axis describes the direction of the linear polarization (in real space) while the ratio of the minor
to major axis gives the amount of circular polarization. Not given in the figure is the sense of
rotation of the circular polarization. From symmetry, one obtains that the circular components
in the top half of the images are opposite to those in the bottom half. The same is true for
the s2 polarization which describes the ±45◦ polarization directions in real space. Unlike the s3
antisymmetry however, the s2 antisymmetry is apparent in the images.

The anti-symmetry of the s2 and s3 components implies that when the polarizations from all
the star will be added together, only a net s1 component will result. Namely, the net polarization
from the NS will be either in the direction of the magnetic dipole axis or perpendicular to it. This
statement will not be true if the cylindrical symmetry is broken, either by the magnetic field, by
rotation or by the atmospheric emission.
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3.3. The Net Polarization of a NS

Once a polarization “image” is calculated, the net polarization seen by an observer is found
by integrating the intensity contributed by each of the normal modes of the atmosphere to each
of the observed Stokes’s parameters. Here we will treat the simple case where the intensity in one
mode vanishes (IO = 0), and the intensity in the other mode is isotropic (IX = constant). In this
case, the value of S1/S0 is simply the mean value of s1 evaluated over the observed polarization
field (e.g. as depicted in Figure 4). For this simple model, we denote S1/S0 summed over the
entire image by s̄1.

The results for s̄1 as a function of the magnetic field strength and frequency νµ2
30 is given in

the left panel of figure 5, for two inclination angles and three different NS radii, 6 km, 10 km and
18 km. The right panel depicts the net polarization s̄1 as a function of the angle between the line
of sight and the magnetic dipole moment for the three NS radii and two frequencies.

Figure 5 depicts several important trends:

1. Higher frequency radiation is more strongly polarized.

2. More strongly magnetized stars exhibit stronger polarization.

3. As the line of sight approaches the direction of the dipole, the net polarization vanishes.

4. At high frequencies, the emission from larger stars is less polarized. The trend is reversed at
low frequencies.

Equation (10) predicts the first three of these trends directly. As the frequency of the photon
or the strength of the dipole moment increase, the polarization-limiting radius increases. Also as
sinα increases, the polarization-limiting radius increases. A larger value of rpl results in a larger
polarized fraction because the solid angle subtended by the bundle of rays that eventually reach
the detector decreases with distance from the star. Over successively smaller solid angles, the
magnetic field geometry appears successively more uniform, and the polarization from different
regions of the star is added more coherently.

The final trend requires a two-part explanation. If νµ2
30 sin2 α � 1012 Hz, then rpl � R, so

the net polarization depends almost entirely on the angular size of the ray bundle. Far from the
surface of the star, the linear radius of the bundle is bmax. For a given mass, bmax decreases with
the radius of the star until it reaches a constant value for R < 3M ; consequently, smaller stars
have smaller bundles and larger net polarizations.

For νµ2
30 sin2 α ∼< 1012 Hz, the polarization-limiting radius is comparable or smaller than the

radius of the star. In this regime, magnetospheric birefringence has little effect on the polarized
image; therefore, in this regime, the results of are obtained. We see a larger fraction of the
surface of more compact stars so the net polarization will decrease as M/R increases, because the
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polarization is then added mostly incoherently. For R < 3.5M we see the entire surface and for
R ≤ 3M we see an infinite number of images of the surface (e.g. ).

The paragraphs that follow examine the ramifications of these trends in more detail. In
particular, we calculate of the polarized light curve of a neutron star and its average. We will
continue in a subsequent publication with predictions of the net polarization for a realistic model
of the emission from the surface of a neutron star.

3.3.1. Polarization light curve of a NS

When an observer measures the polarization of a rotating NS, the amount and angle of
polarization will generally vary because the rotation axis and magnetic axis are usually not
aligned together. We define the angular separation between the magnetic and rotational axes
as γ. The magnetic inclination angle i (≡ π/2 − α) can be related to the inclination above the
rotational equator ir and the rotational phase φ between the last time the two axes coincided in
the observer’s meridional plane. The relation is

sin i = sin ir cos γ + cos ir sin γ cos φ. (11)

If we work in a coordinate system aligned with the rotational z-axis, and a y-axis that is
perpendicular to the plane containing the line of sight and the z-axis, then the observer’s direction
is:

ô = cos irx̂ + sin irẑ. (12)

If we use the rotational phase φ and the separation γ between the two axes, the direction of the
magnetic axis is:

m̂ = sin γ cos φx̂ + sin γ sinφŷ + cos γẑ. (13)

Using these relations, we can calculate the cosine and sine of twice the apparent angle ψ that the
magnetic axis makes with the y-axis. These are needed if we wish to known the direction of linear
polarization. To do so, we project the polarization state |S1〉, in which the net polarization will be
in (e.g., §3.2) onto the polarization states |SO,1〉 and |SO,2〉 of the observer. |SO,1〉 describes linear
polarization in the observers y-axis and |SO,2〉 describes polarization in a direction rotated by 45◦.
The projections are

〈SO,1|S1〉 = cos 2ψ =
2 ((m̂− (m̂ · ô)ô) · ŷ)2

|m̂− (m̂ · ô)ô)|2 − 1 (14)

=
2 (sin γ sinφ)2

1− (cos γ sin ir + cos ir sin γ cos φ)2
− 1 ≡ p1(γ, ir, φ), (15)

and

〈SO,2|S1〉 = sin 2ψ =
2 ((m̂− (m̂ · ô)ô) · ŷ) · ((m̂− (m̂ · ô)ô) · x̂)

|m̂− (m̂ · ô)ô)|2 (16)
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=
2 sin γ sin ir sinφ (cosφ sin γ sin ir − cos γ cos ir)

1− (cos γ sin ir + cos ir sin γ cos φ)2
≡ p2(γ, ir, φ). (17)

If the total net polarization observed at infinity |s̄| is calculated, the functions p1,2(γ, ir, φ) can
now be used to find the actual polarization that will be measured if our polarizers are aligned with
the z axis or 45◦ to it respectively.

Results for the “polarization light-curve” for several frequencies and several NS angles are
depicted in figures 6-8. The solid curve is the total polarization. It could be calculated if the
measurement yields both SO,1 and SO,2. If however a polarimeter just measures one axis, and it is
aligned with y then its measurements will follow the dashed line. If rotated by 45◦, the data will
follow the dotted line. Clearly, the best possible measurement is that of the time behavior of the
polarization in two axes which yields the large net polarization |S̄| and the various angles in the
system. The latter include the angle separating the axes γ, the observer’s inclination above the
rotational equator ir, as well as the direction of the rotational axis in the sky.

3.3.2. Time averaged polarization of a NS

Although the best polarization measurement possible should be time resolved, often is it hard
to do so. It is easier to measure the polarization averaged over the spin period. By looking at
figures 6-8, we see that if our polarimeter is aligned with the rotational axis, a net polarization
signal is obtained though it is typically significantly smaller than the absolute polarization. If the
polarimeter is rotated by 45◦, symmetry dictates a null average signal.

The average polarization depends on γ – the separation between the axis, and ir, the
inclination above the rotational equator. Although for the general population of NS, the two
should not be correlated, this is not the case if we wish to study NSs for which their geometry
is already known. NS geometry is known for some pulsars from linear polarization swing
measurements in the radio. Because the objects have to be pulsars with beams passing close to
the line of sight, there is a selection effect which chooses objects with only ir ∼ π/2− γ.

Figure 9 describes the average expected polarization for the different pulsars for which γ and
ir are known. The data are taken from . We find that the expected time averaged polarization for
the thermal radiation of 1012 G type pulsars is going to be on average 5-7 times larger if QED
effects are properly taken into account and measurement is done in the optical or X-ray. One
example is PSR 0656+14 which has a measured thermal spectrum (). The prediction is that the
time average of its polarization is going to be about 25% times the typical intrinsic polarization
of an average surface element. This should be compared with a 5% prediction times the typical
average intrinsic polarization, if polarization dragging and aligning does not take place. Note
that even if the surface elements were to emit completely polarized radiation, then the maximum
possible time average polarization that can be obtained for any geometrical configuration is
12.5% if QED is neglected with typical values being significantly smaller. Thus, the time average
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measurement of the polarization of PSR 0656+14 is sufficient to prove the effects of QED on
aligning the polarization. Because the pulsar was detected in optical and UV, polarimetry can in
principle already be done with very long observations.

We must be careful not to overstate the observability of this effect in the optical and near
ultraviolet. Typically, if thermal emission from the surface of the star dominates in the optical,
the sources are exceptionally faint and would require approximately one night of observing time
on a ten-meter-class telescope to detect the intrinsic polarization of the source. Furthermore,
contamination by non-thermal emission is typically important. For example, even in the optical
∼ 30% of the emission from PSR 0656+14 is non-thermal (). Disentangling these two emission
mechanisms in the optical is difficult but possible in principle. In the X-rays the signal is much
stronger and non-thermal emission plays a lesser role. However, we do not now have instruments
measure the polarization of X-ray radiation from astrophysical sources.

4. Discussion & Summary

It is well known that the intrinsic polarization of the thermal radiation emanating from any
NS surface element should be highly polarized. This is a direct result of the effects that the
magnetic field has on photon propagation. However, it was thought until recently that because
each surface element has a different magnetic field orientation, the combined emission for all the
different surface elements would result with a low net polarization for the integrated light. This
conclusion, however, rests on the assumption that nothing special happens to the polarization
angles along the way. Here, we have shown that QED does have a major effect on the polarization
angles in the magnetosphere.

In the presence of QED, the vacuum becomes birefringent. If the differences in the indices of
refraction are large enough, ‘adiabatic evolution’ of the polarization will evolve each polarization
state separately up to a distance rpl, the polarization-limiting radius. If the states change slowly
because the magnetic field orientation changes, the direction of polarization will change as well.
This phenomenon is known to be important for radio waves due to plasma birefringence (). The
main differences between the two effects are first that plasma birefringence becomes progressively
more important for long wavelengths, as opposed to the shorter wavelengths in which vacuum
birefringence becomes progressively more important. Second, the amount of actual plasma
birefringence is hard to predict accurately, because the amount of plasma present varies according
to the pulsar model adopted. Vacuum birefringence depends only on the magnetic field of the NS.

If the polarization limiting radius rpl is far from the surface of the NS, the adiabatic evolution
arising from QED birefringence has a very interesting effect—it aligns the polarization angles such
that large net polarizations are obtained. The further from the surface that the coupling of the
modes takes place (where adiabatic evolution fails), the better is the alignment of rays originating
from different surface elements. For typical magnetic fields of 1012 G, the alignment is already
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important for optical and UV photons. And it should be almost complete in X-rays. In stronger
fields, as are predicted to exist on magnetars, the alignment should be almost complete even in the
optical and the polarization would be very high. This should be compared with the predictions
neglecting polarization alignment which always result with significantly lower polarizations.

If the magnetic and rotational axes are misaligned, as is generally the case, the direction of
linear polarization changes with the rotation phase. As a result, the time-averaged measurements
generally yield smaller net polarizations than time-resolved measurements. The latter are therefore
much more preferable. However, they require a more elaborate measuring technique which for the
very faint thermal signal of PSRs is highly nontrivial.

Generally, a circular polarization component along one ray arises when the polarization
limiting radius is not orders of magnitude larger than the radius of the NS. This is due to the fact
that while coupling of the states occur at r ∼ rpl the magnetic field is changing its orientation
relative to the ray. However, when summed over the image, the circular component vanishes by
symmetry. Therefore, any measurement of a non vanishing circular component in the thermal
radiation would imply that the system has broken its symmetry between the apparent sides
of the magnetic axis. This can happen for example if the magnetic field has a non symmetric
component (rotation, higher multipoles, offset dipole, etc.). It can happen if the temperature (and
therefore emission) is not only a function of magnetic latitude (e.g., if there are ‘hot spots’). It
can also arise because a rotating NS will Doppler boost the radiation from one apparent side of
the rotation axis to the blue and the other side to the red. A circular component was also shown
to arise when taking the effects that rotation have on the decoupling process itself (). The main
difference between the two types of circular components is that the latter type increases with
frequency, while the circular component that arises from asymmetries is largest for optical or UV
(for ∼ 1012 G), when the polarization limiting radius is comparable to the radius of the NS.

Polarization measurements of the thermal radiation will clearly be very beneficial. First, the
measurement of polarization will verify the birefringence induced by a magnetic field predicted
by QED. Magnetic vacuum birefringence has not yet been detected. Moreover, measurement of
polarization often elucidates the geometry of the systems. In this case however, it could also give
information on actual physical parameters. For example, if the magnetic dipole moment µ is
known (e.g. from spin-down rate measurement) then R can be extracted from the polarization
measurement which indicate how much alignment has taken place. The more alignment observed,
the smaller the radius has to be because the NS apparent solid angle at rpl is then smaller. In
AXPs, it could be used to verify their extreme magnetic nature.
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Fig. 2.— Polarization-limiting radius as a function of frequency. The left panel is for a neutron
star with B = 2× 1012 G and P = 33 ms. The right panel is for B = 109 G and P = 3 ms.
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Fig. 3.— The evolution of the polarization for a particular ray as a function of frequency for
R = 106 cm, M = 2.1 × 105 cm, α = 30◦, β = 148.5◦ and b = 0.4R∞. The solid curve traces
the position angle of the birefringent vector Ω̂, the dot-dashed line follows the polarization at
νµ2

30 = 1021 Hz, the long-dashed line at 1017 Hz, the short-dashed lines at 1015 Hz and the dotted
line at 1013 Hz.
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Fig. 4.— The observed polarization field for R = 106 cm, M = 2.1 × 105 cm and α = 30◦.
The upper-left and right panels are νµ2

30 = 0 and 1013 Hz. The lower-left and right panels are
νµ2

30 = 1017 Hz and 1021 Hz.
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Fig. 5.— The left panel depicts the polarized fraction as a function of νµ2
30 for R = 6, 10 and 18 km

in solid, dotted and dashed lines respectively and α = 30◦ and 60◦ for the lower and upper set of
curves respectively. The right panel shows the polarized fraction as a function of α for R = 6, 10
and 18 km and νµ2

30 = 1015 (lower set) and 1017 Hz (upper set).
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Fig. 6.— The polarized light curve for ν = 0 Hz and R = 10 km (i.e., neglecting the effects that
QED has on aligning the polarization). The solid line describes the total linear polarization.
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Fig. 7.— The polarized light curve for νµ2
30 = 1015 Hz and R = 10 km.
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Fig. 8.— The polarized light curve for νµ2
30 = 1017 Hz and R = 10 km.
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Fig. 9.— The average linear polarization expected for the thermal radiation of pulsars for
which their geometrical angles are known (γ - the separation between the magnetic and rotation
axes, and ir the observer’s inclination above the rotational equator). The crosses are the small
polarizations expected if polarization dragging is neglected. The triangles and pentagons are the
higher polarizations expected for νµ2

30 = 1015 and 1017 Hz respectively when R = 10 km (i.e. , for
optical and X-ray frequencies, for a typical 1012 G NS. The inset is a histogram of the increase in
average polarization when QED is not neglected.


