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ABSTRACT

The European School of High Energy Physics is intended to give young experimental physicists an intro-
duction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain
lecture notes on field theory and the Standard Model, flavour physics and CP violation, quantum chromody-
namics, cosmic rays, astroparticle physics, beyond the Standard Model and finally, multiparticle dynamics.
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PREFACE

The eleventh in the new series of the European School of High-Energy Physics, which took place in
Tsakhkadzor, Armenia, from 24 August to 6 September 2003, was attended by sixty-nine students coming
from eighteen different countries (plus four Armenian students invited as listeners). The School was hosted in
the ‘House of the Writers’ a somewhat old-fashioned, but beautiful hotel located in Tsakhkadzor, a small town
about 50 km north of Yerevan. The origin of this place goes back to the 11th century when the magister Grigor
Pahlavuny founded a church named as Kecharis (later renamed Tsakhkadzor which means ‘canyon of the flow-
ers’). Nowadays this complex of four beautiful churches with patterned cross-stones is a pride of Armenian
architecture. The little town — a well-known ski resort in the sixties — is located in a valley surrounded by
beautiful mountains.

According to the tradition of the School, the students were sharing twin rooms, mixing nationalities and in
particular Eastern participants with Western ones. The meals were served on a buffet style, and the food was
typically Armenian with a lot of vegetables mixed with meat.

Doctor George Pogosyan, Director of the Physics Department at the Yerevan State University, was acting
as local director of the School.

Our sincere thanks go to George and his team of Armenian students who, together with the local committee,
made it possible to organize the School and contributed to its success. Our thanks are also due to the lecturers
and discussion leaders for their active participation in the School and for making the scientific programme so
stimulating. The students, who in turn manifested their good spirits during two intense weeks, undoubtedly
appreciated their personal contribution in answering questions and explaining points of theory.

We are very grateful to Tatyana Donskova and Danielle Métral for their untiring efforts in the lengthy
preparations for and the day-to-day care of the School. Their efficient teamwork and continuous care of the
students and their needs were highly appreciated. Our special thanks also go to the hotel manager who, with
her background as a nurse, provided first aid when the school was hit by an epidemic of stomach problems.
She also ‘requisitioned’ Doctor Avagyan, who happened to be staying at the hotel, and together they made it
possible for the participants to complete the school and return in good shape to their home countries.

The School participants enjoyed several memorable excursions. Of particular interest was the visit to the
Matanaderan (Yerevan), the Institute of old medieval manuscripts, including fragments from the 5th and 6th
centuries, and where we could see the only existing version of Ibn Batuta’s (Avicenna’s) book of geometry,
which demonstrates that gravity was discussed from early medieval times. The participants also enjoyed the
excursion to the cosmic-ray high altitude station on Mt. Aragats: first at the Nor-Ambert station at 2000 metres,
where Professor Ashot Chilingarian gave a special lecture, and then at the Aragats station at 3200 metres.

However, the success of the 2003 School was to a large extent due to the students themselves. Their
posters displayed on the walls of the beautiful hall of the ‘House of the Writers’ were of excellent quality
both technically and in content, and throughout the School they participated actively during the lectures, in the
discussion sessions, and with genuine interest in the different activities and excursions.

Egil Lillestøl
on behalf of the Organizing Committee
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FIELD THEORY AND STANDARD MODEL

I.J.R. Aitchison
Department of Physics, University of Oxford, UK

Abstract
This is a course of six lectures given at the 2003 European School of High-
Energy Physics, Tsakhkadzor, Armenia, 24 August–6 September 2003. They
aim to provide a compact introduction to quantum field theory (in the ‘canon-
ical’ formalism) and the Standard Model, focusing on field quantization and
the canonical route to the Feynman rules; Abelian symmetries and QED; one-
loop renormalization of QED; non-Abelian symmetries; spontaneously broken
symmetries; and the electroweak theory.

1 OUTLINE OF THE COURSE

Section 2 (Lecture 1) Canonical quantization of free spin-0 (scalar) field. Interacting scalar fields. The
Dyson-Wick expansion of the S-matrix. Propagators. Tree graphs. The Yukawa potential.
Section 3 (Lecture 2) Complex scalar field. Global U(1) phase invariance. Number conservation laws.
Fermions. Local U(1) phase invariance and the electromagnetic interaction. The Maxwell field. Ele-
ments of QED.
Section 4 (Lecture 3) One-loop graphs in QED: renormalization, and running coupling constant.
Section 5 (Lecture 4) Non-Abelian symmetries, global and local. Local SU(2) symmetry. Gauge field
self-interactions. Local SU(3) symmetry. QCD.
Section 6 (Lecture 5) Spontaneous symmetry breaking, global and local. Chiral symmetry breaking. The
Abelian Higgs model. Spontaneously broken SU(2) × U(1).
Section 7 (Lecture 6) Introduction to the electroweak theory. The Higgs sector. One loop effects.

2 SCALAR FIELDS: TO TREE GRAPHS

A more leisurely treatment of the material in this section is given in Chapters 5 and 6 of Volume 1 of the
new (third) edition of Aitchison and Hey [1].

2.1 The classical field as an assembly of non-interacting oscillators
Consider a familiar problem, that of a string stretched between points ����� and ����� . The transverse
displacement � of the string at position � and time � , �
	 ��� ��
 , satisfies the wave equation��� ��	 ��� ��
� � � � � � ��� �
	 ��� ��
� � � (1)

for small displacements. Here �
	 ��� ��
 is a scalar field: ‘scalar’ because it has only one component, and
‘field’ because it varies continuously with � and � . The fundamental method of solving equations like
(1) is first to find particular solutions called modes, and then to use the fact that (1) is linear to write
the general solution as a linear superposition of modes. Here, the modes must satisfy the boundary
conditions ��	 ��� ��
 � ��	 ��� ��
 ��� , so we try��	 ��� ��
 ����� 	���
 ��!#"$	&%(' �� 
 (2)

for % �*)(�,+ -.-.- , which expresses the fact that any number of half-wavelengths must fit into the interval	 ����� 
 . Substituting (2) into (1) we find ��� 	���
 �0/21 �� ��� 	���
 (3)
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where 1 �� ��� � % � ' �43 � � - (4)

Thus each mode amplitude �5� 	���
 executes simple harmonic motion with frequency 16�7� 	 � %(' 3 � 
 : it
acts like the ‘coordinate’ of an oscillator! The general solution of (1) is then�
	 ��� ��
 � 89��:�; � � 	���
 ��!<"�	 %(' �� 
>= (5)

in short, a Fourier series.

Now let us consider the total energy of the vibrating string, which is given by the integral? �A@CBD0E )+
FHG � �� �JI �LK )+MF � � G � �� � I �,N#O ��� (6)

where the first term is the kinetic energy ‘ P ’ ( F is the mass per unit length) and the second is the potential
energy ‘ Q ’. When (5) is placed in (6) and the integral over � done, a remarkable result is obtained
(problem P1.1): ? � � + 89 ��:�; E )+ FSR� �� K )+ F 1 �� � �� N - (7)

Equation (7) has a strikingly simple physical interpretation: the energy of the string is equal to the
sum of the energies of individual ‘mode oscillators’ (recall the energy of one simple harmonic oscillator
(SHO) is

;�(T R� � K ;�(T 1 � � � so here �7�VUW��� BYX� U T ��1��ZU[1 
 . For a general motion of the strings,
all the oscillators (modes) will be present. Because the total energy is the sum of the individual mode
energies, the modes do not interact with each other. So, from the point of view of the energy, at least,
the field is equivalent to an assembly of non-interacting oscillators.

2.2 Quantization
Let us write \ � B]X� so that (7) becomes? � 9 � )+ \ R� �� K )+ \�^ �� � �� - (8)

The essential idea is to treat the mode amplitudes ‘ � � ’ as ‘quantum coordinate-like variables’. The
associated ‘momentum-like variables’ will be _ �`� \ R��� . The energy (8) (which of course in classical
physics is a number) becomes now an operator, namely the Hamiltonian operatorab � 89��:�; a_ ��+ \ K )+ \ 1 �� a� �� - (9)

We know all about the energy levels and states of a single quantum oscillator; the fact that we
have here arbitrarily many oscillators does not worry us as they are not interacting with each other, so
they can be treated quite independently. For a single oscillator of frequency 1 , the energy levels are?�c � 	�d K ;� 
fe 1 , and the wavefunctions are well-known, in all quantum mechanics textbooks. For
our purposes, we prefer the ‘operator approach’ in terms of

ag ’s and
ag
h ’s to the wavefunction one. The

essentials are gone through in problem P1.2.

For our vibrating string, then, we simply haveab � )+ 89 ��:�; 	 ag h� ag]� K ag]� ag h� 
�e 1��i�kj !.l�m E ag]�i� ag hn N �Ao&� n - (10)

2

I.J.R. AITCHISON

2



The eigenstates of
ab

are products of the single oscillator states p d ;,q p d � q p d$r q -4-4-s-4-4- where p d ;&q is the
state of the oscillator with frequency 1f; , which has energy 	�d ; K ;� 
te 16; , etc. We can write this more
briefly as p d ; � d � �4-.-.-.- q , which has energy u � 	�d � K ;�Y
te 1 � . The ground state p � q has all d � ’s �v� , and
hence an energy (the ‘zero point energy’) equal to u � ;� e 1�� .

Thus the energy eigenstates of the quantized field
a�
	 ��� ��
 are characterized by saying how many

quanta of each frequency are present; in the ground state there are no quanta of excitation present. Such
vibrational quanta are called ‘phonons’ in condensed matter physics. Our ‘particles’ are similar quanta
of excitation of fields. The state with no excitation quanta is a (too simple!) model of the vacuum.

2.3 Free massive real scalar field
We will from now on put e ���w�0) . The ‘classical’ field satisfies the Klein–Gordon equation	tx K T � 
�y � 	 � � y� � � /{z � y K T � 
�y �����vj m}|4~,|�x � ���]� � � � �� /�z �

(11)

which is the wave equation for a free massive spin-0 (scalar) field. We now consider the field to be in
‘infinite space’ so Fourier series � Fourier integrals and our modes have the formy�	�� � ��
 ���5� 	���
�|���� E � ��� � N - (12)

Plugging this into the Klein–Gordon (KG) equation gives��5�{��/ 	�T � K � � 
 �5� (13)

which again shows that our mode amplitude acts like an SHO, this time with frequency1��`�A� 	�T � K � � 
Y�� - (14)

The total energy in the field is the obvious generalization of the energy of the string:? � )+ @ O r � E Ry � K 	 z yM
 � K T � y � N - (15)

Once again, this can be written as a ‘sum’ (in this case, an integral over the Fourier variable
�

) of
independent energies for each mode oscillator. So, when quantized, we get the Hamiltonian [compare
Eq. (10)] ab5�2� � )+ @ O r �	 + ' 
 r�� D�� ag h 	 � 
 ag 	 � 
 K ag 	 � 
 ag h 	 � 
,� (16)

where � D � K 	�T � K � � 
 �� , and where the mode creation and annihilation operators satisfyE ag 	 � 
 � ag h 	 �$� 
 N � 	 + ' 
 r o 	 � / ��� 
 � (17)

all other commutators vanishing: E ag�h 	 � 
 � ag�h 	 � � 
 N � E ag 	 � 
 � ag 	 � � 
 N ����-
Problem P1.3 shows that the state p � qL� ag h 	 �L
4p � q is an eigenstate of

ab
with eigenvalue ¡ T � K � � ,

the expected energy for a particle of mass T and momentum � (note e �¢�£�¤) 
 . We actually choose
the particular normalization p � q � ¡ + � D ag h 	 �L
4p � q - (18)

The general (quantized) solution to the KG field equation is thenay�	 � 
 � @ O r �	 + ' 
 r 	 + � D 
 �� � ag 	 � 
�|���� E / � � � � N K ag h 	 � 
�|�� � E � � � � N � � ay h 	 � 
 (19)
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for a ‘real’ field, and where � � �¥� � D � D / �5� � and the 	 + � D 
,¦ �� is a conventional normalization factor.

Problem P1.4 shows that § � p ay¨	 � 
4p � q �ª© ¦¬«®­(¯ ° - (20)

In ordinary quantum mechanics the RHS of this equation would be written as
§ � p � q , the � -space wave-

function for a state p � q of definite 4-momentum � (which is of course a 4-D plane wave). We can then
reasonably assert that the operator@ O r �	 + ' 
 r 	 + � D 
 �� ag h 	 � 
 © « � ¯ °V± ay$² ¦�³ 	 � 
 (21)

creates a quantum at � :
ay ² ¦�³ 	 � 
4p � q � p � q . (Note that the other part of

ay�	 � 
 gives 0 when acting on p � q ).
The commutation relations (17) imply thatp � ; � � � q � p � � � � ;>q (22)

so our particles are bosons!

2.4 Interactions
In the case of the freely vibrating string, or the free scalar field, the energy is the sum of individual
mode energies—the modes do not interact. But our particles are precisely mode quanta, and we want
them to interact, of course. So we must complicate our simple expressions for field energies in some
way. The crucial feature of (6) and (15) which leads to the ‘ u mode energies’ result is that they are
quadratic in the fields and their derivatives. Interactions will generally be represented by expressions
which are cubic or quartic in the fields. Correspondingly, quadratic or cubic expressions will appear in
the equations of motion. (Compare the SHO: the ‘free’ SHO energy is

;� T � � K ;� T 1 � � � with equation
of motion T ����´/ T 1 � � ; if it is perturbed by adding a cubic potential energy µ � r , this produces a
force /5¶,·¶ ° �¸/w¹ µ � � - 
 In the case of lattice vibrations, such ‘anharmonic terms’ cause the phonons to
interact—it is the same with our particles. We will introduce an interaction term

ab �
in the Hamiltonian:ab � � @ O r � aºH» 	 ay

 � (23)

for example aº » � µ�	 ay¨	 � 
�
 r - (24)

We treat
ab »

as a perturbation on
ab5�2�

.

2.5 Covariant perturbation theory: the Dyson–Wick expansion of the ¼½ operator, Feynman rules
There is a very compact and powerful formalism for doing relativistic perturbation theory, which we are
not going to go through the details of here—just quote the essential results. Transitions are described by
means of matrix elements (between free-particle states p � q and p ¾ q ) of the

a¿
operator,

§ ¾6p a¿ p � q , where
a¿

has the expansion in powers of
aº »

:a¿ �0)�/ � @ O�À � aºÁ» 	 ay¨	 � » 
�
 K )+ @Â@ O�À ��; O�À � � PÃ	 / � aºÁ» 	 �$; 
 -]/ � aºH» 	 � � 
�
 K -4-4- (25)

where ‘ P ’ is the time-ordering operationPÃ	 ay�	 �$; 
 ay�	 � � 
�
 � ay�	 �$; 
 ay�	 � � 
HÄ�ÅÆ~�� ;�Ç � �� ay�	 � � 
 ay�	 � ; 
HÄ�ÅÆ~�� ;�È � � (26)

4

I.J.R. AITCHISON

4



i.e. ‘earlier on the right’.

Discussion Point: This is supposed to be covariant (relativistically invariant) perturbation theory.
But the ‘ P ’ symbol seems to be singling out ‘time’ in some way, and does not look ‘4-D symmetric’.
Should we be worried?

Example: ‘ABC’ theory

To have a little more variety than the single
ay field, let us imagine a world with three real scalar

fields
ay�ÉJ	�Ê7ËÆ����T�É¨
 � ay�Ìw	�T�ÌL
HËÆ"¬Í ayMÎ2	�T�Î¨
 with an interaction Ï ay�Éf	 � 
 ayMÌÐ	 � 
 ayMÎ2	 � 
 . This interaction

creates or annihilates one each of an A,B or C particle—for example C � A + B. Suppose T Î ÇT�É K T�Ì . Then C will be able to decay to A + B. The matrix element for this will be, to lowest order,@ O À � § ��É � �
Ì�p / � Ï ay�Éf	 � 
 ayMÌ�	 � 
 ay�Î2	 � 
4p �MÎ q - (27)

Problem P1.5 shows that this matrix element is equal to / � ÏM	 + ' 
 À o À 	Ñ� Î / � É / � Ì 
 . (Note: creation and
annihilation operators for the different fields commute with each other.) So we have our first ‘Feynman
rule’!

(i) / � Ï for an ‘A-B-C’ vertex together with an overall factor of 	 + ' 
 À o 	Ñ��Ò®Ó�Ò Ô�ÒÖÕt× / �¬Ø4Ó4Õt×<
 .
Now consider A B � A B scattering. The lowest order in perturbation theory at which this process

can proceed is second, via the matrix element)+ @Ù@ O�À �$; OYÀ � � § � » É � � » Ì p P � 	 / � Ï ay�ÉÚ	 ��; 
 ay�Ìw	 �$; 
 ayMÎ2	 �$; 
�
�	 / � Ï ay�É2	 � � 
 ay�Ìw	 � � 
 ayMÎ2	 � � 
�
,� p ��É � �MÌ q - (28)

Suddenly we have a complicated expression on our hands! Remembering (18), we see that (28) is
essentiallyÛÝÜ>Þiß6à
ß6á�ß�âà ß�âá�ã�äåYæèç]é êë à¨Ûíì]âà�ã êë áLÛíì]âá�ãïî2ð êñ à¨Û#ò�ó ã êñ áJÛ#ò�ó ã êñ ô Û#ò�ó ã êñ àÙÛ<ò õ ã êñ áÚÛ<ò õ ã êñ ô Û<ò õ ã�ö êëÆ÷à ÛÖì]à ã êë(÷á ÛÖì á ã é ç�ø (29)

which is the vacuum expectation value (vev) of 10 operators. Remarkably, it can be shown (Wick’s
theorem) that such vev’s can be written as a sum of products of all possible choices of pairwise vev’s
(time-ordered vev’s, in general). One such term is@Ù@ O À ��; O À � � § � p ag Éf	Ñ� » É 
 ay�ÉJ	 ��; 
4p � q § � p ay�É�	 � � 
 ag hÉ 	Ñ��É¨
4p � q § � p ag Ì`	Ñ� » Ì 
 ayMÌ�	 � � 
4p � q�ùù § � p ayMÌ�	 �$; 
 ag hÌ 	Ñ�MÌJ
4p � q § � p PÃ	 ayMÎw	 �$; 
 ayMÎ2	 � � 
�
4p � q�ù 	 )ûú ? É ? Ì ?Z»É ?V»Ì 
 �� - (30)

Problem 1.4 shows us that the terms with one field and one
ag or

ag h give just plane waves: two ingoing
ones and two outgoing ones, yielding |���� � � � » É � ��;�/ ��É � � � K � » Ì � � � / �MÌ � ��; � . The interesting
bit is the remaining vev of the time-ordered product of two

ay fields, which is the Feynman propagator
in coordinate space. The physical interpretation of the two terms in

§ � p PÃ	 ayMÎ2	 �$; 
 ayMÎ2	 � � 
�
4p � q , one for� ;ÃÇ � � and one for � ; È � � is as follows: A C-quantum is being produced at �Ù; and destroyed by � � ,
or the other way round (Exercise: explain why, with the aid of the mode expansion for

ay�Îf	 � 
�
 . So
including the incoming and outgoing plane waves we have the physical processes shown in Fig. 1, and
we have to integrate the whole expression in (30) over all �6; and � � . The result is the Feynman rule in
momentum space for the scalar propagator (see textbooks):

(ii) a factor � 3 E 	�ü - Ê�Å�Ê7|û"Yl�ý¬Êÿþ4Ë(~�~,!<|ûÍ����ªl�m¬| �¬~�ÅÆ��Ë���Ë(l�!#"�����Ë(~�l�!#þ��.|i
 � / 	�!.l�� Ê7ËÆ���>
 � N
So for the C-exchange process we have the diagram of Fig. 2, corresponding to the Feynman amplitude/ � Ï 3 	
	 � / T � Î 
 where 	 � � É / � » Ì . In addition, there is the overall factor 	 + ' 
 À o À 	Ñ� É K � Ì / � » É / � » Ì 
 .

Points to note:

1 A and B are interacting by ‘exchanging a C’.
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Fig. 1: The two physical processes included in the single Feynman C propagator.

Fig. 2: One-C exchange process in A + B � A + B.

2 But the (4-momentum)
�

carried by the exchanged C is not equal to T � Î —it is ‘off mass shell’.
3 Both time orderings are included in this one momentum space amplitude.
4 Suppose we evaluate the amplitude in the c.m. frame: ��É � 	 ? É � �L
 � �MÌ � 	 ? Ì �û/ �L
 � � » É �	 ? É �û/ � » 
 � � » Ì � 	 ? Ì � K � » 
 � p �wp � p � » p - Then 	Ñ��É / � » Ì 
 � � 	 ? É / ? ÌL
 � / 	 � / � » 
 � . Now

consider the static or non-relativistic limit 	 ? É / ? ÌL
 �
� 	 � / � » 
 � . Our amplitude is now
essentially � )	 � / � » 
 � K T � Î - (31)

We can interpret this in terms of a potential associated with the A-B interaction. According to the
Born approximation in scattering theory, the amplitude to go from � to � » in the potential QÁ	
��
 is� @ |�� � � / � � » � �
��Q5	
�

�|�� � � � � � �
� O r � � @ |���� � � 	 � / � » 
 � ����QÁ	
�M
 O r � (32)

which is some function of 	 � / � » 
 � . Question: what is Q5	
�

 such that this function is equal toE 	 � / � » 
 � K T � Î N ¦ ; ? Answer: QÁ	
��
 � |�� � � / T�Î2p ��pí� 3 p �Ùp , the Yukawa potential, of range ) 3 T Î ;
see problem P1.6.

5 Good exercise: think about some of the other terms in the Wick expansion of (28)!

Problems for Lecture 1
P1.1 A string is stretched between two points � �¸� and � �¸� . The transverse displacement of the
string at the point � at time � is ��	 ��� ��
 where � � �� � � � � � � � �� � � -
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The general solution can be written as a superposition��	 ��� ��
 � 89 ��:�; ��� 	���
 ��!<" %Æ' �� -
The total energy of the vibrating string is? � @CBD E )+ FHG � �� � I � K )+ F � � G � �� � I � N#O �
where F is the mass per unit length. Show that? � � + 9 � E )+ FSR� �� K )+ F 1 �� � �� N
where 1��Á� � %Æ' 3 � . [Hint: write the term 	 ���� � 
 � , for example, as a product of two independent sum-
mations 	 u � -4-4- 
�	Ýu n$-4-4- 
 and explain why there are no ‘cross terms’ of the form � � � n % ���� in the
answer.]

P1.2 A one-dimensional harmonic oscillator has the Hamiltonian (energy operator)
ab � a� � 3 + T K ;� 1 � a� �

where E a��� a� N � � (units e � ) ). Define the operators
ag�� ag h byag£��� T 1+ G a� K � a�T 1 I � ag h ��� T 1+ G a�H/ � a�T 1 I -

(i) Show that E ag�� ag}h N � ) . (ii) Show that
ab

can be written as
;� e 1 	 ag ag�h K ag h ag 
 or as e 1 	 ag�h ag K ;� 
 -

Deduce that E ag�h4� ab N � /21 ag�h and hence show that if
ab p d q � ?wc p d q then

ab ag�h p d q � 	 ?�c K 1 
4p d q � so
that

ag h p d qÙ� p d K ) q . State and prove a similar result for
ag p&d q . (iii) Explain why there must be a state p � q

such that
ag p � q ��� . What is the energy eigenvalue of p � q ? Deduce the energy spectrum of the oscillator.

P1.3
ab �2�

is defined by ab5�2� � )+ @ O r �	 + ' 
 r�� D�� ag h 	 � 
 ag 	 � 
 K ag 	 � 
 ag h 	 � 
,�
where � D � K ¡ T � K � �

, with E ag 	 � 
 � ag h 	 � » 
 N � 	 + ' 
 r o 	 � / � » 

all other commutators vanishing. Show thatab �2� ag h 	 �L
4p � q � � D ag h 	 �L
4p � q
where � D � K ¡ T � K � � and

ag 	 � 
4p � q ��� for all
�

.

P1.4 The field
ay¨	 � 
 has the mode expansionay�	 � 
 � @ O r �	 + ' 
 r 	 + � D 
 �� � ag 	 � 
�|�� � E / � � � � N K ag h 	 � 
�|�� � E � � � � N �

where � � �¥� � D � D / ��� � - Show that § � p ayÙ	 � 
4p � q �ª© ¦¬«®­(¯ °
where p � q � ¡ + � D ag h 	 �L
4p � q -
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Fig. 3: Possible space–time trajectories between the fixed points

òMÛ�� ó ã
and

òMÛ�� õ ã
.

P1.5
ay�É � ay�Ì � ËÆ"¬Í ayMÎ are three distinct scalar fields. Evaluate@ O À � § ��É � �
Ì�p / � Ï ay�Éf	 � 
 ayMÌ�	 � 
 ay�Î2	 � 
4p �MÎ q -

P1.6 Evaluate the Fourier transform @ O r �¬|�� � � ��� � ��� |�� � � / % 3 g �%
of a Yukawa potential by following these steps: change

O r � to polar coordinates ‘ % � O % �,!<"�� O � O y ’ with
the polar axis chosen along the direction of � . So |�� � � ��� � �
� � |���� � � p � p % þ�Å����}� . Do the integral over� . Then do the integral over % (the y integral just gives + ' ). [Answer: ü ' 3 	 � � K g ¦ � 
 .]
3 LAGRANGIANS, COMPLEX SCALAR FIELDS, DIRAC AND MAXWELL FIELDS

See Chapter 7 of Ref. [1].

We have managed to get this far without mentioning the word ‘Lagrangian’, but now we are going
to have to start using this language, which is particularly well suited to the discussion of symmetries, and
these are of fundamental importance in the Standard Model (SM).

3.1 Lagrangians
This is essentially a formulation of dynamics which is different from (but in the classical case equivalent
to) Newton’s. The basic quantity here is the Lagrangian function, which in most cases has the form
‘ ��� P / Q ’ (instead of the energy which is ‘

? � P K Q ’). For a classical particle with coordinate� 	���
 , � is just � E � 	���
 � R� 	���
 N � ;�(T R� 	���
 � / QÁ	 � 	���
�
 - The ‘path’ � 	���
 the particle takes is determined by
the principle that the action integral

¿
given by¿ � @ � �� � � E � 	���
 � R� 	���
 N � @ � �� � E )+ T R� 	���
 � / QÁ	 � 	���
�
 N#O � (33)

is a minimum as all paths � 	���
 are searched over, subject to � 	�� ; 
 and � 	�� � 
 being fixed (see Fig. 3).
Problem P2.1 provides a simple example.

Although the action principle seems very different from the differential equations of Newton’s
laws, we can connect them by using a bit of calculus. The actual path must be determined from the
condition that small changes away from it make no change in

¿
, to first order (i.e.

¿
is at a minimum).
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So consider an arbitrary change � 	���
 � � 	���
 K oû� 	���
 , which also implies R� 	���
 � R� 	���
 K ¶¶ � os� 	���
 - So
then R� � � R� � K + R� ¶¶ � oû� to first order, and QÁ	 � 
6�´QÁ	 � 
 K ¶>·¶ ° os� , givingo ¿ � @ � �� � E T R� OO � 	 os� 
 / O QO � os� N#O � - (34)

Now do a partial integration in the first term to geto ¿ � @ � �� � / E OO � 	�T R� 
 K O QO � N oû� 	���
 O � � (35)

assuming that os� vanishes at the end points (all paths start and finish at the same points). Now it is
important to realise that ‘ os� 	���
 ’ here is an arbitrary (if ‘small’) function of t. But this change in

¿
, o ¿ ,

must be zero, by our principle. The only way the integral in (35) can be zero for arbitrary os� 	���
 is if the
quantity inside the square brackets vanishes, i.e.OO � 	�T R� 
 �0/ O QO � (36)

which is exactly Newton’s law of motion!

In quantum mechanics, the action approach can also be used, as stated by Dirac and developed by
Feynman. There, the amplitude to go from � 	�� ; 
 to � 	�� � 
 is proportional to9Õt×®× �4Õ Ô"!$# ° ² � ³ |�� � G �e @ � �� � � 	 � 	���
 � R� 	���
�
 O � I � 9�4Õ Ô"!$# |���� � ¿ 3 e - (37)

The qualitative idea here is that if the integral is an essentially classical quantity, then its value will be a
very large number of e ’s, so the phase factor will oscillate wildly as the � ’s change, and everything will
cancel out except for trajectories such that the action is stationary to small variations around them, since
for these ones the phases will ‘add up’ coherently; hence we get back to the classical action principle in
that case.

The action approach can also be used for fields, both classical and quantum; for the latter, see Peter
Hasenfratz’s lectures. In this course we shall not use it for dynamics (i.e. for deriving the Feynman rules),
but we shall use the Lagrangian language, because it is a very powerful one for discussing symmetries,
and because it is quite simply the lingua franca of particle physics (at least insofar as the Standard Model
is concerned). Before moving to that, we note that the general formulation of (36) is (problem P2.2)OO � G � �� R� I / � �� � ����- (38)

For fields, we shall have to introduce a Lagrangian density % such that (in one space dimension)¿ � @Â@ O � O � % E y�	 � 
 � Ry � � y�	 � 
� � � � y�	 � 
� � N = (39)Ry � ��&� � is like R� in (33), and
��&� ° is new, but analogous. Again, the field equation for y�	 � 
 will be

determined from the condition that o ¿ ��� under y��´y K o y � Ry¥� Ry K o Ry � ��&� ° � ��&� ° K o(' ��&� °�) :�V�ªo ¿ � @ O � @+* � %� y o y K � %� 	 � y 3 � � 
 o G � y� � I K � %� Ry o Ry�, O ��- (40)

(Compare (34).) But o ' � &� ° ) � �� ° o y , and similarly for the Ry term, so that the second and third terms in
(40) can both be integrated by parts, as in (35). As in that case, the variations vanish at the end-points,
and since o y is arbitrary, we deduce the Euler–Lagrange equation of motion� %� y / �� � G � %� 	 � y 3 � � 
 I / �� � G � %� Ry I �ª��- (41)
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Example. % � ;� Ry � / ;� 	 ��&� ° 
 � / ;� T � y � . The E–L equation is
� � &� � � / � � &� ° � K T � y ��� , the KG equation.

This all generalizes to 4-D via %.-0/ � )+ �Y� y � � y / )+ T � y � - (42)

Here
� � � �� °�1 � � � � �� ° 1 ��� � � 	 � D � �L
 ��� � � 	 � D �û/ �L
 � � � � � � �� ° 1 �� °�1 � �� °�2 �� °�2 K �� � � 	 / �� � 
 �� �� � � /{z � -
And this generalizes to quantum fields by putting hats on!

3.2 The complex scalar field
In Section 2 we considered a ‘real’ scalar field for which

ay h � ay . The next most complicated thing is a
complex scalar field for which

ay h is different from
ay . So here our mode expansion will have the formay � @ O r �	 + ' 
 r43 +�1 E ag 	 � 
 © ¦¬« � ¯ ° K a5 h 	 � 
 © « � ¯ ° N - (43)

The physical interpretation of this is that ‘
ag ’ will destroy a particle (quantum) of the field, while ‘

a5 h ’
will create an antiparticle. This is because states

ag�h p � q and
a5 h p � q are distinguished by having opposite

signs of a certain conserved quantum number. Now conservation laws have to do with symmetries: what
symmetry is at work here? The answer is that it is a symmetry underay¥� © ¦¬«76 ay (44)

i.e. a simple phase transformation. Any
a% 	 ayM
 which is a function of

ay h ay and
� � ay h � � ay only will be

invariant (symmetric) under (44); for instance the Lagrangian for the free complex KG fielda% � �Y� ay h � � ay / T � ay h ay (45)

is invariant under (44).

The symmetry (44) is called a continuous symmetry because the phase angle 8 can be anything
(compare ‘parity’, where the transformation is ��� / � and there is no such thing as a ‘small change of
parity’). It is also a global symmetry, meaning that the parameter 8 does not depend on the space-time
point � ; if it did, so that we had 8 �98J	 � 
 in (44), the symmetry would be called a local one. In the case
of (45), the Lagrangian cannot be invariant under such a local phase change because of the

� � y terms,
which will produce

�]� 8 pieces which will not cancel. But, if we include the electromagnetic field, then
we can get a Lagrangian which is invariant under local phase transformations (see Section 2.4).

Another piece of jargon we need to introduce is the statement that (44) is a ‘U(1)’ transformation.
The ‘U’ stands for ‘unitary’ as in ‘unitary matrix’. We can write (44) as

ay��;:Ã	<8¨
 ay , where the ‘matrix’:£	<8�
 has only a single element, i.e. it is a ‘ ) ù ) ’ matrix. A genuine unitary matrix = satisfies = h = �?> ,
where > is the identity matrix and the dagger denotes the Hermitian conjugate. A one-dimensional matrix
is of course a single number—in this case a complex number. The ‘unitary’ condition then reduces to:A@$: �0) , which is to say that U is just a phase factor, as in (44). Such phase factors © «76 form a group: the
product © «76 © «CB of any two of them is also a phase factor, and there is an obvious identity ( when 8 ��� )
and an inverse (replace 8 by / 8 ). Furthermore, this group is Abelian, meaning that it does not matter
in which order we multiply any two U’s together: :Ã	<8¨
D:£	FE�
 � :£	FE�
D:£	<8�
 . (As we shall see in Section
4, the symmetries of QCD and of the electroweak theory are precisely non-Abelian generalizations of
(44).) So finally, we say that (44) is a global U(1) transformation, and (45) has a global U(1) symmetry.

The basic theory of such continuous symmetries is supplied by Noether’s theorem. Because the
transformation is continuous, it is good enough to consider an infinitesimal transformation—finite ones
can be built up by having lots of little ones. So let us consider an arbitrary

a% which is invariant underay � ay » � ay / ��G ay
10
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(46)ay h � ay » h � ay h K �DG ay h -
The change in

a%Ð	 ay � ay h�� � � ay � � � ay h 
 will then be zero (because it is invariant), and this change is�Ã�ªo a% � � a%� 	 �Y� ay

 o 	 ��� ay

 K � a%� 	 ��� ay h 
 o 	 �Y� ay h 
K � a%� ay o ay K � a%� ay h o ay h - (47)

This is a bit like the manipulations leading up to the derivation of the Euler–Lagrange equation in Section
3.1, but now the changes o ay and o ay h have nothing to do with space–time trajectories—they mix up the
two fields via (46). However, we can use the equations of motion for

ay and
ay h to rewrite o a% as� � � a%� 	 �Y� ay

 o 	 ��� ay

 K � a%� 	 ��� ay h 
 o 	 �Y� ay h 
KIH � �KJ � a%� 	 �Y� ay�
MLON o ay KPH � �QJ � a%� 	 ��� ay h 
�LRN o ay h - (48)

Since (see similar steps after (40)) o 	 � � ay « 
 � � � 	 o ay « 
 , the right-hand side of (48) is just a total diver-
gence, and (48) becomes � � � � H � a%� 	 ��� ay�
 o ay K � a%� 	 �Y� ay h 
 o ay h N - (49)

This means that the quantity inside the [.....] is a ‘current’
aS �

which is conserved in the sense that� � aS � ��� .

This is a general result for any % invariant under (46), and it is an example of Noether’s theorem
(which states that continuous symmetries imply the existence of conserved currents). For our particular
case, with the small changes (46), the quantity in the [...] brackets isE -4-4- N � 	 � � ay h 
 -Y/ ��G ay K 	 � � ay

 - ��G ay h� ��G ' 	 � � ay

 ay h / 	 � � ay h 
 ay ) ± G aS �& - (50)

We drop the irrelevant constant parameter G and arrive at the expression for the conserved current fol-
lowing from the symmetry under (46):aS �& � � ' � h ay

 ay h / 	 � � ay h 
 ay ) - (51)

What does all this have to do with conserved quantities? Written out in full, the conservation
equation

� � aS �& ��� is � aS D& 3 � � K z � aT & ����- (52)

Integrating this equation over all space, we obtainOO � @ ·VU 8 aS D& O r � K @XW U 8 aT & � O ½ ��� (53)

where we have used the divergence theorem in the second term. Normally the fields die off sufficiently
fast at infinity that the surface integral vanishes, and we can therefore deduce that the quantity

aY & is
constant in time, where aY & � @ aS D& O r �Ú= (54)
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that is, the volume integral of the Z � � component of a symmetry current is independent of time, so its
eigenvalues are constants of the motion, i.e. conserved quantum numbers.

We can calculate
aY & given the field expansion (43). Here we must of course pay attention to the

fact that the
ag ’s and

a5
’s are mode operators with the commutation relationsE ag 	 � 
 � ag h 	 � » 
 N � 	 + ' 
 r o 	 � / � » 
 � E a5 	 � 
 � a5 h 	 � » 
 N � 	 + ' 
 r o 	 � / � » 
 � (55)

all other commutators vanishing. Also we are defining the vacuum state p � q as being such that
ag 	 � 
4p � q �a5 	 � 
4p � q �k� . Now, if we go ahead and calculate

aY & in terms of the
ag ’s and

a5
’s from (54), we will get

some terms in which the rightmost operator is a creation operator; such terms will not give zero when
acting on p � q . We want the vacuum to be a state with zero eigenvalue of this conserved quantity, and so
we re-order the expression for

aY & , using the commutation relations, so as to arrive at a form in which
all

ag ’s and
a5
’s appear to the right of all

ag�h ’s and
a5 h ’s (this is called ‘normal ordered form’—note that we

need to do this with the Hamiltonian also!). We discard (infinite) constant contributions arising from theo -functions on the RHS of (55). Having done this, we findaY & � @ O r �	 + ' 
 r E ag h 	 � 
 ag 	 � 
 / a5 h 	 � 
 a5 	 � 
 N � (56)

while the Hamiltonian in normally ordered form isab & � @ O r �	 + ' 
 r¬� D E ag h 	 � 
 ag 	 � 
 K a5 h 	 � 
 a5 	 � 
 N - (57)

So
aY & counts 1 for every ‘a’ and /Z) for every ‘b’ particle in a state (remember that things like ‘

ag�h ag ’ are
just number operators), while

ab & counts
K � D for every ‘a’ and also

K � D for every ‘b’. The interpretation
then is that free a’s and b’s of momentum

�
have the same energy ¡ T � K � �

, but carry opposite values
of the conserved quantum number

Y & , which is the eigenvalue of
aY & . This is why we interpret

a5 h as the
creation operator of an anti-a.

3.3 Fermions
The first step towards getting nearer to the SM is to introduce the quantized Dirac field, which is needed
for spin-1/2 particles such as quarks and leptons. The free Dirac equation is� �X[� � 	 � 
 � 	 / ��\ � z K E$T 
 [ 	 � 
 ± b^] [ 	 � 
 (58)

where the Hamiltonian is thus
b_] �¢/ ��\ � z K E�T , and \ and E are the ü ù ü Dirac matrices. As in

the scalar case, we shall promote the ‘wave function field
[ 	 � 
 ’ into a quantum field operator

a[ 	 � 
 with
a mode expansion a[ �A@ O r �	 + ' 
 r 3 + � D 9n :�;a` � E a� n 	 � 
�b�	 � �c� 
 © ¦¬« � ¯ ° K aO hn 	 � 
�dM	 � �c� 
 © « � ¯ ° N � (59)

where � D � 	�T � K � � 
 ;�e � . Note: (i)
a[f�� a[ h —it is a complex Dirac (spinor) field: as with the complex

scalar field, this has to do with the fact that its quanta carry a conserved number which distinguishes
particle quanta from antiparticle quanta; (ii) b and d are 4-component spinors of positive and negative
4-momentum respectively, such that	 � � / T 
�b¨	 � �c� 
 ����� 	 � � K T 
�d
	 � �c� 
 ��� (60)

where
� � �hg D � D /ji ���

and g D � E �Div� E \ ; (iii) there are two independent spinors b (and two
independent d ’s) for given � , corresponding to the two possible spin states for a spin-1/2 particle, labelled
by ‘ � ’.
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We have written (59) in a form which mimics the complex spin-0 case, suggesting that the
a� ’s are

mode annihilation operators and the
aO h ’s are mode creation operators. That is, we expect the vacuum to

be such that
a� n 	 � 
4p � q �0�¥� aO n 	 � 
4p � q , and that particle states will be formed by applying

a� hn ’s and
aO hn ’s

to p � q . However, while this seems fine for single particle states, we know very well that a state such asp � ;û�c��; = � � �c� � qL� a� hn � 	 � ; 
 a� hn � 	 � � 
4p � q (61)

has to be antisymmetric under interchange of the labels 	 � ;û�c��; 
 U 	 � � �c� � 
 : in particular, the state must
be zero (fail to exist) if � ; � � � and � ; ��� � (the Pauli exclusion principle). So these mode operators
cannot be just like the spin-0 ones.

The solution to this dilemma is simple but radical: for fermions, commutators are replaced by
anticommutators! If two different

a� ’s anticommute, thena� hn � 	 � ; 
 a� hn � 	 � � 
 K a� hn � 	 � � 
 a� hn � 	 � ; 
 ��� (62)

so that we have the desired antisymmetryp � ;û�c�Æ; = � � �c� � q �0/ p � � �c� � = � ;û�c��; q - (63)

In general we postulate � a� n � 	 � ; 
 � a� hn � 	 � � 
,� � 	 + ' 
 r o r 	 � ;6/ � � 
 o n � n � (64)� a� n � 	 � ; 
 � a� n � 	 � � 
,� � � a� hn � 	 � ; 
 � a� hn � 	 � � 
,� �ª�
and similarly for the

aO
’s and

aO h ’s. The factor in front of the o function depends on the convention for
normalizing Dirac wavefunctions.

Why does it have to be this way? This is a deep question and has a (rather technical) answer in the
famous ‘spin-statistics theorem’ of quantum field theory. One can get some idea of what goes wrong if
we use commutators for fermion modes, by considering the Hamiltonian operator which isab^] � @ a[ h 	 � 
�	 / ��\ � z K E$T 
 a[ 	 � 
 O r � - (65)

If we place the expansion (59) into (65) we find (after quite a lot of algebra)abk] � @ O r �	 + ' 
 r¬� D 9n :�;a` � E a� hn 	 � 
 a� n 	 � 
 / aO n 	 � 
 aO hn 	 � 
 N - (66)

As with
ab & and

aY & for the scalar field, we would want to re-order the last term in (66) so as to ensureab ] p � q ����- But if we do this assuming ordinary commutation relations for the
aO
’s, we getab ] � @ O r �	 + ' 
 r¬� D 9n :�;a` � E a� hn 	 � 
 a� n 	 � 
 / aO hn 	 � 
 aO n 	 � 
 N - (67)

The problem with (67) is that, although indeed
ab^] p � q � � , there are states with negative energy!—

namely states with any number of d-quanta (because of the minus sign in front of the number operatoraO h aO ). On the other hand, if we re-order the
aO aO h term using anticommutation relations, we convert the /

sign in (67) into a + sign, and all is well.

We can also see the same mechanism at work if we enquire about a conserved fermion number.
The Dirac Lagrangian is a% ] � al[ 	 � 
�	 � g � � / T 
 a[ 	 � 
 (68)
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where
a[

and
a[ h are independent degrees of freedom (the E–L equation for

al[
is just the Dirac equation	 � g � � / T 
 a[ �ª� 
 . The Lagrangian (68) is plainly invariant under the global U(1) transformationa[ 	 � 
Ù� a[ » 	 � 
 �ª© ¦¬«76 a[ 	 � 
 - (69)

The corresponding (Noether) symmetry current can be found by following the standard steps in Noether’s
theorem of §3.2, and is aY �m � l a[ 	 � 
 g � a[ 	 � 
 - (70)

The associated symmetry operator isaY m � @ aY Dm 	 � 
 O r � � @ a[ h 	 � 
 a[ 	 � 
 O r � � (71)

which is just the usual Dirac number density, integrated over � . If we now calculate
aY m from (71), we

find aY m � @ O r �	 + ' 
 r 9n :�;a` � E a� hn 	 � 
 a� n 	 � 
 K aO n 	 � 
 aO hn 	 � 
 N - (72)

The first term is fine, but if we re-order the second to ‘
aO h aO ’ so that

aY m p � q ��� , we will be counting +1
for both c’s and d’s. We clearly need, again, to use anticommutators, so that

aY m � a�4h a� / aO h aO , which
counts +1 for each c (particles), and /V) for each d (antiparticles).

We also need the Dirac propagator
§ � p PÃ	 a[ 	 �$; 
 l a[ 	 � � 
�
4p � q . This may be compared with the anal-

ogous propagator for the complex scalar field, namely
§ � p P£	 ayÙ	 �$; 
 ay h 	 � � 
�
4p � q —see problem P2.3. But

note that in the Dirac case, each of
a[

and
a[ h carries an independent spinor index (telling which of the

four components it is), so the Dirac propagator is a ü ù ü matrix in this spinor space. For the Feynman
rule appropriate to a propagating fermion we need the momentum space version, as usual. In the scalar
case, the propagator is proportional to ) 3 	
	 � / T � 
 where 	 is the momentum carried by the internal
particle and T is its mass. The ‘poor man’s’ way of getting this is to take the equation of motion for a
free scalar particle (the KG equation) 	 � �� /�z � K T � 
�y�	 � 
 ��� (73)

and consider a plane wave solution (4-momentum eigenfunction) of the formy ��n |�����	 / � 	 D � K �o� � �L
 �pn |�� ��	 / � 	 � � 
 (74)

giving 	 / 	
	 D 
 � K � � K T � 
 nA� 	 / 	 � K T � 
 nª�ª� (75)

and the propagator is basically the inverse of the expression (....) multiplying n in (75), namely 	 / 	 � KT � 
 ¦ ; . In the Dirac case, an analogous plane wave solution has the form[ � |�����	 / � 	 � � 
�b � (76)

where b is a 4-component spinor. Inserting (76) into (58) we find	 �	 / T 
�b ��� (77)

as in (60), and the inverse of the LHS of (77) is 	 � 	 / T 
 ¦ ; (remember that
� 	 is a matrix!). The actual

answer is

(iii) a factor � 3 	 �	 / T 
 for an internal fermion line carrying 4-momentum 	 .
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3.4 Local U(1) phase invariance (U(1) gauge theory): QED
Consider the Dirac Lagrangian a%.q � l a[ 	 � g � � / T 
 a[ - (78)

It is certainly invariant under
a[ � © ¦¬«76 [ with constant 8 , which is a global U(1) symmetry associated

with conservation of the number of
[

-fermions, as we have seen. Let us explore the possibility of
invariance under the local phase transformationa[ 	 � 
6� © ¦¬«cr6 ² °s³ a[ 	 � 
 (79)

where
a8Ú	 � 
 is a scalar quantum field. Clearly

a%sq is not invariant under (79): it changes byo a%.q � l a[ 	 � 
 g � a[ 	 � 
 �Y� a8f	 � 
 - (80)

Now, in classical electrodynamics, the way in which electromagnetic interactions are introduced in the
Hamiltonian formulation of dynamics is via the replacement of the momentum variable � � by � � /�©�n � ,
where © 	 Ç�� 
 is the particle’s charge and n � � 	ÝQ �ct 
 is the 4-vector of electromagnetic potentials Q
and t such that u � z ù t and v �Â/Ðz Q / � t 3 � � . In quantum mechanics, we follow the same
prescription, but now � � � a� � � � � � and electromagnetism is introduced via � � � � � � � /�© n � , or� � � � � K � © an � ± aw � - (81)

Applying this prescription to
a% q , we generate an interactiona% Ò®Ó�Ô � /w© l a[ g � a[ an � - (82)

Now, if
an � were also to change by exactly the rulean � � an � K )© �Y� a8 (83)

when
a[

changes by (79), the term (80) will be cancelled and the complete Lagrangian
a%.q K a% Ò®Ó,Ô would

be locally U(1) invariant.

Of course, this is indeed the case. The electromagnetic potentials are arbitrary up to ‘gauge
transformations’ of the form (83) (consider for example just the 3-vector part:

at � at K ;x z a8 , andau �Az ù at remains the same because curl grad =0). So the combined transformationsa[ 	 � 
 � © ¦¬«cr6 ² °s³ a[ 	 � 
an � 	 � 
 � an � K )© �Y� a8f	 � 
 (84)

are what we mean by a U(1) gauge transformation. Note that the interaction is the 4-dimensional dot
product of the gauge field

an � 	 � 
 and the ‘global U(1) symmetry current’
l a[ g � a[

.

Like our other quantum fields,
an � 	 � 
 has a mode expansion:an � 	 � 
 � r9y : D @ O r �	 + ' 
 r43 +�1 EzG � 	 � � µ�
 a8 y 	 � 
 © ¦¬« � ¯ ° K G @ � 	 � � µM
 a8 hy 	 � 
 © « � ¯ ° N (85)

where G � 	 � � µM
 is the ‘polarization vector’ of the plane wave solution ( µ �����û)(�,+ �,¹ ).
an � is real (because

the photon is its own antiparticle), and G � 	 � � µM
 is a ‘spin-1 analogue’ of the spinor b�	Ñ� �c� 
 for the Dirac
field.

But this ‘
an � ’ is itself a dynamical field, of course. What is its Lagrangian? To answer this, we

need to find an
a%ÚÉ such that, if that was all we had, the E–L equations of motion would give us the
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free-space (source-free) Maxwell equations. Now Maxwell’s equations are for the field strengths
av andau , not the potentials, so they are automatically unchanged under the transformation (83)—that is, they

are gauge invariant. This suggests that we need to use the gauge invariant objecta{ �4| � �Y� an | / �}| an � (86)

to build our
a%ÚÉ (it is easy to check that

a{ �4|
is invariant under (83)). Indeed, the Maxwell Lagrangian isa%ÚÉ � / )ü a{ �M| a{ �M| - (87)

How do we know? By verifying that indeed the E–L equations for
an � following from

a%JÉ are the free-
space Maxwell equations (warning: this needs some patience to do correctly, first time!).

So actually we are now in possession of the QED Lagrangiana%�~�� ] � l a[ 	 � � � / T 
 a[ /�© l a[ g � a[ an � / )ü a{ �4| a{ �4| ± l a[ 	 � �w / T 
 a[ / )ü a{ �M| a{ �M|
(88)

for one fermion of charge © and mass T . It is invariant under local U(1) transformations—i.e. it is
gauge invariant. What are the Feynman rules? We have the fermion propagator: we need the interaction
vertex, and the

an � (photon) propagator. First, the vertex. Remember that ‘ % � P / Q ’, so the interaction
Hamiltonian is ab » � @ © l a[ g � a[ an � O À ��- (89)

In perturbation theory we always get ‘ / � ab »
’. So a lowest order matrix element will be§ ¾6p / � © @ l a[ g � a[ an � O À � p � q - (90)

Just as in the ‘ABC’ case, the amplitude for the elementary building block ‘ © ¦ � © ¦ K g ’ will be just

(iv) � ©�g �
with appropriate factors for an incoming fermion (a b spinor), an outgoing fermion (a lb spinor), and theg ( G � for an ingoing g , G @� for an outgoing one).

The only other thing we need is the photon propagator, and here we hit an unpleasant snag, which
should not be concealed. Let us try to follow the ‘poor man’s’ way of getting propagators in this case.
We start with the E-L equation of motion for the n � field, which turns out to bex n | / � | 	 �Y� n � 
 ��� (91)

(see problem P2.4). Now try plugging in a free particle plane wave solution n | � |�����	 � 	 � � 
 G | . We get	 / 	 � o |� K 	 | 	 � 
 G � ����- (92)

The propagator should be basically 	
	 � o |� K 	 | 	 � 
 ¦ ; . But this inverse does not exist! It is obvious that	 / 	 � o |� K 	 | 	 � 
D	 � 
 ��� (93)

so that treated as a matrix it has a zero eigenvalue; hence its determinant must vanish, and its inverse
therefore will not exist.

The propagator should be something like
§ � p PÃ	 an � 	 �$; 
 an | 	 � � 
�
4p � q , but as we have seen the

an � ’s
are not unique, and can be altered by a gauge transformation (83). So the propagator is in fact gauge
dependent, not a unique quantity, and that is why the naive poor man’s approach failed. In classical
electromagnetic theory, one ‘fixes the gauge’, for example by imposing the condition

��� n � � � , which
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reduces (91) to x n | �ª� , and then the plane wave solution gives / 	 � G � ��� and the propagator � ) 3 	 �
(as expected!). But in general we must acknowledge the gauge dependence. A standard form for the g
propagator is

(v) a factor �&E / Ï �4| K 	 )V/�� 
D	 � 	 | 3 	 � N 3 	 � for an internal photon line carrying 4-momentum 	 ,
where � is a ‘gauge parameter’ ( � ��) gives the simple ) 3 	 � form).

Results for physical quantities will always be independent of � (i.e. will be gauge invariant), but it is not
so simple to give a general proof of this.

Problems for Lecture 2
P2.1 The ‘action’ in classical mechanics is defined by¿ � @ � �� � E )+ T�	 R� 	���
�
 � / QÁ	 � 	���
�
 N#O � -
Consider one-dimensional motion under gravity with Q �0/ T¥Ï � 	���
 . Evaluate

¿
for � ;Ú����� � � � P , for

three alternative trajectories: (a) � 	���
 � g � ; (b) � 	���
 � ;� ÏY� � (the Newtonian one); and (c) � 	���
 � 5 � r .
[Take care to choose g and

5
so that all trajectories end at the same point.]

P2.2 The classical action is ¿ � @ � �� � � E � 	���
 � R� 	���
 N#O �
where � is the Lagrangian. Under an infinitesimal change of trajectory � 	���
Z� � 	���
 K os� 	���
 � R� 	���
Z�R� 	���
 K ¶¶ � oû� 	���
 the action changes byo ¿ � @ � �� � E � �� � os� K � �� R�

OO � oû� N#O � -
The classical path is determined from the condition o ¿ ��� . Show that this impliesOO � G � �� R� I / � �� � ����-
P2.3 Discuss the interpretation of

§ � p PÃ	 ayÙ	 �$; 
 ay h 	 � � 
�
4p � q for both time-orderings.

P2.4 Maxwell’s equations arez � v �����6z ù v �0/ � u� � �Ùz � u �����Lz ù u � � v� � -
In quantum mechanics, electromagnetic interactions are introduced via the potentials Q and t defined
by v �0/`z Q � � t� � � u �Az ù t�-
Then z � u ��� and z ù v �0/ � u� � are satisfied automatically, while the other two Maxwell equations
become 	 � �� /{z � 
 t K z 	 � Q� � K z � t 
 ���
and 	 � �� /{z � 
�Q / �� � 	 � Q� � K z � t 
 ����-
(i) Verify these last two equations.
(ii) Verify that they can be put into a neat covariant form by introducing the 4-vector n � � 	ÝQ �ct 
 ,
namely x n | / � | 	 �Y� n � 
 ���
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Fig. 4: � -exchange amplitude in ���X���k�I� ����� .

where x ± �M�� /�z � � � | ± �� ° � � �Y� n � � � ·� � K z � t . [Note that � « � /2� « for � �´)(�,+ �,¹ ; so� « � �� °�� � / �� ° � � 	 /Ðz 
 «����a� � � Ó$�ÝÓ,Ô , and
� « � �� ° � � 	 K z 
 «����a� � � Ó$�ÝÓ�Ô . So

�Y� n � � � D n D K � « n « �� ·� � K z � t .]

P2.5 Show that E aw � � aw | N � � © a{ �4|
(see (81)). Hint: in working with such commutators of differential operators, it is best to put in an
arbitrary function for the operators to act on, on both sides.

P2.6 A photon mass term in the Lagrangian would give a term proportional to
an � an � . Show that this is

not gauge invariant.

4 ONE-LOOP GRAPHS IN QED: RENORMALIZATION, AND RUNNING COUPLING
CONSTANT

See Chapters 10 and 11 of Ref. [1].

Feynman diagrams represent terms in a perturbation theory expansion of physical amplitudes,
where the expansion parameter is the relevant ‘charge’ of the theory—‘ © ’ for QED, or more precisely
the fine structure constant 8 �ª© � 3 ü ' . The lowest order graphs for any process are always the ones with
the fewest vertices, and this means, in fact, that for given external ‘legs’, each vertex must be joined to
only one other vertex by a single internal line (propagator); for example, the g -exchange amplitude in© ¦ Z ¦ � © ¦ Z ¦ shown in Fig. 4. Such graphs are called ‘tree’ graphs.

But tree graphs will only give us the lowest order contribution to the amplitudes. As soon as we
go to the next order in perturbation theory, we meet loops—for example, those shown in Figs. 5 (a), (b)
and (c), which are O( 8 � ) ( four powers of © ) diagrams in © ¦ Z ¦ � © ¦ Z ¦ . Admittedly, since 8 � ) 3 )û¹��
is quite small, such corrections would seem to be relatively insignificant, perhaps. But, as you all know
very well, there are certain quantities (such as the anomalous magnetic moments of the © and the Z )
which are known with truly remarkable precision (typically 0.1%), well beyond that represented by the
simplest lowest order calculation. More to the point for this school, LEP and SLAC experiments had an
accuracy sensitive to one-loop corrections; hence an understanding of this physics is now essential for
phenomenology.

As soon as one tries to calculate a loop, in nearly all quantum field theories, one finds that it is
infinite! This is pretty disastrous, particularly as loops are supposed to be a small correction to the tree
graphs (if the expansion parameter is small, as 8 is). Thus at once we are faced with the whole business
of renormalization, which is a systematic procedure for ‘taming’ these infinities. All three gauge theories
of the Standard Model are ‘renormalizable’, meaning that higher order corrections can in fact be reliably
calculated. The remarkable agreement between theory and experiment is impressive confirmation that
the rather elaborate theoretical structure of these theories is actually a good model of nature at this scale.
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Fig. 5: One-loop corrections to Fig. 4.

Fig. 6: The loop parts of Fig. 5.

However, the renormalization of non-Abelian gauge theories is too technical for this course, and here I
shall sketch how it works for QED only.

The loop bits in Fig. 5 are, in fact, the only divergent one-loop graphs in QED; we redraw them
separately in Figs. 6 (a)–(c). Figure 6(a) is clearly a correction to the photon propagator, and is called
generically a ‘vacuum polarization’ graph (see Section 5.3), (b) is a ‘vertex correction’ and (c) is a
correction to a fermion propagator. We are going to concentrate on (a).

4.1 Vacuum polarization and the photon self-energy
We shall use the gauge �H�¤) in which the unmodified photon propagator is / � Ï �4| 3 	 � . The amplitude
for Fig. 6(a) is (omitting Dirac spinor factors for the fermion lines)/ � Ï | X	 � ' ���(� �D�Xc� 	
	 � 
 ) / � Ï � �	 � (94)

where �o� � �D�X�� 	
	 � 
 � 	 /Z) 
�	 / � © 
 ��� ~ @ O À �	 + ' 
 À ��	 K � � / T g X �� � / T g � - (95)

Note: (i) When we attach external legs to Fig. 6(a), as in Fig. 5(a), ‘ 	 ’ will be determined in terms of
the 4-momenta of the external particles, but this 	 is shared by the ©}� and © ¦ in the loop in all possible
ways: the © � has 4-momentum � , say, in the direction indicated, and the © ¦ has 	 K � , but nothing
determines � —it has to be integrated over. (ii) The ( /Z) ) factor has to be included for all closed fermion
loops, as does the Tr (which means ‘take the trace—i.e. sum the diagonal elements—of the Dirac matrix
product’).

The � O À � in (95) extends over the (presumably) infinite 4-D ‘volume’; in particular, all com-
ponents of � can go to infinity. So a crude ‘counting of powers’ seems to show that (95) will diverge
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Fig. 7: Sum of vacuum polarization ‘bubble’ insertions.

as @ O À � 3 � � � @ � r O � 3 � � � @ � O � �p� � (96)

if we ‘cut off’ the integral at an upper limit � . This would be a (divergent) constant contribution,
multiplying Ï Xc� to get the indices right. What would such a constant loop correction mean, in this
case? Suppose we consider a whole series of such ‘insertions’, as shown in Fig. 7—which is, in fact,
a geometric series of the form ‘

;� K ;� 5 ;� K ;� 5 ;� 5 ;� -4-4- ’, summing to
;� ² ; ¦�� e � ³ � ;� ¦�� . In the present

case, then, this would mean that a constant part of � � �D�Xc� will correct the propagator (after summing) to
something of the form 	
	 � / þ�Å�"¬��l&
 ¦ ; —in other words, the photon will apparently acquire a mass!

Actually, such insertions into propagators usually do have the effect of shifting the mass of the
particle in question, and they are generically called ‘self-energies’ (e.g. Fig. 6(c) is a fermion self-energy,
which will indeed modify the original fermion mass). But the real photon is massless! We know this to
a very high accuracy experimentally. Theoretically, this is fundamentally related to gauge invariance—
see problem P2.6! So, provided we introduce the cut-off in a gauge-invariant way, it turns out that this
apparent � � divergence of (95) is not there after all. Instead, what one finds is that�o� � �D�Xc� 	
	 � 
 � � 	
	 � Ï Xc� / 	 X 	 � 
 � � �D�� 	
	 � 
 (97)

where � � �D�� 	
	 � 
 is a Lorentz scalar, and is given by an integral which diverges more ‘weakly’, namely as�<" � . Note that the dimensions of � � �D�Xc� 	
	 � 
 are \ �
: in the ‘naive’ cut-off approach this was visible in the� � , whereas in (97) quadratic factors of 	 appear, and this is why the divergence can only be logarithmic.

These factors ensure that 	 X � � �D�Xc� � 	 � � � �D�X�� ��� (98)

(assuming � � �D�� is finite!); this guarantees that the � -dependent part of the propagator (rule(v)) disappears—
i.e. the result is gauge invariant, as required.

When all the bubbles are added up, and bits proportional to 	 are omitted because of (98) (gauge
invariance), one finds the net result that the photon propagator is modified according to/ � Ï �4|	 � � / � Ï �4|	 � ' )�/ � � �D�� 	
	 � 
 ) - (99)

What is the physics of this? When (99) appears inside a scattering graph such as Fig. 5(a), we would
still be able to say that the (corrected) exchanged photon had zero mass, since near the ‘mass shell’ point	 � � � (99) does indeed behave like (a constant times) the massless propagator ) 3 	 � , provided that� � �D�� 	
	 � ��� 
 is finite.
Discussion Point: What happens if � � �D�� 	
	 � ��� 
 itself has a term like n 3 	 � ? and how might this happen?
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On the other hand, the propagator will have a peculiar normalization: it will be� J ))2/ � � �D�� 	 � 
 L � / � Ï �M|	 � (100)

for 	 �¡  � instead of the familiar / � Ï �4| 3 	 � . Why is this? The propagator in the free case was the
Fourier transform of

§ � p PÃ	 n � 	 � ; 
 n | 	 � � 
�
4p � q . Take one time-ordering, say
§ � p n � 	 � ; 
 n | 	 � � 
4p � q , and

insert a complete set of free states via ‘ u c p d q § dJp �0) ’:9 c § � p n � 	 ��; 
4p d q § dJp n | 	 � � 
4p � q - (101)

The only state ‘ d ’ which can contribute is the state of one free photon—and indeed we know that matrix
elements of the form

§ � p ¢�|��<ÍªÅÆ�
|4~,Ë(l�ÅÆ~�p ��Ë(~,l�!<þ��.| ��l�Ë(l�| q are always just the corresponding wavefunction.
But now consider the interacting case. Here the full propagator is

§<£ p PÃ	 n � 	 ��; 
 n | 	 � � 
�
4p £ q where p £ q
is the exact ‘interacting’ vacuum. Insert a complete set of interacting states u c p ld q § ldJp � ) : then the
analogue of (101) is 9 c §<£ p n � 	 � ; 
4p ld q § ldJp n | 	 � � 
4p £ q (102)

and now the crucial point is that in addition to the one-photon state in p ld q there will also be a whole lot
of other states to which the photon can couple—for instance, precisely the © � © ¦ state in our vacuum
polarisation graph! This must mean that the p )¤g q state cannot any longer, by itself, produce all of the ‘1’
in the completeness sum. So the ‘strength’ of the matrix element

§ )¤g p n � 	 � 
4p £ q cannot be unity (in the
normalization we are adopting, like problem P1.4).

To take account of this ‘diminished single particle strength’, we write§ g�� � � µ�p n � 	 � 
4p £ q � ¡ ¥ r G @� 	Ýµ�
 © « �4¦ ° (103)

where ¥ r is called the wavefunction renormalization constant. This will mean that the interacting prop-
agator has the form § - � - ÅÆÄ §<£ p P£	 n � 	 �$; 
 n | 	 � � 
�
4p £ q� ¦¬«�¨�©�ª 1 �« � K

contributions from non single particle states � (104)

for 	 �   � . So we can identify ¥ r � ))2/ � � �D�� 	 � 
 - (105)

This is the interpretation of the change in normalization of the photon propagator.

This is all innocent-sounding enough -4-4- but of course � � �D�� 	 � 
 depends on � and is divergent as
the cut-off � �­¬ . To bury this divergence, which after all is occurring as a multiplicative factor in the
wavefunction, we introduce the ‘physical’ (renormalized) photon field operator n � ` �¤! defined byn � ` �$!}	 � 
 � )3 ¥ r n � 	 � 
 (106)

for which the propagator will be of the expected form§ - � - ÅÆÄ §<£ p PÃ	 n � ` �$!¬	 �$; 
 n | ` �$!�	 � � 
�
4p £ q   / � Ï �M|	 � K
multiparticle bits (107)

for 	 �k  � . Formally this will work even if � � ¬ ; the physical matrix elements are OK. Note that¥ r � ¥ r 	 � 
 , from (105), since � � �D�� depends on � .
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Discussion Point: Do we actually envisage � �­¬ , really?

Now let us tidy up. Our results so far tell us that the renormalized g -propagator is ¥5¦ ;r ù the one
we have been calculating to ®5	<8�
 , that is)¥ r � / � Ï �4|	 � ' )w/ � � �D�� 	
	 � � � 
 ) (108)

where we now indicate the � dependence explicitly. Now¥ r 	 � 
 � E )w/ �(� �D�� 	 ��� � 
 N ¦ ;   E ) K �(� �D�� 	 ��� � 
 N (109)

since � � �D� � 8 and we are doing a systematic order-by-order perturbative approach. So (108) becomes  / � Ï �M|	 � ' )2/ � � �D�� 	
	 � � � 
 K � � �D�� 	 ��� � 
 ) (110)

again dropping the ®7	<8 � 
 term � � �D�� 	
	 � 
 � � �D�� 	 � 
 . So finally our renormalized propagator is/ � Ï �4|	 � '�)�/ l� � �D�� 	
	 � 
 ) (111)

where l� � �D�� 	
	 � 
 � �<!#Ê¯ U 8 E � � �D�� 	
	 � � � 
 / � � �D�� 	 ��� � 
 N (112)

is called the ‘once-subtracted self-energy’, and is finite and independent of � as � �­¬ . We will come
back to (111) in Section 4.3.

4.2 The fermion self-energy and the vertex correction
Let us now briefly examine the other two one-loop divergent graphs, Figs. 6(b) and 6(c), beginning with
the latter, the fermion self-energy. In analogy with � � �D�� , we call the amplitude for Fig. 6(c) / �±° � �D� 	Ñ�


where / �D°²� �D� 	Ñ�

 � 	 / � © 
 � @�g | / � Ï �4|� � ��� / �� / T g � O À �	 + ' 
 À - (113)

As in the g case, when the string of self-energy insertions is summed up, the result is a modified fermion
propagator equal to ��� / T / ° � �D� 	Ñ�

 - (114)

As expected, ° � �D� as given by (113) diverges: there are four powers of � in the numerator and three in
the denominator, so we might expect a divergent term proportional to � (note that ° � �D� has dimensions
of mass, as is also evident from (114)). Actually the leading � -independent divergence is, instead, pro-
portional to T³�<"$	 � 3 T 
 . The reason for this is important, and it has interesting generalizations. Suppose
that T in the Dirac Lagrangian

l[ 	 � �� / T 
 [ were were set equal to zero. Then (see problem P3.1) the
two ‘left’ and ‘right’ helicity components

[ B � ' ; ¦ �¤´� ) [
and

[¶µ � ' ; � �¤´� ) [
of the electron field

will not be coupled by the QED interaction. It follows that no terms of the form
l[ B [ µ or

l[ µ [ B can be
generated—and these are just of the ‘Dirac mass’ type (problem P4.2). Hence no perturbatively-induced
fermion mass term can be generated by higher-order electromagnetic interactions, and the ° � �D� correc-
tion must vanish as T*� � . So it must behave as � T³�<"�	 � 3 T 
 on dimensional grounds, which gives a
logarithmically divergent correction to T in (114), call it o T � �D� 	 � 
 .
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We can agree to call the resulting ‘on shell point
�� � T K o T � �D� 	 � 
 ’ the physical mass TQ�$! , such

that T·�¤! � T�	 � 
 K o T � �D� 	 � 
 (115)

is independent of � as � �¸¬ —which of course means that the original parameter T has in fact to be� -dependent, and in just such a way as to compensate for that of o T � �D� .
There is also a � -dependent logarithmic divergence of the form

��¹�<" � 3 T . This can be soaked up
in a fermion wavefunction renormalization constant ¥ � , analogous to ¥ r , and having the same interpre-
tation: [ �$! � )	 ¥ � 
 �� [ - (116)

In this way the physical fermion propagator is indeed� 3 	 �� / T·�¤!�
 - (117)

Finally there is the vertex part shown in Fig. 6(b). In this case, power counting indicates a new
logarithmic divergence. We have one more card to play, in order to sweep it up. Consider the QED
interaction term /w© l[ 	 � 
 �n 	 � 
 [ 	 � 
 �0/w© l[ �¤! �n �$! [ �$! � ¥ � ¥ ��r - (118)

This generates a ‘lowest order’ vertex (in terms of the physical renormalised fields) equal to / � ©�g � ¥ � ¥ ��r
to which Fig. 6(b) must be added. Now the physical charge © �$! is going to be determined experimentally
from the Coulomb scattering contribution as 	 � � � (the classical limit). Figure 6(b) contributes a
logarithmically divergent correction to the charge in this limit, call it o�© 	 � 
 . So, once again, we are
going to assume that the ‘original’ © had a � -dependence just right to cancel out the � -dependence of the
total contribution, leaving a finite � -independent physical charge as � �º¬ . We express this formally
by introducing the vertex renormalization constant ¥ ; such that the physical charge is defined by© �$! � ¥ � ¥ ��r 	 © 3 ¥ ; 
 - (119)

The interaction (118) then becomes / ¥ ;>© �$! l[ �$! �n �¤! [ �$! - (120)

Now some alarm bells should be ringing! The free Dirac part of the QED Lagrangian is nowl[ 	 � � � / T 
 [ � ¥ � l[ �$!¬	 � � � / T 
 [ �$! (121)

to which we must add (120) (as well as the Maxwell term). But then the result is not gauge invariant!—
since

� �
does not appear in the gauge invariant combination ‘

� � K � © �n ’ (see Section 3). For this to work
we need a kind of small miracle—the equality ¥ ;J� ¥ � (122)

between two quite different wavefunction renormalization constants. Of course, (122) is true; it is a Ward
identity, and can be proved to follow from the gauge invariance of the original QED Lagrangian.

Relation (122) has a remarkable consequence: the ‘rescaling’ relation (119) now becomes© �$! � ¡ ¥ r © (123)

showing that the corrections to ‘ © ’ associated with the fermion propagator and the vertex cancel out,
leaving only the g -propagator correction. Now this correction is the same whatever the external particles
are, in a Feynman graph. So (123) is a statement of ‘universality’ of radiative corrections: they do not
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spoil the gauge invariance of the original Lagrangian, and the ration of © to © �¤! is independent of the types
of external particles. If a set of unrenormalized charges are all equal (or ‘universal’), the renormalized
ones will be too. Universality survives renormalization—and this is a very big clue as to why the weak
interactions have to be described by a gauge theory too, since quarks and leptons do seem to couple in
some ‘universal’ way to » ’s and ¥ ’s: the strong interactions, experienced only by the quarks, do not
seem to spoil that, just as—in the electromagnetic case—the charge on a proton is the same as that on a
positron.

4.3 The physics of ¼½¿¾ À$ÁÂÄÃ � À�Å
We shall only be able to offer brief notes:

(i) How does the renormalized g -propagator affect physical processes? Let us imagine using it in© ¦ Z ¦ � © ¦ Z ¦ scattering via Fig. 4 with the corrected propagator (111), for instance. Then, the ampli-
tude will be (omitting the spinor factors)	 / � © 
 � / � Ï �M|	 � ' )2/ l� � �D�� 	
	 � 
 ) (124)

where now we have changed the notation so that ‘ © ’ means the physical charge (which we previously
called © �$! ), and T is the physical mass (previously TÆ�$!Y
 . In the static limit 	 D ��� , the photon propagator� ) 3 � � has a simple interpretation—it is the Fourier transform of the ) 3 % Coulomb potential (see ‘Point
4’ at the end of Section 2). So the form (124) must, in the static limit, represent corrections to Coulomb’s
law. Indeed, with 	 D ��� and evaluating

l� � �D�� for � �Ç� T �
, one finds that (124) becomes, approximately,	 / � © � 
 � Ï �M|/ � � ' ) K 8)�È ' � � 3 T � ) (125)� © �� � K þ�Å�"¬��l�ËÆ"]l - (126)

The © � 3 � � in (126) gives us back the Coulomb ) 3 % in � -space: the Fourier transform of the ‘constant’ is
a o function. This very short distance correction, affecting only � -states in atomic physics, is responsible
for a small (but entirely detectable) contribution to the famous Lamb shift between hydrogenic + �s¿ �� and+ � _ �� levels. See problem P3.3.

(ii) Without making the low- � � approximation, the form � x �� � ' ) K l� � �D�� 	
	 � 
 ) indicates that the charged
leptons have effectively developed a ‘form factor’ (or spatial extension, when Fourier transformed) due
to radiative corrections. Sharing it equally between the two © ’s in ‘ © � ’, we can say that the radiatively
induced charge form factor is É ; 	
	 � 
   ) K ;� l� � �D�� 	
	 � 
 . Examination of the Fourier transform of this
shows that the spatial extension is of order � T ¦ ; , the fermion Compton wavelength.

(iii) An alternative interpretation is in terms of a ‘ 	 � -dependent charge’, or ‘ 	 � -dependent 8 ’, given by8J	
	 � 
 � 8ËÊ ) K l� � �D�� 	
	 � 
oÌ - (127)

The idea that a charge is 	 � -dependent may seem strange at first, but it is analogous to the way in which
a charge placed in a polarizable medium can give rise to a space-dependent effective charge, due to
screening (see Fig. 8). The screening length here is just T ¦ ; , the distance over which the © � © ¦ pairs
can be ‘fluctuated’ out of the vacuum, and which measures the extension of the radiatively induced form
factor. This is why the photon self-energy © � © ¦ bubble is called a vacuum polarization graph!

For p 	 � p}Í T �
, (127) becomes8J	
	 � 
   8 * ) K 8¹ ' �<" G / 	 �T � I , (128)
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Fig. 8: Screening of a charge in a dipolar medium.

showing that 8Ú	
	 � 
 increases at large / 	 � (which is short distances, when Fourier transformed), just as
indicated in Fig. 8.
(iv) However, a better approximation at large / 	 � is to return to the form (124) and write8J	�Î � 
 � 8E )�/ 	<8 3 ¹ ' 
��<"�	�Î � 3 T � 
 N Ä�ÅÆ~ÏÎ � Í T �

(129)

where Î � � / 	 � . Equation (129) is the standard ‘leading log’ expression for the running coupling
constant in QED. This shows a slow logarithmic increase as Î �

increases. For example, 8Ú	ï\ �Ð 
 �) 3 )û+ÒÑ -ÓÑ , as compared with 8Ú	 � 8Ú	 � 
�
 � ) 3 )û¹�� . In QCD, the effect of gluon self-interactions is to make8 n (the QCD analogue of 8 ) decrease as Î �
increases (‘asymptotic freedom’). There, the analogous

formula is 8 # 	�Î � 
 � 8 #Ô ) K 6ÒÕ; �±Ö 	 ¹Æ¹Z/�+ ¾$
��<"$	�Î � Z � 
�× (130)

where ¾ is the number of fermion–antifermion pairs (in the loops) considered, and Z is a ‘renormalization
scale’. If ¾ È )ûú , 8 n will decrease as Î �

increases, leaving the quarks weakly interacting at very short
distances.

4.4 Renormalizability
We have tried to give some idea of how we can make sense of a theory with divergences. At the one-
loop level, some of the steps seemed quite trivial. More generally, however, we can ask: how do we
know that we can go on soaking up these divergences into redefinitions of ‘physical’ quantities, as we
proceed on to higher order loops? The answer is really rather remarkable: there are classes of theory
(‘renormalizable theories’) which are such that all divergences, encountered at each successive order in
systematic perturbation theory, can be tamed by this procedure of redefining finite physical quantities
(and doing wavefunction rescalings), and then re-expressing all amplitudes in terms of these physical
quantities. Furthermore, there is a surprisingly simple criterion for telling (almost) which theory is
renormalizable and which is not. This criterion has to do with the dimensionality of the coupling constant
(in units e �����0) )—see problem P3.4.

The result is simply stated: if the dimensionality of the coupling is \ �
where g�Çv� , then the

theory is ‘super-renormalizable’ (like the ABC theory—there are fewer divergences than we could in
fact deal with, for instance ¥ Î and the vertex correction are finite); if g �v� (dimensionless) then the
theory may be renormalizable, and often is (e.g. QED, where the coupling is 8 ); and if g È � , the theory
is not renormalizable.

Consider a hypothetical theory, similar to the original four-fermion theory of E -decay, describing
interactions between the Ø x and a neutron (assumed pointlike for this purpose). The interaction density
is ÙAÚ l[ c 	 � 
 [ c 	 � 
 l[Û|aÜ 	 � 
 [Û|aÜ 	 � 
 - (131)
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To find the dimensionality of
Ù Ú

, we need to remember that the mass term in the Dirac Hamiltonian
is T l[Ý[

, so that the dimension of a
[

field is \ © � . This implies that the dimension of
Ù(Ú

is \ ¦ � so
that this theory is non-renormalizable. Is this in fact so bad? Consider what happens when we calculated K Ø x � d K Ø x in perturbation theory. The lowest order (‘tree’) graph is Fig. 9(a); next is Fig. 9(b); and
then at third order Fig. 9(c). Let us count powers in the loop of Fig. 9(b). Since each fermion propagator� � ¦ ; , we expect the graph to diverge as � � . Fine -4-4- what about Fig. 9(c)? Here we have two loops, with

Fig. 9: Contributions to ÞRßÆà áÛ��ÞOßQà�á in perturbation theory, using (131).

therefore eight momentum integrals, and four fermion propagators each contributing only one power of �
in the denominator, so it diverges as � À ! The first point to note, then, is clearly that as we go up in order of
perturbation theory, the divergence gets worse. To control the � À divergence, we would have to ‘subtract’
the amplitude for Fig. 9(c) three times. Each subtraction means that we have to take one parameter from
experiment (the amplitude at a certain point, its derivative at that point, its second derivative, etc). Very
soon we need more parameters than are appearing in the original Lagrangian (masses, couplings). So
simply defining a ‘physical’ set of Lagrangian parameters will not get us off the hook in this case. A
renormalizable theory is one whose infinities can all be tamed by redefinitions of the parameters in the
original Lagrangian (plus wavefunction rescalings); if infinities arise which need new parameters (not in
the original Lagrangian) to be taken from experiment, then the theory is non-renormalizable.

The reason for this worsening divergence in higher orders in
Ù Ú

is, of course, related to the
dimensionality of

ÙOÚ
. All the amplitudes of Fig. 9 have to have the same dimension, obviously. But

since each
Ù Ú

brings in two powers of a mass ‘ \ ’ in the denominator, these must be compensated by
two powers of momentum in the numerator, making the divergence successively worse.

Is the situation really hopeless? Actually no. We know quite well that people lived with the Fermi
theory reasonably happily for years, until the advent of high-energy experiments probing weak interac-
tions. The reason can again be found in dimensional analysis. Consider the amplitude for Fig. 9(b),
call it

Ù � �D� 	 � 
 , where � � 	Ñ� ; K � � 
 � . This needs two subtractions to tame it into a finite quantitylÙ Ú 	 � 
 � Ù � �D� / Ù � �D� 	 � D 
 / 	 �Ð/
� D 
 ¶ �ãâ �Fä¶ næååå n : n 2 , where � D is the point we choose to define our ampli-

tudes at. This means that, expanding
lÙ � �D� 	 � 
 about �Á��� D , we can calculate terms of order 	 �Z/ç� D 
 �

and higher (the two lowest terms in the expansion have to be taken from experiment). But the worse
divergence of Fig. 9(c) (amplitude

Ù � r � ) would require us to do three subtractions before arriving at a
finite part we could calculate: in this case, the first calculable bit would be � Ù rÚ 	 �w/¿� D 
 r ¶ © �ãâ © ä¶ n © ååå n : n 2—and the process has to be repeated each time we go up an order. Assuming that all the derivatives are
about the same order of magnitude, we see that we can get away with using only low order corrections
provided

ÙRÚ � � ) , i.e. 3 � � )3 ÙRÚ - (132)

This is an important idea—and in the case of the real Fermi constant (
ÙèÚ � )(-<) � ù )4� ¦�éMê |�ë ¦ � ), ;ì ��í �
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Fig. 10: Relation between four-fermi coupling and Yukawa-like coupling.

¹(�Æ� ê |�ë . So a non-renormalizable theory can be useful at energies well below its ‘natural energy scale’,
as set by the inverse coupling constant; but the nearer we approach this scale, the less predictive the
theory will become. And we are, after all, always striving to reduce the number of parameters in our
theories that have to be taken from experiment.

From this perspective, it may be less of a mystery why renormalizable theories are generally the
relevant ones at present energies. We may imagine that a ‘true’ theory exists at some enormously high
scale � (the Planck scale?) which, though not itself a local quantum field theory, can be written out in
terms of all possible fields and their couplings, as allowed by the operative symmetry principles. Our
particular renormalizable subset of these theories then emerges as a low-energy effective theory, due to
the strong suppression of the non-renormalizable terms (which are damped like 	 � 3 � � 
 to some power).

Nonrenormalizable theories may be physically detectable at low energies if they involve processes
that would be otherwise forbidden. For example, the fact that (as far as we know) neutrinos have neither
electromagnetic nor strong interactions, but only weak ones, allowed the four-fermi interaction to be
detected—but amplitudes were suppressed by powers of � 3 \ �î relative to electromagnetic ones, and
this is precisely why it was ‘weak’! As we shall discuss later, the four-fermi model is superseded in the
Standard Model by a Yukawa-type theory involving exchanges of »ðï � ¥ D (see Fig. 10). For 	 �Ç� \ �î ,Ù Ú � Ï �î 3 \ �î , explaining the origin of the \ ¦ � dimensionality of

Ù Ú
, and telling us the actual scale,

in this case. Thus this theory changes from being an effective non-renormalizable four-fermion theory at
very low energies, to being an effective renormalizable one at 	 � � \ �î .

Problems for Lecture 3
P3.1 For a Dirac field

[ 	 � 
 , define
[sµ � ' ) K g é+ ) [ � [ B � ' )2/¡g é+ ) [

. Show thatl[ B g � [Ûµ ���ª�
where

l[ B � [ hB g D .P3.2 Rewrite T l[Ý[
in terms of the

[Ýµ
and

[ B fields, and deduce that electromagnetic interactions cannot
generate such a ‘Dirac’ mass in perturbation theory.

P3.3 Coulomb’s law is corrected by the vacuum polarization ( ©}�Ù© ¦ ) to/Ëñ 8 % K ü}8 �)�È T � o r 	
�M
 ò
where T is the electron mass. Treating the o function piece as a perturbation on the Coulomb term,
calculate the shift in energy (to first order) of an ó � � hydrogenic state with principal quantum numberd , given that the Coulomb wave function at % ��� isy c 	 � 
 � )3 ' ' 8�Td ) © � -
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Give the answer in eV for the d �ª+ shift.

P3.4 What is the (mass) dimension of a scalar field y in four space-time dimensions? What is the
dimension of the coupling constant µ in a ‘ µ�y r ’ interaction? And of Ï in a ‘ Ï�y À ’ interaction? What is
the dimension of

Ù
in a ‘

Ù 	 l[.[ 
 r ’ interaction?

P3.5 Consider a µMy À theory. Given that it is renormalizable, explain why any graph contributing to the
process y K y¥�´y K y K y K y must be finite.

5 GLOBAL AND LOCAL NON-ABELIAN SYMMETRIES

For a much fuller treatment of the material in this section see Chapters 12 and 13 of Volume 2 of the new
(third) edition of Aitchison and Hey [2].

Having introduced QED as an example of a gauge theory with a local phase invariance, we now
consider the generalizations of QED which describe the weak and strong interactions between quarks
and leptons. These involve a more complicated kind of local phase symmetry, in which the phase factors
are ( � -dependent) matrices, which in general do not commute—that is what ‘non-Abelian’ means in this
context. We shall limit the treatment to the particular ingredients needed for the Standard Model. Note:
from now on we shall omit the hats on quantum field operators!

5.1 Global non-Abelian symmetry
Consider the Lagrangian for two free fermions of the same mass T ; � T � � T% � � l[ ; 	 � 3� / T 
 [ ; K l[ � 	 � 3� / T 
 [ � = (133)

in terms of the ‘doublet’ field [ � G [ ;[ � I (134)

it can easily be rewritten as % � � l[ 	 � 3� / T 
 [ - (135)

Note that although (135) looks formally like the single-field %¹q of (78), it is of course quite different
physically, representing two different sorts of particle (e.g. up and down quarks, and their antiparticles).
Nevertheless, (135) is invariant under a symmetry rather like (79), namely the + ù + unitary transformation[ � [ » �æô [ � ô(ô h �æô h ôª�0)¨- (136)

The ô in (136) is a + ù + matrix of numbers (not field operators) acting on the 2 components of
[

in
(134), and they commute with the Dirac g ’s. Such unitary + ù +õô ’s form a group, U(2). Since ô in
(136) does not involve � , we call (136) a global symmetry. In general, two ô ’s do not commute with
each other, and it is called a non-Abelian symmetry.

From elementary properties of determinants we haveÍ}|4l ô(ô h � Í}|4l ôÚ- Í}|4l ô h � Í}|4l ôJ- Í¬|4l ô @ � p Í}|4l ô p � �0) (137)

so that Í}|4l ôA�ª© ¦ � «76 , say. We can therefore writeôA�ª© ¦¬«76Röô (138)

where öô has determinant
K ) . Matrices of the form öô form the SU(2) group, where the S just means

they have unit determinant. The phase factor in (138) corresponds to a simultaneous U(1) transformation
of

[ ; and
[ � (with the same phase angle) and leads, as in Section 3.3, to a conservation law of the total

number of ‘1’ particles and ‘2’ particles. (For quarks this would be part of baryon number conservation.)
The new physics is contained in the öô part.
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Groups such as SU(2) (and, later, SU(3)) have the important feature that their physically important
properties can be found by studying infinitesimal transformations, of the form [cf. (46)]öôA�0)�/ � � (139)

where � is a + ù + matrix with small entries. The condition Í}|4l ô �k) gives
� ~ ����� (neglecting terms

of order � � —see problem P4.1), while öô öô hÚ� ) reduces (problem P4.1) to �£�³�]h . So � is a Hermitian
traceless matrix. Such a thing depends on only three real parameters (problem P4.1) and can be written
as � �p÷ �Óø 3 + (140)

where ÷ = 	 G ; � G � � G r ) are the three parameters, and
ø

= 	
ù ; � ù � � ù4r ) are the Pauli matrices (problem P4.2).
Thus an infinitesimal SU(2) transformation on the doublet

[
is[ � [ » � 	 )�/ � ÷ �úø 3 + 
 [ - (141)

This should be compared with the infinitesimal version of (69), namely
[ � [ » � 	 )M/ �DG 
 [ , from which

it is clear that the ‘ G ’ in that case becomes a matrix in (141). The form for a finite SU(2) transformation
is [ � [ » �ª© ¦¬« \ ¯ ø e � [ (142)

which generalizes (69) (note that for a matrix n , exp nª�0) K n K n � 3 +�û K �4�4� 
 .
Since (141) or (142) are invariances of % � we expect an associated conservation law. Indeed, since

we have three independent transformations (using each of G « in turn) we expect three conservation laws.
Following the same steps used in deriving the Noether current for the complex scalar field in §3.2, but
this time for the doublet Dirac field

[
, one finds that the three quantities P �; 	 � 
 , P �� 	 � 
 , P �r 	 � 
 defined

by [cf. (70)] P �« 	 � 
 � l[ 	 � 
�	
ù « 3 + 
 g � [ 	 � 
 (143)

satisfy �Y� P �« 	 � 
 �ª� (144)

and are therefore symmetry currents. The corresponding ‘charges’P « � @ [ h 	 � 
 ù «+ [ 	 � 
 O r � (145)

are conserved. These are the (field theoretic) ‘isospin’ operators, which have the very interesting propertyE P « � P�ü N � ��G « ü � P � (146)

as can be explicitly checked from (145) (using the proper commutation relations for the
[

fields). A
simple example is provided in problem P4.2. The relations (146) are of course exactly the commutation
relations of the familiar angular momentum operators, which is why the name isospin was coined; (146)
is called the ‘SU(2) algebra’. Not coincidentally, the ù ’s satisfy E ù « 3 + � ù ü 3 + N � �DG « ü � ù � 3 + , the same
algebra.

In thinking about more complicated SU(2) multiplets than doublets (which we shall not need to
do much) this angular momentum analogy is very helpful. The essential step is to find larger matrices
than the + ù +þý � #� , which satisfy commutation relations of the form (146). For example, the three ¹ ù ¹
matrices � ;4� � � and � r , defined by 	�� « 
 ü �`�0/ ��G « ü ��� (147)

satisfy E � « � � ü N � ��G « ü � � � (see problem P4.3). Then if we consider a triplet of three real degenerate fields
(bosonic, say) ÿ ���� y ;y �y r

��
(148)
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with Lagrangian %fÌ � )+ ��� ÿ � � � ÿ / )+ T � ÿ � ÿ � (149)%fÌ is invariant under
ÿ � ÿ » � 	 )w/ � ÷ ��� 
 ÿ - (150)

Using (147), (150) is equivalent to (problem P4.4)ÿ » � ÿ K ÷ ù ÿ
(151)

which should be familiar as the ‘infinitesimal rotation’ of an ordinary vector.

The SU(2) transformation of (142) can be generalized to the case of three degenerate fermion
fields. If % r is (133) with the addition of

l[ r 	 � 3� / T 
 [ r , it too can can be written as in (135) where now[ ���� [ ;[ �[ r �� - (152)

Note particularly that unlike the y ’s in (148), the
[

’s in (152) are complex: each
[ « contains � « and

O h«operators as in (59). % r is invariant under
[ � [ » � ô [

where ô is now an � -independent ¹ ù ¹
unitary matrix. Extracting the overall phase again, we are left with a global SU(3) transformation. An
infinitesimal SU(3) matrix has the form öôA�0)�/ ��� (153)

where � is a Hermitean traceless ¹ ù ¹ matrix. Such a � involves eight parameters and can be written as� �
	 ��� 3 + (154)

where 	¤� 	�
 ;û�4-4-4- 
��s
 are the arbitrary parameters and the eight
�

’s are ¹ ù ¹ Hermitean traceless
matrices generalizing the three ù ’s. They obey the commutation relations* µ �+ � µ �+ , � � ¾ � ��� µ �+ (155)

where the ¾ � ��� are numbers characteristic of SU(3) ( g�� 5 ��� all run from 1 to 8). If
[ ; , [ � , [ r are taken

to be the b ,
O
, � quarks, this global SU(3) symmetry would be the SU(3) of strong interaction flavour

symmetry (which however is not exact as T�� , T ¶ and T n are not equal). Similarly, if we take 1, 2, 3
to be colour indices we have the exact SU(3) � colour symmetry of QCD, which we shall shortly see is a
local symmetry. The currents corresponding to the SU(3) symmetry of % r are [cf. (143)]Ù � � 	 � 
 � l[ 	 � 
�	Ýµ � 3 + 
 g � [ 	 � 
 (156)

and the associated eight ‘charges’ Ù � � @ [ h 	 � 
�	Ýµ � 3 + 
 [ 	 � 
 O r � (157)

generalize the three isospin operators, and obey the commutation relationsE Ù � � Ù � N � � ¾ � ��� Ù � � (158)

which is called the ‘SU(3) algebra’. Note the similarity between (146) and (158).

As in the case of SU(2), larger multiplets are possible too. The key requirement is to find matrices
which satisfy (158), since these commutation relations effectively define the group. For SU(3), the only
larger multiplet in which we shall be interested is the octet, 8, which is analogous to the triplet of SU(2).
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The matrices for the 8 are defined analogously to the � ’s of (147), namely 	 { � 
 ��� � / � ¾ � ��� where the¾ ’s are as in (158). Notice that since there are eight ‘charges’
Ù � , and all the indices g ,

5
, � in (158) run

from 1 to 8, the eight matrices
{ � are each Ñ ù Ñ . In the same way, the three matrices � « of (147) are each¹ ù ¹ , since there are three SU(2) charges. This kind of pattern can be extended to arbitrary SU(N); the

‘representation’ in which the matrices are equal (with a factor of / � ) to the ‘structure constants’ [the G ’s
and ¾ ’s in (147) and (158)] is generally called the adjoint or regular representation.

5.2 Local non-Abelian SU(2) symmetry
Global symmetries and their associated (possibly approximate) conservation laws are certainly interest-
ing, but they do not have the dynamical significance of local symmetries. We saw in Section 3.4 how the
‘requirement’ of local U(1) symmetry seemed to lead almost automatically to QED, with the symmetry
current of the

[
matter fields now playing the role of the dynamical current which, when dotted into then -field, gives the interaction term in %Ç~�� ] . A similar link between symmetry and dynamics follows

if we generalize the preceding non-Abelian global symmetries to local ones. In this section we carry
through the analysis for SU(2).

We begin by considering again a fermion doublet as in (135), without yet specifying exactly what
the physical application will be. We want to extend the global SU(2) symmetry transformation (142) to
the local one [ 	 � 
6� [ » 	 � 
 �A© ¦¬«Cª \ ² °s³ï¯ ø e � [ 	 � 
 (159)

by analogy with (79); note that we have slipped in a constant Ï in the exponent—it will be analogous
to the electromagnetic charge © . Clearly, although the

l[ T [
part of (135) is still invariant under (159),

the
l[ � 3�X[ part is not—just as in the U(1) case (80), since the

3�
will pull down a

3� \ 	 � 
 factor. As in
the U(1) case, we try to compensate this factor by introducing some vector field whose change under
an appropriate transformation [accompanying (159)], exactly cancels this

3� \ 	 � 
 part. This time, since
there are three \ 	 � 
 ’s [ 8 ; 	 � 
 , 8 � 	 � 
 , 8 r 	 � 
 ] we immediately see that we need three vector (gauge)
fields, called » �; 	 � 
 , » �� 	 � 
 , » �r 	 � 
 � or � � 	 � 
 for short.

The key step in constructing the locally U(1) invariant Lagrangian of QED was the replacement of
‘
� �

’ by ‘
w � � � � K � ©�n � ’ [cf. (81)], together with the transformation ‘ n � � n � K ;x � � 8Ú	 � 
 ’ [cf. (83)]

for the n -field. Let us have another look at the combination
w � [

in the QED Lagrangian (88). Under
the gauge transformation (84),w � � 	 � � K � ©�n � 
 [ �[	 � � K � © n » � 
 [ »� 	 � � K � ©�n � K � 	 � � 8J	 � 
�
�
 © ¦¬«76 ² °s³ [� E / � 	 � � 8J	 � 
�
 © ¦¬«76 ² °s³ [ N}K © ¦¬«76 ² °s³ � � [ K � ©�n � © ¦¬«C6 ² °s³ [ K E � 	 � � 
 © ¦¬«76 ² °s³ [ N� © ¦¬«76 ² °s³ w � [

(160)

since the bracketed terms cancel. So we havewÁ» � [ » �ª© ¦¬«C6 ² °s³ w � [ - (161)

In words, this says that the quantity ‘
w � [

’ transforms under a local U(1) phase transformation just like[
would under a global one (i.e. it just gets multiplied by a phase factor). So to construct a locally U(1)

invariant Lagrangian all we needed to do was multiply
w � [

by
l[

from the left, since then under the local
transformation l[ w � [ � l[ » w » � [ » � l[ © «76 ² °s³ © ¦¬«C6 ² °s³ w � [ � l[ w � [ � (162)

showing that
l[ w � [

is indeed locally U(1) invariant. Of course, we also need the g � to get rid of the
loose Lorentz index Z , and make % a Lorentz invariant.
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Fig. 11: � - � - � vertex.

So the key to constructing a locally SU(2) phase-invariant theory is to generalize ‘
w � [

’. The
required generalization is w � [ � 	 � � K � Ï ø2� � � 3 + 
 [ (163)

when acting on an SU(2) doublet field such as
[

. The property required of (163) is that
w � [

should
transform under the local symmetry (159) exactly as

� � [
does under the global one (142), as we have

seen happening in the U(1) case. Then, a term like
l[ 3w � [

is automatically invariant under local SU(2).

This requirement on
w � [

determines the transformation law of the fields � �
. The algebra is

easier if we consider an infinitesimal transformationo [ � 	 / � Ï ÷ 	 � 
 �Óø 3 + 
 [ 	 � 
�= (164)

we then require o 	 w � [ 
 � 	 / � Ï ÷ 	 � 
 �úø 3 + 
 w � [ - (165)

It is a good exercise (problem P4.5) to verify that (165) implies thato � � 	 � 
 � � � ÷ 	 � 
 K Ï ÷ 	 � 
 ù � � 	 � 
 � (166)

which tells us how the � �
’s must transform. The first term in (166) is the straightforward analogue of

the infinitesimal version of (84), with 8J	 � 
 � © G 	 � 
 . Comparing the second term of (166) with (151),
we see that it implies that the three » -fields form the components of an SU(2) triplet. Thus the » ’s
carry SU(2) ‘charge’.

We now know the generalization of (135) which makes it locally SU(2) invariant:% � î � l[ 	 � 3w / T 
 [ � l[ 	 � 3� / T 
 [ / Ï l[ g � ø 3 + [ � � � � (167)

the last term being the generalisation of % Ò®Ó,Ô in QED (equation (82)). We can immediately read off the[
-
[

- » vertex factor as (Fig. 11) / � Ï ù «+ g � - (168)

In (168) the index ‘ � ’ refers to the SU(2) component of the » field quantum, and ‘ Z ’ to the Lorentz
component of its polarization vector. Each » -field will have the same kind of mode expansion as then -field did [Eq. (85)].

We can easily generalize (163) to other SU(2) multiplets than doublets, by using appropriately
larger matrices instead of the

ø 3 + . For example, for an SU(2) triplet of fields

ÿ � 	Ýy ;û� y � � y r 
 , (163)
becomes w � y « � 	 � � K � Ï �(� � � 
�y « (169)
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where the three ¹ ù ¹ matrices
�

are defined in (147). Under infinitesimal transformations, this changes
by o 	 w � y « 
 � 	 / � Ï ÷ 	 � 
 ��� 
�	 w � y « 
 (170)� 	èÏ ÷ 	 � 
 ù w � ÿ 
 « (171)

[cf. (150), (151), and (164)].

However, there is still an important part of the non-Abelian analogue of %���� q unaccounted for—
namely the bit corresponding to the Maxwell term / ;À { � {

for the gauge fields � �
. Note that, as in

the QED case (problem P2.6), a simple mass term involving � � � � �
will violate invariance under

(166), so these quanta are massless. Clearly we have a problem here in applying this local SU(2)—as
we eventually will—to weak interactions, which are very short ranged, and whose quanta are therefore
massive. This is where we will need the Higgs mechanism—see Section 6.

To get the non-Abelian ‘
{ � {

’ term, the obvious thing might be to consider� � n | / � | n � � w � � | / w | � �
(172)

with
w �

given by (169), since the » ’s are an SU(2) triplet. The hope would be that by using the
w

’s,w � � | / w | � �
would transform under local SU(2) transformations exactly as

� � � | / � | � �
does

under global ones—i.e. like (171). Then the ‘dot product’ 	 w � � | / w | � � 
 � 	 w � � | / w | � � 

would be a locally invariant ‘

{ � {
’ term. Unfortunately it is not quite that simple. The problem is that

the » ’s are a rather special triplet: whereas an ordinary triplet

ÿ
would transform via only the second

term in (166), the » ’s also have the first (‘non-homogeneous’) term as well. You can verify that in facto 	 w � � | / w | � � 
 �� Ï ÷ 	 � 
 ù 	 w � � | / w | � � 
 (173)

so that the proposed ‘
{ � {

’ term will not work.

With the aid of some hindsight, we can be led to the right answer as follows. Consider, in the U(1)
case, the quantity 	 w � w | / w | w � 
�y (174)

where y is any field of charge © and
w � � � � K � © n � . Evaluating (174) one finds (problem P2.5)	 w � w | / w | w � 
�y � � © { �4| y (175)

where
{ �M| � � � n � / � | n � . This suggests that we should look at the commutator of two covari-

ant derivatives E w � � w | N
. It does not matter whether we use the

w
from (163) or (169)—the result is

essentially the same for all cases. Using the
w �

from (163) one finds (problem P4.6)E w � � w | N � � Ï ø 3 + ��� �M|
(176)

where � �4| � � � � | / � | � � / Ï�� � ù � | - (177)

(Had we used (169) we would have got (176) with
ø 3 + � �

.) When we now investigate the effect of the
local SU(2) transformation (166) on

� �4|
we find (problem P4.7)o � �M| 	 � 
 � Ï ÷ 	 � 
 ù � �M| 	 � 
 (178)

precisely as desired (but not accomplished) in (173)—i.e. the inhomogeneous part in (166) has been
got rid of. Thus

� �M|
does transform under local SU(2) transformations exactly as if it were an ordinary

triplet under global SU(2) transformations and so the quantity% î �0/ )ü � �M| � � �4|
(179)
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Fig. 12: � - � - � vertex.

is indeed locally SU(2) invariant. This is the famous Yang–Mills Lagrangian, the non-Abelian general-
ization of the Maxwell Lagrangian.

� �4|
is the non-Abelian field strength tensor.

The argument leading to (179) has been given in some detail since the result is of fundamental
importance. Looking at (177) and (179) it is clear that, unlike the Maxwell term % É of (87), the Yang–
Mills term % î of (179) includes interactions between the gauge fields—in addition, of course, to the
expected ‘free’ part / )ü 	 ��� � | / ��| � � 
 � 	 � � � | / � | � � 
 - (180)

The free part leads to a » -propagator which is the same as that in rule (v) of section 3.4, with a o « ü factor
to ‘dot’ the » ’s together. The interactions included in (179) are of two types: » - » - » (trilinear) and» - » - » - » (quadrilinear). This is quite unlike QED, where no fundamental g - g vertices are present. It
arises here because the » ’s both ‘transmit’ the gauge field force and feel it themselves since they are not
SU(2) neutral (as the g was U(1) neutral). Another important point to note is that these self-interactions
among the » ’s come in with a coupling constant which is the same one as appears in the

[
-
[

- » vertex
(168)—the » ’s ‘couple universally’.

The physics application of all this is to the SU(2) of the weak interactions (see Section 7). There,
the » �; and » �� fields correspond to the charged gauge bosons » ï � (the combination

;ì � 	�» ;J/ � » � )
destroys » � or creates » ¦ ). As we shall see, the field » �r is a linear combination of the photon g and¥ D fields: » �r � �,!<"�� î n � K þ�Å���� î ¥ � (181)

where � î is the ‘weak angle’, and the SU(2) gauge coupling constant Ï is related to © byÏf��!<"�� î �ª©Ù- (182)

We can then pick out the » - » - g vertex from (179), and find that it is given by� © E Ï | y 	 � ; / � � 
 � K Ï y � 	 � � / � � 
 | K Ï �4| 	 � � / � ; 
 y N (183)

where the momenta and indices are as in Fig. 12. This unique electromagnetic coupling of the »Iï is
of precisely the kind needed to make a renormalizable (see Section 4) theory of the ‘electromagnetic
interactions of charged vector bosons’.

5.3 Local SU(3) symmetry: the QCD Lagrangian
Using what has been said about global SU(3) in Section (5.1), and about how to make a global SU(2)
symmetry into a local one in Section 5.2, it is straightforward to discuss local SU(3). This is the gauge
group of QCD (see the course on QCD), the labels 1, 2, 3 in (152) standing for colour, the

[
’s being one

flavour of quark. Under a local SU(3) � transformation, the triplet (152) transforms byo [ � 	 / � Ï n 	 	 � 
 ��� 3 + 
 [ (184)
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Fig. 13: ! - � - � vertex.

[cf. (154) and (164)], where now there are eight field parameters 
 ; 	 � 
 � 
 � 	 � 
 -4-4- 
��Æ	 � 
 going with the
eight µ ’s. To cancel off the unwanted

3� 	 parts which occur when we try to make
l[ 3��[

invariant under
(184), we now need eight vector gauge fields n � � 	 � 
 , g��0)(�,+ �4-4-4-�Ñ . These n ’s transform according too4n � � 	 � 
 � � � 
 � 	 � 
 K Ï n ¾ � ��� 
 � 	 � 
 n � � 	 � 
 (185)

[cf. (166) and (155)]. The SU(3) � covariant derivative acting on a triplet isw � [ � 	 � � K � Ï n � 3 + � t � 
 [ (186)

giving the n -
[

-
[

vertex [cf. (168)] of Fig. 13:/ � Ï n µ �+ g � - (187)

The quanta of the n � � field are the (eight different) gluons. As in local SU(2), there is an SU(3) � field
strength tensor which is [cf. (177)]{ �4|� � � � n |� / � | n � � / Ï n ¾ � ��� n � � n |� - (188)

The SU(3) � Yang–Mills term is then / )ü { �4|� { � �4| (189)

and it contains triple and quadruple gluon couplings, all involving the same ‘strong’ coupling Ï n , and the
constants ¾ � ��� determined from (155). Once again, there is no mass term allowed by invariance under
(185), and the gluons are massless. Their propagator is the same as the photon one in rule (v), with a
colour factor o � � .

For one SU(3) � triplet
[

, then, our Lagrangian so far is% � l[ 	 � 3w / T 
 [ / )ü { �4|� { � �4| (190)

with
w � [

given by (186). For many different quark flavours ¾ , the Dirac term is repeated for each,
giving %"�$#�q � 9&% l[ % 	 � 3w / T % 
 [ % / )ü { �4|� { � �4| - (191)

Actually, however, matters are not quite that simple. As in QED, we need a gauge-fixing term to pro-
duce the gauge field propagator; in the non-Abelian case this turns out to be a more complicated affair,
necessitating additional pieces in %'�$#�q called ‘ghost terms’. We shall not give their form here: they are
needed only for loop calculations, the details of which we shall not need. The Lagrangian of (191) is
adequate at the tree level.
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Problems for Lecture 4
P4.1 An ‘infinitesimal’ SU(2) transformation means one very close to the identity, öô¸� ) / � � where� is a matrix whose entries are infinitesimally small. So öô¸� G )�/ � �(;�; / � �(; �/ � � � ;�)2/ � � ��� I . Show that to first

order in the � ’s, öô öô hÐ�)( implies that �Á�?�Yh (i.e. � is Hermitean). Also, show (again to first order in
the � ’s) that Í}|4l ô �v) implies � ;�; K � ��� ��� (i.e. � is traceless). So � is a traceless Hermitean matrix,+ ù + . Explain why � is specified by three real parameters. How many parameters are needed for an
infinitesimal SU(N) matrix?

P4.2 The ù -matrices are ù ;J� G �Ã))Ú� I � ù � � G � / �� � I � ù r � G ) �� /Z) I -
(a) Verify that E ù ; 3 + � ù � 3 + N � � ù r 3 + . (b) A simple model of the isospin raising operator

aP � isaP � � 	 ag h� ag h¶ 
�	
ù ; 3 + K � ù � 3 + 
 G ag �ag ¶ I
where the

ag h ’s create b ’s and

O
’s. Check that

aP � � ag h� ag ¶ and interpret this. Define alsoaP ¦ � 	 ag h� ag h¶ 
�	
ù ; 3 + / � ù � 3 + 
 G ag �ag ¶ I -
Show that

aP ¦ � ag h¶ ag � . (c) Evaluate E aP � � aP ¦ N , and check that it is compatible with E aP « � aP ü N � ��G « ü � aP � ,
where aP « � 	 ag h� ag h¶ 
�	
ù « 3 + 
 G ag �ag ¶ I -
P4.3 The ¹ ù ¹ matrices � ;û� � � � � r are defined by 	�� « 
 ü � � / ��G « ü � Ä�ÅÆ~ � � S � � � )(�,+ �,¹ where the index �
stands for which � it is, and the

S � � indices specify the row and column, respectively, of that � th � matrix.
Here G « ü � is defined to be 0 if any of � � S � � are equal, +1 if they are a cyclic permutation of ‘123’, and/Z) if they are a cyclic permutation of ‘213’. Write down the ¹ ù ¹ matrices � ;û� � � � � r , and verify thatE � ;û� � � N � � r .
P4.4 The infinitesimal transformation law of an SU(2) triplet

ÿ
is�� y » ;y » �y » r

�� � 	 )�/ ��G ; � ; / ��G � � � / �DG r��tr4
 �� y ;y �y r
�� -

Calculate the ¹ ù ¹ transformation matrix explicitly, and show that the transformation can also be written
in ‘cross product’ form

ÿ » � ÿ K ÷ ù ÿ
.

P4.5 The ‘SU(2) covariant derivative’ acting on an SU(2) doublet is
w � [ � 	 � � K � Ï ø{� � � 	 � 
 3 + 
 [ .

Under an infinitesimal local SU(2) transformation,
[

transforms byo [ �0/ � Ï ø � ÷ 	 � 
 3 + [ -
The transformation law of � �

is determined from the requirement thato 	 w � [ 
 �0/ � Ï ø � ÷ 	 � 
 3 + 	 w � [ 
 -
Now the LHS of this equation iso E 	 � � K � Ï ø � � � 	 � 
 3 + 
 [ N
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Fig. 14: Two- * exchange in fermion–fermion scattering, and effective four-fermion structure.

� � Ï ø � 	 o � 	 � 
 � 3 + 
 [ K 	 � � K � Ï ø � � � 	 � 
 3 + 
 o [� � Ï ø � 	 o � 	 � 
 � 3 + 
 [ K 	 � � K � Ï ø � � � 	 � 
 3 + 
�	 / � Ï ø � ÷ 	 � 
 3 + 
 [
while the RHS is / � Ï ø � ÷ 	 � 
 3 + 	 � � K � Ï ø � � � 	 � 
 3 + 
 [ -
Verify that this implies o � � 	 � 
 � � � ÷ 	 � 
 K Ï ÷ 	 � 
 ù � � 	 � 
 -
P4.6 Check that E � � K � Ï ø � � � 	 � 
 3 + � � | K � Ï ø � � | 	 � 
 3 + N � � Ï ø �+� �4| 3 +
where � �4| � � � � | 	 � 
 / � | � � 	 � 
 / Ï�� � 	 � 
 ù � | 	 � 
 -
P4.7 Verify that, under an infinitesimal local SU(2) transformation, o � �4| � Ï ÷ 	 � 
 ù � �4| -
6 SPONTANEOUS SYMMETRY BREAKING

See Chapter 21 of Ref. [2].

6.1 Some motivation
In the previous section, an indication was given as to why the relevant theories at current energy scales
should be renormalizable theories (a small subclass, incidentally, out of all possible quantum field the-
ories!). We also pointed out how ‘universality’ phenomena in weak interactions suggested that they are
described by a gauge theory, which presumably should be a renormalizable one. On the other hand, we
also know that weak interactions are very short-ranged, so their mediating quanta must be massive—and
this at once seems to present a barrier to the ‘gauge’ idea, because (see problem P2.6) a simple gauge bo-
son mass term violates gauge invariance. Perhaps, then, we can have a theory involving massive charged» ï bosons, for instance, without it being a gauge theory? Yes, we can, but it will not be renormalizable.
In fact, the renormalizability of QED has a great deal to do with the gauge symmetry it possesses. Let us
try and explain what is wrong with a ‘non-gauge theory of massive » ï ’s’.

Consider Fig. 14, which shows some kind of fermion–fermion scattering proceeding, in fourth
order of perturbation theory (one loop), via the exchange of two massive vector bosons that we shall call� �

. To calculate this diagram, we need to know the propagator for � �
.
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For this we need the wave equation for � �
, which is quite simple to write down. We just replacex in the wave equation (91) for n � by x K \ �

where \ is the mass of the � �
:	tx K \ � 
 � � / � � ��| � | ����- (192)

To find the propagator, we follow the poor-man’s route, putting in a plane wave solution for � �
, which

yields Ô 	 / 	 � K \ � 
 o �| K 	 � 	 | × G | © ¦¬« « ¯ ° ���A- (193)

The propagator should now be proportional to the inverse of the [ -4-4- ] bracket in (193), and (unlike the
corresponding inverse in (92)!) this does exist and is given by (problem P5.1)/ Ï �M| K 	 � 	 | 3 \ �	 � / \ � - (194)

Note (i) that trouble ensues (the numerator blows up) when \ � � , so already we see that a massless
vector particle seems to be a very different kind of thing from a massive one (you cannot just simply take
the massless limit); (ii) that if we ‘dot’ (193) with 	 � we easily deduce 	 � G ��� [see below, after (198)].

Now consider the loop integral in Fig. 14. At each vertex we will have a coupling constant factor
‘ Ï ’, which is in fact dimensionless (the interaction will be something like Ï l[ g � [ � �

). But, as we warned
in Section 4.4, this may not guarantee renormalizabilty, and this is a case where it does not. To get an
idea of why not, consider the leading divergent behaviour of Fig. 14. This will be associated with the
‘ 	 � 	 | ’ terms in the numerator of (194), so that the leading divergence is effectively� @ OYÀ 	 G 	 � 	 |	 � I G 	 � 	 |	 � I )	 )	 (195)

for high 	 (we are of course not troubling to get all the indices etc. right). But the first two ( -4-4- )’s in
(195) behave like a constant, at large 	 , so that the asymptotic behaviour is effectively� @ O À 	 )	 )	 (196)

which is exactly what we would get in a four-fermion theory !—see Fig. 14, and we know that such a
theory is non-renormalizable.

Where have these dangerous powers of 	 come from? The answer is simple and important. They
come from the longitudinal polarization state of the massive � particle. We can see this as follows.
Consider a free � particle with 4-momentum 	 � 	
	 D ��������� p � p®
 , so that the � and � directions are
transverse, and the , direction is longitudinal. In the rest frame of the � , the three polarization states can
be taken to be ÷ 	Ýµ �A�£) 
 �.- + ¦ �� 	 )(�>� � ��� 
 � ÷ 	Ýµ ��� 
 � 	 �������û) 
 - (197)

Boosting to the frame with 4-momentum 	 , the transverse polarization vectors remain the same, but the
longitudinal one becomes G � 	
	 � µ ��� 
 � \ ¦ ; 	�p � p ��������� 	 D 
 - (198)

Note that 	 � G 	
	 � µ ��� 
 ��� is satisfied. At large values of 	 , G � 	
	 � µM
 is therefore proportional to 	 � 3 \ ,
and this is the origin of such factors in the propagator.

Consider now the photon propagator given by rule (v): there are apparently quite similar factors
there too, but they are gauge dependent, and in fact can be ‘gauged away’ entirely by choice of � ! But,
as we have seen, such ‘gauging’ seems to be possible only in a massless vector theory. A closely related
point is that, as we all know, electromagnetic waves are purely transverse: equivalently, free photons
exist in only two independent polarization states, instead of the three we might have expected (from the
three orientations of their unit spin). The longitudinal state is missing, and it turns out (see Aitchison
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and Hey [1] page 188) that this is precisely related to the masslessness of the photon. In the massive� case, all three polarization states are present—and this gives another way of seeing why a massless
vector particle is really different from even a very light massive one: there is no smooth naive \ � �
limit.

The above considerations therefore suggest the following line of thought:
– Can we somehow create a gauge theory involving massive vector quanta, such that the offending	 � 	 | bits could be gauged away, making the theory renormalizable? The answer is yes, via the

idea of spontaneous breaking of the gauge symmetry.
This terminology is contrasted with ‘explicit symmetry breaking’, in which the observed symmetry
breaking is associated with a term in the Lagrangian, in the absence of which the theory would possess
some exact symmetry. For example, to the extent that the up and down quark masses are equal, we have
approximate SU(2) flavour symmetry of the QCD Lagrangian. But it is also possible to have a symmet-
rical Lagrangian, while the particle states and other physical observables seem to show no obvious (even
approximate) sign of the symmetry. This is the ‘spontaneously broken’ case. This language is borrowed
from condensed matter physics, where the ferromagnet is the frequently quoted example. The (Heisen-
berg) Hamiltonian is certainly rotationally invariant, yet below the transition temperature the spins are
thought of as lining up in some particular direction, breaking the rotational symmetry ‘spontaneously’.

In the case of a field theory, there are striking differences in the physical consequences depending
on whether the symmetry that is spontaneously broken is a global or a local one. In the global case, a
general result due to Goldstone [3] and others states that spontaneous breaking of a continuous symmetry
is always associated with the appearance of a massless particle, or particles, called ‘Goldstone bosons’.
In the local case, these Goldstone bosons become the longitudinal components of the gauge field(s)—
which, before symmetry breaking, always had only the two transverse components. The total of three
‘spin’ components in all is exactly what is required for a massive vector field. This is the essence of
the theoretical loophole which allows gauge bosons to be massive even though the Lagrangian is locally
(gauge-) invariant (cf. problem P2.6), and which is invoked to give masses to the » and the ¥ bosons in
the Standard Model.

We begin with the simpler case of spontaneously broken global symmetry, which is of physical
importance in its own right in the non-Abelian case (Section 6.3).

6.2 Spontaneously broken global U(1) symmetry
See Chapter 17 of Ref. [2].

We consider a simple classical field theory which shows the effect we want to study. Let y be a
complex scalar field, described by the Lagrangian% & � � � y @ � � y / Q5	Ýy

 (199)

where the potential is taken to have the form ( µ Ç � )Q5	Ýy

 �0/ Z � y @ y K µ ü 	Ýy @ yM
 � - (200)

Clearly % & is invariant under the global U(1) symmetryy¥� y » �ª© ¦¬«76 y - (201)

(Note that a term like 	Ýy�@ûy

 r would also be invariant under (201), but this would be a non-renormalizable
interaction in the quantum theory of % & , so we exclude it.)

Application of the Euler–Lagrange equation yields the equation of motion	tx / Z � 
�y � / µ + p®y¨p � y - (202)
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Fig. 15: The ‘wine-bottle’ potential of (200).

This is nearly the standard Klein–Gordon equation for y (with an interaction term on the right-hand
side)—except for the fact that ‘ / Z � ’ has the wrong sign for a mass term! This prevents us from making
any quantum interpretation of (199) as yet; we therefore concentrate on QÁ	ÝyM
 regarded simply as the
potential energy of the classical field.

As a first step to understanding (199), we try to identify the configuration(s) of minimum energy,
about which the system might be expected to oscillate. Generally, the energy will be a minimum wheny is a constant, which reduces the kinetic terms to zero. The minimum energy is then reached at the
minimum of QÁ	ÝyM
 . This occurs at p®y¨p � d 3 3 + � d �ª+ Z 3 µ ;�e � � (203)

where d is referred to as the ‘symmetry breaking parameter’. To have a clearer picture, it is helpful to
introduce two real fields y ; and y � by y � 	Ýy ; / � y � 
 3 3 + (204)

and also the ‘polar’ variables y � 	 F 3 3 + 
 © «0/ e21 � (205)

where the d is inserted so that � has the same dimensions as F . Figure 15 shows QÁ	ÝyM
 versus y ; andy � , from which it is obvious that the minimum of Q is not at y ;{� y � � � . In fact, there is no
unique minimum point—rather, any value on the circle y � ; K y �� � d � or equivalently F � d will do.
Before proceeding further, we briefly outline the condensed matter analogue of (199) and (200) which
we mentioned earlier—namely the ferromagnet. In this case, one considers the free energy as a function
of the magnetization 3 at a given temperature P , and makes an expansion of the form{   { D 	èP 
 K )+ Z � 	èP 
43 � K )ü µ�	èP 
�	�3 � 
 � K �4�4� � (206)

valid for small magnetization. If the parameter Z � is positive, it is easy to see that
{

has a simple
‘bowl’ shape as a function of p�3Wp , with a minimum at p�3 p � � . This is the case for P greater than
the ferromagnetic transition temperature P5# . However, if one assumes that Z � 	èP 
 becomes negative forP È P # (so that Z � 	èP # 
 ��� 
 , then

{
will now look like Fig. 15 and the minimum free energy will occur

for p�3 p ��¢� . The interpretation is that in this case the ground state will be magnetized. Any direction
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of 3 is possible (only p�3 p is specified); but when the system does settle into one actual configuration
with 3 ��76 the original full rotational invariance of (206) is lost—the magnetization, and the breaking
of the symmetry, has occurred ‘spontaneously’.

In the same way, any particular minimum on the circle F � d will select out a particular � in (205),
breaking ‘spontaneously’ the invariance (201).

In quantum field theory, particles are thought of as excitations from a ground state, which we call
‘the vacuum’. Figure 15 strongly suggests that if we want a decent quantum interpretation of (199), we
should consider expanding the fields about a point on the circle of minima, about which stable oscillations
are likely. Any such point represents a possible vacuum state in which§ � p�y � ; K y �� p � q � d � � ÅÆ~ § � p F p � q � d - (207)

Bearing in mind [cf. (200)] that for a field with a conventional (positive) mass
�

parameter the poten-
tial would be U-shaped, we might guess that ‘radial’ oscillations in Fig. 15 would correspond to a
conventional massive field, while ‘angle’ oscillations—which pass through all the degenerate minima
(vacua)—have no ‘restoring force’ and are massless. Accordingly, we set [cf. (205)]y�	 � 
 � )3 + 	Fd K98 	 � 
�
 © ¦¬«0/ ² °s³ e21 (208)

and find that % & becomes (problem P5.2)% & � )+ � � 8 � � 8 / Z � 8 � K )+ � � � � � � K Z Àµ K
terms cubic and quartic in � � 8 - (209)

Equation (209) exhibits the desired form of a conventional scalar field
8

with mass 3 + Z and a
massless field � , together with interaction terms. In particular, the quantum version of (209) will have§ � p 8 	 � 
4p � q � § � p ��	 � 
4p � q ��� , consistent with (207), so that

8
and � will have the usual mode expansions

(of the form (19) for example), allowing the usual particle interpretation. (The constant term in (209),
which does not affect equations of motion, reflects the fact that QH	�Ê7!<"¬
 �[/ Z À 3 µ .) Note that the
symmetry (201), which is evident in (199), is well and truly hidden in (209)!

This model (due originally to Goldstone [3]) contains the essence of spontaneous symmetry break-
ing in field theory: a non-zero value of a field in the ground state (vacuum), a zero mass mode or modes
(the Goldstone bosons), and a massive excitation or excitations in the directions ‘perpendicular’ to the
degenerate ground states.

It is interesting to find out what happens to the symmetry current corresponding to the invari-
ance (201). Following the usual procedure, this current isS �& � �;: y h � � y / 	 � � y

 h y=< � d � � � K + 8 � � � K98 � � � � 3 d - (210)

The presence of the term involving just the single field � is very remarkable: it tells us that (in the
quantum theory) there is a non-zero matrix element of the form§ � p S �& 	 � 
�p � q � / � � � d � (211)

where p � q stands for a state with one Goldstone boson � , with momentum � � . That is, the symmetry
current connects the Goldstone boson to the vacuum, with an amplitude proportional to the symmetry
breaking parameter. In the case of spontaneously broken chiral SU(2) > é symmetry (Section 6.3 below),
the analogue of

S �& is the current of the global axial SU(2) symmetry n �« , and there are three � modes
which are identified with the physical pions. The parameter d in the corresponding equation (211) is
then ¾ Ö ( �7? ü MeV), the constant which enters into the pion decay ' �A@�Ø .
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Although by the ansatz (208) we seem to have arrived at a viable particle interpretation of (199),
we might well ask: how would such a negative (mass)

�
term arise in quantum field theory? One possi-

ble answer is that, as with the ferromagnetic analogy, the coefficient Z � in (200) could be temperature
dependent: perhaps at extremely high temperatures, such as prevailed in the early universe, Z � had the
opposite sign, corresponding to a conventional mass term. In that case the potential would have a simple
minimum at the origin, and the symmetry would not be spontaneously broken until P dropped below
some P;# , where Z � 	èP;#�
 �*� . This simple picture is indeed popular in models of the early universe,
where such phase transitions are proposed. On the other hand, it may be that some theory might predict
the coefficient Z � in (200) to be negative, in a particular case. Or, one might simply postulate a QÁ	Ýy

 of
the form (200), so as to ‘trigger’ the desired breakdown. The last alternative is essentially what is done
in the Higgs sector of the Standard Model—as we shall discuss in Section 6.5 and Section 7.

6.3 Spontaneously broken global chiral symmetry
See Section 12.3.2 and Chapter 17, of Ref. [2].

The Dirac Lagrangian for a single massless fermion,l[ � � ��[
(212)

is invariant not only under the ordinary global U(1) symmetry of (69), but also under the ‘ g é -version’ of
it, namely [ � [ » �ª© ¦¬«CB �¤´ [ - (213)

This can be easily verified directly, usingg D g é �0/�g é g D � g « g é � /�g é g « � (214)

but it will be useful later to expand the discussion now to cover this type of symmetry, not considered
previously. We may write [ � 	 )�/ g é 
+ [ K 	 ) K g é 
+ [ ± [5D K [5E - (215)

The ordinary (infinitesimal) U(1) symmetry (69) is theno [FE � / ��G [FE � o [5D �0/ �DG [5D
(216)

while the infinitesimal version of (213) iso [FE ��/ � 
 [5E � o [5D � K � 
 [GD - (217)

Transformations such as (217), which act differently on the L and R components are called ‘chiral’.
Using (214), (215) can be written as l[ � 3��[ � l[5D � 3��[GD K l[5E � 3�X[FE � (218)

which clearly exhibits both the symmetries (216) and (217). It is also manifestly L U R symmetric,
which means it conserves parity. On the other hand, a mass term T l[.[

becomesT l[s[ � T�	 l[ D [ E K l[ E [ D 
 (219)

which is invariant under (216) but not under (217), while still preserving parity.

Consider then %H�$#Xq of (191), in the limit in which some quark masses—in particular the lightest,T � and T ¶ —are regarded as negligible. The fact that
3�

in (212) is replaced by
3w

clearly makes no
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difference to the preceding discussion, which depended only on (214). Thus in this limit % �$#�q will be
invariant under the g é -version of (141), namelyo [ �0/ � 	 �úø 3 +ãg é [ � (220)

which is a chiral ‘SU(2) > é ’ transformation. Now this cannot be realized as an exact symmetry in nature,
or else for every non-strange baryon made of b and

O
quarks there would have to exist another one,

degenerate in mass, but with the opposite parity. The reason is worth pausing over.

Associated with the invariance (220) will be three conserved charges, just as in (141)–(145),
namely P é« � @ [ h 	 � 
 ù «+ g é [ 	 � 
 O r � - (221)

In this case, however, these objects are ‘pseudoscalars’ (because of the g é )—meaning that they will
change the parity of any state they act on. Thus whereas the ordinary isospin raising operator P � �P ; K � P � has the action P � p O q � p b q , where b and

O
are degenerate in mass because E P � � b N ��� ( P � is

a constant of the motion), in the case of P é� we must haveP é� p O q � p öb q (222)

where öb is an ‘up’ state, degenerate in mass with p b q (because E P é� � b N � � also), but with opposite
parity.

Such negative parity analogues of all non-strange baryons are not seen experimentally. One might
of course blame this on the finite mass of the u and d quarks, but this is implausible. Instead, we try the
idea that this chiral symmetry is spontaneously broken. In that case, we expect three massless Goldstone
bosons (corresponding to the three independent SU(2) chiral transformations), and we can interpret öb q
of (222) as being really p b K

massless pseudoscalar boson q , thus producing a state degenerate with u
in mass, but of opposite parity! These three massless Goldstone bosons are identified with the pions—
thereby explaining their anomalously low mass (by comparison with that of the F -meson, for example).
The mass of the physical pion is not, of course, strictly zero, and this is attributed to small non-zero
quark masses in the original QCD Lagrangian. Still useful, though more ‘explicitly’ broken than this
chiral SU(2), is the chiral flavour SU(3) analogue, in which we suppose T n   � —the Goldstone bosons
are then the kaons.

Remarkably enough, these ideas are also relevant to the weak interactions. In this case, as we shall
see, the interaction is most definitely not left–right symmetric (it violates parity)—indeed the ‘V / A’
structure means that the weak gauge fields couple only to the

["D
components of the fermions, and not to

the
[=E

components at all. This means that the corresponding local gauge symmetry is of the formo [5D � / � ÷ �úø 	 � 
 3 + [5D
(223)o [ E � �f� (224)

for a ‘weak doublet’ such as G Ø x© ¦ I - (225)

But this implies that any mass term of the form (219), which treats
["D

and
[FE

the same, will break
this ‘left-handed’ gauge symmetry. Although the neutrinos were usually taken to be massless, the other
leptons are definitely not, nor are the quarks. Thus, curiously enough, there is another ‘mass problem’
with the weak interactions: they would like not only the » and ¥ bosons but also the fermions to be
massless. Once again, we shall have to suppose that the fermion masses arise ‘spontaneously’, if we
want to save the (weak) gauge symmetry. In the Standard Model, one appeals to the same mechanism
(the Higgs field) to give mass to the gauge bosons and to the fermions, which is an economical but not
necessary step; see Section 7.

It is now time to turn to spontaneously broken local symmetries, concentrating on those relevant
to the Standard Model.
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6.4 Spontaneously broken local U(1) symmetry: the Abelian Higgs model
See Section 19.3 of Ref. [2].

The U(1) Higgs model is just % & of (199) extended so as to be locally U(1) invariant; it provides
a beautifully simple model for investigating what happens when a gauge symmetry is spontaneously
broken. To make (199) locally U(1) invariant, we need only replace

�
’s by

w
’s as in (81), and add the

Maxwell piece, giving%JI � E 	 ��� K � © n � 
�y N h E 	 � � K � © n � 
�y N / )ü { �4| { �4| / QÁ	Ýy

 (226)

where Q is still (200), and of course
{ �M| � � � n | / � | n � . Equation (226) is invariant under the local

version of (201), namely y��´y » 	 � 
 �ª© ¦¬«76 ² °s³ y�	 � 
 (227)

when accompanied by a gauge transformation on n �n � � n � » � n � K )© � � 8 (228)

as in Section 3.4. Before proceeding further, we note at this stage that we have four field degrees of
freedom—two in y and two in the massless n � 	 { �M| � � � n | / � | n � 
 .

Now we have learned that the form of Q in (200) does not lend itself to a natural particle interpre-
tation, which only appears after making the ‘shift to the minimum’, as in (208). But there is a remarkable
difference between the local and global cases. In the local case, the phase of y is completely arbitrary,
since any change in ��	 � 
 in (208) can be compensated by an appropriate transformation (228) on n �

,
leaving %KI the same as before. Thus in fact the ‘ � ’ field in (208) can be ‘gauged away’ altogether, if we
like! This must mean that the massless Goldstone boson, described precisely by � in the quantum theory,
somehow no longer appears. This is the first unexpected result in the local case (and it reminds us of our
desire to ‘gauge away’ those longitudinal polarization states -4-4- ).

However, we cannot simply ‘lose’ degrees of freedom. Somehow the system must keep track of
the fact that we started with four. To see what has happened, we substitute (208) into (226) with � � � ;
i.e. set y � )3 + 	Fd KL8 	 � 
�
 (229)

in %KI . We find then (problem P5.3)%KI � )+ �Y� 8 � � 8 / Z � 8 � K Z Àµ / )ü { �4| { �4| K )+ © � d � n � n � K interaction terms , (230)

where n � has to be understood as the gauge field after the transformation needed to reduce y to (229).
Equation (230) shows the second ‘Higgs miracle’: we see that the n �

field now has a mass, equal to © d
where d is the symmetry breaking parameter. The missing degree of freedom has reappeared as the third
(longitudinal) polarization state of the massive field n �

. The fourth degree of freedom is still there, the
massive

8
field as in (209).

Can such miracles ever occur? The answer is undoubtedly yes, at least in the non-relativistic
case. The low-energy version of %HI is just the Ginzburg–Landau (GL) approximation for (again) the
free energy in a superconductor. In this case (see Section 19.2 of Aitchison and Hey [2] for example)y represents a composite (rather than elementary) field, such that p®y¨p � is the density of bound Cooper
pairs (of © ¦ © ¦ ). Also, the mass for the n field implies that the field is exponentially attenuated inside the
superconductor, with a penetration length of order ) 3 © d ; this is the Meissner effect. It is worth noting that
the GL free energy is not to be regarded as a fundamental theory, which must of course be derived from
the physical electron–electron and electron–lattice interactions; this is what the BCS theory is all about,
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and the GL free energy is a phenomenological expression embodying much of the important physics
of the BCS theory. In particle physics the question of whether the y field in the Standard Model (see
Section 7) is elementary or composite is completely unknown. However, whatever the truth of that may
be, it seems pretty well inevitable that some such field, or effective field, is required to give mass to the» and ¥ (see Section 6.5, and Section 7)—and in that case it should have its own excitation quantum,
the Higgs boson: hence the intense interest in hunting for it!

Before proceeding further we can at this stage read off from (230) the propagator for the massive
vector n -field. As in the discussion following (193), we need to invert the quantity _ �4| 	ï\ É 
 � E 	 / � � K\ �É 
 Ï �4| K � � � | N , where \{É �ª© d here. As we saw, this does have a straightforward inverse, leading to
the propagator � 	 / Ï �M| K � 1 � �M �N 
� � / \ �É - (231)

We see that (231) makes no sense as \CÉ�� � , reflecting the difficulty with the massless limit of the
massive theory. A more technical point concerns the fact that (231) obtains only when the special choice
of gauge, � �A� , is made as in (229). In general, the vector propagator will contain a gauge parameter �
like the massless propagator of rule (v): this is after all a gauge theory! Rule (v) becomesO rule (v)

»
a factor �>E / Ï �M| K ² ; ¦QP�³ « 1 « �« � ¦QP M � N 3 	
	 � / \ � 
 for an internal massive gauge boson carrying

4-momentum 	 , where � is a gauge parameter ( � �9¬ gives the ‘naive’ vector boson propagator).

Note that for finite � , this propagator has a large 	 behaviour � ) 3 	 � , which is good enough to
make Fig. 14 convergent! This, then, is the essential clue as to how we can have a renormalizable theory
with massive gauge bosons. The gauge � �9¬ is called ‘unitary gauge’: in this gauge there is no visible
sign of the scalar y -field. But note that in gauges with � finite, the scalar field will also be present with
a � -dependent propagator (associated with the degree of freedom suppressed in (229)); the complete
theory is nevertheless always � -independent. Further discussion of this is contained in Section 19.5 of
Aitchison and Hey [2] for example.

Returning to (226), we can again look at the electromagnetic current in this ‘spontaneously broken
local U(1)’ model. The gauge invariant form of (210) isS �� ¦ � ¦ � � © Ê�y h 	 � � K � ©�n � 
�y / complex conjugate Ì� � © 	Ýy h � � y / 	 � � y h 
�y

 /�+Æ© � n � y @ y - (232)

Inserting (208) into (232) (this time in a gauge such that � ��ª� ) we find [cf. (210)]S �� ¦ � ¦ � /w© � d � n � K © d � � � K interaction terms - (233)

Equation (233) tells us that there is a ‘screening current’ (the first term on the RHS) which leads to a
mass © d of the n -field, once again; the second term shows that—as in (211)—the vacuum couples to the
‘would-be Goldstone boson’ (which has become the longitudinal part of the n -field) via the electromag-
netic current.

This is an important observation as it leads to a somewhat different way of understanding the
‘mechanism’ whereby a gauge particle can become massive. In Section 5.1 we introduced the photon
self-energy � Xc� which had the general form� Xc� � 	èÏ Xc� 	 � / 	 X 	 � 
 � � 	
	 � 
 - (234)

When all the self-energy insertions are summed up, and after renormalization, the photon propagator has
the form [cf. (111)] / � Ï �4|�R 	 �HS )�/ l� � 	
	 � 
UT � (235)
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Fig. 16: Massless Goldstone boson coupling to photon.

in the Feynman gauge. The existence of the matrix element§ � p S �� ¦ � ¦ 	 � 
4p � q �0/ � 	 � © d (236)

means that � Xc� will now receive a contribution from the diagram of Fig. 16, where the dotted line
represents the massless � quantum. This is now a tree diagram, not a loop as in the ©��Ù© ¦ contribution
of Fig. 9(a), and so the contribution to � X�� will involve simply the (massless) � -propagator, with no
momentum integration. The g - � vertex is given by (236), with the result that the contribution to

l� � 	
	 � 

in (235) is l� /� 	
	 � 
 �ª© � d � 3 	 � � (237)

so that the pole in the photon propagator (235) is now at 	 � �k© � d � , and the photon has a mass © d , as
before. We have been casual about questions of gauge choice in this argument, but the essential point is
valid: a gauge quantum can acquire mass if (for some reason) its vacuum polarization function has a zero
mass pole (see the Discussion point after (99)). This pole can be associated with the ‘elementary’ mass-
less quantum in a Higgs potential of the form (200), but it does not have to be. The massless quantum
could equally well be a bound state in some strongly-interacting fermion–antifermion channel—in par-
ticular, a Goldstone boson arising from the spontaneous breaking of some global symmetry in a purely
fermionic theory, for instance. All that is necessary is that it has a coupling of the form (236). The point
of this latter interpretation is that only the product ‘ © d ’ has significance—there is no sign of Fig. 15, or of
‘ d ’ alone as the vacuum value of a scalar field. Theories of this latter type do seem to produce a natural
‘dynamical’ mechanism for gauge boson mass generation. Both the ‘ � l� ’ models (Nambu [4]; Miransky
et al. [5], [6]; Bardeen et al. [7]), and technicolour (Farhi and Susskind [8]), are of this type, but neither
seem to be favoured by experiment. In the electroweak theory it is of course the » and ¥ particles that
we want to be massive (while still being gauge bosons), not the photon. We therefore need to extend the
above to the (non-Abelian) SU(2) case.

6.5 Spontaneously broken SU(2) V U(1) symmetry: the gauge and Higgs field sectors of the elec-
troweak theory

See Section 19.6 of Ref. [2].

We shall confine ourselves to the particular case which we need for the electroweak theory. We
consider a complex scalar (spin-0) SU(2) doublety � G y �y D I (238)

where the complex y � field destroys positively charged particles and creates negatively charged ones,
and the complex y D field creates neutral particles and antiparticles (a hadronic analogy would be the W �
and W D

fields under hadronic SU(2) > ). The Lagrangian%"X � 	 �Y� y

 h 	 � � y

 K Z � y h y / µ ü 	Ýy h y

 � (239)

then exhibits a global SU(2) invariance of the form [cf. (159)]y�� y » � |�����	 / ��\ �úø 3 + 
�y � (240)
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but this is spontaneously broken, the minimum of the potential in (239) occurring at [cf. (207)]	Ýy h y

 � Ò®Ó �ª+ Z �û3 µ ± d �s3 +Ú- (241)

As in the U(1) case, we interpret (241) in the quantum theory as [cf. (207)]§ � p,y h yÃp � q � d � 3 +Ú� (242)

so that the y -field has a non-zero value in the vacuum. Once again, we exclude higher powers of y h y in
(237) on grounds of renormalizability.

As before, in order to get a sensible particle spectrum we must ‘shift’ the fields so as to deal with
stable oscillations about the minimum (vacuum) given by (242). So we need to define ‘

§ � p®y¨p � q ’ and
expand about it, as in (207) and (208). In the present case, however, the situation is more complicated
than (208), since the complex doublet (238) contains four real fields, parametrized for example asy � � )3 + 	Ýy ; / � y � 
 � y D � )3 + 	Ýy�r / � y À 
�= (243)

(242) then becomes § � p�y � ; K y �� K y �r K y �À p � q � d � - (244)

It is evident that we have a lot of freedom in choosing the
§ � p®y « p � q so that (244) holds, and it is not at

first obvious what an appropriate generalization of (207) and (208) might be.

Furthermore, in this more complicated (non-Abelian) situation a qualitatively new feature can
arise: it may happen that the chosen condition

§ � p®y « p � q ��ª� is invariant under some subset of the allowed
symmetry transformations. This would effectively mean that this particular choice of the vacuum state
respected that subset of symmetries, which would therefore not be ‘spontaneously broken’ after all. Since
each broken symmetry is associated with a massless Goldstone boson, we would then get fewer of these
bosons than expected.

Just this happens (by design!) in the present case. To understand how it works, we must first
recognize that, in addition to the global SU(2) symmetry of (4.41), %�X of (240) is also invariant under a
completely independent global U(1) symmetry of the formy¥� y » �ª© ¦¬«CB y � (245)

which just means that the phases of the upper and lower components of y in (238) change simultaneously
by the same amount. Thus the full symmetry of (239) is global SU(2) ù U(1) (which will be made local
in a moment, as is required in the Standard Model).

Suppose then that we could choose the
§ � p®y « p � q so as to break this SU(2) ù U(1) symmetry com-

pletely: we would then expect four massless fields. Actually, however, it is not possible to make such a
choice. An analogy may make this point clearer. Suppose we were considering just SU(2), and the fieldy was an SU(2)-triplet. Then we could always write

§ � p ÿ p � q � dZY where Y is a unit vector; but this
form is invariant under rotations about the Y -axis, irrespective of where that points. In the present case,
by using the freedom of global SU(2) ù U(1) phase changes, an arbitrary

§ � p®y¨p � q can be brought to the
form § � p®y¨p � q � G �d 3 3 + I - (246)

In considering what symmetries are respected or broken by (246), it is easiest to look at infinitesimal
transformations. It is then clear that the particular transformationo y �0/ ��G 	 ) K ù r 
�y (247)
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(which is a combination of (245) and the ‘third component’ of (240)) is still a symmetry of (246) since	 ) K ù r 
 G �d 3 3 + I � G �� I � (248)

so that § � p®y¨p � q � § � p®y K o y¨p � q = (249)

we say that ‘the vacuum is invariant under (247)’, and when we look at the spectrum of oscillations about
that vacuum we expect to find only three massless bosons, not four.

Oscillations about (246) are conveniently parametrized byy � |�����	 / � 	�[Ù	 � 
 �úø 3 + 
�d�
 G �;ì � 	Fd K b 	 � 
�
 I � (250)

which is to be compared with (208). Inserting (250) into (239) (see problem P5.4), we easily find that no
mass term is generated for the [ fields, while the

b
field piece is%K\ � )+ � � b � � b / Z � b � K

interactions (251)

just as in (209), showing that T \ � 3 + Z .

As noted in Section 6.3, there is an interesting physical example of a spontaneously broken global
SU(2) symmetry, the SU(2) > é symmetry of % �$#�q , in which the three massless modes are identified with
the pions. We cannot consider this in any more detail here, however, being concerned rather to proceed
to the local version of the SU(2) ù U(1) model of (239). Such an extension is easily written down, just by
using the SU(2) covariant form (163) and the U(1) covariant derivative of the form (163). In the notation
we shall use in the next section, this means replacing (239) by% /$X � 	 w � y

 h 	 w � y

 K Z � y h y / µ ü 	Ýy h yM
 � / )ü � �M| ��� �4| / )ü Ù �M| Ù �4| (252)

where w � y � 	 �Y� K � Ï øf� � � 3 + K � Ï »0] � 3 + 
�y � (253)� �M|
is as in (177), and

Ù �4| � �Y� ] | / �}| ] �
. Thus the � ’s are the SU(2) gauge fields, and the

]
is the

U(1) gauge field. Equation (252) is, in fact, the gauge and Higgs field sector of the Standard Model. As
in the local U(1) case, the particle spectrum is most easily found by exploiting the local gauge freedom
to choose the [ fields in (250) to vanish, as in the ansatz (229): that is, we sety � G �	Fd K b 	 � 
�
 3 3 + I - (254)

Substituting (254) into (252) and retaining only terms which are of second order in the fields (i.e. kinetic
energies or mass terms) we find% � X � )+ ��� b � � b / Z � b �/ )ü { ; �4| { �4|; K )Ñ Ï � d � » ; � » �;/ )ü { � �4| { �4|� K )Ñ Ï � d � » � � » ��/ )ü { r �4| { �4|r / )ü Ù �4| Ù �4| K )Ñ d � 	èÏ » r � / Ï » ] � 
�	èÏ » �r / Ï » ] � 
 - (255)

The first line of (255) tells us that we have a scalar field of mass 3 + Z (the Higgs boson, again). The next
two lines tell us that the components » ; and » � of the triplet ( » ; , » � , » r ) acquire a mass\ ;Ú� \ � � Ï}d 3 + ± \ î - (256)
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The last line shows us that the fields »{r and
]

are mixed. But they can easily be unmixed by noting that
the last term in (255) involves only the combination Ï » r / Ï » ] , which evidently acquires a mass. This
suggests introducing the linear combinations¥ � � þ�Å��X� î » �r / ��!<"�� î ] �

(257)n � � ��!<"�� î » �r K þ�Å���� î ] �
(258)

where þ�Å���� î � Ï 3 	èÏ � K Ï » � 
 ;�e � � ��!<"�� î � Ï » 3 	èÏ � K Ï » � 
 ;�e � - (259)

We then find that the last line of (255) becomes/ )ü { ¨ �4| { �4|¨ K )Ñ d � 	èÏ � K Ï » � 
 ¥ � ¥ � / )ü { �M| { �4| (260)

where { ¨ �M| � ��� ¥ | / ��| ¥ � and
{ �M| � ��� n | / ��| n � - (261)

Thus \ ¨ � )+ dM	èÏ � K Ï » � 
 ;�e � � \ î 3 þ�Å���� î (262)

and \ É ���f- (263)

Counting degrees of freedom as in the local U(1) case, we originally had 12 in (252)—three massless» ’s and one massless
]

, which is 8 in all, together with 4 y -fields. After symmetry breaking, we have
3 massive vector fields » ; , » � and ¥ making 9 degrees of freedom, one massless vector field n with
2, and one massive scalar

b
. Of course, the physical application will be to identify the » and ¥ fields

with those physical particles, and the n field with the massless photon. In the gauge (254), the » and ¥
particles have propagators of the form (231).

The identification of n � with the photon field is made clearer if we look at the form of
w � y written

in terms of n � and ¥ � , discarding the » ; , » � pieces:w � y �ðñ � � K � ÏÚ�,!<"�� î G ) K ù r+ I n � K � Ïþ�Å���� î * ù r+ / ��!#" � � î G ) K ù r+ I , ¥ � ò5y - (264)

Now the operator ( ) K ù r ) acting on
§ � p®y¨p � q gives zero, as observed in (248), and this is why n �

does
not acquire a mass when

§ � p®y¨p � q ��¤� (gauge fields coupled to unbroken symmetries of
§ � p®y¨p � q do not

become massive). Although certainly not unique, this choice of y and
§ � p®y¨p � q (due to Weinberg (1967))

is undoubtedly very economical and natural. The zero eigenvalue of 	 ) K ù r 
 can be interpreted as
the electromagnetic charge of the vacuum, which we would not wish to be non-zero. We would then
tentatively expect the identification © � ÏJ�,!<"�� î (265)

in order to get the right ‘electromagnetic
w �

’ in (264).

We have at last assembled all the conceptual ingredients we need for the electroweak theory, to
which we now turn.

Problems for Lecture 5
P5.1 Verify that the inverse of the bracket E -4-4- N in (193) is as given in (194).

P5.2 Let % ² ; ³& � ��� y h � � y K Z � y h y / µ ü 	Ýy h y

 � -
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Set y�	 � 
 � )3 + 	Fd KL8 	 � 
�
 © ¦¬«C/ ² °s³ e21 -
Show that % ² ; ³& � )+ � � 8 � � 8 / Z � 8 � K )+ � � � � � � K Z Àµ K

non-quadratic terms

( Z À 3 µ is an irrelevant constant).

P5.3 Let %KI � E 	 ��� K � © n � 
�y N h E 	 � � K � © n � 
�y N / )ü { �4| { �M| K Z � y h y / µ ü 	Ýy h y

 � -
Set y �0) 3 3 + 	Fd KL8 	 � 
�
 - Show that%JI � )+ �Y� 8 � � 8 / Z � 8 � K Z Àµ / )ü { �4| { �4| K )+ © � d � n � n � K non-quadratic terms -
So T�É �ª© d .

P5.4 Let % ² � ³& � 	 � y

 h 	 � � y

 K Z � 	Ýy h y

 / µ ü 	Ýy h yM
 �
where y � S &_^& 2 T and 	Ýy � 
 hÚ� y ¦ � 	Ýy D 
 hJ� ly D .
Set y � |�����	 / � [Ù	 � 
 � ø 3 d�
 G �1 � � ² °s³ì � I -
Show that % ² � ³& � )+ � �Z` � � ` / Z � ` � K )+ � � [ � � � [ K

non-quadratic terms -
7 THE ELECTROWEAK THEORY

See Chapter 22 of Ref. [2].

We have seen that the original four-fermion theory of weak interactions is non-renormalizable,
and useful only at energies well below 100 GeV. Replacing the four-fermion coupling by a Yukawa-like
coupling to massive » ’s and ¥ ’s gave us a theory with a dimensionless coupling constant, but it was
not renormalizable either. In fact, the only known way of getting a renormalizable theory of massive
charged vector bosons is to regard them as gauge quanta of a spontaneously broken gauge theory. This
necessitates the existence of a scalar field, the Higgs field, three of whose components correspond to the
longitudinal components of the »�ï and ¥ D , and the fourth of which survives as a scalar particle in the
physical spectrum, but of unknown mass. In a sense, the mass of the Higgs boson T \ acts like a cut-off;
but we shall see that there are quite persuasive reasons to think that at least the simplest Higgs sector
model of Section 6.5 does not make sense for Ta\ much beyond 500–1000 GeV.

7.1 The electroweak theory for one fermion family
So far, in Section 6.5, we have only introduced the gauge and Higgs field sectors of the electroweak
theory; we now need to include the quarks and leptons. Here the crucial new phenomenological input is
that the weak interactions violate parity (while the electromagnetic ones of course do not). This means
that the weak interaction is different for the left-handed components of fermion fields and for right-
handed components. Electroweak interactions are described by a gauge theory based on a spontaneously
broken local SU(2)

D ù U(1) invariance. The ‘L’ means that the SU(2) part (with the gauge fields � �
of Section 6.5) acts only on the left-handed parts

[ B of fermion fields (see problem P4.1); it is there-
fore ‘maximally’ parity violating. The U(1) part (with the gauge field

] �
) acts on both right-(if any)
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and left-handed components, in such a way that the particular combination (258) conserves parity, as is
required for the electromagnetic interaction; the other combination (257), which mediates neutral weak
interactions, will turn out not to couple in the ‘pure V / A’ form, as is indeed observed. The simplest
structure allowing connection between the parity violating weak force and the parity conserving elec-
tromagnetic one is the SU(2)

D ù U(1) one, originally proposed by Glashow [9], with brave disregard for
the non-renormalizability problem. The SU(2)

D
part is often called ‘weak isospin’ and the U(1) ‘weak

hypercharge’.

In this theory, the basic fields are fermions (leptons and quarks), gauge bosons, and Higgs fields.
The left-handed parts of the fermion fields form (weak isospin) doublets under SU(2)

Db [GD
’ � G Ø x© ¦ I D � G Ø �Z ¦ I D � G Ø ýù ¦ I D � G b öO I D � G � ö� I D � G �� � ó O © 5 I D � (266)

where the ö denotes states which are mixed with respect to the strong interaction states
O �c� and

5
(see the

following section, and note that the colour labels will be suppressed throughout), while the right-handed
components are SU(2)

D
singlets b [FE

’ �ª© ¦E � Z ¦E �4-4-4-û� (267)

where for simplicity we shall generally assume in this section that the neutrinos are massless (see also
Section 7.2). We shall confine the discussion in the present section to just one ‘family’, comprisingØ x �,© ¦ � b and

O
(which should really be öO but we are ignoring mixing for the moment).

The Lagrangian can be looked at in many ways, but we shall write it as% � %"c K %"ced (268)

where S stands for ‘symmetrical’ under SU(2) ù U(1) and SB stands for ‘symmetry breaking’. In %fc we
have a gauge invariant Lagrangian %"> describing the interactions of the fermions with the � and

]
fields,

together with the SU(2) Yang–Mills Lagrangian % î (179) for the � fields and the U(1) Lagrangian % Ì
for the

]
field as in (252); in %gced we shall have everything involving the Higgs fields. In Section 4.2 we

learned how to construct a locally SU(2) invariant gauge theory with a fermion doublet (see (163)). The
difference now is that we want the SU(2)

D
to act only on the L-component of the doublet. However, there

is no problem with this for massless fields: (218) shows us that the ‘kinetic’ operator
3�

does not mix L
and R components, and hence there is no objection to ‘gauging’ each of them differently (i.e. using a
different

3w
on

[FD
and on

[FE
). On the other hand, (219) shows that this is not true for the mass terms—a

difficulty we shall deal with shortly by getting the mass terms from % ced . First, we simply state that the
appropriate

w
’s are in fact w � � � � K � Ï øf� � � 3 + K � Ï » � ] � 3 + Å�" [ D

’s (269)

and w � � �Y� K � Ï » � ] � 3 + Å�" [5E
’s � (270)

where the condition Î � ù r 3 + K � 3 + (271)

is imposed, Î being the electric charge in units of © (the positron charge). The factor of
;� in the

]
-term

of (269) is conventional, but (271) fixes the normalization of the coupling Ï » . The eigenvalues of the ù r 3 +
operator in (269) are as indicated by the placings in (266): namely

K ;� for 	<Ø x � Ø � � Ø ý � b �����c� 
 D and / ;�
for © ¦D , etc. For the (lepton)

D
fields the � eigenvalue is /Z) , while for the (quark)

D
fields it is

K ;r ; for the
R-fields � is just + Î since the ù r 3 + eigenvalue is zero.

The gauge invariant Lagrangian %"> (for massless fermions) is therefore%=> � @ x D � 3w @ x D K 	 D � 3w 	 D K © E � 3w © E K b E � 3w b E K O E � 3w O E
(272)
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where @ x D � G Ø x© ¦ I D � 	 D � G b O I D (273)

and a Ø x E term can be added to (272) if desired. From (272) we can already read off the couplings
of the charged » ’s to the fermions (the » r and

]
will mix, as we saw in Section 6.5). The correct

normalization for charged fields is that » � � 	�» ;�/ � » � 
 3 3 + destroys the » � or creates » ¦ , so that
the

øÚ� � 3 + terms are )3 + ñ ù � 	�» ; / � » � 
3 + K ù ¦ 	�» ; K � » � 
3 + ò K ù r » r+ (274)

where ù ï � 	
ù ;Ù� � ù � 
 3 + are the raising and lowering operators for the doublet. Thus the first term in
(274) picks out the process © ¦ � Ø x » ¦ for example, with the result that the corresponding vertex is/ � Ï3 + g � 	 )�/ g é 
+ � (275)

and similarly for the quarks (if unmixed), and other families. Hence we can immediately make a con-
nection with the original V–A Fermi theory of these charged current processes, namelyÙ�h 3 3 +V� Ï � 3 Ñ \ �î - (276)

Although the quark couplings can also be read off from (272), they are unphysical at this stage since
mixing has not yet been introduced.

There are also couplings of the ¥ D to fermions. To find these, we need to rewrite the neutral part
of the

w
’s in (269) and (270) in terms of the ¥ and n fields defined in (257) and (258) [cf. (264)]. We

find w � 	�"}|ûý}l�~,ËÒ�#
 � ��� K � © Î n � K � Ï ¥ �+ þ�Å���� î 	Fd % /�g % g é 
 (277)

where d % � ù r+ /�+ Î ��!#" � � î (278)

and g % � ù r+ - (279)

We see that, as remarked earlier, the ¥ (or ‘neutral-current’) coupling is not pure V–A. The ¥ -couplings
analogous to (275) are therefore / � Ï+ þ�Å���� î g � 	Fd % / g % g é 
 - (280)

The coupling (280) is that observed around the ¥ D peak.

We may write effective four-fermion interactions (valid for energies much less than \ î , \ ¨ ) asÙ h3 + S Î� � S Î �¦ (281)

for the charged current processes, withS Î� ï � 	 [ � g � 	 )w/ g é 
Dù ï [ ; 
 � (282)

and as 3 + Ù h F Sji� Sji �
(283)

for the neutral current processes, whereSZi� � [ % g � 	Fd % / g % g é 
 [ %
(284)
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and the quantity F � \ �î 3 \ �¨ þ�Å�� � � î (285)

has the value 1 in the Standard Model, at tree level.

The vector boson masses arise through symmetry breakdown via the Higgs sector, in the Standard
Model, as discussed in Section 6.5. After spontaneous symmetry breaking, we have\ î � Ï}d 3 +A� þ�Å���� î \ ¨ (286)þ�Å���� î � Ï 3 	èÏ � K Ï » � 
 ;�e � (287)© � ÏÚ�,!<"�� î (288)T \ � 3 + Z (289)

in terms of the fundamental coupling parameters Ï , Ï » of the SU(2) ù U(1) gauge group, and the parame-
ters d and Z of the Higgs potential. There is also the low-energy connection (276), which we can write
as d3 + �ª+ ¦ r e À Ù ¦ ;�e �h �0) � ü -<) ê |�ë � (290)

using
Ù h   )(-<) � ù )4� ¦�éõê |�ë ¦ � . This gives us the scale of

§ � p®y¨p � q , for which as yet there is no
theoretical explanation. We may also write (276) as\ î � 	 ' 8 3 3 + Ù h 
 ;�e � 3 ��!#"�� î (291)� ¹��]-í+ÒÑ(��+ ê |�ë 3 ��!<"Ç� î (292)

using the conventional low-energy value of 8 . Note that all the above relations are between parameters in
the Lagrangian, and hold at the tree level only; they can be changed by loop corrections (see Section 7.4).

We must now consider how to bring fermion masses into this theory. We begin by noting, again,
that a typical Dirac mass term has the form (219), which is clearly not invariant under transformations
which treat

[FD
and

[FE
differently. Would it matter if we just added in such a mass term? The answer is

that if we did this the theory would, once again, not be renormalizable. And, once again, we can arrange
for the fermions to ‘acquire mass spontaneously’, this time via couplings of the generic ‘Yukawa’ typeÏ % l[Ý[ y . This can be made SU(2)

D ù U(1) invariant, and then if the scalar field acquires a vacuum valued we have a mass term (in such a vacuum) equal to Ï % d . Some such treatment of fermion masses is
necessary for the theory to make sense much beyond the W–Z mass range.

It is obviously most economical if we can ‘blame’ fermion masses on the same Higgs field that
generates the » and ¥ masses, but it must be recognized that the Yukawa coupling ‘mechanism’ is
on a very different footing from the symmetry-inspired gauge couplings—at least in the absence of any
further symmetry that might relate these two types of coupling. At any rate, consider the case of theØ x �L© ¦ doublet, in the simple case that the Ø x is massless, with a Yukawa coupling between these fields
and the standard doublet Higgs, of the type/ Ï x 	 @ x D y © E K © E y h @ x D 
 - (293)

Remembering that © E
is an SU(2) scalar, we see that (293) is Lorentz invariant, and invariant under

global SU(2) transformations (because
l@sy and y h @ are invariant); it is also invariant under U(1) � trans-

formations, with the � assignments made after (271), if ��	Ýy

 � ) (which is what we actually assumed
in (253)). In fact, since no derivatives are involved in (293), it is also invariant under local SU(2) ù U(1)
transformations. But the Higgs sector contains the potential Q5	Ýy

 of (239), which ‘triggers’ spontaneous
symmetry breaking. The vacuum value (246) for y when inserted into (293), yields/ 	èÏ x d 3 3 + 
�	 © D © E K © E © D 
 (294)
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which is precisely a mass term for the electron if we identifyÏ x � T x 3 + 3 d - (295)

When oscillations about this vacuum are considered, in the simple gauge of (254), one easily finds that
the

b
-field couples to the electron with a vertex/ � T x 3 d - (296)

Sure enough, the coupling is proportional to the electron mass—and on dimensional grounds to d ¦ ; .
It might seem from the foregoing that only a mass for the � r � / ;� component of the fermion

doublets could be generated this way, because of the form of
§ � p®y¨p � q . Remarkably enough, however, the

same Higgs field can also provide a mass for the � r � K ;� component (and this is of course necessary for
the quarks, if not for the neutrinos). It can be shown that the field y � defined byy � � � ù � y @ � G 	Ýy r K � y À 
 3 3 +/ 	Ýy ; K � y � 
 3 3 + I � G y D/ y ¦ I � (297)

where (243) has been used, is also an isodoublet. (The notation in (297) is reminiscent of the W -meson

doublet 	 lW D � W ¦ 
 ; alternatively, we may think of a quark isospin doublet like G b O I and its conjugate

doublet G lO/ lb I , with the (¥�0� combination being 	 lO O / lb�b ).) With the help of y � we can write down

another gauge invariant coupling in the Ø x - © sector, namely/ Ï |aÜ ' @ x D y � Ø x E K Ø x E y h� @ x D ) (298)

which produces / ' Ï | Ü d 3 3 + ) 	 Ø x D Ø x E K Ø x E Ø x D 
 (299)

in the Higgs vacuum (246), which is a neutrino mass term (if required) provided Ï | Ü � 3 + T | Ü 3 d . Once
again, the

b
-field will couple with an amplitude of the form (296), with T x � T |aÜ

. The procedure can
obviously be repeated for the b and

O
quarks.

It is clearly possible to go on like this, and arrange for as many fermion families to have a mass
as is required—and we will look at this a little more closely in the next section. However, one must
note that the theory does no more than accommodate itself to the mass difficulty: in no sense do the
fermion masses ‘come out’ of the theory, since each has simply to be inserted by hand via a new Yukawa
coupling. In essence, these Yukawa couplings are not gauge interactions, and hence not universal.

The Higgs coupling to fermions can now be written generally as/ � © T % 3 + �,!<" � î \ î - (300)

There are also trilinear and quadrilinear Higgs self-couplings arising from the µ�	Ýy h y

 � term in (252).
Recalling that µ � üÒZ � 3 d � and that T \ ��3 + Z , we can write the trilinear coupling as/ � ¹ T � \ © 3 Ñ \ î ��!#".� î (301)

and the quadrilinear as / � ¹ T � \ © � 3 )ûú \ �î ��!<" � � î - (302)

There are also the trilinear
b

– » � – » ¦ � © \ î Ï y � 3 ��!#" � î (303)

and
b

– ¥ – ¥ � +Æ© \ ¨ Ï y � 3 ��!<" + � î (304)

couplings, together with quadrilinear y � » �
, y � ¥ � couplings which we shall not give here. Note that

all these couplings are determined by the existing set of parameters—and, in particular, that the Higgs
couples most strongly to the heaviest particles, so that decays to heavy channels offer the largest rates.
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7.2 The three-family model
We now extend the preceding discussion to the three-family case, which will involve the important sub-
jects of quark flavour mixing in charged current processes (and of no mixing—the GIM mechanism
(Glashow et al. [10])—in neutral current processes), and CP violation. We shall here assume that there
are just three families. We introduce three doublets of left-handed fields	 D ;Ú� G b D ;O D ; I � 	 D � � G b D �O D � I � 	 D r � G b D rO D r I (305)

and the corresponding six singletsb E ;û� O E ;û� b E � � O E � � b E r � O E r � (306)

which transform in the now familiar way under SU(2)
D ù U(1). The b -fields correspond to the � r � K ;�

components of SU(2)
D

, the
O

ones to the � r �0/ ;� components, and to their ‘R’ partners. The labels
1, 2, and 3 refer to the family number; for example, with no mixing at all, b D ; � b D

,
O D ; � O D

, etc.
(We are thinking of (305) and (306) as quark fields, but the discussion will be quite general and could
just as well apply to leptons if they should need mixing too—we return to leptons later.) We have to
consider what is the most general SU(2)

D ù U(1)-invariant interaction between the Higgs field (assuming
we can still get by with only one) and these various fields. Apart from the symmetry, the only other
theoretical requirement is renormalizability—for, after all, if we drop this we might as well abandon
the whole motivation for the ‘gauge’ concept. This implies (as in the discussion of the Higgs potentialQ ) that we cannot have terms like 	 l[.[ y

 � appearing—which would have a coupling with dimensions
(mass) ¦ À and would be non-renormalizable. In fact the only renormalizable Yukawa coupling is of the
form ‘

l[.[ y ’, which has a dimensionless coupling (as in the Ï x and Ï |aÜ of (293) and (298)). However,
there is no a priori requirement for it to be ‘diagonal’ in the weak interaction family index � . The allowed
generalization of (293) and (298) is therefore an interaction of the form (summing on repeated indices)% m & ��g « ü l	 D « y � b E ü K 5 « ü l	 D « y O E ü K m - þ - (307)

where 	 D « � G b D «O D « I (308)

and a sum on the family indices � and
S

(from 1 to 3) in (307) is assumed. After symmetry breaking,
using the gauge (254), we find% % & � / G ) K b d I Ê lb D « T �« ü b E ü K lO D « T ¶« ü O E ü K m - þ - Ì (309)

where the ‘mass matrices’ are T �« ü � / d3 + g « ü � T ¶« ü �0/ d3 + 5 « ü - (310)

Although we have not indicated it, the T � and T ¶ matrices could involve a ‘ g é ’ part as well as a ‘1’
part in Dirac space. It can be shown (Weinberg [11], Feinberg et al. [12]) that T � and T ¶ can both be
made Hermitean, g é -free, and diagonal by making four separate unitary transformations on the ‘family
triplets’ b D ���� b D ;b D �b D r

�� � O D �k�� O D ;O D �O D r
�� � |4l�þ - (311)

via b D 6 �h'Mô ² � ³D ) 6(« b D « � b E 6 � '�ô ² � ³E ) 6(« b E « � (312)
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O D 6 � ' ô ² ¶ ³D ) 6(« O D « � O E 6 � ' ô ² ¶ ³E ) 6(« O E « - (313)

In this notation, ‘ 8 ’ is the index of the ‘mass diagonal’ basis, and ‘ � ’ is the ‘weak interaction’ basis. Then
(309) becomes % « m � / G ) K b d I Ô Tl� lb�b K �4�4� K T � l5$5 × - (314)

Rather remarkably, we can still manage with only the one Higgs field. It couples to each fermion with a
strength proportional to the mass of that fermion, divided by \ î .

Now consider the SU(2)
D ù U(1) gauge invariant interaction part of the Lagrangian. Written out in

terms of the ‘weak interaction’ fields b D ` E « and
O D ` E « [cf. (269) and (270)], it is% % î ` Ì � � S lb D ü � lO D ü T g � 	 �Y� K � Ï ø2� � � 3 + K � Ï » � ] � 3 + 
 G b D üO D S IK � lb E ü g � 	 �Y� K � Ï » � ] � 3 + 
�b E ü K � lO E ü g � 	 �Y� K � Ï » � ] � 3 + 
 O E ü (315)

where a sum on
S

is understood. This now has to be rewritten in terms of the mass-eigenstates b D ` E 6
and

O D ` E 6 .

Problem P6.1 shows that the neutral current part of (315) is diagonal in the mass basis—that is,
the neutral current interactions do not change the flavour of the physical (mass eigenstates) quarks. The
charged current processes, however, involve the non-diagonal matrices ù ; and ù � in (315), and this spoils
the argument used in problem P6.1. Indeed, using (274) we find that the charged current piece is% ��� � / Ï3 + 	 lb D ü � O D ü(
 g � ù � » � G b D üO D ü I K m - þ -� / Ï3 + lb D ü g � O D ü » � K m - þ -� / Ï3 + lb D 6 * G ô ² � ³D h I 6(« ' ô ² ¶ ³D ) « B , g � O D B » � K m - þ - (316)

where the matrix Q 6�B ± * ô ² � ³D h ô ² ¶ ³D , 6�B (317)

is not diagonal, though it is unitary. Q therefore has 9 real parameters, which can be reduced to 4—three
‘rotational angles’ and one phase—by redefinitions of the quark fields (Jarlskog [13]). This is the famous
CKM matrix, (Cabibbo [14], Kobayashi and Maskawa [15]) the interaction (316) having the form/ Ï3 + » � 	 lb D l� D l� D 
 �� Q � ¶ QQ� n Q � �Q � ¶ Q � n Q ���Q � ¶ Q � n Q � �

�� �� O D� D5 D �� K m - þ - (318)

The entries in the Q -matrix modify the vertex (275) in an obvious way. The single phase o in the Q -
matrix accommodates CP-violation. In the case of only two flavours, Q has only 1 real parameter, which
is the Cabibbo angle, and there is no freedom to have a CP violation phase in the family mixing matrix. It
is an important challenge to experiment to find out whether all CP-violating phenomena can be described
with just this one parameter o in the CKM matrix (see the lectures on CP violation).

Returning finally to the leptons, all of the above will apply (with three more mixing angles and
one more phase) if the neutrinos do in fact have a mass. We would then have leptonic flavour mixing
in c.c. processes, involving a term of the form E l@ D Qnm g � @ »D » � K m - þ - N [cf. (316)], and lepton mass termsE l@ D TomU@ E K m - þ - N and E l@ »D T »m @ » E K m - þ - N , where Qpm is the leptonic analogue of (317), and Tqm , T »m are the
analogues of the quark masses. There is nothing in the Standard Model that requires the neutrinos to be
massless, and indeed the experimental data now imply that more than one is not; in GUTs they generally
do have (small) masses—see the lectures on neutrinos.
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7.3 One remark about the Higgs sector
The Higgs sector is the one big unknown still hanging over the Standard Model, starting with the ques-
tion: What is the Higgs mass? There is an interesting theoretical argument here which is worth a mention.

We first note that, for a given vacuum value d as in (290), the Higgs mass is [cf. (241) and (251)]T \ � d}µ �� 3 3 + � µ �� ù 174 GeV - (319)

Now µ is a dimensionless constant: if it is ®7	<8¨
 we would say that the theory is perturbative, while if it
is ®5	 ) 
 we would say it was strongly coupled. It is clear from (319), and the present experimental lower
bounds on T \ , that we are already not far from the strongly coupled region. But we can ask: Can µ (the
renormalized coupling) take any value at all? That is, can T \ (for fixed d ) be arbitrarily large?

To answer this we must recall that, in a renormalizable theory, ‘the’ value of µ has to be defined
at a certain scale, and the value at another scale is different (i.e. µ ‘runs’). For the interaction (239),
calculation shows that the analogue of (129) isµ�	 ? 
 � µ�r * )2/ ¹Ñ ' � µ �<" G ? d I , (320)

taking the ‘physical’ µ to be defined at the scale d . Note that this theory, like QED, is not asymptotically
free. It follows from (320) that the theory breaks down (or, more conservatively, µ�	 ? 
 becomes so large
that all perturbative expectations are useless) at an energy

? @ such that
? @ � d`|�����	 � Ö �r y 
 . But, for givend , we also have from (319) that µ is related to T \ . So the theory breaks down at? @ � d |�� ��	 ü ' � d �¹ T � \ 
 - (321)

This is a very remarkable formula, because it is exponentially sensitive to the unknown T \ —and it is
particularly interesting that the Higgs mass is in the denominator of the exponent. For ‘small’ Ts\ the
breakdown scale is high—e.g. for T \ � 150 GeV � ? @ � 6 ù )4� ;ut GeV. But for T \ � 700 GeV,

? @
is already as low as 1 TeV. Clearly, at such a value of T \ , the Higgs mass is essentially equal to the
‘breakdown scale’ itself, and T \ cannot get any higher without new physics intervening in one form or
another: maybe non-perturbative phenomena, or maybe supersymmetry.

7.4 Two remarks on one-loop corrections in the Standard Model
The precision of LEP and other data (of order 0.1%) was such that the measurements were sensitive
to one-loop effects—and the very high quality of the fits to all the data confirm the presence of these
corrections very convincingly. What is particularly interesting is that the loop corrections could be used
to make predictions about as yet unseen particles: for example, the top quark mass was predicted to
be something like ) ��ÈH�v)4� GeV via its virtual effects in loops, before it was discovered as a real
particle! (and the errors on the experimental mass determination were similar!). A typical fit to all data
(Grünewald [16]) has a � � 3 Í - Å - Ä of 14.9/15, corresponding to a probability of 46%. This extremely
strong numerical consistency lends impressive support to the belief that we are indeed dealing with a
renormalizable spontaneously broken gauge theory, because no extra parameters, not in the original
Lagrangian, have had to be introduced. In fact, one can turn this around. It is widely believed that,
remarkably successful as it is, the Standard Model is not the end of physics, and that consequently
further parameters will be required at some stage. The close agreement between the data and the existing
Standard Model means that the new physics is proving very hard to see, at present energies.

As we have seen, we obtain cut-off independent results from loop corrections in a renormalizable
theory by taking certain parameters (those appearing in the original Lagrangian) from experiment. In the
electroweak case, it is usual to take the set8 � ÙAÚ � T ¨ � T \ � T % � parameters of mixing matrices; (322)
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Fig. 17: t–b vacuum polarization loop.

( 8 n of QCD and the QCD � -parameter need to be added for the full Standard Model). After renormal-
ization, one can derive radiatively-corrected values for physical quantities in terms of the set (322). For
example, the tree-level relation (291) takes the following form at one loop:\ �î � Ê 	 ' 8 3 3 + Ùvh 
 3 ��!<" � � î Ì 3 	 )w/xw % 
 (323)

where �,!<"�� î has been defined as ��!<" � � î ± )2/ \ �î 3 \ �¨ -&w % is the one-loop correction.

We cannot go into all the details of w % , but we do want to focus on two important features of the
result (which are typical of other radiatively-corrected formulae). The leading terms in w % have the formw % �7w 8 / þ�ÅÆl � � î w F K 	 w % 
uy � � - (324)

In (324), w 8 is precisely the quantity
l� �� 	ï\ �¨ 
 which entered into the running QED constant 8 discussed

in Section 5.3 [see (127) and after (129)]. w F is given byw F � ¹ Ù h 	�T �� / T �� 
Ñ ' � 3 + � (325)

while the ‘remainder’ 	 w % 
Uy � � contains a non-negligible term proportional to �<"$	�T � 3 \ ¨ 
 , and a contri-
bution from the Higgs boson which is (for T \ Í \ î )	 w % 
uy � � ` \   3 + ÙAÚ \ �î)ûú ' � )Æ)¹ * �<" G T � \\ �î I / Èú , - (326)

The running of 8 is no surprise, but (325) and (326) contain unexpected features.

As regards (325), it is associated with top–bottom quark loops in vacuum polarization amplitudes,
of the kind discussed for

l� � �D�� , but in weak boson propagators. In the QED case, referring to (125) we
see that the contribution of very heavy fermions (e.g. the top) in a vacuum polarization loop should be
suppressed, appearing as ‘ ®5	
	 � 3 T �� 
 ’. This seems plausible enough: after all, the mass appears in the
fermion propagator and hence in the denominator of the loop integral expression. Yet in fact T � %

appears
in the numerator of (325)! the usual case ( � 	 � 3 T �

) is termed ‘decoupling’ of heavy matter, and it is
certainly what we would expect intuitively; in (325) we have ‘non-decoupling’.

We can understand the appearance of the fermion masses (squared) in the numerator as follows.
The shift w F is associated with vector boson vacuum polarization contributions, for example the one
shown in Fig. 17. Consider in particular the contribution from the longitudinal polarization components
of the » ’s. As we have seen, these components are nothing but three of the four Higgs components
which the » ï and ¥ D ‘swallowed’ to become massive. But the couplings of these ‘swallowed’ Higgs
fields to fermions are determined by just the same Higgs–fermion Yukawa couplings as we introduced to
generate the fermion masses via spontaneous symmetry breaking. Hence we expect the fermion loops to
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Fig. 18: One-loop self-energy graph in
ñ{z

theory.

contribute (to these longitudinal » states) something of order Ï �% 3 ü ' where Ï %
is the Yukawa coupling.

Since Ï % � T % 3 d [see (295)] we arrive at an estimate � T � % 3 ü ' d � � Ù h T � % 3 ü ' as in (325). An
important message is that particles whose mass is proportional to their coupling to some field (i.e. in this
case the Higgs field) do not ‘decouple’.

But we still have to explain why w F vanishes if T � � T � . This has to do with a further symmetry
of the assumed Higgs sector. As the notation suggests, w F is a leading order correction to the F parameter
introduced in (283) and (285). At tree level, F has the value 1, which is a reflection of the fact that the
(mass)

�
matrix, in terms of the original SU(2)

D ù U(1) fields � �
and

] �
was [cf. (255)]d �ü �||� Ï � � � �� Ï � � �� � Ï � / ÏYÏ »� � / ÏYÏ » Ï » �

�~}}�
(327)

acting in the 	�» �; » �� » �r ] � 
 space. Notice now that the leading ¹ ù ¹ block of this matrix, acting on
the � ’s alone, is proportional to the unit matrix. This would be the natural consequence of an unbroken
SU(2) symmetry in which the � ’s form an SU(2) triplet. Now, with the doublet Higgs of the form (243),
it is a striking fact that the Higgs potential only involves the (globally) SO(4)-symmetric combinationy � ; K y �� K y �r K y rÀ - (328)

The vacuum expectation value (246) singles out one of the four components, and breaks the SO(4)
symmetry of the Higgs sector down to an SO(3), which is equivalent to the SU(2) of the � ’s, above.
This (global) symmetry is called the ‘custodial symmetry’ of the (assumed) Higgs sector. It is this
symmetry, in fact, that guarantees F �0) to all orders.

However, examination of the behaviour of the quark mass terms under such global SU(2) trans-
formations shows that the symmetry is explicitly broken by a difference in the masses of two quarks
in the same doublet. This explains the ‘ T �� – T �� ’ dependence of the non-decoupled t–b loop correction.
Phenomenologically this T �� dependence was of great importance, because of course it meant that (para-
doxically!) the heavier the top was, the more visible its effect in such loops would be. Its ‘virtual’
discovery was a wonderful cooperative achievement between theory and experiment.

The case is unfortunately ‘reversed’, in a sense, for the Higgs—and this is our second remark
about loops. Without the Higgs particle, the Standard Model is non-renormalizable, and hence one
might expect to see some radiative correction becoming large ®7	�T � \ 
 as one tried to ‘banish’ the Higgs
from the theory by sending T�\��­¬ ( Tq\ would be acting like a cut-off � ). The reason is that in such
a ‘ y À ’ theory, the simplest loop we meet is that shown in Fig. 18, and it is easy to see by counting powers
as usual that it diverges as the square of the cut-off.

However, even without a Higgs contribution it turns out that the theory is renormalizable at the
one-loop level for zero fermion masses (Veltman [17], [18]). Thus one suspects that the large T � \ effects
will not be so dramatic after all. In fact, calculation shows (Veltman [19]; Chanowitz et al. [20], [21]) that
one-loop radiative corrections grow at most like �#"fT � \ for large T \ . While there are finite corrections
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which are approximately ®7	�T � \ 
 for T � \ � \ �î ` ¨ , for T � \ Í \ �î ` ¨ the ®5	�T � \ 
 pieces cancel out
from all observable quantities, leaving only �<"fT � \ terms. This is just what we have in (326), and it
means, unfortunately, that the sensitivity of the data to the last remaining parameter of the Standard
Model (not counting the neutrino parameters!) is only logarithmic. Fits to data typically give T \ in the
region of 100 GeV at the minimum of the � � curve, but the error (which is not simple to interpret) is of
the order of 50 GeV. Direct searches now rule out a Higgs mass less than about 110 GeV, while the �
2.5 s.d. effect seen just before LEP closed down gave T \ � )Æ) ü GeV.

At the two-loop level, the expected ®7	�T À \ 
 behaviour becomes ®7	�T � \ 
 instead (van der Bij and
Veltman [22], van der Bij [23])—and of course appears (relative to the one-loop contributions) with an
additional factor of ®5	<8�
 . This relative insensitivity of the radiative corrections to T \ , in the limit
of large T�\ , was discovered by Veltman [19] and called a ‘screening’ phenomenon by him: for largeT \ (which also means, as we have seen, large µ ) we have an effectively strongly interacting theory
whose principal effects are screened off from observables at lower energy. It was shown by Einhorn and
Wudka [24] that this screening is also a consequence of the (approximate) isospin-SU(2) symmetry we
have just discussed in connection with (325). Phenomenologically, the upshot is that it is unfortunately
very difficult to get a good handle on the value of T \ from fits to the precision data.

Problems for Lecture 6
P6.1 Show that the neutral current couplings are diagonal in the ‘mass’ basis.

P6.2 Suppose that we took the Higgs field to be a triplet of SU(2)
D

instead of a doublet; and suppose§ � p®y¨p � q � �� ��¾
��

in the gauge in which it is real. The non-vanishing component has ��r �0/Z) , using

�tr ���� )ÿ� �� � �� � /V) ��
in the familiar ‘spherical’ basis. Since we want the charge of the vacuum to be zero ( ÎÁp � q � � ) andÎ � � r K � 3 + , we need to pick �
	Ýy

 �A+ . So the covariant derivative on y is	 �Y� K � Ï �Ú� � � / � Ï » ] � 
�y
where � ; � �|� � ;ì � �;ì � � ;ì �� ;ì � �

�~}� � � � � �|� � ¦¬«ì � �«ì � � ¦¬«ì �� «ì � �
�~}�

and � r is as above (this is the more familiar set of three matrices satisfying E � ;4� � � N � � � r , a change of
basis from the set 	�� « 
 ü � �0/ �DG « ü � ). Show that the photon and ¥ fields are still (257) and (258), with the
same ��!<"�� î as in (259), but that now \ ¨ � 3 + \ î 3 þ�Å���� î -
What would be the parameter F , at tree level, for this model?
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Abstract
The aspects of Cosmic Ray (CR) origin are reviewed. Recent observational
evidence on the spatial patterns of non-thermal X-ray radiation from Super-
novae Remnants (SNR) supports long-awaited expectations of proton and nu-
clei acceleration up to PeV energies. We add new arguments based on the ex-
perimental data from surface arrays measuring Extensive Air Showers (EAS)
and on data from solar accelerators available now from space-borne X-ray and
gamma-ray spectrometers. Energy spectra of primary nuclei with atomic num-
ber from

�
= 1 to

�
= 26 can provide useful information on the validity of

models of cosmic ray acceleration. By estimating the threshold energy of
the onset of the suppression of the different nuclei flux, the so-called spec-
tral ‘knee’ energy, we can directly check the hypothesis of rigidity-dependent
acceleration of the hadrons in SNR sites. Unfortunately, information from the
EAS experiments does not provide enough clues for such ‘spectroscopy’ of
the ‘knee region’. Nonetheless, by grouping the primary nuclei in two or three
broad mass groups (light, intermediate and heavy) we can obtain useful infor-
mation on energy spectra of the primaries. Recently, using multidimensional
classification methods on MAKET-ANI experimental data, we categorized the
‘all-particle’ spectra into two distinct primary mass groups. From the spectra
analysis, we come to the conclusion that the SNR-based particle acceleration
model is valid and presents evidence that there exists a nearby source of cosmic
rays, which provides a significant portion of the CR flux.

1 INTRODUCTION

The Cosmic Ray (CR) flux incident on the terrestrial atmosphere consists mostly of protons and heav-
ier stripped nuclei accelerated at numerous galactic and extragalactic sites. The most exciting question
associated with cosmic rays is the exploration of a particular astrophysical accelerating source. Ow-
ing to the bending in galactic magnetic fields, charged particles lose information about the parent sites
during long travel and arrive on Earth highly isotropic. Only stable neutral particles i.e. X-ray, gamma
quanta and neutrinos travel directly from sources and reveal exotic celestial objects and violent pro-
cesses of their production. Orbiting telescopes and spectrometers, as well as ground-based Atmospheric
Cherenkov Telescopes (ACT) and neutrino detectors have opened new windows to the Universe, detect-
ing, in unprecedented detail, the spread of heavy elements during supernovae explosions, the ejection of
the relativistic jets from black holes, and many other phenomena described in the last century only in
science fiction.

A new paradigm in astrophysics research consists in the detection of celestial objects in radio,
optical, X-, and gamma rays. A variety of compatible measurements gives sufficient information for
building realistic models of physical processes of supernovae explosions, of accompanying gamma-ray
bursts, of accretion disc interactions with super-dense objects, and finally of the evolution of the Universe
itself. In this case additional information about the particles of highest energies will significantly enlarge
the information on the most violent processes in the Universe and on the processes of the largest particle
accelerators in space.
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Galactic cosmic rays cannot map the objects where they are born, therefore, only integrated in-
formation from all sources is available from measurements of cosmic-ray fluxes near Earth and on the
Earth’s surface. This information consists of the shape of the energy spectra of the cosmic rays, their
mass composition and their energy dependence, and of the anisotropy of the CR arrival.

Space-borne spectrometers on the ACE satellite, the AMS detector on the Space Shuttle, as well as
numerous balloon-borne detectors measure the fluxes of different isotopes up to energies of 10 TeV rather
precisely. Particle fluxes follow an overall power-law of �������	�
��� with spectral index of 
���������� .
Therefore, because of the very low fluxes of the highest energy CRs and owing to very strict restrictions
on the weight of the spacecraft payload, it is extremely difficult to get reliable information on particle
fluxes above 10 TeV from space-borne spectrometers and calorimeters. However, it should be noted that
recent successes with the long-lasting, new-technology balloon flights give hope that precise information
on particle spectra up to several hundreds of TeV will be available soon.

Recently, the so-called kinematical method [1] was proposed, using thin (about 10 g/cm ��� target
and silicon coordinate and charge detectors to precisely detect the charge and emission angles of sec-
ondaries produced in an inelastic interaction of primary nuclei. The angular distribution of the particles
produced in the target carries information about the energy of a primary particle. This technique does not
require total release of the energy as in the case of the ionization calorimeter, and the instrument could
be made very light in weight. A one-year flight of such a device on the Space Station will provide data
up to several PeV with 0.2 units of charge resolution. Currently there is no funded space experiment
in the PeV region and, at least in the current decade, data will only be accessible from the Extended
Air Showers (EAS) initiated by the ‘primary’ ion triggering a particle generation chain reaction in the
terrestrial atmosphere and detected with large ground-based particle detectors. A variety of physical pro-
cesses during the travel of the relativistic cloud of ‘secondary’ particles to the Earth’s surface gave rise
to different experimental methods, aiming to reconstruct the particle type, trajectory, and energy.

Signatures of the primary particles are microwave radio signals, fluorescent light, Cherenkov light,
electrons, muons, neutrons, and hadrons reaching the Earth’s surface and muons detected deep under-
ground. The intensity and correlation matrix of each combination of mentioned signals carry information
on the primary particles, but owing to the highly indirect nature of the experimentation, only some very
robust characteristics of cosmic-ray fluxes of PeV and higher energy primaries have been unambiguously
established up to now. First of all there is all particle energy spectra, reconstructed from so-called size
spectra measured by plastic or liquid scintillators (so-called particle density detectors), distributed on
the Earth’s surface. Assuming a definite shape of the EAS electron lateral distribution function, and
measuring the density of electrons on some rectangular or circular grid of distributed density detectors,
and using a standard minimization analysis technique, the overall number of electrons (shower size) can
be determined. By measuring the time delay of the arrival of the shower particles, using a system of
distributed ‘fast timing detectors’, the zenith and azimuth angles of the shower core can be calculated (a
very good estimate of the primary particle angles of incidence on the terrestrial atmosphere).

The shower size is correlated with the particle energy, but also with several unknown parameters
such as particle type and the height of the first interaction. The functional form of the size–energy
dependence introduces additional uncertainty, because it is obtained from a particular model of strong
interaction of protons and ions with atmospheric nuclei, and at PeV energies there is no accelerator data
to check this model. Different approximations of models fitted with manmade accelerator data at lower
energies give significantly different results at higher energies. Nevertheless, during the last 50 years
some important characteristics of spectra were established during intensive measurements with EAS
surface detectors. For the list of detectors and their operational characteristics, see Ref. [2]. The most
striking feature of the spectra is the approximately constant power index in the whole examined energy
range. The power index slightly changes from value 
���������� to value 
�������� � at 3–4 PeV (the
‘knee’, also known as suppression of spectra) and it is another important and well-established feature
of the EAS spectra. Some authors [3], [4] claim that this ‘knee’ is a feature of only the size spectra,
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reflecting some peculiarities of the EAS propagation and interaction in the atmosphere, and the flux of
the cosmic rays incident on the atmosphere can be described by a constant power index and that the CR
origin is of extragalactic nature. In the paper by Stenkin [5], the ‘knee’ of the EAS spectra is treated
as a consequence of the shower size reconstruction method only. He demonstrates that the difference
between pure electromagnetic showers and those having survived hadron ‘cores’ can be the cause of the
‘knee’. Another, very interesting approach is connected with the enigma of supernovae implosion and
collapse. In Ref. [6] the cannonball model of the supernovae explosion [7] was proposed as a source of
the cosmic rays. The blobs of plasma with mass the size of Earth are ejected from poles of supernovae
at nearly the speed of light. The population of such plasmoids filling the Galactic halo is responsible for
the acceleration of the major part of the hadronic cosmic rays with energies up to another feature of all
the particle spectra, the so-called ‘ankle’ occurring at �"! 10 #%$ eV.

In contrast to these theories, the ‘standard’ models of CR acceleration name the Supernovae rem-
nants (SNR) as a major source of CR. The detected non-thermal radio emission from SNR, which led to
the natural assumption of the presence of accelerated electrons, made SNR the main candidate engine for
particle acceleration [8]. Recent very detailed CHANDRA measurements of the X-rays from SN1006 [9]
imply a very large effective magnetic field of 100 & G in the Supernovae remnant. In Ref. [10], the au-
thors conclude that such a large field could be generated only due to the nonlinear interactions of the
accelerated protons and stripped heavier nuclei with self-generated Alfven waves in a strong shock.
Therefore, the SN1006 data confirms the acceleration of the nuclear component at least up to several
units of 10 #(' eV. Gamma-ray pulsars usually located near the SNR centre are another candidate for
cosmic-ray acceleration [11]. As mentioned in Ref. [12] pulsar-accelerated cosmic rays are expected to
have a very flat spectrum. Therefore, the impact of the nearest pulsar to energies higher than 10 #(' eV can
be tremendous and can explain the fine structure of the energy spectrum, which may reflect acceleration
of the specific groups of nuclei.

To investigate various scenarios of particle acceleration in SNR, we still have to use indirect in-
formation contained in CR spectra in the vicinity of Earth. As Galaxy magnetic fields cannot confine
particles with such high energies, the extragalactic origin of the highest energy particles is widely ac-
cepted. The MAKET-ANI detector, located at Mount Aragats in Armenia, owing to its modest size, is
effectively collected cores of EAS initiated by primaries with energies up to several units of 10 #*) eV,
therefore, we shall constrain our analysis to the energy range from 5 + 10 #(' eV to 2–3 + 10 #*) eV—the
so-called ‘knee’ region. Energy spectra of primary ions from

�
= 1 to

�
= 26 will provide valuable

information on the validity of the Standard Model. Information from the EAS experiments does not pro-
vide enough clues for such ‘spectroscopy’ of the ‘knee region’. Nevertheless, precise measurements of
the electron and muon content, and implementation of the CORSIKA simulation code by the KASCADE
experiment [13] as we have demonstrated in numerous papers (see for example Refs. [14], [15], [16]), al-
low the classification of primaries according to three classes: ‘light’, ‘intermediate’, and ‘heavy’. Using
the nonparametric multivariate methodology of data analysis [17], [18], references on development and
application of methods contained in Ref. [19], we solve the problem of the event-by-event-analysis of
EAS data [20] using Bayesian and neural network information technologies [21], [22], [23].

At each stage of the analysis we estimate the value of the information content of the variables
used for EAS classification and energy estimation and restrict the complexity of the physical inference
according to this value. The MAKET-ANI experiment is located at 3200 m above sea level on Mt.
Aragats, in Armenia; the quality of reconstruction of the EAS size and shape are good enough and we
can use them for the EAS classification shower size and shape parameters (the so-called shower age).
The distinctive information contained in distributions of these two parameters allows us to classify the
EAS with a high level of accuracy into two distinct groups: initiated by ‘light’ or ‘heavy’ nucleolus. In
the KASCADE experiment [24], where the muon content of the EAS is measured in addition to shower
electron size, we can classify showers into three categories adding also the ‘intermediate’ class.
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2 COSMIC-RAY ACCELERATION IN SUPERNOVAE EXPLOSIONS AND
PROPAGATION IN THE INTERSTELLAR MEDIUM

The Power of Cosmic Ray (PCR) sources should be more than � 10 ',# erg/s to maintain the estimated
cosmic-ray energy density in the Galaxy. This value was obtained by multiplying the CR energy density
in the Galaxy -/.102�435��#*� erg/cm 6 by the Galaxy volume 7�89� 10 ):$ cm 6 and dividing by the particle
mean escape time from the Galaxy ;=<*>@?A�B35� #(' s. The frequency of the SN explosions in the Galaxy
(about one in 20 years), and the kinetic energy of supernova ejecta (about 10 CD� erg), lead to the CR
luminosity of the same order of magnitude as if we assume that a few tens of per cent of the ejecta
kinetic energy is transformed into the CR energy.

The power law is rather satisfactory to describe the spectra from 10 #*� eV (far above solar modu-
lation effects), up to several units of 10 #*E eV, where the Galaxy magnetic field of � 3 & G cannot confine
the particles anymore. At low energies up to 10 #(' eV the spectral indices of protons, carbon, oxygen,
and iron are very close to each other and equal to ��������� . The same index describes the spectra of
all the particles from 5 + 10 #(' up to 3–4 + 10 #*C eV (the knee region), where the power index changes to
�F��� , and returns to the value of ������� at several units of 10 #%$ eV (the so-called ankle region). The
‘classical explanation’ of the changing behaviour of the spectra consists of the existence of three distinct
acceleration mechanisms: the first, usually connected with SNR shock acceleration, fades in the knee
region; the second, due to unknown causes, is responsible for energies from the knee to the ankle region;
and the third, due to extragalactic sources, after the ankle.

Numerous papers are devoted to SNR-based acceleration. The obtained values of the spectra at
the source obey the power law with index of 
HGI� ( ����� � to �J���K3 ). Models of particle acceleration in
the SNR can be compared with observations only if we account for the diffusion and escape of CRs
from the Galaxy. Usually, energy dependence of the escape time is also taken from the power law
;,<(>L?M�N�PORQ , and the relation between the spectra of CR in the source and the detected spectra takes the
form � O �S�T� O1U �WV:X QSY . Theoretical calculations of the diffusion coefficient are based on assumptions re-
garding the distribution of magnetic inhomogeneities in the Galaxy. There are two main distributions:
the ‘Kolmogorov Spectrum’, giving Z = 0.33 and the ‘Kraichnan spectrum’, giving Z = 0.5. Measure-
ments of the spectra of low-energy isotopes (‘radioactive clocks’) gives another value of Z = 0.6. This
value seems to be in perfect accordance with the observed spectra of �T�[O\�^] $ , but it addresses only the
low-energy particle data available from satellite and balloon isotope spectrometers. Additional mea-
surements of isotope spectra at higher energies are needed. Since we cannot resolve the ‘all-particle’
spectrum, attempts are made to at least estimate the trend of the changing ‘mean mass’. The calculations
of the average depth of the shower maximum are made using data measured by the fluorescence and
Cherenkov detectors’ signal on ‘lightening’ of mean mass just before the knee, and transition to heavies
above the knee. This behaviour could be explained by the influence of one or several of the nearest SNR,
giving additional surplus flux added to the smeared superposition of thousands of Galaxy SNRs.

If the knee feature is due only to numerous distant sources, the steepening of the spectra should
be much smoother than detected. Attempts to find time-temporal coordinates of the SNR, which would
explain the observed fine structure of the spectra, heavily depend on the adopted energy dependence on
the diffusion coefficient. Authors of the recent estimates of the possible location of the Single Super-
novae (SS) [25], proceeding from the ‘anomalous’ diffusion introduced in Ref. [26], derive the following
constraints for location and age of the SS—300–350 pc from the Sun and 90–100 kyr old. They also
adopted the energy dependence of the diffusion coefficient with Z = 0.5. Very Long Baseline interfer-
ometric measurements of the 100 kyr old pulsar PSR656+14 [27] locate the pulsar in the centre of the
SNR called Monogem Ring at 300 pc distance from the Sun. Therefore it was logical to assume that the
Monogem Ring, the shell of debris from a supernova explosion, was the remnant of the blast that created
the pulsar [28].
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3 THE MAKET-ANI EXPERIMENT

The MAKET-ANI surface array [29] consists of 92 particle density detectors formed from plastic scin-
tillators with a thickness of 5 cm. Twenty-four of them have an area of 0.09 m � and 68 an area of 1
m � . The central part consists of 73 scintillation detectors and is arranged in a rectangle of 85 + 65 m � .
Two peripheral points at a distance of 95 m and 65 m from the centre of the installation consist of 15
and 4 scintillators, respectively Fig. 1. In order to estimate the zenith and azimuthal angles, 19 detectors
out of the 92 (each with an area of 1 m �_� are equipped with timing readouts to measure the timing of
the appearance of the EAS front with an accuracy of � 5 ns. The photomultiplier tubes (PM-49) of the
detectors are placed in light-tight iron boxes. Logarithmic Analog to Digital Converters (ADCs) and
Constant Fraction Discriminators (CFDs) are assembled just above the photomultiplier tube (PM). The
dynamic range of the registered particle number is � 5 + 10 6 .

Two types of detector triggers are used:

1. The hardware trigger: at least 7 out of 11 central density detectors must be hit with more than 3
particles.

2. The timing trigger: at least 4 out of 9 timing detectors, symmetrically arranged relative to the
centre, must be hit.

If the first two conditions are fulfilled in a time window of 20 & s, then the event is stored. The
trigger and data readout systems are according to the CAMAC standard. Monte Carlo calculations show
that this trigger system selects EAS with sizes `bac! 5 + 10 ' and cores located within the rectangle of
40 + 12 m � around the geometrical centre of the installation.

The uncertainties of the reconstruction of the EAS parameters are as follows:

Shower size d�`Iae� 10%, the shower shape (age) parameter— d"fg� 0.06.

The accuracies of the EAS angle determination are dAh�� 1.5 ˚ and dbi
j 5 ˚ .

In the period from 1998 to 2002, approximately 7 788 000 EASs were registered with effective
registration time of about 24 000 hours. From these showers only � 963 000 events were selected for
the spectra calculation. The selection criterion was to have more than 95% efficiency of registration, so
we selected the EAS core from the more compact area around the geometrical centre of the MAKET
detector, ensuring high efficiency of EAS registration. The following cuts were applied for the events
selection:

`�a�!935� C , �k�l�bjmfnj�3o��� , ����p m j X q�j 24 m, �n3_� m j Y q�j 12 m, hAj 45 ˚ .

During multiyear measurements, the detecting channels were continuously monitored. Data on
background cosmic-ray spectra was collected for each detector. The slope of the spectra was used for
detector calibration. The slope of background spectra is a very stable parameter and does not change even
during very severe Forbush decreases, when the mean count rates can decrease as much as 20% [30]. The
detailed information about the MAKET-ANI detector operation during 1997–2003, including various
comparisons and uniformity checks are summarized in Refs. [31], [32].

4 SELECTION OF EAS PARAMETERS FOR CLASSIFICATION AND
ESTIMATION

We are interested in choosing a combination of the EAS measured characteristics significantly differing
from light and heavy initiated showers. The discriminative power of EAS characteristics was investi-
gated using CORSIKA [13] and MAKET-ANI response simulation codes [31]. For comparison of EAS
initiated by different primary ions a number of statistical methods were used, including one-dimensional
statistical tests, correlation analysis, and misclassification rates estimation by neural and Bayesian classi-
ficators. Input parameters of the simulation program included particle type, energy, angles of incidence,
as well as geographical coordinates and altitude of the MAKET-ANI detector. The energy and angu-
lar distributions taken reflect modern theoretical expectations. Owing to the stochastic nature of particle
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Fig. 1: MAKET-ANI detector setup

propagation through the atmosphere, the output parameters of simulation programs are random variables.
We proceed according to the assumption of two-way division of all primary nucleolus, the so-called,
‘light’ and ‘heavy’ mass groups. As representatives of the light group we shall take the proton and He
nucleus; for the heavy group the Si and Fe nuclei will be the representatives. The intrinsic differences of
the light and heavy ion cascades in the atmosphere make the distributions of EAS parameters different.
We investigate if this difference is sufficient for reliable two-way classification and take into consider-
ation the way that the detector response smears it. Integrated over the entire energy range, the shower
sizes of EAS initiated by heavy and light nuclei are also very similar. The only parameter showing a sig-
nificant difference between the two is the shower shape-age ( f ) parameter. Although the detector smears
this difference, it remains significant enough, and, as we shall see further, the various correlations of this
feature with shower size make the pair of parameters ( `ra_sMf ) effective both for classification and energy
estimation.

Fig. 2: Scatter plot of shower age versus shower size for simulated light and heavy primaries with (right) and
without (left) incorporating the detector response
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The most direct estimates of the ‘discriminative power’ of EAS characteristics are obtained by
the classification of the samples using EAS simulations. Overlapping of the 2-dimensional distributions
apparent from Fig. 2 could be calculated numerically by the estimation of the misclassification rates from
Bayesian or neural network classification of EAS initiated from the alternative groups of nuclei. Using
only EAS electron characteristics, we cannot resolve nuclei with similar masses, such as p and He, or
Fe and Si, therefore we join these nuclei in groups naming them ‘light’ and ‘heavy’, thus restricting
ourselves to the two-way classification of the experimental data. Expected classification results posted in
Table 1 and Table 2 demonstrate that although detector smearing significantly enlarges misclassification
rates, nevertheless ! 70% correct classification is very encouraging and the `ta – f pairs as measured by
the MAKET-ANI detector provide enough information for the two-way classification. We also want to
point out the good agreement between results obtained by using two completely different methods of
classification: Bayesian classification with nonparametric estimation of multivariate probability density
function and neural network classification using stochastic net training methodologies.

Table 1: Neural classification into two classes H+He and Si+Fe events without and with detector response

Without detector response With detector response
Light Heavy Light Heavy

Light 0.925 0.075 0.720 0.280
Heavy 0.045 0.955 0.240 0.760

Table 2: Bayesian classification into two classes using H+He and Si+Fe events without and with detector response

Without detector response With detector response
Light Heavy Light Heavy

Light 0.938 0.062 0.712 0.288
Heavy 0.043 0.957 0.237 0.763

5 DATA CLASSIFICATION INTO LIGHT AND HEAVY GROUPS OF
NUCLEI, PURIFICATION OF SELECTED GROUPS OF NUCLEI

According to the results from the previous section we use two ‘training samples’ of ‘light’ and ‘heavy’
nuclei initiated `Ia – f pairs, generated by the CORSIKA code including the MAKET-ANI response func-
tion. Before neural classification of the MAKET-ANI data we investigate the expected purity1 and effi-
ciency2 of our data analysis procedures. From Table 3 we can see that efficiency of classification, i.e.,
correct identification of nuclei from light and heavy groups is above 70%, the ‘intermediate’ oxygen
nuclei are distributed approximately equally among two groups. To obtain purity estimates we assume
the so-called ‘normal’ primary composition: 30% H, 24% He, 17% O, 17.5% Si and 11.5% Fe.

Table 2 demonstrates that the purity of the light group is above 70% and the purity of the heavy
group is below 50% with large contamination of the oxygen and light nuclei.

To enlarge the purity of the heavy nuclei group we introduce the purification procedure described
in Ref. [16], enlarging the purity of each nuclear group at the cost of decreasing the efficiency. The
purification of the selected ‘light’ and ‘heavy’ groups was done by selecting the appropriate domain in
the entire range of the network output. The feed-forward Neural Network (NN) performs a nonlinear
mapping of the multidimensional characteristics of the EAS to the real number interval [0,1], called the

1Purity: fraction of true classified events in an actual number of events assigned to a given class.
2Efficiency: fraction of true classified events in total number of events of a given class.
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Table 3: Efficiency of the neural classification of EAS initiated by different primaries into two mass groups

Light Heavy
H 0.720 0.280
He 0.691 0.309
O 0.453 0.547
Si 0.352 0.648
Fe 0.240 0.760

Table 4: Purity of the classification of different nuclei in light and heavy groups

H He O Si Fe
Light 0.407 0.298 0.137 0.111 0.047
Heavy 0.162 0.167 0.208 0.255 0.208

output of the NN. Figure 3 shows the network output histogram. The network was trained to shift the
‘heavy’ group to the right and the ‘light’ group to the left of the histogram. The 0.5 point of the NN output
is the so-called decision point. The particular class assignments for the two-way classification are the
subintervals [(0.0,0.5) and (0.5,1.0)] for the ‘light’ and ‘heavy’ class, respectively. If the neural network is
satisfactorily trained to have generalization capabilities, the output distributions for the different classes
will overlap at the subinterval boundaries. Therefore, by shrinking the subintervals, i.e. moving the
interval boundary to the left and rigsht of the decision point 0.5, it is possible to remove a large portion
of the misclassified events. Of course, simultaneously we lose parts of the true-classified events, i.e.,
decrease the efficiency. Thus, instead of one decision point in the middle of the NN output interval, we
have two ‘decision intervals’ for accepting ‘light’ and ‘heavy’ nuclei, and a third interval in between
where we reject the classification. Figure 3 demonstrates this ‘purification’ procedure.

Figure 4 shows the results of the purification. The values next to the symbols indicate the selected
decision interval used for obtaining the particular purity–efficiency relation. For example, if we select
the [(0.0,0.3) and (0.7,1.0)] intervals for classification of the ‘light’ and ‘heavy’ nuclei, we obtain 96%
purity and 56% efficiency for the ‘light’ class; 78% purity and 55% efficiency for the ‘heavy’ class.
Therefore, we can enhance the purity of the light nuclei up to 95% and the purity of the heavy nuclei
up to 80%, while still holding the efficiency above 50%. The purity and the efficiencies are obtained
by classifying 35 000 light (H,He) and 17 000 heavy (Si,Fe) control events, which are not used for the
training of the neural network. Artificially high purity for both classes is achieved by using this method
as demonstrated in Table 4, since the intermediate nuclei (simulated oxygen initiated EAS) were not
included in the analysis. More realistic purity and efficiency estimates are apparent from Table 5 and
Table 6, where we include also the oxygen nuclei.

As we can see from Table 6 the purity of the light group increases from 70% to 77% and for the
heavy ones from 46% to 55%; we need to keep in mind that approximately 20% of the heavy group are
due to showers initiated by oxygen nuclei. The purification allows us to significantly increase the purity
of two alternative samples and we can, therefore, estimate the energy spectra of light and heavy groups.
Of course, first we should describe the energy estimation procedures used.

6 ESTIMATION OF THE PRIMARY ENERGY OF DIFFERENT GROUPS OF NUCLEI

The primary energy of each shower was obtained by neural network estimators separately for the light
and heavy nuclei induced events, exploiting the very large correlation of shower size `ca with primary
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Table 5: Efficiency of the neural classification of EAS initiated by different primaries into two mass groups (pu-
rification intervals [(0.0,0.3) and (0.7,1.0)])

Light Heavy
H 0.567 0.095
He 0.475 0.135
O 0.252 0.303
Si 0.176 0.393
Fe 0.099 0.561

Table 6: Purity of the classification of different nuclei in light and heavy mass groups (purification [(0.0,0.3) and
(0.7,1.0)])

H He O Si Fe
Light 0.459 0.310 0.115 0.084 0.032
Heavy 0.115 0.131 0.207 0.278 0.268

energy and different correlations between primary energy and shower shape in light and heavy nuclei
groups. In Fig. 5 relative errors of energy estimation for 10 energy intervals are posted. The bias of
the energy estimation displayed does not exceed 5% for the light group (left) in the whole energy range
except the lowest energies. For the heavy group of nuclei the estimation bias in the energy range of
10 #*C –10 #*) eV is not larger than 5%, nevertheless, one can observe some overestimation for low and high
energy regions. The energy resolution for the heavy group of nuclei is significantly better (MSD � 20%)
as compared to the light group of nuclei (MSD � 30%) due to the smaller fluctuations of heavy initiated
EAS size and shape. Also, the accuracy of the energy estimation is enhanced with enlarging primary
energy.

Fig. 5: The relative errors of energy estimates for 10 energy intervals of light and heavy groups, the two horizontal
lines around the 0-line outline the u 5% error corridor. Error bars correspond to root mean square (r.m.s.) deviation
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7 ENERGY SPECTRA

Figure 6, adopted from Ref. [2], shows the energy spectrum measured by different detectors exploiting
various experimental techniques and energy reconstruction methods. Energy estimation for all experi-
ments was made using Monte Carlo simulations with different numerical algorithms. Despite consider-
able differences in experimental techniques and different EAS components (shower shape and electron
size parameters, muons, Cherenkov light) used for the energy estimation, and the differences in system-
atic errors (usually not reported in publications), almost all spectra are in rather good agreement if we
assume an energy estimation accuracy of � 20%. Only at energies higher than the knee feature do the
spectra disagree, probably because of the saturation effects in the scintillators in some experiments. All
particle spectra and mean logarithmic mass, in many cases presented as an outcome of the EAS experi-
ment, are not very informative. We never know which combination of primaries constitutes the mean and
which groups of primaries are responsible for the knee. The best solution will be to separate different
groups of nuclei and reconstruct energy spectra to determine the spectral knees of different nuclei at dif-
ferent positions. This programme was partly fulfilled with the data from the MAKET-ANI experiment.
After checking for the purity and the efficiency of each of the nearly 1 million showers registered by
the MAKET-ANI installation in 1999–2002, shower sizes greater than 10 C were classified according to
the techniques described in Refs. [20], [16]. The energy of the classified particles in two distinct classes
of showers was estimated for each group separately, again using the CORSIKA simulations and neural
estimation techniques. Using the EAS characteristics of shower size ( `ca ) and shape ( f ), we plot the
obtained energy spectra of the ‘light’ and ‘heavy’ mass groups, see Fig. 7.
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Fig. 6: Summary of the all particle spectra from 18 different experiments

The spectrum of the ‘light’ group shows a ‘knee’ in the region of 3–4 + 10 #*C eV. The ‘knee’ feature
is not observed for the spectrum of the ‘heavy’ component, at least not up to energies of 10 #*) eV. The
number of ‘light’ and ‘heavy’ nuclei at � 10 #*C eV is approximately equal and the number of ‘heavy’
nuclei gets larger at energies greater than the ‘knee’ energy. The ‘purified’ spectra, see Fig. 8, show
lower flux intensities for both classes of particles due to the lower efficiency. The ‘knee’ position shifts
to lower energies because, after purification, the proportion of protons is enlarged. In addition, the slope
of the spectrum (spectral index) of the ‘purified’ light component becomes steeper, �����lvw� , compared
to = �J���lx�p before purification. Both results are consistent with the rigidity-dependent acceleration and
consequent fading of the proton flux at high energies.
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Another important feature of the obtained spectra is the very large difference between spectral
indices before and after the ‘knee’: dI
 (light) = 
 � �

 # � 0 � 9. It is well known that the same parameter
for the all-particle spectra is d�
 (all-particle) � 0 � 4, [2]. Erlykin and Wolfendale, in their simulations,
were not able to reproduce the actual shape of the all-particle spectrum by averaging the proton and
nuclei fluxes produced by nearly 50 000 distant supernovae in our Galaxy [33]. Therefore, they propose
that the nearby young supernova ( j 500 pc and j 110 kyr), is responsible for the approximately 60%
of the detected cosmic-ray flux in the vicinity of Earth [25]. The very large difference of the spectral
indices before and after the knee of the ‘light’ component ( � 0 � 9) confirms the Erlykin and Wolfendale
proposal regarding the huge impact of the nearest supernova on the cosmic-ray flux in the vicinity of
Earth. It suggests the necessity to make detailed calculations of the influence of the nearest supernova
on the detected cosmic-ray fluxes, i.e., to obtain the partial spectra of the nuclei accelerated by the single
source (for a candidate of such a source see Ref. [28]).
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Fig. 7: Energy spectra of light and heavy nuclei obtained by neural classification and energy estimation. EAS
characteristics used: shower size and shape (age)

8 WHAT WE CAN LEARN FROM SOLAR ACCELERATORS

With the launch of particle spectrometers in the 1970s, began the continuous monitoring of low- and
medium-energy cosmic rays in space. Time histories of the simultaneously detected X-rays, gamma-
rays, electrons, and ions of different energy and charge, combined with the detection of the developing
flares and Coronal Mass Ejections (CME) using coronagraphs, helped to create a comprehensive picture
of the major solar events, accelerating protons to high energies, the so-called, Solar Energetic Proton
(SEP) events [34]. SEP events include also highest energy ions and accompanying protons, giving rise
to Ground Level Enhancements (GLE) and additional fluxes of secondary cosmic rays (mostly neutrons
and muons), detected by the world-wide network of Neutron Monitors and Muon Telescopes. “New
Instruments on WIND and ACE satellites operating during the 23rd solar cycle, with geometry fac-
tors � 100 times larger than those of the previous cycle, have yielded unprecedented observations of
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Fig. 8: Energy spectra of light and heavy nuclei obtained by neutral classification and energy estimation. The same
as in Fig. 7 but obtained with purified light and heavy data samples. Purification intervals: [0.0,0.3) and (0.7,1.]

temporal evolution in composition and spectra over a wide range of energies and species” [35]. Mul-
tiwavelength measurements from very sensitive X-ray detectors, high-resolution imaging coronagraphs
and radiotelescopes now reveal the location and characteristics of the natural accelerators at the Sun and
in interplanetary space in much more detail.

Impulsive flare events are believed to accelerate electrons and ions in large structures origi-
nating in the magnetic reconfiguration regions. After discovery of the above-the-loop-top hard X-ray
source [36], with the Yohkoh/HXT [37], it became apparent that particles are accelerated by the dy-
namic electromagnetic forces during the reconfiguration of the magnetic fields [38]. The most probable
acceleration mechanism is stochastic acceleration, allowing detectable intensities of nonthermal X-ray
radiation from locally trapped electrons. Direct hard X-ray detection, as well as application of the time-
of-flight technique to the electrons travelling from the acceleration site to the chromosphere, reveals
that the location of the acceleration region is 5000–35 000 km above the top of the soft X-ray-bright
flare loop [39]. The natural assumption that positively charged protons and ions will be accelerated
with the same mechanisms as the electrons is proven by the registration of the lined gamma radiation
in coherence with hard X-ray radiation. The time sequence of the bremsstrahlung radiation peaks pro-
duced by accelerated electron beams, interlaced by the nuclear de-excitation lines produced by proton
and ion bombarded chromosphere, clearly demonstrates that ions and electrons are accelerated in the
same region and nearly simultaneously. The efficiency of the stochastic acceleration of ions via the mu-
tual wave-particle interactions depends on the relation between the frequencies of the resonant waves
(Alfven waves, magnetosonic waves, sound waves) and ion gyrofrequency. Alfven waves, if fast enough
( � 2000 km/s), can accelerate 20 keV protons up to GeV energies during time scales of 1–10 s [40], [41].

Gradual events are associated with CME development in corona and in interplanetary space.
CME driven shock should be fast enough ( ! 500 km/s, [34]) to produce SEP events. Shock acceleration
is believed to be one of the major mechanisms in the Universe for accelerating particles to highest en-
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ergies. Multiple traversals of shock are required for the acceleration of solar ions up to MeV energies.
Ambient magnetic turbulence is not sufficient for scattering and trapping ions with such energies. Self-
generated Alfven waves effectively scatter energetic ions, providing their trapping near the shock and,
therefore, increasing their energy. The maximum attainable energy of accelerated ions is proportional to
the rate of re-crosses of the shock. This rate, in turn, is proportional to the particle trapping time. “As
trapping increases for particles of one rigidity, they are more likely to be accelerated to a higher rigidity,
where they again stream out and produce resonant waves, etc.” [42]. Numerical calculations and Monte
Carlo simulation prove that solar protons could be accelerated up to energies of 100 GeV during propa-
gation of the CME in middle and high corona [41]. The same authors, examining the 1982 June 3 flare,
mention that protons were accelerated within 16 seconds from 30 MeV to � 1 GeV. Krucker and Lin [43],
based on the data from WIND/SST instrument [44], conclude that protons at energies up to 6 MeV are
injected simultaneously at heights y�35�gz|{ . The maximum energy attainable by the shock acceleration
depends on the shock speed and the height of the shock starts in the corona. Shock waves as fast as
� 1500 km s O1# starting below �}xPzn{ can accelerate ions up to 10–30 GeV [45], [46]. Study of the
association between SEP events and CME [47] proves that CME interaction is important for high-energy
SEP production. For most of the SEP events detected in 1997–2001 the primary, fast CME overtakes one
or more slower CMEs within a heliocentric distance of �~�o��zI{ . The summary of the present knowledge
on particle acceleration by various mechanisms at the Sun and in interplanetary space is as follows:

– Electron accelerators also accelerate protons and heavier ions, acceleration sites are very close in
space and time.

– Particle acceleration is much more effective when several shocks are present in interplanetary
space.

– The ‘magnetic bottle’ structures formed by interacting shocks are major sites for reacceleration of
particles primarily accelerated by ‘impulse’ and ‘gradual’ mechanisms.

– Maximal attainable energy of particle accelerators is proportional to the particle charge.
– Moving shock carries the bulk of particles.
– The maximal attainable energy of the particle changes from event to event and depends on the total

energy of the solar blast, speed of the shock wave, and the time-temporal history of the solar flare.
(Positions of the Spectral ‘knees’ change from 10 MeV to several GeV.)

– For detection of charged particles on the Earth, the shock should intercept the observer’s magnetic
tube.

– The streaming limit controls the transport of particles.

The rigidity-dependent maximal acceleration energy in Solar Energetic Events (SEP), which oc-
curred during the current 23rd solar cycle, is apparent from Fig. 9. Again, as with galactic cosmic rays,
we see a very sharp knee for the light nuclei group, namely protons, and no knee for the heavy nuclei
group, namely iron.

The most famous, so-called Bastille day SEP from the 14 July 2000 event, as you can see from
Fig. 9 and from Ref. [46] demonstrates the remarkable exactness of the knee positions according to
accelerated ion charge: the proton knee is at � 20 MeV, the helium knee at � 40 MeV, and the carbon
knee at � 100 MeV. The carbon charge is equal to 5, and one should note that the temperature at and near
the Sun is not high enough to fully strip the carbon ions, such as happens at Supernova explosion sites.

9 DISCUSSION AND CONCLUSIONS

Recent unprecedented detailed observations of the nonthermal X-ray radiation from SN1006 made by
CHANDRA [9], point very definitely at the SNR as the host of the hadron accelerators providing energy
at least up to several units of 10 #(' eV. Observations of the wind synchrotron nebulae around pulsars in
the vicinity of the SNR centre reveal another accelerator site, e.g., the termination shock, at which the
relativistic shock from the pulsar wind is forced to join the slower expansion of the outer nebula [48].
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Fig. 9: The energy spectra of protons and Fe ions registered by space-born detectors during an SEP event of 23-rd
solar cycle

The Single Source, or Single Supernovae (SS) model of Erlykin and Wolfendale [49], [50], also
attracted huge support by the discovery of the nearest pulsar, located at the space-temporal distance in
remarkable concordance with SS model expectations [28].

The recent results, which came forth from the MAKET-ANI experiment, confirm the SNR and
SS models of cosmic-ray origin. The very sharp knee of the energy spectrum of the light mass group
suggests accepting the SS hypothesis, because it is highly improbable that a Galaxy ensemble of distant
supernovae, with a variety of explosion energies, shock-wave speeds, distances and explosion times, will
provide a sharp knee feature. Instead we should expect rather smooth depletion of the light mass group
flux if the latter hypothesis were true.

The knee of the light mass group and the absence of knee in the heavy mass group up to at least
10 PeV also supports the hypothesis of rigidity-dependent maximal energy of SNR accelerators.

Experimental evidence could be summarized in the following statements:

– The energy spectrum of the ‘heavy’ mass group of cosmic rays shows no ‘knee’ in the energy
interval of 10 #*C –10 #*) eV.

– The energy spectrum of the ‘light’ mass group of nuclei shows a very sharp ‘knee’ d�
�� 0.9
compared to dI
[� 0.4 for the all-particles energy spectra.

And finally we conclude that:

– The SNR acceleration model is supported by the MAKET-ANI data on partial energy spectra.
– Our conclusions on rigidity-dependent acceleration are consistent with the evidence we saw re-

cently about how the solar accelerators work. The recently proposed mechanisms of particle ac-
celeration in the SN1006 [10] is fully consistent with the mechanisms of solar particle acceleration
by CME driven shocks, of course, at much lower particle energy scales.

– The time history of the cosmic-ray intensity [51] suggests 50% enhancement of the CR flux inte-
grated over the last 400 000 years, compared to an all available time record of 10 � years. It is also
consistent with the nearby SS model.
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FLAVOUR PHYSICS AND CP VIOLATION

R. Fleischer
CERN, Geneva, Switzerland

Abstract
The starting point of these lectures is an introduction to the weak interactions
of quarks and the Standard-Model description of CP violation, where the key
element is the Cabibbo–Kobayashi–Maskawa matrix and the corresponding
unitarity triangles. Since the

�
-meson system will govern the stage of (quark)

flavour physics and CP violation in this decade, it will be—after a brief look
at the kaon system—our main focus. We shall classify

�
-meson decays, intro-

duce the theoretical tools to deal with them, explore the requirements for non-
vanishing CP-violating asymmetries, and discuss

���� – ����� mixing ( ���
	���
���� ).
We will then turn to

�
-factory benchmark modes, discuss the physics poten-

tial of
� �� mesons, which is particularly promising for

�
-decay experiments

at hadron colliders, and emphasize the importance of studies of rare decays,
which are absent at the tree level in the Standard Model, complement nicely
the studies of CP violation, and provide interesting probes for new physics.

1 INTRODUCTION

The violation of the CP symmetry, where C and P are the charge-conjugation and parity-transformation
operators, respectively, is one of the fundamental and most exciting phenomena in particle physics.
Although weak interactions are not invariant under P (and C) transformations, as discovered in 1957, it
was believed for several years that the product CP was preserved. Consider, for instance, the process������������� � � �"!#���$!%��&� ' � �"!#���$! ���� 
 (1)

where the left-handed � &� state is not observed in nature; only after performing an additional parity
transformation do we obtain the usual right-handed electron antineutrino. Consequently, it appears as if
CP was conserved in weak interactions. However, in 1964, it was discovered through the observation of(*) �+� � � ! decays that weak interactions are not invariant under CP transformations [1].

After its discovery, CP violation was, for a very long time, only accessible in the neutral kaon
system, where it is described by two complex parameters, , and ,�- ; a non-zero value of the latter could
only be established—after tremendous efforts—in 1999 [2], [3]. In 2001, CP violation could then also
be observed in decays of neutral

�
mesons [4], [5], which represents the beginning of a new era in

the exploration of this phenomenon. Despite this impressive progress, we still have few experimental
insights into CP violation, which originates, within the Standard Model (SM) of electroweak interactions,
from the flavour structure of the charged-current interactions [6]. One of the main motivations for the
exploration of CP violation is that ‘new’ physics (NP), i.e. physics lying beyond the SM, is typically also
associated with new sources of CP violation and new flavour structures [7]– [9]. This is actually the case
in many specific NP scenarios, for instance in supersymmetry (SUSY), left–right-symmetric models, and
in models with extended Higgs sectors. In this context, it is also interesting to note that the evidence for
non-vanishing neutrino masses that we obtained over the last years points towards an origin beyond the
SM [10], [11], raising — among other issues — also the question of having CP violation in the neutrino
sector, which could be studied, in the more distant future, at dedicated neutrino factories [12].

Interestingly, we may also obtain indirect information on CP violation from cosmology. One of the
characteristic features of our Universe is the cosmological baryon asymmetry of .0/2143 !65 �87 [13], [14]. As
was pointed out by Sakharov [15], one of the necessary conditions to generate such an asymmetry of the
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Universe is—in addition to baryon-number violation and deviations from thermal equilibrium—that the
elementary interactions violate CP (and C). Model calculations indicate, however, that the CP violation
present in the SM is too small to generate the observed matter–antimatter asymmetry of .0/2143 !65 �87 [16].
It is conceivable that the particular kind of NP underlying the baryon asymmetry is associated with very
short-distance scales. In this case, it could not be seen in CP-violating effects in weak meson decays.
However, as we have noted above, there are also various scenarios for physics beyond the SM that would
affect these processes. Moreover, we do not understand the observed patterns of quark and lepton masses,
their mixings and the origin of flavour dynamics in general. It is likely that the NP required to understand
these features is also related to new sources of CP violation.

The field of (quark) flavour physics and CP violation is very broad. In this decade, it will be
governed by studies of decays of

�
mesons. The asymmetric � � � ! � factories operating at the 9:/<;>= 7

resonance [17], with their detectors BaBar (SLAC) and Belle (KEK), have already been taking data for
a couple of years and have produced plenty of exciting results. Moreover, also hadron colliders have a
very promising potential for the exploration of

�
-meson decays. We may expect first interesting results

on several processes from run II of the Tevatron soon [18]. The corresponding channels can then be
fully exploited in the era of the LHC, in particular by LHCb (CERN) and BTeV (FNAL) [19]. The great
interest in

�
physics—our main topic—originates from the fact that it provides a very fertile testing

ground for the SM picture of flavour physics and CP violation, as we shall see in these lectures. The
outline is as follows: in Section 2, we have a closer look at the weak interactions of quarks, discuss the
quark-mixing matrix, and introduce the unitarity triangle(s). After giving a brief introduction to the CP
violation in the kaon system and making first contact with ‘rare’

(
decays in Section 3, we enter the

world of the
�

mesons in Section 4, where we shall classify their decays, discuss the theoretical tools
to deal with them, and investigate the requirements for non-vanishing CP asymmetries. In Section 5,
we discuss features of neutral

� � mesons ( �?�@	��A
��$� ), including the very important phenomenon of� �� – �� �� mixing, and introduce the corresponding CP-violating observables. These considerations then
allow us to have a closer look at important benchmark modes for the

�
factories in Section 6, where

we shall also address the current experimental status. In Section 7, we discuss the exploration of CP
violation with the help of amplitude relations, whereas we shall focus on the

� � -meson system, which is
particularly interesting for

�
-decay studies at hadron colliders, in Section 8. In Section 9, we emphasize

the importance of studies of ‘rare’
�

- and
(

-meson decays, which are absent at the tree level in the SM,
and offer important probes for the search of NP. Finally, we summarize our conclusions in Section 10.

For a collection of detailed textbooks and reviews on CP violation and flavour physics, the reader is
referred to Refs. [20]– [26]. Since this field is evolving quickly, I shall also address recent developments
that took place after the school in Tsakhkadzor in order to complement the material that I presented there.
The data refer to the experimental situation in early 2004.

2 CP VIOLATION IN THE STANDARD MODEL

2.1 Weak interactions of quarks and the quark-mixing matrix
In the framework of the Standard Model of electroweak interactions [6], [27], which is based on the
spontaneously broken gauge group =CB:/ED 7 )0F B�/21 7HGJIKIML � B:/21 7ONQP 
 (2)

CP-violating effects may originate from the charged-current interactions of quarks, having the
structure R � BTS !"U (3)

Here
R �V	��A
���
�W�� and BX�V	ZY%
\[8
^]M� denote down- and up-type quark flavours, respectively, whereas

the S ! is the usual =_B�/ED 7`) gauge boson. From a phenomenological point of view, it is convenient to
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R �RB �B
acbed agfbed
S !

� 'h%i
S �

Fig. 1: CP-conjugate charged-current quark-level interaction processes in the SM.

collect the generic ‘coupling strengths’
a�bed

of the charged-current processes in (3) in the form of the
following matrix: ja &�k6lnm op arq8sta q � a�q�ua�vHs a v � aAvQua�wxs a w � arwxu yz 
 (4)

which is referred to as the Cabibbo–Kobayashi–Maskawa (CKM) matrix [28], [29].

From a theoretical point of view, this matrix connects the electroweak states /{�c-{
��Z-<
�WM- 7 of the
down, strange and bottom quarks with their mass eigenstates /{��
��|
�W 7 through the following unitary
transformation [6]: op � -�Z-W -

yz m op arq8sta q � a�q�ua�vHs a v � aAvQua�wxs a w � arwxu yz~} op � � W
yz U (5)

Consequently,
ja &rk6l is actually a unitary matrix. This feature ensures the absence of flavour-changing

neutral-current (FCNC) processes at the tree level in the SM, and is hence at the basis of the famous
Glashow–Iliopoulos–Maiani (GIM) mechanism [30]. We shall return to the unitarity of the CKM matrix
in Subsection 2.6, discussing the ‘unitarity triangles’. If we express the non-leptonic charged-current
interaction Lagrangian in terms of the mass eigenstates appearing in (5), we arrive at� CC

int m  ����� D�� �Y L 
 �[ L 
 �] L �e��� ja CKM

op � L� LW L
yz S����� h.c., (6)

where the gauge coupling �|� is related to the gauge group =CB�/ED 7 L, and the S�� �H�� field corresponds to the
charged S bosons. Looking at the interaction vertices following from (6), we observe that the elements
of the CKM matrix describe in fact the generic strengths of the associated charged-current processes, as
we have noted above.

In Fig. 1, we show the
R � B�S ! vertex and its CP conjugate. Since the corresponding CP

transformation involves the replacement a�bed � ' � a fbed 
 (7)

CP violation could—in principle—be accommodated in the SM through complex phases in the CKM
matrix. The crucial question in this context is, of course, whether we may actually have physical complex
phases in that matrix.

2.2 Phase structure of the CKM matrix
We have the freedom to redefine the up- and down-type quark fields in the following manner:B �+�K��� /<�Q� b�7 B_
 R ���K��� /<�Q� d�7 R U (8)
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If we perform such transformations in (6), the invariance of the charged-current interaction Lagrangian
implies the following phase transformations of the CKM matrix elements:acbed �+�K��� /<�H� b"7^a�bed �K��� /  �Q� d�7 U (9)

Using these transformations to eliminate unphysical phases, it can be shown that the parametrization of
the general � F � quark-mixing matrix, where � denotes the number of fermion generations, involves
the following parameters: 1D ��/{�  1 7� �K� �

Euler angles
� 1D /{�  1 7 /{�  D 7� �4� �

complex phases

m /{�  1 7 � U (10)

If we apply this expression to the case of � m D generations, we observe that only one rotation
angle—the Cabibbo angle � & [28]—is required for the parametrization of the D F D quark-mixing matrix,
which can be written in the following form:ja & m¢¡ £K¤�¥ � & ¥\¦x§ � & ¥\¦¨§ � & £K¤�¥ � &n© 
 (11)

where ¥\¦x§ � &ªm 3 U D$D can be determined from
( ����« �� decays. On the other hand, in the case of � mn¬

generations, the parametrization of the corresponding ¬ F ¬ quark-mixing matrix involves three Euler-
type angles and a single complex phase. This complex phase allows us to accommodate CP violation
in the SM, as was pointed out by Kobayashi and Maskawa in 1973 [29]. The corresponding picture is
referred to as the Kobayashi–Maskawa (KM) mechanism of CP violation.

In the ‘standard parametrization’ advocated by the Particle Data Group (PDG) [31], the three-
generation CKM matrix takes the following form:ja &rk6l­m op [ 5 � [ 5H® � 5 � [ 5H® � 5H® � !�¯±°2²¨³ � 5 � [ � ®  [ 5 � � � ® � 5H® � ¯±°2²¨³ [ 5 � [ � ®  � 5 � � � ® � 5H® � ¯´°^²¨³ � � ® [ 5H®� 5 � � � ®  [ 5 � [ � ® � 5H® � ¯±°2²¨³  [ 5 � � � ®  � 5 � [ � ® � 5H® � ¯´°^²¨³ [ � ® [ 5H®

yz 
 (12)

where [ ¯¶µ�· £K¤�¥ � ¯¶µ and � ¯¸µ0· ¥�¦x§ � ¯¶µ . Performing appropriate redefinitions of the quark-field phases,
the real angles � 5 � , � � ® and � 5H® can all be made to lie in the first quadrant. The advantage of this
parametrization is that the generation labels �\
H¹ m 1�
�D�
 ¬ are introduced in such a manner that the
mixing between two chosen generations vanishes if the corresponding mixing angle � ¯¸µ is set to zero. In
particular, for � � ®0m � 5H®�m 3 , the third generation decouples, and the D F D submatrix describing the
mixing between the first and second generations takes the same form as (11).

Another interesting parametrization of the CKM matrix was proposed by Fritzsch and Xing [32]:ja &rk6lnm op ��º$�Z»�[ � [¼º$[M» � !�¯x½ ��º¾[¼»�[  [¼º���» � !�¯x½ ��º$�[ º ��»¾[  � º [M» � !�¯x½ [ º [¼»$[ � � º ��» � !�¯x½ [ º � �Z»$�  [¼»�� [
yz U (13)

It is inspired by the hierarchical structure of the quark-mass spectrum and is particularly useful in the
context of models for fermion masses and mixings. The characteristic feature of this parametrization is
that the complex phase arises only in the D F D submatrix involving the up, down, strange and charm
quarks.

Let us finally note that physical observables, for instance CP-violating asymmetries, cannot de-
pend on the chosen parametrization of the CKM matrix, i.e. have to be invariant under the phase trans-
formations specified in (9).
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2.3 Further requirements for CP violation
As we have just seen, in order to be able to accommodate CP violation within the framework of the
SM through a complex phase in the CKM matrix, at least three generations are required. However, this
feature is not sufficient for observable CP-violating effects. To this end, further conditions have to be
satisfied, which can be summarized as follows [33], [34]:/<¿ �w  ¿ �v 7 /<¿ �w  ¿ �q 7 /<¿ �v  ¿ �q 7 /<¿ �u  ¿ � � 7 /<¿ �u  ¿ �s 7 /<¿ � �  ¿ �s 7 F
À &�Á~Âm 3�
 (14)

where À &�ÁªmÄÃ Im / a ¯±Å a µ�Æ a f¯´Æ a fµ�Å 7 Ã /<� Âm ¹$
cÇ Âm�È 7 U (15)

The mass factors in (14) are related to the fact that the CP-violating phase of the CKM matrix
could be eliminated through an appropriate unitary transformation of the quark fields if any two quarks
with the same charge had the same mass. Consequently, the origin of CP violation is closely related to
the ‘flavour problem’ in elementary particle physics, and cannot be understood in a deeper way, unless
we have fundamental insights into the hierarchy of quark masses and the number of fermion generations.

The second element of (14), the ‘Jarlskog parameter’
À &�Á [33], can be interpreted as a measure

of the strength of CP violation in the SM. It does not depend on the chosen quark-field parametriza-
tion, i.e. it is invariant under (9), and the unitarity of the CKM matrix implies that all combinationsÃ Im / a ¯±Å a µ�Æ aÉf¯´Æ aÉfµ�Å 7 Ã are equal to one another. Using the standard parametrization of the CKM matrix
introduced in (12), we obtain À &�Áªm � 5 � � 5H® � � ® [ 5 � [ � ® [ � 5H® ¥\¦x§ËÊ 5H® U (16)

Since the current experimental information on the CKM parameters implies a value of
À &�Á at the 143 !AÌ

level, CP violation is a small effect in the SM. However, new complex couplings are typically present in
scenarios for NP [8], [9], thereby yielding additional sources of CP violation.

2.4 Experimental information on Í´ÎÐÏ"ÑÓÒ�Í
In order to determine the magnitudes Ã a ¯¶µ Ã of the elements of the CKM matrix, we may use the following
tree-level processes:

– Nuclear beta decays, neutron decays Ô Ã a�q8s Ã .
–
( �+��« �� decays Ô Ã a q � Ã .

– � production of charm off valence � quarks Ô Ã aevHs Ã .
– Charm-tagged S decays (as well as � production and semileptonic

R
decays) Ô Ã a v � Ã .

– Exclusive and inclusive W � [ « �� decays Ô Ã aevQu Ã .
– Exclusive and inclusive W � Y « �� decays Ô Ã acq8u Ã .
– �] � � W « �� processes Ô (crude direct determination of) Ã a�wxu Ã .

If we use the corresponding experimental information, together with the CKM unitarity condition, and
assume that there are only three generations, we arrive at the following 90% C.L. limits for the Ã a ¯¶µ|Ã [31]:Ã ja &rk6l:Ã�m op

0.9741–0.9756 0.219–0.226 0.0025–0.0048
0.219–0.226 0.9732–0.9748 0.038–0.044
0.004–0.014 0.037–0.044 0.9990–0.9993

yz U (17)

In Fig. 2, we have illustrated the resulting hierarchy of the strengths of the charged-current quark-level
processes: transitions within the same generation are governed by CKM matrix elements of .0/21 7 , those
between the first and the second generation are suppressed by CKM factors of .0/2143 !65 7 , those between
the second and the third generation are suppressed by .0/2143 ! � 7 , and the transitions between the first and
the third generation are even suppressed by CKM factors of .0/2143 !A® 7 . In the standard parametrization
(12), this hierarchy is reflected by� 5 � m 3 U D$DÖÕ � � ®Ëm .0/2143 ! � 7 Õ � 5H®×m .0/2143 !A® 7 U (18)
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Fig. 2: Hierarchy of the quark transitions mediated through charged-current processes.

2.5 Wolfenstein parametrization of the CKM matrix
For phenomenological applications, it would be useful to have a parametrization of the CKM matrix
available that makes the hierarchy arising in (17)—and illustrated in Fig. 2—explicit [35]. In order to
derive such a parametrization, we introduce a set of new parameters, Ø , Ù , Ú and Û , by imposing the
following relations [36]:� 5 � · Ø m 3 U D$D�
 � � ®×· ÙÜØ � 
 � 5H® � !�¯±°2²¨³ · Ù�Ø ® /<Ú  �QÛ 7 U (19)

If we now go back to the standard parametrization (12), we obtain an exact parametrization of the CKM
matrix as a function of Ø (and Ù , Ú , Û ), allowing us to expand each CKM element in powers of the small
parameter Ø . If we neglect terms of .0/QØcÝ 7 , we arrive at the famous ‘Wolfenstein parametrization’ [35]:ja

CKM m op 1  5� Ø � Ø Ù�Ø ® /<Ú  �QÛ 7 Ø 1  5� Ø � Ù�Ø �Ù�Ø ® /21  Ú  �QÛ 7  Ù�Ø � 1
yz � .0/QØ Ý 7 
 (20)

which makes the hierarchical structure of the CKM matrix very transparent and is an important tool for
phenomenological considerations, as we shall see throughout these lectures.

For several applications, next-to-leading order corrections in Ø play an important role. Using
the exact parametrization following from (12) and (19), they can be calculated straightforwardly by
expanding each CKM element to the desired accuracy in Ø [36], [37]:arq�s m 1  1D Ø �  1Þ Ø Ý � .0/QØ�ß 7 
 a q � m Ø � .0/QØAà 7 
 arq�u m Ù�Ø ® /<Ú  ��Û 7 
aAvQs m  Ø � 1D Ù � Ø Ìâá 1  Dr/<Ú � �QÛ 7Hã � .0/QØcà 7 
a v � m 1  1D Ø �  1Þ Ø Ý /21 � ;�Ù � 7 � .0/QØ ß 7 
 (21)aAvQu m Ù�Ø � � .0/QØ�ä 7 
 a�wxs m ÙÜØ ®�å 1  /<Ú � �QÛ 7 ¡ 1  1D Ø � ©�æ � .0/QØAà 7 
a w � m  ÙÜØ � � 1D Ù�/21  D¾Ú 7 Ø Ý  �HÛ�Ù�Ø Ý � .0/QØ ß 7 
 arwxu m 1  1D Ù � Ø Ý � .0/QØ ß 7 U
It should be noted that a�q�u · Ù�Ø ® /<Ú  �QÛ 7 (22)

receives by definition no power corrections in Ø within this prescription. If we follow [36] and introduce
the generalized Wolfenstein parameters�Ú · Ú ¡ 1  1D Ø � © 
 �Û · Û ¡ 1  1D Ø � © 
 (23)
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we may simply write, up to corrections of .0/QØ à 7 ,a�wxs m Ù�Ø ® /21  �Ú  � �Û 7 U (24)

Moreover, we have to an excellent accuracya q � m Ø and
aAvQu m Ù�Ø � 
 (25)

as these quantities receive only corrections at the Ø à and Ø ä levels, respectively. In comparison with
other generalizations of the Wolfenstein parametrization found in the literature, the advantage of (21) is
the absence of relevant corrections to

a q � and
aAvQu

, and that
a�q8u

and
a�wxs

take forms similar to those in
(20). As far as the Jarlskog parameter introduced in (15) is concerned, we obtain the simple expressionÀ &�Á�m Ø ß Ù � Û�
 (26)

which should be compared with (16).

2.6 Unitarity triangles of the CKM matrix
The unitarity of the CKM matrix, which is described byja �CKM

} ja
CKM m j1 m ja

CKM

} ja �CKM 
 (27)

leads to a set of 12 equations, consisting of 6 normalization and 6 orthogonality relations. The latter can
be represented as 6 triangles in the complex plane [38], all having the same area, D�Ù�ç m À &�Á [39]. Let
us now have a closer look at these relations: those describing the orthogonality of different columns of
the CKM matrix are given by arq8s�a fq �� �K� �è �´é � � aAvQs�a fv �� �4� �è �êé � � a�wxs8a fw �� �4� �è �´é�ë � m 3 (28)a q � a fq�u� �K� �è �êé�ì � � a v � a fvQu� �K� �è �êé8í � � a w � a fwxu� �K� �è �êé�í � m 3 (29)arq8s8a fq8u� �K� ��ïî ��¯´ð �¨ñ é ³ � aAvQs�a fvHu� �K� �! ñ é ³ � a�wxs8a fwxu� �K� �� 5^! î !�¯´ð �¨ñ é ³ m 3�
 (30)

whereas those associated with the orthogonality of different rows take the following form:a fq8s a�vQs� �K� �è �êé � � a fq � a v �� �K� �è �êé � � a fq�u a�vHu� �K� �è �´é�ë � m 3 (31)a fvQs arwxs� �K� �è �êé�ì � � a fv � a w �� �4� �è �´é�í � � a fvQu arwxu� �K� �è �êé8í � m 3 (32)a fq�s a�wxs� �K� �� 5^! î !�¯´ð �xñ é ³ � a fq � a w �� �K� �! ñ é ³ � a fq�u a�wxu� �K� ��ïî ��¯êð �xñ é ³ m 3 U (33)

Here we have also indicated the structures that arise if we apply the Wolfenstein parametrization by
keeping just the leading, non-vanishing terms. We observe that only in (30) and (33), which describe the
orthogonality of the first and third columns and of the first and third rows, respectively, are all three sides
of comparable magnitude, .0/QØ ® 7 , while in the remaining relations, one side is suppressed with respect
to the others by factors of .0/QØ � 7 or .0/QØ Ý 7 . Consequently, we have to deal with only two non-squashed
unitarity triangles in the complex plane. However, as we have already indicated in (30) and (33), the
corresponding orthogonality relations agree with each other at the Ø ® level, yieldingá /<Ú � �QÛ 7 � /  1 7 � /21  Ú  �HÛ 7Hã ÙÜØ ® m 3 U (34)
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Fig. 3: The two non-squashed unitarity triangles of the CKM matrix, as explained in the text: (a) and (b) correspond
to the orthogonality relations (30) and (33), respectively.

Consequently, they describe the same triangle, which is usually referred to as the unitarity triangle of the
CKM matrix [39], [40].

In the second-generation
�

-decay experiments at the LHC, the experimental accuracy will be so
tremendous that we shall also have to take the next-to-leading order terms of the Wolfenstein expansion
into account, and shall have to distinguish between the unitarity triangles following from (30) and (33).
Let us first have a closer look at the former relation. Including terms of .0/QØ Ì 7 , we obtain the following
generalization of (34): á / �Ú � � �Û 7 � /  1 7 � /21  �Ú  � �Û 7Hã ÙÜØ ® � .0/QØ à 7 m 3�
 (35)

where �Ú and �Û are as defined in (23). If we divide this relation by the overall normalization factor ÙÜØ ® ,
and introduce ò u ·@ó Ú � � Û � m ¡ 1  Ø �D © 1Øõôôôô

a�q�uaAvQu ôôôô (36)ò w ·Äö /21  Ú 7 � � Û � m 1Ø÷ôôôô
a�wxsaAvQu ôôôô 
 (37)

we arrive at the unitarity triangle illustrated in Fig. 3 (a). It is a straightforward generalization of the
leading-order case described by (34): instead of /<ÚA
^Û 7 , the apex is now simply given by / �ÚA
 �Û 7 [36]. The
two sides

ò u
and

ò w
, as well as the three angles Ç , È and � , will show up at several places throughout

these lectures. Moreover, the relationsa�q�u m Ù�Ø ® ¡ ò u1  Ø �Zø D © � !�¯êù 
 a�wxs m Ù�Ø ® ò w � !�¯êÆ (38)

are also useful for phenomenological applications, since they make the dependences of � and È explicit;
they correspond to the phase convention chosen both in the standard parametrization (12) and in the
generalized Wolfenstein parametrization (21). Finally, if we take also (19) into account, we obtainÊ 5H®×m � U (39)

Let us now turn to (33). Here we arrive at an expression that is more complicated than (35):åMú 1  Ø �D  /21  Ø � 7 Ú  �M/21  Ø � 7 Û%û � ú  1 � ¡ 1D  Ú © Ø �  �QÛ�Ø � û � 	�Ú � �QÛc� æ Ù�Ø ® � .0/QØ à 7 m 3 U
(40)

If we divide again by ÙÜØ ® , we obtain the unitarity triangle sketched in Fig. 3 (b), where the apex is given
by /<ÚA
^Û 7 and not by / �Úc
 �Û 7 . On the other hand, we encounter a tiny angleÊ � · Ø � Û m .0/21Zü 7 (41)
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Fig. 4: Contours in the ýþ – ýÿ plane, allowing us to determine the apex of the UT.

between real axis and basis of the triangle, which satisfies� m � - � Ê � 
 (42)

where � coincides with the corresponding angle in Fig. 3 (a).

Whenever we refer to a ‘unitarity triangle’ (UT) in the following discussion, we mean the one
illustrated in Fig. 3 (a), which is the generic generalization of the leading-order case described by (34).
As we shall see below, the UT is the central target of the experimental tests of the SM description of CP
violation. Interestingly, also the tiny angle Ê � can be probed directly through certain CP-violating effects
that can be explored at hadron colliders, in particular at the LHC.

2.7 Towards an allowed region in the �� – �� plane
It is possible to constrain—and even determine—the apex of the UT in the �Ú – �Û plane with the help of
experimental data. Unfortunately, we do not yet have the theoretical framework available to discuss
in detail how this can actually be done (but this will become obvious in the course of these lectures).
However, it is nevertheless useful to sketch the corresponding procedure—the ‘CKM fits’—already now,
consisting of the following elements:

– The parameter

ò u
introduced in (36), which involves the ratio Ã a�q8u ø aAvQu Ã . It can be determined

experimentally through W � Y « �� and W � [ « �� decay processes. Following these lines, we may fix
a circle in the �Ú – �Û plane that is centred at the origin /{3�
\3 7 and has the radius

ò u
.

– The parameter

ò w
introduced in (37), which involves the ratio Ã aewxs ø a�vHu Ã . It can be determined with

the help of the mass differences ��� s�� � of the mass eigenstates of the neutral
�És

- and
� � -meson

systems. Experimental information on these quantities then allows us to fix another circle in the�Ú – �Û plane, which is centred at /21�
\3 7 and has the radius

ò w
.

– Finally, we may convert the measurement of the observable , , which describes the CP violation in
the neutral kaon system that was discovered in 1964, into a hyperbola in the �Ú – �Û plane.

In Fig. 4, we have illustrated these contours; their intersection allows us to determine the apex of the UT
within the SM. The curves that are implied by ��� s and , depend on the CKM parameter Ù and the
top-quark mass ¿ w , as well as on certain perturbatively calculable QCD corrections and non-perturbative
parameters. Consequently, strong correlations between the theoretical and experimental uncertainties
arise in the CKM fits. As discussed in detail in Ref. [41], several different approaches can be found in
the literature to deal with the corresponding error propagation. The typical (conservative) ranges for the
UT angles that follow from the CKM fits read as follows:� 3�ü
	� Ç�	�­1 ¬ 3�ü�
 D�3�ü
	� È 	 � ¬ 3�ü$
 
�3�ü
	� � 	 � � 3�ü U (43)
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Fig. 5: Illustration of indirect and direct CP violation in ��������� decays.

On the other hand, CP violation in the
�

-meson system provides various strategies to determine
these angles directly, thereby offering different ways to fix the apex of the UT in the �Ú – �Û plane. Following
these lines, a powerful test of the KM mechanism can be performed. This very interesting feature is also
reflected by the tremendous efforts to explore CP violation in

�
decays experimentally in this decade.

Before having a closer look at
�

mesons, their decays, the theoretical tools to deal with them and the
general requirements for having non-vanishing CP asymmetries, let us first turn to the kaon system.

3 A FIRST LOOK AT CP VIOLATION AND RARE DECAYS IN THE KAON SYSTEM

3.1 CP violation: � and ���
As we have already noted, in 1964, CP violation was discovered—as a big surprise—in the famous
experiment by Christenson et al. [1], who observed

(�) � � � � ! decays. If the weak interactions were
invariant under CP transformations, the mass eigenstates

( I and
( )

of the Hamilton operator describing(
�
– �( � mixing were eigenstates of the CP operator, with eigenvalues � 1 and  1 , respectively. Since the� � � ! final state of

( ) ��� � � ! is CP-even, the detection of this transition signals indeed the violation
of the CP symmetry in weak interaction processes. The discussion in this subsection serves mainly to
make a first contact with this phenomenon; for detailed presentations of CP violation in kaon decays, we
refer the reader to Refs. [21], [22], [37].

In the neutral
(

-meson system, CP violation is described by two complex quantities, called , and, - , which are defined by the following ratios of decay amplitudes:Ù�/ (*) �+� � � ! 7Ù�/ ( I �+� � � ! 7��V, � , - 
 Ù�/ (*) �+� � � � 7Ù�/ ( I �+� � � � 7��n,  Dâ, - U (44)

These parameters are associated with ‘indirect’ and ‘direct’ CP violation, as we have illustrated in Fig. 5,
where

( 5 and
( � denote the CP eigenstates of the neutral kaon system with CP eigenvalues � 1 and  1 ,

respectively. The terminology of ‘indirect CP violation’ originates from the fact that the mass eigenstate(*)
of the neutral kaon system is not an eigenstate of the CP operator because of the small admixture

of the CP-even
( 5 state, which may decay—through a CP-conserving transition—into a �6� final state.

On the other hand, direct CP violation originates from direct transitions of the CP-odd
( � state into the

CP-even �6� final state.

After the discovery of indirect CP violation through
(�) �+� � � ! decays, this phenomenon could

also be observed in
( ) � � � � � , ��« �� , � � � ! � modes, and recently in

( ) � � � � ! � � � ! transitions.
All these effects can be described by, m /ED U D Þ 3 � 3 U 3r1 ¬ 7 F �4¯"! ì F 143 !A®�U (45)

As we noted in Subsection 2.7, the knowledge of the CKM parameter Ù and the top-quark mass ¿ w
allows us—in combination with the calculation of perturbative QCD corrections and estimates of non-
perturbative parameters—to convert the observable , into a hyperbola in the �Ú – �Û plane, as is explicitly
shown in Refs. [21], [22], [37]. This analysis implies in particular �Û$# 3 , i.e. that the apex of the UT lies
in the upper half of the �Ú – �Û plane.
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Fig. 6: Decay processes contributing to � � ����, ' ý' in the SM.

Direct CP violation in neutral
( �+�6� decays can be described through the quantity Re /{, - ø , 7 . In

1999, measurements at CERN (NA48) [2] and FNAL (KTeV) [3] have demonstrated—after tremendous
efforts over many years—that this observable is actually different from zero, thereby establishing the
phenomenon of direct CP violation. The experimental status is now given as follows:

Re /{, - ø , 7 m ú /21K; U � �?D U D 7 F 143 ! Ý (NA48 [42]),/ED�3 U � �?D U Þ 7 F 143 ! Ý (KTeV [43]).
(46)

If we take also the previous results of the NA31 and E731 collaborations into account, we obtain the
world average

Re /{, - ø , 7 m /21.- U - ��1 U - 7 F 143 ! Ý U (47)

Within the SM, calculations of Re /{,�- ø , 7 give the same order of magnitude (for an overview of the current
status, see Ref. [44]). However, these analyses are affected by large hadronic uncertainties; the situation
is particularly unfavourable, since Re /{,�- ø , 7 is governed by the competition between two different decay
topologies and suffers from a strong cancellation between them. Consequently, although the measure-
ment of Re /{, - ø , 7 led to the discovery of a new kind of CP violation, this observable does unfortunately
not allow us to perform stringent tests of the KM mechanism of CP violation, unless better techniques to
deal with the hadronic uncertainties are available.

3.2 Rare decays: / 0 1324�2
From a theoretical point of view, the decays

(�) � � � � �� and
( � � � � � �� are very interesting. Since

we shall have a detailed look at them in Subsection 9.3, let us here just sketch their most interesting
features. As can easily be seen, these transitions originate from FCNC processes. Consequently, because
of the GIM mechanism, they receive no contributions at the tree level in the SM. However, they may
be induced through loop processes of the kind shown in Fig. 6, and are therefore strongly suppressed
transitions, which are referred to as ‘rare’ decays. One of the most exciting features of the

( � ��� ��
modes is that they are theoretically very clean. Moreover, it can be shown that the measurement of
the

( ) � � � � �� branching ratio allows us to determine Ã �Û Ã , whereas the one of
( � � � � � �� can be

converted into an ellipse in the �Ú – �Û plane. The intersection of these contours provides an interesting
determination of the UT, where in particular ¥\¦¨§ D È can be extracted with respectable accuracy [45]. We
may hence perform a stringent test of the SM description of CP violation by comparing the UT thus
determined with the ones following from the construction illustrated in Fig. 4 and the studies of CP
violation in the

�
-meson system. In particular, as we shall see in Subsection 6.1,

�:s � À ø65 ( I decays
allow also a clean determination of ¥\¦x§ D È , so that a violation of the SM relation/ ¥�¦x§ D È 787:9:;9 m / ¥\¦x§ D È 78<�=?> (48)

would indicate sources of CP violation lying beyond the SM. Moreover, also the determination of the
angle � of the UT is interesting for the search of NP with

( �+��� �� decays [46], [47].

Unfortunately, the
( � ��� �� branching ratios are extremely small. A recent update of the corre-

sponding calculations within the SM yields the following results [48]:@BA / ( ���+���â� �� 7 m / Þ U 3C�V1 U 1 7 F 143 !65^5 
 @BA / ( ) �+� � � �� 7 m / ¬ U D4� 3 U - 7 F 143 !65^5 
 (49)
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which are in the ballpark of other recent analyses [49], [50]. Interestingly, a third event for the former
channel was very recently observed by the E949 experiment at BNL [51], thereby complementing the
previous observation of the two events by the E787 collaboration [52]. The three observed

( � �+� � � ��
events can be converted into the following branching ratio:@BA / ( ���+���â� �� 7 m /21K; U � �%5H®ED �! ä D F 7 F 143 !65^58U (50)

On the other hand, for the
(�) �+� � � �� channel, only the experimental upper bound@BA / ( ) �+� � � �� 7 �G
 UIH F 143 ! à (51)

is available from the KTeV collaboration [53].

In the presence of NP, the
( � ��� �� branching ratios may differ strongly from the SM expec-

tations given in (49). For instance, in a recent NP analysis [48], [54], which is motivated by certain
puzzling patterns in the

�
-factory data and will be discussed in Subsection 9.4, a spectacular enhance-

ment of the
( ) � � � � �� branching ratio, by one order of magnitude, is found, and the relation in (48)

would in fact be dramatically violated.

Concerning the experimental aspects of the
( � ��� �� modes, we refer the reader to the recent

overview given in Ref. [55]. Let us now move on to the central topic of these lectures, the
�

-meson
system.

4 DECAYS OF J MESONS

The
�

-meson system consists of charged and neutral
�

mesons, which are characterized by the� � 	 Y � W8
 � ! 	 �Y W� �v 	 [ � W¾
 � �v 	 �[6W
and ���s 	 � � W8
 ����s 	 ��CW���� 	 � � W�
 ����� 	 ��"W
valence-quark contents, respectively. The characteristic feature of the neutral

� � ( ���n	��A
��$� ) mesons
is the phenomenon of

�:�� – ����� mixing (the counterpart of
(õ�

– �( � mixing), which will be discussed in
Subsection 5.1. As far as the weak decays of

�
mesons are concerned, we distinguish between leptonic,

semileptonic and non-leptonic transitions.

4.1 Leptonic decays
The simplest

�
-meson decay class is given by leptonic decays of the kind

� ! � « �� , as illustrated
in Fig. 7. If we evaluate the corresponding Feynman diagram, we arrive at the following transition
amplitude: KML ¯ m  � ��Þ a�q�u á �Y�N � Å /21  � Ì 78O:98ã� �4� �

Dirac spinors

å � Å�ÆP �  � �Q æ R 3 Ã �Y � Æ /21  � Ì 7 W Ã � !TS� �K� �
hadronic ME


 (52)

where �$� is the =CB:/ED 7O) gauge coupling,
aAq�u

the corresponding element of the CKM matrix, Ç and È are
Lorentz indices, and � Q denotes the mass of the S gauge boson. Since the four-momentum

P
that is

carried by the S satisfies
P � m � �UWV � �Q , we may write� Å�ÆP �  � �Q  �  � Å�Æ� �Q ·  X ÞZYC[� D � ���\ � Å�Æ 
 (53)
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Fig. 7: Feynman diagram contributing to the leptonic decay `�ab� + ý' .
where

Y [
is Fermi’s constant. Consequently, we may ‘integrate out’ the S boson in (52), which yieldsKcL ¯ m Y [� D a�q�u á �Y�N � Å /21  � Ì 78Od9Zã R 3 Ã �Y � Å /21  � Ì 7 W Ã � ! S U (54)

In this simple expression, all the hadronic physics is encoded in the hadronic matrix elementR 3 Ã �Y � Å /21  � Ì 7 W Ã � ! S 

i.e. there are no other strong-interaction (QCD) effects. Since the

� ! meson is a pseudoscalar particle,
we have R 3 Ã Y � Å W Ã � ! S m 3�
 (55)

and may write R 3 Ã �Y � Å � Ì W Ã � ! /{� 7 S m �8e U � Å 
 (56)

where e U is the
�

-meson decay constant, which is an important input for phenomenological studies. In
order to determine this quantity, which is a very challenging task, non-perturbative techniques, such as
lattice [56] or QCD sum-rule analyses [57], are required. If we use (54) with (55) and (56), and perform
the corresponding phase-space integrations, we obtain the following decay rate:f / � !#� « �� 7 m Y �[Þ � Ã arq�u Ã � � U ¿ �N ¡ 1  ¿ �N� �U © � e �U 
 (57)

where � U and ¿bN denote the masses of the
� ! and « , respectively. Because of the tiny value ofÃ a�q�u ÃZg Ø ® and a helicity-suppression mechanism, we obtain unfortunately very small branching ratios of.0/2143 !65 �87 and .0/2143 ! à 7 for « m � and « mih , respectively [58]. The helicity suppression is not effective

for « mkj , but—because of the required j reconstruction—these modes are also very challenging from
an experimental point of view. A measurement of leptonic

�
-meson decays would nevertheless be

very interesting, as it would allow an experimental determination of e U , thereby providing tests of non-
perturbative calculations of this important parameter.1 The CKM element Ã aAq8u Ã can be extracted from
semileptonic

�
decays, our next topic.

4.2 Semileptonic decays
4.2.1 General structure

Semileptonic
�

-meson decays of the kind shown in Fig. 8 have a structure that is more complicated than
the one of the leptonic transitions. If we evaluate the corresponding Feynman diagram for the W � [

1Leptonic decays of l4monqp mesons allow the extraction of the corresponding decay constants rEsutwvyx , which are defined in
analogy to (56). These measurements are an important element of the CLEO-c research programme [59].
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Fig. 8: Feynman diagram contributing to semileptonic ý`~,� �����?���u�T� + ý' decays.

case, we obtain KcL ¯ m  � ��Þ a�vQu á �YuN � Å /21  � Ì 78O 9 ã� �K� �
Dirac spinors

å � Å�ÆP �  � �Q æ R R � Ã �[ � Æ /21  � Ì 7 W Ã �� �s S� �K� �
hadronic ME

U (58)

Because of
P � 	 � �UGV � �Q , we may again—as in (52)—integrate out the S boson with the help of

(53), which yields KcL ¯ m YC[� D aAvQu á �Y�N � Å /21  � Ì 78O 9 ã R R � Ã �[ � Å /21  � Ì 7 W Ã �� �s S 
 (59)

where all the hadronic physics is encoded in the hadronic matrix elementR R � Ã �[ � Å /21  � Ì 7 W Ã �� �s S 

i.e. there are no other strong-interaction (QCD) effects. Since the ����s and

R � are pseudoscalar mesons,
we have R R � Ã �[ � Å � Ì W Ã �� �s S m 3�
 (60)

and may writeR R � / P 7 Ã �[ � Å W Ã �� �s /�� 7 S m�� 5 /{� � 7 å /�� � P 7 Å  ¡ � �U  � �d� � © � Å æ � � � /{� � 7 ¡ � �U  � �d� � © � Å 
 (61)

where � · �  P , and the �C5 � � /{� � 7 denote the form factors of the �� � R
transitions. Consequently,

in contrast to the simple case of the leptonic transitions, semileptonic decays involve two hadronic form
factors instead of the decay constant e U . In order to calculate these parameters, which depend on the
momentum transfer � , again non-perturbative techniques (lattice, QCD sum rules, etc.) are required.

4.2.2 Aspects of the heavy-quark effective theory

If the mass ¿�� of a quark � is much larger than the QCD scale parameter �4� &��Jm .0/2143$3 MeV
7
, it

is referred to as a ‘heavy’ quark. Since the bottom and charm quarks have masses at the level of 
 GeV
and 1 GeV, respectively, they belong to this important category. As far as the extremely heavy top quark,
with ¿ w 	 1 � 3 GeV is concerned, it decays unfortunately through weak interactions before a hadron can
be formed. Let us now consider a heavy quark that is bound inside a hadron, i.e. a bottom or a charm
quark. The heavy quark then moves almost with the hadron’s four velocity

O
and is almost on-shell, so

that � � � m ¿�� O � � P � 
 (62)

where
O � m 1 and

P V ¿�� is the ‘residual’ momentum. Owing to the interactions of the heavy
quark with the light degrees of freedom of the hadron, the residual momentum may only change by� P 	 �B� &�� , and � O � 3 for �3� &�� ø ¿�� � 3 .
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It is now instructive to have a look at the elastic scattering process �� / O�7 � �� / O - 7 in the limit of�B� &�� ø ¿ u � 3 , which is characterized by the following matrix element:1� U R �� / O - 7 Ã � W���� � Å W � Ã �� / Or7 S m ��/ O - } Or7 / O � O - 7 Å U (63)

Since the contraction of this matrix element with / O  O - 7 Å has to vanish because of Â O W � m W � andW���� ÂO - m W���� , no / O  O - 7 Å term arises in the parametrization in (63). On the other hand, the 1 ø � U factor
is related to the normalization of states, i.e. the right-hand side of¡ 1� � U R �� /�� - 7 Ã © ¡ Ã �� /�� 7 S 1� � U © m D O � /ED � 7 ® Ê ® /���  �� 7 (64)

does not depend on � U . Finally, current conservation implies the following normalization condition:��/ O - } O m 1 7 m 1�
 (65)

where the ‘Isgur–Wise’ function ��/ O - } O�7 does not depend on the flavour of the heavy quark (heavy-quark
symmetry) [60]. Consequently, for �
� &�� ø ¿ u�� v � 3 , we may write1� � d � U R R / O - 7 Ã �[E��� � Å W � Ã �� / O�7 S m �r/ O - } O�7 / O � O - 7 Å 
 (66)

and observe that this transition amplitude is governed—in the heavy-quark limit—by one hadronic form
factor ��/ O - } O�7 , which satisfies ��/21 7 m 1 . If we now compare (66) with (61), we obtain�Ð5 /{� � 7 m � d � � UD � � d � U ��/y� 7 (67)� � /{� � 7 m D � � d � U� d � � U å 1 � �D æ ��/y� 7 
 (68)

with � · O d } O U m � �d � � �U  � �Dd� d � U U (69)

Similar relations hold also for the �� � R f
form factors because of the heavy-quark spin symmetry,

since the
R f

is related to the
R

by a rotation of the heavy-quark spin. A detailed discussion of these
interesting features and the associated ‘heavy-quark effective theory’ (HQET) is beyond the scope of
these lectures. For a detailed overview, we refer the reader to Ref. [61], where also a comprehensive list
of the original references can be found. For a more phenomenological discussion, also Ref. [17] is very
useful.

4.2.3 Applications

An important application of the formalism sketched above is the extraction of the CKM element Ã a"vQu Ã .
To this end, �� � R f « �� decays are particularly promising. The corresponding rate can be written as� f� � m Y �[ ( /q� U 
�� d�� 
"� 7 � /y� 7 � Ã a�vQu Ã � 
 (70)

where
( /q� U 
�� d�� 
"� 7 is a known kinematic function, and � /y� 7 agrees with the Isgur–Wise function,

up to perturbative QCD corrections and �
� &�� ø ¿ u�� v terms. The form factor � /y� 7 is a non-perturbative
quantity. However, it satisfies the following normalization condition:� /21 7 m Û ñ /EÇ � 7 å 1 � 3¿ v � 3¿ u � .0/�� � � &�� ø ¿ �u�� v 7 æ 
 (71)
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where Û ñ /EÇ � 7 is a perturbatively calculable short-distance QCD factor, and the � � &u� ø ¿ u�� v corrections
vanish [61, 62]. The important latter feature is an implication of Luke’s theorem [63]. Consequently, if
we extract � /y� 7 Ã aAvHu Ã from a measurement of (70) as a function of � and extrapolate to the ‘zero-recoil
point’ � m 1 (where the rate vanishes), we may determine Ã a6vQu Ã . In the case of �� � R « �� decays,
we have .0/��B� &�� ø ¿ u�� v�7 corrections to the corresponding rate

� f ø � � at � m 1 . In order to determineÃ aAvQu Ã , inclusive
� ��� v « �� decays also offer very attractive avenues. As becomes obvious from (25) and

the considerations in Subsection 2.6, Ã aevHu Ã fixes the normalization of the UT. Moreover, this quantity is
an important input parameter for various theoretical calculations. Its current experimental status can be
summarized as follows:Ã aAvQu Ã$m 3 U 3�; F á 1 � 3 U 3Z
 ã Ô Ù m 3 U Þ ¬ F á 1^�?3 U 3Z
 ã U (72)

Let us now turn to �� �+��« �� 
^Ú « �� decays, which originate from W � Y « �� quark-level processes, as
can be seen in Fig. 8, and provide access to Ã a�q�u Ã . If we complement this CKM matrix element with Ã a6vQu Ã ,
we may determine the side

ò u
of the UT with the help of (36). The determination of Ã aeq�u Ã is hence a very

important aspect of flavour physics. Since the � and Ú are ‘light’ mesons, the HQET symmetry relations
cannot be applied to the �� � ��« �� 
^Ú « �� modes. Consequently, in order to determine Ã a�q8u Ã from these
exclusive channels, the corresponding heavy-to-light form factors have to be described by models. An
important alternative is provided by inclusive decays. The corresponding decay rate takes the following
form: f /e�� ��� q « �� 7 m Y �[ Ã a�q�u Ã �1 H D � ® ¿ Ìu å 1  D U ;�1 Ç �� � Ø 5  H Ø �D¾¿ �u � U4U4U æ 
 (73)

where Ø 5 and Ø � are non-perturbative parameters, which describe the hadronic matrix elements of cer-
tain ‘kinetic’ and ‘chromomagnetic’ operators appearing within the framework of the HQET. Using the
heavy-quark expansions� U m ¿ u � ��  Ø 5 � ¬ Ø �D¾¿ u � U4U4U 
 � U � m ¿ u � ��  Ø 5  Ø �D¾¿ u � U4U4U (74)

for the
� � f � -meson masses, where �� 	 �B� &�� is another non-perturbative parameter that is related to the

light degrees of freedom, the parameter Ø � can be determined from the measured values of the � U m � p .
The strong dependence of (73) on ¿ u is a significant source of uncertainty. On the other hand, the1 ø ¿ �u corrections can be better controlled than in the exclusive case (71), where we have, moreover,
to deal with 1 ø ¿ �v corrections. From an experimental point of view, we have to struggle with large
backgrounds, which originate from W � [ « �� processes and require also a model-dependent treatment.
The determination of Ã acq�u Ã from exclusive and inclusive

�
-meson decays caused by W � Y « �� quark-level

processes is therefore a very challenging issue; a summary of the current status is given byÃ a�q�u Ã�m 3 U 3$3 ¬ � F á 1¡� 3 U 1.
 ã U (75)

If we now insert (75) and (72) into (36) and use Ø m 3 U D$D , we obtainò u m 3 U ;�1B� 3 U 3 � U (76)

For a much more detailed discussion of the determinations of Ã a�vQu Ã and Ã a�q�u Ã , addressing also the
various interesting recent developments and future prospects, we refer the reader to Ref. [41], where the
references to the vast original literature can also be found. Another excellent presentation is given in
Ref. [17].

4.3 Non-leptonic decays
4.3.1 Classification

The most complicated
�

decays are the non-leptonic transitions, which are mediated by W � � 5 �� � � /E� 7
quark-level processes, with � 5 
\� � � 	ZY 
\�A
\[8
���� . There are two kinds of topologies contributing to such
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Fig. 9: Tree diagrams ( £ ¤�¦ £�¥B§©¨Eª ¦�«­¬ ).
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Fig. 11: Electroweak penguin diagrams ( £�¤ ¯ £ ¥ §b¨Eª ¦ % ¦�«�¦ ( ¬ ).
decays: tree-diagram-like and ‘penguin’ topologies. The latter consist of gluonic (QCD) and electroweak
(EW) penguins. In Figs. 9–11, the corresponding leading-order Feynman diagrams are shown. Depend-
ing on the flavour content of their final states, we may classify W � � 5 �� � � /E� 7 decays as follows:

– � 5 Âm � � �
	ZY 
\[8� : only tree diagrams contribute.
– � 5 m � � �
	ZY 
\[8� : tree and penguin diagrams contribute.
– � 5_m � � �
	���
���� : only penguin diagrams contribute.

4.3.2 Low-energy effective Hamiltonians

In order to analyse non-leptonic
�

decays theoretically, one uses low-energy effective Hamiltonians,
which are calculated by making use of the ‘operator product expansion’, yielding transition matrix ele-
ments of the following structure:R e Ã ´ Nqµ Ã � S m YC[� D Ø &�k6l·¶d¸º¹ ¸ / h 7 R e Ã � ¸ / h 7 Ã � S U (77)

The technique of the operator product expansion allows us to separate the short-distance contributions
to this transition amplitude from the long-distance ones, which are described by perturbative quantities¹ ¸ / h 7 (‘Wilson coefficient functions’) and non-perturbative quantities

R e Ã � ¸ / h 7 Ã � S (‘hadronic matrix
elements’), respectively. As before,

Y [
is the Fermi constant, whereas Ø &�k6l is a CKM factor and h

denotes an appropriate renormalization scale. The � ¸ are local operators, which are generated by elec-
troweak interactions and QCD, and govern ‘effectively’ the decay in question. The Wilson coefficients¹ ¸ / h 7 can be considered as scale-dependent couplings related to the vertices described by the � ¸ .

In order to illustrate this rather abstract formalism, let us consider the decay ����s � R � ( ! , which
allows a transparent discussion of the evaluation of the corresponding low-energy effective Hamilto-
nian. Since this transition originates from a W � [ �Y6� quark-level process, it is—as we have seen in our
classification in Subsection 4.3.1—a pure ‘tree’ decay, i.e. we do not have to deal with penguin topolo-
gies, which simplifies the analysis considerably. The leading-order Feynman diagram contributing to����s � R � ( ! can straightforwardly be obtained from Fig. 8 by substituting « and � by � and Y , respec-
tively. Consequently, the lepton current is simply replaced by a quark current, which will have important
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implications shown below. Evaluating the corresponding Feynman diagram yields � ��Þ a fq � a�vHu á �� � 9 /21  � Ì 7 Y ã å � 9 �P �  � �Q æ á �[ ��� /21  � Ì 7 W ã U (78)

Because of
P � 	 ¿ �u V � �Q , we may—as in (58)—‘integrate out’ the S boson with the help of (53),

and arrive at ´ Nqµ m Y [� D a fq � aAvQu á �� Å � � /21  � Ì 7 Y Å ã á �[ Æ � � /21  � Ì 7 W Æ ãm YC[� D a fq � aAvQu / �� Å Y Å 7 V–A / �[ Æ W Æ 7 V–A · Y [� D a fq � aAvQu¼» � 
 (79)

where Ç and È denote the colour indices of the =_B�/ ¬ 7 & gauge group of QCD. Effectively, our W � [ �Y��
decay process is now described by the ‘current–current’ operator

» � .
If we take QCD corrections into account, operator mixing induces a second ‘current–current’

operator, which is given by » 5_· á �� Å � � /21  � Ì 7 Y Æ ã á �[ Æ � � /21  � Ì 7 W Å ã U (80)

Consequently, we obtain a low-energy effective Hamiltonian of the following structure:´ Nqµ m Y [� D a fq � aAvQu á ¹ 5 / h 7"» 5 � ¹ � / h 7"» � ã 
 (81)

where ¹ 5 / h 7 Âm 3 and ¹ � / h 7 Âm 1 are due to QCD renormalization effects [64]. In order to evaluate these
coefficients, we must first calculate the QCD corrections to the decay processes both in the full theory,
i.e. with S exchange, and in the effective theory, where the S is integrated out, and then express the
QCD-corrected transition amplitude in terms of QCD-corrected matrix elements and Wilson coefficients
as in (77). This procedure is called ‘matching’ between the full and the effective theory. The results for
the ¹ ¸ / h 7 thus obtained contain terms of log / h ø � Q 7 , which become large for h m .0/<¿ u�7 , the scale
governing the hadronic matrix elements of the

» ¸
. Making use of the renormalization group, which

exploits the fact that the transition amplitude (77) cannot depend on the chosen renormalization scale h ,
we may sum up the following terms of the Wilson coefficients:Çc½ � åy¾ ¤d¿ ¡ h� Q ©�æ ½ (LO) 
 ÇÀ½ � å�¾ ¤d¿ ¡ h� Q ©�æ ½ !65 (NLO) 
 U±U±UÂÁ (82)

detailed discussions of these rather technical aspects can be found in Refs. [22], [65].

For the exploration of CP violation, the class of non-leptonic
�

decays that receives contributions
both from tree and from penguin topologies plays a key role. In this important case, the operator basis is
much larger than in our example (81), where we considered a pure ‘tree’ decay. If we apply the relationa fqÄÃ a�q�u � a fvqÃ aAvQu � a fwÅÃ arwxu m 3 /yÆ���	���
���� 7 
 (83)

which follows from the unitarity of the CKM matrix, and ‘integrate out’ the top quark (which enters
through the penguin loop processes) and the S boson, we may write´ eff m Y

F� D�ÇÈ ¶µEÉ qd� v a fµ Ã a µ uËÊ �¶¸ É%5 ¹ ¸ / h 7 � µ Ã¸ � 5 �¶¸ Ée® ¹ ¸ / h 7 � Ã ¸�Ì¡ÍÎ U (84)

Here we have introduced another quark-flavour label ¹ �
	ZY%
\[�� , and the � µ Ã¸ can be divided as follows:
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– Current–current operators: � µ Ã5 m / �Æ Å ¹ Æ 7 V–A / �¹ Æ W Å 7 V–A� µ Ã� m / �Æ Å ¹ Å 7 V–A / �¹ Æ W Æ 7 V–A
U (85)

– QCD penguin operators: � Ã ® m / �Æ Å W Å 7 V–A Ï � � / ��¾-Æ �¾-Æ 7 V–A� ÃÝ m / �Æ Å W Æ 7 V–A Ï � � / ��¾-Æ �8-Å 7 V–A� Ã Ì m / �Æ Å W Å 7 V–A Ï � � / ��¾-Æ �¾-Æ 7 V+A� Ã ß m / �Æ Å W Æ 7 V–A Ï � � / ��¾-Æ �8-Å 7 V+A
U (86)

– EW penguin operators (the � � � denote the electrical quark charges):� Ã à m ®� / �Æ Å W Å 7 V–A Ï � � � � �`/ �� -Æ � -Æ 7 V+A� Ã ä m ®� / �Æ Å W Æ 7 V–A Ï � � � � � / �� -Æ � -Å 7 V+A� Ã F m ®� / �Æ Å W Å 7 V–A Ï � � � � �`/ �� -Æ � -Æ 7 V–A� Ã 5 � m ®� / �Æ Å W Æ 7 V–A Ï � � � � �2/ �� -Æ � -Å 7 V–A
U (87)

The current–current, QCD and EW penguin operators are related to the tree, QCD and EW penguin
processes shown in Figs. 9–11. At a renormalization scale h~m .0/<¿ u\7 , the Wilson coefficients of
the current–current operators are ¹ 5 / h 7 m .0/2143 !65 7 and ¹ � / h 7 m .0/21 7 , whereas those of the pen-
guin operators are .0/2143 ! � 7 [22], [65]. Note that penguin topologies with internal charm- and up-quark
exchanges [66] are described in this framework by penguin-like matrix elements of the corresponding
current–current operators [67], and may also have important phenomenological consequences [68], [69].

Since the ratio Ç ø Ç � m .0/2143 ! � 7 of the QED and QCD couplings is very small, we would expect
naı̈vely that EW penguins should play a minor role in comparison with QCD penguins. This would
actually be the case if the top quark was not ‘heavy’. However, since the Wilson coefficient ¹ F increases
strongly with ¿ w , we obtain interesting EW penguin effects in several

�
decays:

� � (ÑÐ
modes are

affected significantly by EW penguins, whereas
� �+� Ð and

� � �+� � Ð transitions are even dominated
by such topologies [70], [71]. EW penguins also have an important impact on the

� �+� ( system [72],
as we shall see in Subsection 7.2.

The low-energy effective Hamiltonians discussed above apply to all
�

decays that are caused by
the same quark-level transition, i.e. they are ‘universal’. Consequently, the differences between the vari-
ous exclusive modes of a given decay class arise within this formalism only through the hadronic matrix
elements of the relevant four-quark operators. Unfortunately, the evaluation of such matrix elements is
associated with large uncertainties and is a very challenging task. In this context, ‘factorization’ is a
widely used concept, which is our next topic.

4.3.3 Factorization of hadronic matrix elements

In order to discuss ‘factorization’, let us consider once more the decay ����s � R � ( ! . Evaluating the
corresponding transition amplitude, we encounter the hadronic matrix elements of the

» 5 � � operators
between the

R ( ! R � Ã final and the Ã �� �s S initial states. If we use the well-known =CB:/{� & 7 colour-algebra
relation K4ÒÅ�Æ K4Òù�° m 1D ¡ Ê Å$° Ê Æ8ù  1� & Ê Å�Æ Ê ù�° © (88)

to rewrite the operator
» 5 , we obtainR ( ! R � Ã ´ N²µ Ã �� �s S m YC[� D a fq � aAvQuuÓ�Ô 5 R ( ! R � Ã / �� Å Y Å 7 V–A / �[ Æ W Æ 7 V–A Ã �� �s S� D ¹ 5 R ( ! R � Ã / �� Å KCÒÅ�Æ Y Æ 7 V–A / �[ ù K4Òù�° W ° 7 V–A Ã �� �s S³Õ 


with Ô 5_m ¹ 5 ø � & � ¹ � 	 1 U (89)
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It is now straightforward to ‘factorize’ the hadronic matrix elements in (89):R ( ! R � Ã / �� Å Y Å 7 V–A / �[ Æ W Æ 7 V–A Ã �� �s S ôô ÖØ×¼ÙqÚm R ( ! Ã á �� Å � � /21  � Ì 7 Y Å ã Ã 3 S R R � Ã á �[ Æ � � /21  � Ì 7 W Æ ã Ã �� �s Sm �8e =�8�4�8�
decay constant

F � � U d �� /q� �= 7� �K� �� � R
form factor

F /q� �U  � �d 7 
� �K� �
kinematical factor

(90)R ( ! R � Ã / �� Å K ÒÅ�Æ Y Æ 7 V–A / �[ ù K Òù�° W ° 7 V–A Ã �� �s S ôô ÖÛ×¼ÙqÚ m 3 U (91)

The quantity
Ô 5 is a phenomenological ‘colour factor’, which governs ‘colour-allowed’ decays; the decay����s � R � ( ! belongs to this category, since the colour indices of the

( ! meson and the ����s – R � system
run independently from each other in the corresponding leading-order diagram. On the other hand, in the
case of ‘colour-suppressed’ modes, for instance ����s ��� � R � , where only one colour index runs through
the whole diagram, we have to deal with the combinationÔ � m ¹ 5 � ¹ � ø � & 	 3 U Dd
 U (92)

The concept of factorizing the hadronic matrix elements of four-quark operators into the product
of hadronic matrix elements of quark currents has a long history [73], and can be justified, for example,
in the large- � & limit [74]. Interesting recent developments are the following:

– ‘QCD factorization’ [75], which is in accordance with the old picture that factorization should
hold for certain decays in the limit of ¿ u Õ � � &�� [76], provides a formalism to calculate the
relevant amplitudes at the leading order of a �4� &�� ø ¿ u expansion. The resulting expression for
the transition amplitudes incorporates elements both of the naı̈ve factorization approach sketched
above and of the hard-scattering picture. Let us consider a decay �� � � 5 � � , where � 5 picks
up the spectator quark. If � 5 is either a heavy (

R
) or a light ( � ,

(
) meson, and � � a light ( � ,

(
)

meson, QCD factorization gives a transition amplitude of the following structure:Ù�/6�� � � 5 � � 7 m á ‘naı̈ve factorization’
ã F á 1 � .0/EÇ � 7 � .0/��B� &�� ø ¿ u�7Hã U (93)

While the .0/EÇ � 7 terms, i.e. the radiative non-factorizable corrections, can be calculated systemat-
ically, the main limitation of the theoretical accuracy originates from the .0/�� � &�� ø ¿ u\7 terms.

– Another QCD approach to deal with non-leptonic
�

-meson decays — PQCD, the ‘perturbative
hard-scattering approach’ — was developed independently in Ref. [77], and differs from the QCD
factorization formalism in some technical aspects.

– A very useful technique for ‘factorization proofs’ is provided by the framework of the ‘soft collinear
effective theory’ (SCET) [78].

– Non-leptonic
�

decays can also be studied within QCD light-cone sum-rule approaches [79].

A detailed presentation of these topics would be very technical and is beyond the scope of these lec-
tures. However, for the discussion of the CP-violating effects in the

�
-meson system, we must only

be familiar with the general structure of the non-leptonic
�

decay amplitudes and not enter the details
of the techniques to deal with the corresponding hadronic matrix elements. Let us finally note that the�

-factory data will eventually decide how well factorization and the new concepts sketched above are
actually working. For example, recent data on the

� � �6� system point towards large non-factorizable
corrections [48], [54], to which we shall return in Subsection 6.2.2.

4.4 Towards studies of CP violation
As we have seen above, leptonic and semileptonic

�
-meson decays involve only a single weak (CKM)

amplitude. On the other hand, the structure of non-leptonic transitions is considerably more complicated.
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However, because of the unitarity of the CKM matrix, which implies the relation in (83), we may write
the amplitude of any non-leptonic

�
-meson decay within the SM in such a manner that we encounter at

most two contributions with different CKM factors (we shall encounter explicit examples below):Ù�/ �� � �e 7 m � ��¯x½�² Ã Ù 5�Ã � ¯±°2² � � ��¯x½ í Ã Ù � Ã � ¯±° í (94)Ù�/ � � e 7 m � !�¯x½�² Ã Ù 5�Ã � ¯±°2² � � !�¯x½ í Ã Ù � Ã � ¯±° í U (95)

Here the Ü 5 � � denote CP-violating weak phases, which are introduced by the elements of the CKM
matrix, whereas the Ã Ù 5 � � Ã � ¯´° ²qÝ í are CP-conserving ‘strong’ amplitudes, which contain the whole hadron
dynamics of the decay at hand:Ã Ù Ã �Z¯±° 	 ¶d¸ ¹ ¸ / h 7� �K� �

pert. QCD

F R �e Ã � ¸ / h 7 Ã �� S� �4� �
non-pert. QCD

U (96)

If we use (94) and (95), it is an easy exercise to calculate the following CP-violating rate asymmetry:Þ &�Á · f / � � e 7  f /e�� � �e 7f / � � e 7 � f /e�� � �e 7 m Ã Ù�/ � � e 7 Ã �  Ã Ù�/��� � �e 7 Ã �Ã Ù�/ � � e 7 Ã � � Ã Ù�/��� � �e 7 Ã �m D Ã Ù 5�Ã±Ã Ù � Ã ¥\¦x§ / Ê 5  Ê � 7 ¥\¦x§ /²Ü 5  Ü � 7Ã Ù 5 Ã � � D Ã Ù 5 Ã±Ã Ù � Ã £K¤�¥ / Ê 5  Ê � 7 £K¤�¥ /²Ü 5  Ü � 7 � Ã Ù � Ã � U (97)

Consequently, a non-vanishing CP asymmetry
Þ &rÁ arises from the interference effects between the two

weak amplitudes, and requires both a non-trivial weak phase difference Ü 5  Ü � and a non-trivial strong
phase difference Ê 5  Ê � . This kind of CP violation is referred to as ‘direct’ CP violation, as it originates
directly at the amplitude level of the considered decay. It is the

�
-meson counterpart of the effects that

are probed through Re /{, - ø , 7 in the neutral kaon system.2 Since Ü 5  Ü � is in general given by one
of the angles of the UT—usually � —the goal is to determine this quantity from the measured value ofÞ &�Á . Unfortunately, the extraction of Ü 5  Ü � from

Þ &�Á is affected by hadronic uncertainties, which
are related to the poorly known hadronic matrix elements entering the expression (96) for the strong
amplitudes Ã Ù 5 � � Ã � ¯±° ²qÝ í . In order to deal with this problem, we may, in principle, proceed along one of
the following three main avenues:

i) The most obvious one—but also the most challenging—is to try to calculate the relevant hadronic
matrix elements

R �e Ã � ¸ / h 7 Ã �� S . As we have noted above, interesting progress has recently been
made in this direction through the development of the QCD factorization, PQCD, SCET and QCD
light-cone sum-rule approaches.

ii) We may search for fortunate cases, where relations between various decay amplitudes allow us
to eliminate the poorly known hadronic matrix elements. As we shall see, this avenue offers in
particular determinations of the UT angle � : we distinguish between exact relations, which are
provided by pure ‘tree’ decays of the kind

� � ( R
or
� v � R � R , and relations, which follow

from the flavour symmetries of strong interactions, involving
� � � � �+�6� 
 � ( 
 ( ( transitions.

iii) Finally, we may exploit the fact that in decays of neutral
� � mesons ( � ��	���
���� ) interference

effects between
� �� – �� �� mixing and decay processes may yield another kind of CP violation,

‘mixing-induced CP violation’. In certain cases, the hadronic matrix elements cancel in such
CP asymmeties.

In the remainder of these lectures, we shall not consider (i) further. For the exploration of CP violation
and the testing of the KM mechanism, the theoretical input related to strong-interaction physics should
obviously be reduced as much as possible. In contrast to (i), this feature is present in (ii) and (iii),

2In order to calculate this quantity, an appropriate low-energy effective Hamiltonian having the same structure as (84)
is used. The large theoretical uncertainties mentioned in Subsection 3.1 originate from a strong cancellation between the
contributions of the QCD and EW penguins (caused by the large top-quark mass) and the associated hadronic matrix elements.
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which provide—as a by-product—also important insights into hadron dynamics. In particular, we may
extract various hadronic parameters from the data that can be calculated with the help of the theoretical
frameworks listed in (i), thereby allowing us to test them through a confrontation with nature. Since
neutral

� � mesons are a key element in this programme, offering also attractive connections between (ii)
and (iii), let us next have a closer look at their most important features.

5 FEATURES OF NEUTRAL J$ßZàwá MESONS

5.1 J�âßZàwá – �J�âßZàwá mixing

Within the SM,
�:�� – ����� mixing ( � �õ	���
���� ) arises from the box diagrams shown in Fig. 12. Because of

this phenomenon, an initially, i.e. at time ] m 3 , present
� �� -meson state evolves into a time-dependent

linear combination of
�*�� and ����� states:Ã � � /<] 7 S m Ô /<] 7 Ã � �� S � W¾/<] 7 Ã �� �� S 
 (98)

where
Ô /<] 7 and W�/<] 7 are governed by a Schrödinger equation of the following form:� �� ] ¡ Ô /<] 7W�/<] 7 © m�ã } ¡ Ô /<] 7W�/<] 7 © ·åä X � � � �� � � � �5 ��@� � � f5 � �Ä� � �� \� �K� �

mass matrix

 �D X f � � �� f � � �5 �f � � � f5 � f � � �� \� �K� �
decay matrix

æ } ¡ Ô /<] 7W�/<] 7 © U
The special form ãª5^5 mçã �^� of the Hamiltonian ã is an implication of the CPT theorem, i.e. of the
invariance under combined CP and time-reversal (T) transformations.£ ) ¢

¢ ) £ª ¦8«�¦ & ª ¦�«�¦ & £ ¢
¢ £

ª ¦8«.¦ &
ª ¦8«.¦ &) )

Fig. 12: Box diagrams contributing to `4,è – ý`~,è mixing in the SM ( £4§©¨ % ¦ ( ¬ ).
5.1.1 Solution of the Schrödinger equation

It is straightforward to calculate the eigenstates Ã � � � �é S and eigenvalues Ø�� � �é of (99):Ã � � � �é S m 1ó 1 � Ã Ç � Ã � � Ã � �� S �?Ç � Ã �� �� S � (99)

Ø � � �é m ¡ � � � ��  �D f � � �� © � ¡ � � � �5 �  �D f � � �5 � © Ç � 
 (100)

where Ç � � ��¯¼ê¼ë moì³pí ² í � ½ � 7�î m ïðððñ ; Ã � � � �5 � Ã � � !�¯ � °�ë moì³pò?ó8í � Ã f � � �5 � Ã �; Ã � � � �5 � Ã � � Ã f � � �5 � Ã �  ; Ã � � � �5 � Ã±Ã f � � �5 � Ã ¥\¦x§ËÊ:ô � � �õ�ö�÷ U (101)

Here we have written�Ä� � �5 � · � ¯�ë m ì³pò ² í Ã �@� � �5 � Ã 
 f � � �5 � · � ¯�ë moì³pí ² í Ã f � � �5 � Ã 
 Ê:ô � � �õ�ö�÷ · ô � � �õ ² í  ô � � �÷ ² í 
 (102)

and have introduced the quantity ø%-e�
	�3�
Z1¾� to parametrize the sign of the square root in (101).
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Evaluating the dispersive parts of the box diagrams shown in Fig 12, which are dominated by
internal top-quark exchanges, yields (for a more detailed discussion, see [21]):� � � �5 � m Y �[ � �Q1ZD � � Û U � U ì j� U ì e �U ì � a fw � a�wxu � � = � /yù w 7 �4¯ � 7 !ûú CP � U ì � �^
 (103)

where Û U m 3 U 
d
ü� 3 U 3r1 is a perturbative QCD correction [80],3 the non-perturbative ‘bag’ parameterj� U ì is related to the hadronic matrix element
R �� �� Ã / � WK� 7³ý !uþ / � WM� 7³ý !uþÓÃ � �� S , and = � /yù w · ¿ �w ø � �Q 7 is one

of the ‘Inami–Lim’ functions [81], describing the dependence on the top-quark mass ¿ w . In the SM, we
may write—to a good approximation—the following expression [82]:= � /yù w 7 m D U ;�3 F Ó ¿ w1.- � GeV

Õ 5"D Ì � U (104)

Finally,
Ð

CP / � � 7 is a convention-dependent phase, which is introduced through the CP transformation/��ÿ� 7 Ã � �� S m � ¯Åú CP � U ì � Ã �� �� S U (105)

If we calculate also the absorptive parts of the box diagrams in Fig 12, we obtainf � � �5 �� � � �5 � �  ¬ �D�= � /yù w 7 ¡ ¿ �u� �Q © m .0/<¿ �u ø ¿ �w 7 V 1 U (106)

Consequently, we may expand (101) in
f � � �5 � ø �@� � �5 � . Neglecting second-order terms, we arrive atÇ � m ä 1 � 1D ôôôôô
f � � �5 �� � � �5 � ôôôôô ¥\¦x§ËÊ:ô � � �õ�ö�÷

æ � !�¯"ê8ë moì³pò ² í � ½ � 76î U (107)

The deviation of Ã Ç � Ã from 1 measures CP violation in
� �� – ����� oscillations, and can be probed

through the following ‘wrong-charge’ lepton asymmetries:Þ � � �SL · f / � �� /<] 7 � « ! ���� 7  f / �� �� /<] 7 � « � ��� 7f / � �� /<] 7 � « ! ���� 7 � f / �� �� /<] 7 � « � ��� 7 m Ã Ç � Ã Ý  1Ã Ç � Ã Ý � 1 � ôôôôô
f � � �5 ��Ä� � �5 � ôôôôô ¥\¦¨§ËÊ�ô � � �õ�ö�÷ U (108)

Because of Ã f � � �5 � Ã ø Ã � � � �5 � Ã g ¿ �u ø ¿ �w and ¥\¦x§�Ê:ô � � �õ�ö�÷ g ¿ �v ø ¿ �u , the asymmetry
Þ � � �SL is suppressed by a

factor of ¿ �v ø ¿ �w m .0/2143 ! Ý 7 and is hence tiny in the SM. However, this observable may be enhanced
through NP effects, thereby representing an interesing probe for physics beyond the SM [83], [84]. The
current experimental constraints for

Þ � � �SL are at the 143 ! � level.

5.1.2 Mixing parameters

Let us denote the masses of the eigenstates of (99) by � � � �� (‘heavy’) and � � � �) (‘light’). It is then useful
to introduce � � · � � � �� � � � � �)D m � � � �� 
 (109)

as well as the mass difference �°� � · � � � ��  � � � �) m D Ã � � � �5 � Ã # 3�
 (110)

3Note that the short-distance parameter ��� does not depend on ���	��

����� , i.e. is the same for ��� and � n mesons.
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which is by definition positive. Using (37) and (103), we find that we may convert the mass difference��� s of the
��s

-meson system into the side

ò w
of the UT with the help of the following expression:ò w m 1 U 143Ù ó Ã = � /yù w 7 Ã ��� s3 U 
�3 � ¥ !65 ÇÈ D ¬ 3�� ���ö j� U � e U � ÍÎ�� 3 U 
d
Û U 
 (111)

where Ù is the usual Wolfenstein parameter. We shall return to this important issue in Subsection 8.1.2.

On the other hand, the decay widths
f � � �� and

f � � �) of the mass eigenstates, which correspond to�Ä� � �� and �Ä� � �) , respectively, satisfy� f � · f � � ��  f � � �) m ; Re
Ó �@� � �5 � f � � � f5 � Õ��� � 
 (112)

whereas f � · f � � �� � f � � �)D m f � � �� U (113)

There is the following interesting relation:� f �f � �  ¬ �D�= � /yù w 7 ¡ ¿ �u� �Q © ù � m  .0/2143 ! � 7 F ù � 
 (114)

where ù � · ��� �f � m ú 3 U �d� 13� 3 U 3r1ZD /{� m � 7.0/ED�3 7 /{� m � 7 (115)

denotes the
���� – ����� ‘mixing parameter’.4 Consequently, we observe that � fâs ø f%s 	 143 ! � is negligibly

small, while � f � ø f � 	 143 !65 may be sizeable. For a discussion of the experimental status of the
� �

mixing parameters, the reader is referred to Refs. [85], [86].

5.1.3 Time-dependent decay rates

The time evolution of initially, i.e. at ] m 3 , pure
� �� - and ����� -meson states is given byÃ � �� /<] 7 S m e � � �� /<] 7 Ã � �� S � Ç � e � � �! /<] 7 Ã �� �� S (116)

and Ã �� �� /<] 7 S m 1Ç � e � � �! /<] 7 Ã � �� S � e � � �� /<] 7 Ã �� �� S 
 (117)

respectively, with e%� � �é /<] 7 m 1D Ó � !�¯ é m ì³p� w � � !�¯ é m ì³p� w Õ U (118)

These time-dependent state vectors allow the calculation of the corresponding transition rates. To this
end, it is useful to introduceÃ � � � �é /<] 7 Ã � m 1; Ó ��! ÷ moì³p� w � ��! ÷ moì³p� w �?D �$! ÷ ì w £K¤�¥ /q��� � ] 7 Õ (119)

� � � �! /<] 7 � � � �� /<] 7 f m 1; Ó � ! ÷ moì³p� w  � ! ÷ moì³p� w � D"� � ! ÷ ì w ¥\¦x§ /q�°� � ] 7 Õ 
 (120)

as well as ��� � �L m � !�¯�ë m ì³pò ² í Ù�/ �� �� � e 7Ù�/ � �� � e 7|
 �>� � �;L m � !�¯Åë moì³pò ² í Ù�/ �� �� � �e 7Ù�/ � �� � �e 7 U (121)

4Note that ��� ì� � ì is negative in the SM because of the minus sign in (114).
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Looking at (103), we find ô � � �õ ² í m � � D arg / a fw � a�wxu�7  Ð CP / � � 7 
 (122)

and observe that this phase depends on the chosen CKM and CP phase conventions specified in (9) and
(105), respectively. However, these dependences are cancelled through the amplitude ratios in (121),
so that � � � �L and � � � �;L are convention-independent observables. Whereas ø - enters the functions in (118)
through (100), the dependence on this parameter is cancelled in (119) and (120) through the introduction
of the positive mass difference ��� � [see (110)]. Combining the formulae listed above, we eventually
arrive at the following transition rates for decays of initially, i.e. at ] m 3 , present

� �� or �� �� mesons:f / (–)� �� /<] 7 � e 7 m Ó Ã � � � �! /<] 7 Ã � � Ã � � � �L Ã � Ã � � � �é /<] 7 Ã �  D Re "�� � � �L � � � �é /<] 7 � � � �! /<] 7 f$# Õ&%f L 
 (123)

where the time-independent rate %f L corresponds to the ‘ unevolved’ decay amplitude Ù�/ � �� � e 7 , and
can be calculated by performing the usual phase-space integrations. The rates into the CP-conjugate final
state �e can straightforwardly be obtained from (123) by making the substitutions%f L � %f ;L 
 � � � �L � � � � �;L U (124)

5.2 CP asymmetries
A particularly simple—but also very interesting—situation arises if we restrict ourselves to decays of
neutral

� � mesons into final states e that are eigenstates of the CP operator, i.e. satisfy the relation/���� 7 Ã e S m � Ã e S U (125)

Consequently, we have � � � �L m � � � �;L in this case, as can be seen in (121). Using the decay rates in (123),
we find that the corresponding time-dependent CP asymmetry is given byÞ &�Á /<] 7 · f / � �� /<] 7 � e 7  f / �� �� /<] 7 � e 7f / � �� /<] 7 � e 7 � f / �� �� /<] 7 � e 7m å Þ »('*)&�Á / � � � e 7 £K¤�¥ /q��� � ] 7 � Þ P ' +&�Á / � � � e 7 ¥\¦¨§ /q��� � ] 7£K¤�¥�, /q� f � ] ø D 7  Þ ç ÷ / � � � e 7 ¥\¦x§-, /q� f � ] ø D 7 æ 
 (126)

with Þ dir
CP / � � � e 7 · 1  ôô � � � �L ôô �1 � ôô � � � �L ôô � 


Þ mix
CP / � � � e 7 · D Im � � � �L1 � ôô � � � �L ôô �

U (127)

Because of the relation Þ dir
CP / � � � e 7 m Ã Ù�/ ���� � e 7 Ã �  Ã Ù�/6����� � �e 7 Ã �Ã Ù�/ � �� � e 7 Ã � � Ã Ù�/6�� �� � �e 7 Ã � 
 (128)

this observable measures the direct CP violation in the decay
� � � e , which originates from the inter-

ference between different weak amplitudes, as we have seen in (97). On the other hand, the interesting
new aspect of (126) is due to

Þ mix
CP / � � � e 7 , which originates from interference effects between

� �� – �����
mixing and decay processes, and describes ‘mixing-induced’ CP violation. Finally, the width difference� f � , which may be sizeable in the

� � -meson system, provides another observable,Þ ç ÷ / � � � e 7 · D Re � � � �L1 � ôô � � � �L ôô � 
 (129)
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which is, however, not independent from
Þ dir

CP / � � � e 7 and
Þ mix

CP / � � � e 7 , satisfyingÓ Þ »('*)&rÁ / � � � e 7 Õ � � Ó Þ P ' +&rÁ / � � � e 7 Õ � � Ó Þ ç ÷ / � � � e 7 Õ � m 1 U (130)

In order to calculate the quantity � � � �L , which contains essentially all the information that is required
for the evaluation of the observables provided by the time-dependent CP asymmetry introduced in (126),
we employ the low-energy effective Hamiltonian (84):Ù�/6�� �� � e 7 m R e Ã ´ eff Ã �� �� Sm Y

F� D�ÇÈ ¶µ�É qd� v a fµ Ã a µ u Ê �¶¸ É%5 ¹ ¸ / h 7 R e Ã � µ Ã¸ / h 7 Ã �� �� S � 5 �¶¸ Ée® ¹ ¸ / h 7 R e Ã � Ã ¸ / h 7 Ã �� �� S Ì ÍÎ U (131)

On the other hand, we also haveÙ�/ � �� � e 7 m R e Ã ´ �eff Ã � �� Sm Y
F� D�ÇÈ ¶µEÉ qd� v a µ Ã a fµ u Ê �¶¸ É%5 ¹ ¸ / h 7 R e Ã � µ Ã �¸ / h 7 Ã � �� S � 5 �¶¸ Ée® ¹ ¸ / h 7 R e Ã � Ã �¸ / h 7 Ã � �� S Ì ÍÎ U (132)

If we now insert the operator /��ÿ� 7 � /���� 7 m j1 both after the
R e Ã and in front of the Ã � �� S , we obtainÙ�/ � �� � e 7 m � � ¯Øú CP � U ì �F Y F� D ÇÈ ¶µEÉ qd� v a µ Ã a fµ u Ê �¶¸ É%5 ¹ ¸ / h 7 R e Ã � µ Ã¸ / h 7 Ã �� �� S � 5 �¶ ¸ Ée® ¹ ¸ / h 7 R e Ã � Ã ¸ / h 7 Ã �� �� S Ì¡ÍÎ 
 (133)

where we have also applied the relation /���� 7 � µ Ã �¸ /��ÿ� 7 � m � µ Ã¸ , and have furthermore taken (105) into
account. Using then (121) and (122), we observe that the phase-convention-dependent quantity

Ð
CP / � � 7

cancels, and finally arrive at

� � � �L m/. � !�¯Åú ì Ç0È Ïµ�É qd� v aÉfµ Ã a µ u R e Ã21 µ Ã Ã ����� SÏµ�É qd� v a µ Ã a fµ u R e Ã21 µ Ã Ã �� �� S Í43Î U (134)

Here we have introduced the abbreviation

1 µ Ã · �¶ ¸ É%5 ¹ ¸ / h 7 � µ Ã¸ � 5 �¶¸ Ée® ¹ ¸ / h 7 � Ã ¸ 
 (135)

and Ð � · D arg / a fw � a�wxu\7 m ú � D È ( � m � ) D Ê � ( � m � ) (136)

(where È and Ê � are the angles in the unitarity triangles illustrated in Fig. 3) is the CP-violating weak
phase introduced by

�*�� – ����� mixing within the SM.

Using the notation of (94) and (95), we may rewrite (134) as follows:��� � �L m5. � !�¯Åú ì å � ��¯x½ ² Ã Ù 5¾Ã � ¯±° ² � � ��¯±½ í Ã Ù � Ã � ¯±° í� !�¯x½ ² Ã Ù 5¾Ã � ¯±° ² � � !�¯±½ í Ã Ù � Ã � ¯±° í æ U (137)
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In analogy to the discussion of direct CP violation in Subsection 4.4, the calculation of � � � �L suffers—in
general—from large hadronic uncertainties. However, if one CKM amplitude plays the dominant role in
the transition

� � � e , we obtain��� � �L m/. � !�¯Øú ì ä � ��¯Øú76 ö � Ã � L Ã � ¯±°�6� !�¯Øú76 ö � Ã � L Ã � ¯±°�6 æ m5. � !�¯ � ú ì !ûú 6 � 
 (138)

and observe that the hadronic matrix element Ã � L Ã � ¯±° 6 cancels in this expression. Since the requirements
for direct CP violation discussed in the context of (97) are no longer satisfied, we have vanishing direct
CP violation in this important special case, i.e.

Þ dir
CP / � � � e 7 m 3 , which is also obvious from (127)

and (138). On the other hand, we still have mixing-induced CP violation. In particular,Þ P ' +&�Á / � � � e 7 m � ¥\¦¨§ Ð (139)

is now governed by the CP-violating weak phase difference
Ð · Ð �  Ð L and is not affected by hadronic

uncertainties. The corresponding time-dependent CP asymmetry then takes the simple formf / ���� /<] 7 � e 7  f /6����� /<] 7 � �e 7f / � �� /<] 7 � e 7 � f / �� �� /<] 7 � �e 7 ôôôôô ç ÷ ì É � m � ¥\¦x§ Ð ¥\¦x§ /q��� � ] 7 
 (140)

and allows an elegant determination of ¥�¦x§ Ð .

Let us next apply the formalism developed above to discuss decays of (neutral)
�

mesons that are
particularly important for the physics programme of the

�
factories.

6 BENCHMARK MODES FOR THE J FACTORIES

6.1 Exploring CP violation through J 0 8�9;: /
6.1.1 Amplitude structure and CP asymmetries

One of the most prominent
�

decays is given by
�És � À ø65 ( I . If we take the CP parities of the

À ø65
and

( I into account,5 and note that these mesons are produced in a < wave with angular momentum= m 1 , we find that the final state of this transition is an eigenstate of the CP operator, with eigenvalue/ � 1 7� �K� �>�ö < F / � 1 7� �K� �=?> F /  1 7 5� �K� �? É%5 m  1 U
As can be seen in Fig. 13,

� �s � À ø65 ( I originates from �W � �[K[ �� quark-level decays, and receives
contributions from tree and penguin topologies (see the classification in Subsection 4.3.1). Consequently,
we may write the decay amplitude as follows [87]:Ù�/ � �s � À ø65 ( I 7 m Ø � � �vA@ Ù v �B � Ù v �ÁDC � Ø � � �q Ù q �Á � Øe� � �w Ù w �Á 
 (141)

where Ù v �B corresponds to the tree process in Fig. 13, and the strong amplitudes Ù � �Á describe the penguin
topologies with internal � -quark exchanges ( ���
	ZY%
\[¾
^]�� 7 , including QCD and EW penguins; the primes
remind us that we are dealing with a � W � �� transition. Finally, theØ � � �� · a �2� a f� u (142)

are CKM factors. If we eliminate now Ø � � �w through (83) and apply the Wolfenstein parametrization, we
straightforwardly arrive at Ù�/ � �s � À ø65 ( I 7 g Ó 1 � Ø � Ô � ¯FE � ¯êù Õ 
 (143)

5Here we neglect the tiny indirect CP violation in the neutral kaon system.
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Fig. 13: Feynman diagrams contributing to `C,� �ZY$[(\ �	] . The dashed lines in the penguin topology represent a
colour-singlet exchange.

where Ô �4¯_^ · ¡ ò u1  Ø � © ä Ù q �Á  Ù w �ÁÙ v �B � Ù v �Á  Ù w �Á æ (144)

is a hadronic parameter that is a measure for the ratio of the
� �s � À ø65 ( I penguin to tree contributions.

Using the results derived in Subsection 5.2, we obtain� � s �<�=?> m � � !�¯Øú � å 1 � Ø � Ô � ¯_^ � !�¯êù1 � Ø � Ô � ¯_^ � ��¯êù æ U (145)

Unfortunately, the parameter
Ô � ¯4^ can only be estimated with large hadronic uncertainties. However,

since it enters (145) in a doubly Cabibbo-suppressed way, its impact on the CP-violating observables is
practically negligible. We can put this statement on a more quantitative basis by making the plausible
assumption that

Ô m .0/ �Ø 7 m .0/{3 U D 7 m .0/QØ 7 , where �Ø is a ‘generic’ expansion parameter. Applying
now (127) yields Þ dir

CP / �Üs � À ø65 ( S
7 m 3 � .0/ Ø ® 7 (146)Þ mix

CP / �Üs � À ø65 ( S
7 m  ¥\¦x§ Ðcs � .0/ Ø ® 7 I lm  ¥\¦¨§ D È � .0/ Ø ® 7 U (147)

These expressions are one of the most important applications of the general features that we discussed in
the context of (138)–(140).

6.1.2 Experimental status and theoretical uncertainties

Looking at (147), we observe that the mixing-induced CP violation in
��s � À ø65 ( S allows us to

determine ¥\¦x§ D È in an essentially clean manner [88]. Because of this feature, this transition is referred
to as the ‘golden’ mode to measure the angle È of the UT. After important first steps by the OPAL, CDF
and ALEPH collaborations, the

�Ts � À ø65 ( I mode (and similar decays) eventually led, in 2001, to the
observation of CP violation in the

�
system [4], [5]. The current status of ¥\¦x§ D È is given as follows:

¥\¦x§ D È
m ú 3 U � ;�1B� 3 U 3Z- � �?3 U 3 ¬$¬ (BaBar [89])3 U � ¬$¬ � 3 U 3Z
 � �?3 U 3�D Þ (Belle [90]),
(148)

yielding the world average ¥\¦x§ D È�m 3 U � ¬ -C�?3 U 3�; H�U (149)

On the other hand, the CKM fits of the UT described in Subsection 2.7 imply the ranges in (43), where
the one for È can be converted into 3 U -�	 � ¥\¦x§ D È 	 � 3 UIH 
 (150)
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Fig. 14: Feynman diagrams contributing to `C,� ���u�M�ÿa .

which agrees well with the direct determination summarized in (149).

As far as the theoretical accuracy of (146) and (147) is concerned, the corrections, which originate
from the penguin contributions and are at most of .0/21ml 7 ,6 are not yet an issue. However, in the era of
the LHC [19], the experimental accuracy will be so tremendous that we have to start to deal with these
terms. A possibility to control them is provided by the

� � � À ø65 ( I channel, which can be combined
with

�Üs � À ø65 ( I through flavour-symmetry relations [87]. Moreover, also the direct CP violation in
the

� � À ø65 ( system allows us to probe such penguin effects [71], where a combined analysis of the
neutral

�Üs � À ø65 ( I and charged
� é � À ø65 ( é modes provides the whole picture [91]; the current�

-factory data for the corresponding direct CP asymmetries are consistent with zero. In a very recent
analysis [92], this issue was also addressed from a more theoretical point of view. The corresponding
estimates lead to tiny corrections at the 143 !A® level, in accordance with the picture developed in Ref. [91].

Although the agreement between (149) and the results of the CKM fits is striking, it should not be
forgotten that NP may—in principle—nevertheless hide in

Þ P ' +&�Á / � s � À ø65 ( I 7 . The point is that the
key quantity is actually

Ðes
, which is fixed through ¥\¦x§ Ðes m 3 U � ¬ -C� 3 U 3�; H up to a twofold ambiguity,ÐAs m /<; � �Ö; 7 üon /21 ¬$¬ ��; 7 ü U (151)

Here the former solution would be in perfect agreement with CKM fits, implying ;�3 ü 	 � D È I lm Ðcs 	 �G-�3 ü ,
whereas the latter would correspond to NP. The two solutions can be distinguished through a measure-
ment of the sign of £K¤�¥ Ð�s : in the case of £K¤�¥ Ð�s m � 3 U � # 3 , we would conclude

Ðes m ; � ü , whereas£K¤�¥ Ðcs m  3 U � � 3 would point towards
Ð�s m 1 ¬$¬ ü , i.e. to NP. There are several strategies on the market

to resolve the twofold ambiguity in the extraction of
Ð s

[93]. Unfortunately, they are rather challenging
from a practical point of view. For instance, in the

� � À ø65 ( system, £K¤�¥ Ð s can be extracted from the
time-dependent angular distribution of the decay products of

��s � À ø65 á � « � « ! ã¨(�f á � � �4( I ã , if the
sign of a hadronic parameter £K¤�¥cÊ involving a strong phase Ê is fixed through factorization [94], [95].

6.2 Exploring CP violation through J 0 131
6.2.1 Amplitude structure and CP asymmetries

Another benchmark mode for the
�

factories is the decay
���s � � � � ! , which is a transition into a CP

eigenstate with eigenvalue � 1 , and originates from �W � �YAYÉ�� quark-level processes, as can be seen in
Fig. 14. In analogy to (141), the decay amplitude can be written in the following form [96]:Ù�/ � �s �+� � � ! 7 m Ø � s �q /{Ù qB � Ù qÁ 7 � Ø � s �v Ù vÁ � Ø � s �w Ù wÁ U (152)

If we use again (83) to eliminate the CKM factor Ø � s �w m a�wxs8aÉfwxu and apply once more the Wolfenstein
parametrization, we obtain Ù�/ � �s �+� � � ! 7 g Ó � ¯êù  � � ¯FE�Õ 
 (153)

6In this case, the penguin topologies would not be suppressed with respect to the tree contributions, i.e. prqtsvuxw�y .
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where the hadronic parameter � �4¯FE · 1ò u å Ù vÁ  Ù wÁÙ qB � Ù qÁ  Ù wÁ æ (154)

is a measure for the ratio of the
�gs � � � � ! penguin to tree amplitudes. The formalism discussed in

Subsection 5.2 then implies � � s �7 � 7 � m  � !�¯Åú � å � !�¯ïù  � � ¯FE� ��¯ïù  � � ¯FE æ U (155)

In contrast to the expression for the
� �s � À ø65 ( I counterpart given in (145), the hadronic parameter� � ¯FE , which suffers from large theoretical uncertainties, does not enter in (155) in a doubly Cabibbo-

suppressed way. This feature is at the basis of the famous ‘penguin problem’ in
�:s � � � � ! , which

was addressed in many papers over the recent years (see, for instance, Refs. [97]– [102]). If we had
negligible penguin contributions in this channel, i.e. � m 3 , the corresponding CP-violating observables
were simply given as follows:Þ »('*)&rÁ / �Üs �+� � � ! 7 m 3 (156)Þ P ' +&�Á / �Üs �+� � � ! 7 m ¥\¦¨§ / ÐAs � D � 7 I lm ¥\¦¨§ /ED È � D �� �K� �� 7 ! � Å 7 m  ¥\¦¨§ D$Ç U (157)

Consequently,
Þ P ' +&�Á / � s � � � � ! 7 would allow us to determine Ç . However, in the general case of� Âm 3 , we obtain formulae with the help of (127) and (155), which are considerably more complicated:Þ »('*)&�Á / �Üs �����%�"! 7 m  å D�� ¥\¦¨§ � ¥\¦x§ �1  D�� £K¤�¥ � £K¤�¥ � � � � æ (158)Þ P ' +&�Á / �Üs �+���"�"! 7 m ¥\¦¨§ / Ðcs � D � 7  D�� £K¤�¥ � ¥�¦x§ / Ðcs � � 7 � � � ¥\¦¨§ Ðcs1  D�� £K¤�¥ � £K¤�¥ � � � � U (159)

We observe that actually the phases
Ð6s

and � enter directly in the
�Ts � � � � ! observables, and not Ç .

Consequently, since
Ðes

can be fixed straightforwardly through the mixing-induced CP violation in the
“golden” mode

��s � À ø65 ( I , as we have seen in (147), we may use
�gs � � � � ! to probe � . This is

advantageous to deal with penguins and possible NP effects.

6.2.2 Experimental status and the ‘
� �+�6� puzzle’

Measurements of the
�Ts �+� � � ! CP asymmetries are already available:Þ »('*)&�Á / � s �+���"�"! 7 m ú  3 U 1 H �?3 U 1 H � 3 U 3Z
 (BaBar [103]) 3 U �d� �?3 U D � � 3 U 3 Þ (Belle [104])

(160)Þ P ' +&�Á / � s �+���"�"! 7 m ú � 3 U ;�3C�?3 U D$D
� 3 U 3 ¬ (BaBar [103])� 1 U D ¬ �?3 U ;�1 � � D � à! � D � ä (Belle [104]).
(161)

Unfortunately, the BaBar and Belle results are not fully consistent with each other, although both ex-
periments point towards the same signs, and the last BaBar update of

Þ P ' +&�Á / � s � � � � ! 7 has moved
towards Belle. In Ref. [86], the Heavy Flavour Averaging Group (HFAG) gave the following averages:Þ »('*)&�Á / � s �+� � � ! 7 m  3 U ¬ Þ �?3 U 1.- (162)Þ P ' +&�Á / � s �+� � � ! 7 m � 3 U 
 Þ �?3 U D�3 U (163)

Direct CP violation at this level would require large penguin contributions with large CP-conserving
strong phases, as is evident from (158). As we will see in Subsection 8.3.3, the CP asymmetries in (162)
and (163) can be converted into the angle � of the UT, with a result around -d
 ü , in remarkable accordance
with the SM picture [48], [105].
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In addition to the decays
�Ts � � � � ! and

� é � � é � � , the
�

factories have recently reported
the observation of the

�Ts ��� � � � channel, with the following CP-averaged branching ratios:

BR / �Üs ��� � � � 7 m ú /ED U 1 ��3 U -C� 3 U ¬ 7 F 143 ! ß (BaBar [106])/21 U � ��3 U -C� 3 U D 7 F 143 ! ß (Belle [107]);
(164)

CP-averaged branching ratios of this kind are generally defined through

BR · 1D�z BR / � � e 7 � BR / �� � �e 7|{ U (165)

These measurements represent quite a challenge for theory. For example, in a recent state-of-the-art cal-
culation within QCD factorization [108], a

�gs �+� � � � branching ratio that is about six times smaller is
favoured, whereas the calculation of

�gs �+� � � ! points towards a branching ratio about two times larger
than the current experimental average. On the other hand, the calculation of

� é � � é � � reproduces
the data rather well. This ‘

� �+�6� puzzle’ is reflected by the following quantities [48], [54]:ò 7�7�%! · D å BR / � é ��� é � � 7
BR / �Üs ��� � � ! 7 æ j U~}�j U � m D U 1ZD4� 3 U ¬ � (166)ò 767�^� · D å BR / �Üs �+� � � �Z7
BR / �Üs �+� � � ! 7 æ m 3 U Þ ¬ � 3 U D ¬ Á (167)

the central values calculated within QCD factorization give

ò 7�7�%! m 1 U D¾; and

ò 7�7�^� m 3 U 3 � [108]. As
was discussed in detail in Refs. [48], [54], the

� � �6� puzzle can straightforwardly be accommodated
within the SM through non-factorizable hadronic interference effects.7 If we useÐcs m /<; � �Ö; 7 ü 
 � m /q-d
C� �$7 ü 
 (168)

as in the SM [41], this analysis allows us to convert the
� � �6� data into certain hadronic parameters.

In particular, we obtain � m 3 U ; Þ � � D ®^Ì! � D �^� 
 � m � /21 ¬ Þ �%5³F! � ® 7 ü 
 (169)

whereas QCD factorization favours � 	 3 U ¬ and � 	 1 Þ 3 ü . Moreover, the CP-violating observables of�Üs �+� � � � can be predicted, with the resultÞ »('*)&rÁ / �Üs �+� � � � 7 m  3 U ;�1 � � D ®^Ì! � D¸5 à 
 Þ P ' +&rÁ / �Üs ��� � � � 7 m  3 U 
d
 � � D Ý ®! � D Ý Ì U (170)

We shall return to
�Ts �+� � � ! in Subsection 8.3, in the context of

� � � ( � ( ! [96].

6.3 Exploring CP violation through J 0 �B/
6.3.1 Amplitude structure and CP asymmetries

Another important mode for the testing of the KM mechanism of CP violation is provided by
�*s � Ðc( I ,

which is—in analogy to
�Ts � À ø65 ( I —a decay into a CP-odd final state. As can be seen in Fig. 15,���s � Ðc( I originates from � W � ��8� �� quark-level processes, i.e. is a pure penguin mode. Consequently,� �s � ÐA( I and its charged counterpart

� � � ÐA( � are governed by QCD penguin topologies [112],
but also EW penguins have a sizeable impact because of the large top-quark mass [70], [113]. Using the
same notation as above, we may write the

� �s � Ðc( I decay amplitude within the SM as follows:Ù�/ � �s � Ðc( I 7 m Ø � � �q %Ù q �Á � Ø � � �v %Ù v �Á � Ø6� � �w %Ù w �Á U (171)

7Similar conclusions were also drawn very recently in Refs. [109], [110]. In Ref. [109], also the phenomenological impli-
cations of bounds on the UT that can be derived from the CP-violating �����/� � � � observables, as pointed out in Ref. [111],
were discussed.
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Fig. 15: Feynman diagrams contributing to ` � ��� � ] .
Applying now once more (83) to eliminate the CKM factor Ø � � �w , we obtainÙ�/ � �s � ÐA( I 7 g z 1 � Ø � W � ¯�ë � ¯êù { 
 (172)

so that ��� s �ú =?> m � � !�¯Øú � å 1 � Ø � W � ¯�ë � !�¯êù1 � Ø � W � ¯�ë � ��¯êù æ 
 (173)

with W � ¯�ë m ¡ ò u1  Ø � © ä %Ù q �Á  %Ù w �Á%Ù v �Á  %Ù w �Á æ U (174)

The theoretical estimates of the hadronic parameter W � ¯�ë suffer from large uncertainties. However, since
this parameter enters (173) in a doubly Cabibbo-suppressed way, we obtain the simple expressionsÞ »('*)&�Á / �Üs � Ðc( I 7 m 3 � .0/QØ � 7 (175)Þ P ' +&�Á / �Üs � Ðc( I 7 m  ¥\¦x§ Ðcs � .0/QØ � 7 
 (176)

where we made the plausible assumption that W m .0/21 7 . On the other hand, the mixing-induced CP
asymmetry of the ‘golden’ mode

�gs � À ø65 ( I measures also  ¥\¦¨§ Ð�s [see (147)]. Consequently, we
arrive at the following relation [71], [114], [115], [116]:Þ P ' +&rÁ / �Üs � ÐA( I 7 m Þ P ' +&rÁ / �Üs � À ø65 ( I 7 � .0/QØ � 7 
 (177)

which offers a very interesting test of the SM description of CP violation. In order to obtain the whole
picture and to search for NP systematically, it is useful to perform a combined analysis of the neutral�Üs � Ðc( I and the charged

� é � Ðc( é
modes [116] (for a recent update, see Ref. [48]).

6.3.2 Experimental status

The experimental status of the CP-violating
�És � Ðc( I observables is given as follows [117]:8Þ »('*)&�Á / �Üs � ÐA( I 7 m ú � 3 U 3r1^� 3 U ¬$¬ � 3 U 143 (BaBar [118])� 3 U 1.

� 3 U D H � 3 U 3 � (Belle [119])

(178)Þ P ' +&�Á / �Üs � Ðc( I 7 m ú  3 U ; � � 3 U ¬ ; � � D � ß! � D � ä (BaBar [118])� 3 UIH -C� 3 U 
�3 � � D¸5^5! � D � F (Belle [119]),
(179)

Since we have, on the other hand,
Þ P ' +&�Á / �Üs � À ø65 ( I 7 m  3 U � ¬ -��V3 U 3�; H , we arrive at a puzzling

situation, which has already stimulated many speculations about NP effects in the decay
�*s � Ðc( I

(see, for instance, Ref. [120]). However, because of the very unsatisfactory current experimental picture,
it seems too early to get too excited by the possibility of having a violation of the SM relation (177).
It will be very interesting to observe how the

�
-factory data will evolve, and to keep also an eye on�Üs � Û�- ( I and other related modes.

8Note that the very recent BaBar update in Ref. [118] uses also �����5��� � to extract the CP asymmetries of � }� ����� } .
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6.4 Manifestations of New Physics
6.4.1 New-Physics effects in

� �s – ����s mixing

As we have seen in Subsection 5.1,
� �s – �� �s mixing originates in the SM from box diagrams, which are

characterized by the Inami–Lim function = � /yù w 7 . Concerning the impact of NP, it may enter
� �s – ����s

mixing through new-particle exchanges in the loop diagrams shown in Fig. 12, or through new FCNC
processes arising at the tree level. The impact on the mixing parameters is twofold:

– The mass difference of the mass eigenstates is generalized as�°� s m ��� I ls � ����� Ás 
 (180)

so that the NP contribution would affect the determination of the UT side

ò w
through (111).

– The CP-violating weak mixing phase is generalized asÐcs m Ð I ls � Ð � Ás m D È � Ð � Ás 
 (181)

so that NP may enter the mixing-induced CP asymmetries through
Ð � Ás .

On the basis of dimensional arguments borrowed from effective field theory (see, for instance, Refs. [47],
[91]), and in specific NP scenarios, the following pattern may—in principle—be possible:���5� Ás ø �°� I ls 	 1�
 Ð � Ás ø Ð I ls 	 1 U (182)

The same is true for the case of
� �� – ����� mixing, which may be significantly affected by NP as well.9

6.4.2 New-Physics effects in decay amplitudes

Another way for NP to manifest itself is through contributions to decay amplitudes. If the decay does not
arise at the tree level in the SM, we may have potentially large NP effects. In particular, NP may enter
through new particles running in the loops, or through new FCNC processes arising at the tree level. An
important example for such decays is given by the

� � Ðc(
system, which is governed by �W � ��8� ��

penguin processes, as we have seen above. On the basis of general dimensional arguments [116], and
in specific NP scenarios [120], significant effects may in fact arise in the

� � ÐA(
amplitudes. The�

-factory data may already indicate the presence of such a kind of NP, although it is too early to draw
definite conclusions on this exciting possibility.

On the other hand, if a transition is dominated by a SM tree contribution, the impact of NP on
the decay amplitude is generally small. An important example of this feature is given by the decay���s � À ø65 ( I , which is governed by the � W � �[4[ �� process, arising at the tree level in the SM. Generic
dimensional arguments then indicate that we may have NP effects at the

� � À ø65 ( amplitude level of
at most .0/2143�l 7 for a NP scale in the TeV regime. In order to search systematically for such effects, it is
useful to perform a combined analysis of the neutral and charged

� � À ø65 ( modes, and to introduce
appropriate observable combinations [91]; the current

�
-factory data do not indicate any anomaly (for

a recent update, see Ref. [48]). Since the determination of
Ð s

from the mixing-induced CP violation in�Üs � À ø65 ( I is very robust under NP, we may use the corresponding experimental result as an input
for other studies of CP violation, as we have noted above.

6.4.3 Back to the status of the
� �s – ����s mixing phase

Ð�s
Let us now briefly come back to the two solutions for

Ð�s
in (151). In this context, it is interesting to note

that an upper bound on
Ðes

is implied by an upper bound on

ò u gÄÃ a�q�u ø a�vHu Ã , as can straightforwardly be
seen in Fig. 4. To be specific, we have ¥�¦x§ È P × + m ò P × +u 
 (183)

9Let us note that also l } – �l } mixing offers an interesting probe to search for NP. Within the SM, this phenomenon is tiny,
but it may be enhanced by the presence of NP. A similar comment applies to the CP-violating effects in l -meson decays. For
a recent overview, we refer the reader to Ref. [121], and the references therein.
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which yields / Ð�s¾7 I lP × + 	 
 � ü for

ò P × +u 	 3 U ; Þ . Since the determination of

ò u
from the semileptonic

(tree-level) decays discussed in Subsection 4.2 is not expected to be sensitive to NP,
Ðâs 	 1 ¬$¬ ü would

require CP-violating NP contributions to
� �s – ����s mixing. An interesting connection between the two

solutions for
Ð�s

and the UT angle � is provided by the CP asymmetries of
��s � � � � ! [47, 105]. We

shall return to this feature in Section 8.

6.4.4 Models with minimal flavour violation

An interesting scenario for NP is provided by the simplest class of extensions of the SM. It is represented
by models with ‘minimal flavour violation’ (MFV), which we may characterize as follows [122], [123]
(for alternative definitions, see Refs. [124], [125]):

– All flavour-changing transitions are still governed by the CKM matrix, in particular no new phases.
– The only relevant operators are those already present in the SM.

Important examples are the Two-Higgs-Doublet Model II, the constrained MSSM (if ��� § È m O � ø O 5 is
not too large), and models with universal extra dimensions [122]. As was pointed out in Ref. [123], a
‘universal unitarity triangle’ can be constructed for such MFV models with the help of those quantities
that are not affected by the corresponding NP contributions. Following these lines, the ‘true’ values of �Ú
and �Û can still be determined in a transparent manner, despite the presence of NP.

Because of the items listed above, all SM expressions for decay amplitudes, as well as for particle–
antiparticle mixing, can be generalized to the MFV models through a straightforward replacement of the
initial Wilson coefficients for the renormalization-group evolution from hnm .0/q� Q 7 down to appro-
priate ‘low-energy’ scales h through characteristic NP coefficients. If we consider, for example,

�ª�s – ����s
mixing, we just have to make the following substitution for the Inami–Lim function = � /yù w 7 := � /yù w 7 � =Ë/ O�7 
 (184)

where
O

, which equals ù w m ¿ �w ø � �Q in the SM, denotes collectively the parameters of a given MFV
model. Note that the same short-distance function governs also

�0�� – ����� mixing, as well as
(��

– �(
�
mixing, so that it also enters the expression for the CP-violating observable , .

Since no new phases appear in MFV models, one may think that the
���s – ����s mixing phase intro-

duced in (136) would not be affected in such scenarios. However, because of a subtlety, this is actually
not the case [126]. If we look at (103), we observe that the sign of = � /yù w 7 enters implicitly

Ð�s
; in (122)

and (136), we have actually used the fact that = � /yù w 7 is positive. However, since = � /yù w 7 is now replaced
by =�/ O�7 , which needs no longer be positive, the expression for

Ð s
in (136) is generalized as follows:Ðcs m D È � arg /Q=Ë/ O�7^7 
 (185)

so that
Ð � Ás in (181) is either 3 ü or 1 Þ 3 ü for =�/ Or7 #�3 or =�/ Or7 ��3 , respectively. Consequently, in the

most general MFV case, the mixing-induced CP asymmetry of
��s � À ø65 ( I is given by Þ P ' +&�Á / �Üs � À ø65 ( I 7 · Ô <�=?> m ¥"¿�§ /Q=�/ Or7^7 ¥\¦x§ D È U (186)

On the other hand, ��� � Ás in (180) may have a significant impact on ��� s . Similarly, also , may be
affected. However, since the NP effects enter ��� s and , through the same generalized Inami–Lim
function =�/ O�7 , we obtain correlations between these observables. In fact, the interplay between

�ª�s – ����s
mixing and , in the CKM fits implies bounds on ¥\¦x§ D È [127]. Using (186), we may cancel the sign
ambiguity due to ¥"¿�§ /Q=�/ O�7^7 , and obtain the following lower bounds for

Ôû<�=?>
:/ Ô <�= > 7 P '*� m ú 3 U ;|D ( =Ë/ O�7 # 3 [127])3 U - H ( =Ë/ O�7 � 3 [126]).

(187)

Although these bounds were very exciting immediately after the first
�

-factory data for
Ôÿ<�= >

were
announced, which favoured rather small values, they are now not effective because of the world average
given in (149). We shall come back to NP scenarios with MFV in Subsections 9.1–9.3. For a very
comprehensive discussion, we refer the reader to Ref. [122].
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7 AMPLITUDE RELATIONS

As we have noted in Subsection 4.4, amplitude relations offer another important tool to explore CP
violation. Let us now have a closer look at the corresponding strategies, where we distinguish between
the use of theoretically clean and flavour-symmetry relations.

7.1 Theoretically clean relations
7.1.1

� é � ( é R
The prototype of the strategies using theoretically clean amplitude relations is provided by

� é � ( é R
decays [128]. Looking at Fig. 16, we observe that

� � � ( � �R � and
� � � ( � R � are pure ‘tree’

decays. If we consider, in addition, the transition
� � � R �� ( � , where

R �� denotes the CP eigenstate
of the neutral

R
-meson system with eigenvalue � 1 ,Ã R �� S m 1� D z Ã R � S � Ã �R � S { 
 (188)

we obtain interference effects, which are described by� D�Ù�/ � �
� ( � R �� 7 m Ù�/ � ��� ( � R � 7 � Ù�/ � ��� ( � �R � 7 (189)� D�Ù�/ � ! � ( ! R �� 7 m Ù�/ � ! � ( ! �R � 7 � Ù�/ � ! � ( ! R � 7 U (190)

These relations can be represented as two triangles in the complex plane. Since we have only to deal
with tree-diagram-like topologies, we have moreoverÙ�/ � � � ( � �R � 7 m Ù�/ � ! � ( ! R � 7 (191)Ù�/ � �÷� ( � R � 7 m Ù�/ � !#� ( ! �R � 7 F � � ¯ïù 
 (192)

allowing a theoretically clean extraction of � , as shown in Fig. 17. Unfortunately, these triangles are
very squashed, since

� � � ( � R � is colour-suppressed with respect to
� � � ( � �R � :

ôôôô Ù�/
� � � ( � R �Z7Ù�/ � � � ( � �R � ôôôô m ôôôô Ù�/

� ! � ( ! �R ��7Ù�/ � ! � ( ! R � ôôôô � 1Ø Ã a�q�u ÃÃ aAvQu Ã F Ô �Ô 5 �V3 U ; F 3 U ¬gm .0/{3 U 1 7 
 (193)

where the phenomenological ‘colour’ factors were introduced in Subsection 4.3.3.

Another—more subtle—problem is related to the measurement of BR / � � � ( � R � 7 . From the
theoretical point of view,

R � � ( ! « � � would be ideal to measure this tiny branching ratio. However,
because of the huge background from semileptonic

�
decays, we must rely on Cabibbo-allowed hadronicR � � e �-� decays, such as e �H� m � � ( ! , Ú � ( ! , U4U4U , i.e. have to measure� � � ( � R � á � e �H� ã U (194)

Unfortunately, we then encounter another decay path into the same final-state
( � e �H� through� � � ( � �R � á � e �H� ã 
 (195)

where BR / � � � ( � �R � 7 is larger than BR / � � � ( � R � 7 by a factor of .0/2143 � 7 , while �R � � e �-� is
doubly Cabibbo-suppressed, i.e. the corresponding branching ratio is suppressed with respect to the one
of
R � � e �H� by a factor of .0/2143 ! � 7 . Consequently, we obtain interference effects of .0/21 7 between the

decay chains in (194) and (195). If two different final states e �-� are considered, � could—in principle—
be extracted [129], although this determination would then be more involved than the original triangle
approach presented in Ref. [128].
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Fig. 16: Feynman diagrams contributing to `C�$���°� ý��, and `4�$� �°�ÿ�ü, .
Ù�/ � �q � ( � �R �Z7 m Ù�/ � !q � ( ! R �Z7

� DâÙ�/ � �q � ( � R �� 7 Ù�/ � !q � ( ! �R �Z7
� D�Ù�/ � !q � ( ! R �� 7Ù�/ � �q � ( � R ��7

D �
Fig. 17: The extraction of ± from `¥¤$���¦¤ ¨ �ü, ¦ ý�ü, ¦ �ü,� ¬ decays.

7.1.2
� év � R é� R

In addition to the ‘conventional’
� éq

mesons, there is yet another species of charged
�

mesons, the
� v

-
meson system, which consists of

� �v 	 [ W and
� !v 	 W [ . These mesons were observed by the CDF

collaboration through their decay
� �v � À ø65 « � � , with the following mass and lifetime [130]:� U-§ m /q- U ;�3 � 3 U ¬ H ��3 U 1 ¬ 7 GeV 
 j U-§ m /{3 U ; - � � D¸5 ä! � D¸5 ß ��3 U 3 ¬ 7 ps U (196)

Since a huge number of
� v

mesons ( 	 143 5 � /year) will be produced at LHCb [19], the natural question
arises of whether also the charged

� v
-meson system provides a triangle approach to determine � . Such

a determination is actually offered by the decays
� év � R é� R , which are the

� v
-meson counterparts of

the
� éq � ( é R

modes (see Fig. 18), and satisfy the following amplitude relations [131]:� D$Ù�/ � �v � R �� R �� 7 m Ù�/ � �v � R �� R � 7 � Ù�/ � �v � R �� �R � 7 (197)� D$Ù�/ � !v � R !� R �� 7 m Ù�/ � !v � R !� �R � 7 � Ù�/ � !v � R !� R � 7 
 (198)

with Ù�/ � �v � R �� �R � 7 m Ù�/ � !v � R !� R � 7 (199)Ù�/ � �v � R �� R � 7 m Ù�/ � !v � R !� �R � 7 F � � ¯êù�U (200)

At first sight, everything is completely analogous to the
� éq � ( é R

case. However, there is an impor-
tant difference [132], which becomes obvious by comparing the Feynman diagrams shown in Figs. 16
and 18: in the

� év � R é� R system, the amplitude with the rather small CKM matrix element
a6q8u

is not
colour-suppressed, while the larger element

a6vQu
comes with a colour-suppression factor. Therefore, we

obtain ôôôô Ù�/
� �v � R �� R � 7Ù�/ � �v � R �� �R � 7 ôôôô m ôôôô Ù�/

� !v � R !� �R � 7Ù�/ � !v � R !� R � 7 ôôôô � 1Ø Ã a�q�u ÃÃ aAvQu Ã F Ô 5Ô � �V3 U ; F ¬gm .0/21 7 
 (201)
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Fig. 18: Feynman diagrams contributing to `C�´ �����µ ý��, and `4�$� ���µ �ü, .

Ù�/ � �v � R �� �R � 7 m Ù�/ � !v � R !� R � 7
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D �
Fig. 19: The extraction of ± from `¥¤´ � �¶¤µ ¨ ��, ¦ ý��, ¦ ��,� ¬ decays.

and conclude that the two amplitudes are similar in size. In contrast to this favourable situation, in the
decays

� éq � ( é R
, the matrix element

aAq�u
comes with the colour-suppression factor, resulting in a

very stretched triangle. The extraction of � from the
� év � R é� R triangles is illustrated in Fig. 19,

which should be compared with the squashed
� éq � ( é R

triangles shown in Fig. 17. Another impor-
tant advantage is that the interference effects arising from

R � 
 �R � �+� � ( ! are practically unimportant
for the measurement of BR / � �v � R �� R �Z7 and BR / � �v � R �� �R �Z7 since the

� v
-decay amplitudes are

of the same order of magnitude. Consequently, the
� év � R é� R decays provide—from the theoretical

point of view—the ideal realization of the ‘triangle’ approach to determine � . On the other hand, the
practical implementation still appears to be challenging, although detailed experimental feasibility stud-
ies for LHCb are strongly encouraged. The corresponding branching ratios were recently estimated in
Ref. [133], with a pattern in accordance with (201).

7.2 Flavour-symmetry relations: Jå0 1~/
Let us now turn to amplitude relations that follow from the flavour symmetries of the strong interactions,
which are—in contrast to the relations discussed in Subsection 7.1—not theoretically clean, but are
nevertheless very useful to explore CP violation and to obtain insights into hadron dynamics. Here the
prototype is provided by

� �+� ( decays, which received a lot of attention in the
�

-physics community.
Since a detailed discussion of the corresponding strategies is beyond the scope of these lectures, we
address only their most important features and refer the interested reader to Ref. [26], where also a
comprehensive list of references can be found.
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7.2.1 General features

In order to get more familiar with the
� ��� ( modes, let us consider the decay

�0�s ��� ! ( � . As can
be seen in Fig. 20, this channel receives contributions from penguin and tree topologies. Consequently,���s � � ! ( � exhibits interference effects between the penguin and tree amplitudes, where the latter
brings the angle � of the UT into the game. Because of the small ratio Ã a q � a fq�u ø / a w � a fwxu 7 Ã �~3 U 3�D , the
QCD penguin topologies play the dominant role in this decay, despite their loop suppression. The ratio
of the tree to the penguin amplitudes is generically expected at the D�3�l level. Interestingly, all

� �+� (
modes are governed by their QCD penguin contributions. Because of the large top-quark mass, we have
also to care about EW penguins:

– In the case of
�:�s � � ! ( � and

� � � � � (
� , these topologies contribute only in colour-
suppressed form and are hence expected to play a minor role, thereby leading to contributions to
the decay amplitudes of .0/21ml 7 .

– On the other hand, EW penguins may also contribute to
� � �+� � ( � and

� �s �+� � ( � in colour-
allowed form, and may here even compete with the tree-diagram-like topologies, thereby leading
to contributions to the decay amplitudes of .0/ED�3�l 7 .

It can be shown that the isospin flavour symmetry of strong interactions implies the relation� D�Ù�/ � � �+� � ( � 7 � Ù�/ � � �+� � ( � 7 m � D�Ù�/ � �s �+� � ( � 7 � Ù�/ � �s �+� ! ( � 7m  Ó Ã K � ¹ Ã � ¯±°ÅÄ ��Æ � ¯ïù� �K� �
tree topologies

� /x< NÈÇ � < &NÈÇ 7� �K� �
EW penguins

Õ g z � ¯êù  � { 
 (202)

where the
K

( < NÅÇ ) and ¹ ( < &NÅÇ ) denote the amplitudes of the colour-allowed and colour-suppressed tree
(EW penguin) topologies, respectively, Ê�É �~Ê is a CP-conserving strong phase, and the factors of

� D
originate from the wave functions of the neutral pions. Note that the QCD penguin contributions cancel
in this expression. A relation with an analogous phase structure can also be derived for the

� � ��� � (
� ,� �s �+� ! ( � system.

7.2.2 Extraction of � and strong phases

The
� � � ( observables allow us to determine the angle � of the UT. Because of the isospin relation

in (202), we may separately consider the following decay combinations to this end:

– The ‘mixed’ system of the charged
� é �+� é ( and neutral

��s �+� ! ( é modes [134]– [137].
– The system of the charged

� é �+� é ( ,
� é �+� �K( é modes [138]– [140].

– The system of the neutral
�gs �+� �K( ,

�Üs �+� ! ( é modes [140], [141].

38

R. FLEISCHER

118



0.5 1 1.5 2 2.5 3
Rc

Ë 1Ë 0.5

0

0.5

1

A
0

c 30
90

60
120 150

aL

0.5 1 1.5 2 2.5 3
Rc

Ì 1Ì 0.5

0

0.5

1

A
0

c 30

90

60
120150

bL

0.5 1 1.5 2 2.5
Rn

Í 1Í 0.5

0

0.5

1

A
0

n

30
9060

120 150

cL

30
9060

120 150

0.5 1 1.5 2 2.5
Rn

Î 1Î 0.5

0

0.5

1

A
0

n 30

90

60
120

150

dL

Fig. 21: The allowed regions in observable space of the charged [ Ï(Ð ¯ÒÑ�Ó*ÔÕÑ ; (a), (b)] and neutral [ Ï×Ö ¯ÒÑ�Ó4Ø×Ù ; (c),
(d)] ` � �u� systems for £ ¯ÒÑ�Ó ÚÛÙ : in (a) and (c), we show also the contours for fixed values of ± , whereas we
give the curves arising for fixed values of Ü Ý Ð Ü and Ü Ý Ö Ü in (b) and (d), respectively.

Correspondingly, we introduce the following sets of observables [140]:ú òÙ � û · å BR / � �s ��� ! ( � 7 � BR / �� �s �+� � ( ! 7
BR / � � �+� � ( � 7 � BR / � ! �+� ! �( � 7 æ j U �j U~}� (203)

ú ò ÙÙ Ù � û · D å BR / � � �+� �4( � 7 � BR / � ! �+� �4( ! 7
BR / � � �+� � ( � 7 � BR / � ! �+� ! �( � 7 æ (204)ú ò �Ù � � û · 1D å BR / ���s � � ! ( � 7 � BR /6����s ��� � ( ! 7
BR / � �s ��� � ( � 7 � BR / �� �s ��� � �( � 7 æ 
 (205)

where the

ò � Ù � � � and Ùg� Ù � � �� refer to the plus and minus signs, respectively; the factors of D and 1 ø D are
due to the wave functions of the neutral pions. In contrast to the observables in (203), those in (204) and
(205) are significantly affected by EW penguins. We will return to this important feature below.

As noted in Ref. [140], all three
� � � ( systems can be described by the same set of formu-

lae, just making straightforward replacements of variables. Let us first focus on the charged and neutral� � � ( systems. For the parametrization of their observables, we employ the isospin relation men-
tioned above, and assume that certain rescattering effects are small; large rescattering processes would be
indicated by large direct CP violation in

� é � � é ( , which is not supported by the current
�

-factory
average [86]: Þ »Þ'*)&�Á / � é �+� é (÷7 m  3 U 3�D4�?3 U 3Z-�
 (206)

and by an enhancement of the
� � (
(

branching ratios, which are already strongly constrained by
the

�
-factory data as well (for detailed discussions, see Refs. [26], [48]). Following these lines, we may

write ò Ù � � m function /{��
"Æ Ù � � 
 Ê Ù � � 
 � 7 
 Ù Ù � �� m function /yÆ Ù � � 
 Ê Ù � � 
 � 7 
 (207)

where the parameters � , Æ Ù � � and Ê Ù � � have the following meaning:
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– � describes the ratio of the EW penguin to tree contributions (see (202)), which can be determined
with the help of =CB:/ ¬ 7 flavour-symmetry arguments, yielding the following SM result [48], [138]:� Ã I l m 3 U - H F å 3 U 3 Þ -Ã arq�u ø aAvQu Ã æ U (208)

– The parameters Æ Ù � � measure the ratios of the tree to QCD penguin topologies, and can be fixed
through =CB�/ ¬ 7 arguments and the data for BR / � é �+� é � �Z7 [142], yielding Æ Ù � � 	 3 U D .– The Ê Ù � � are the CP-conserving strong phases between the tree and QCD penguin amplitudes.

Let us now consider either the charged or the neutral
� � � ( system. Since we may fix � and the

corresponding Æ Ù � � with the help of =CB�/ ¬ 7 flavour-symmetry relations, the observables

ò Ù � � and Ù Ù � ��depend only on the two ‘unknown’ parameters Ê Ù � � and � . If we vary them within their allowed ranges,
i.e.  1 Þ 3 üàß Ê Ù � � ß � 1 Þ 3 ü and 3 üáß � ß 1 Þ 3 ü , we obtain an allowed region in the

ò Ù � � – Ù Ù � ��plane [105], [143]. Should the measured values of

ò Ù � � and Ù Ù � �� fall outside this region, we would have
an immediate signal for NP. On the other hand, should the measurements lie inside the allowed range,� and Ê Ù � � could be extracted. The value of � thus obtained could then be compared with the results of
other strategies, whereas the strong phase Ê Ù � � would offer interesting insights into hadron dynamics.

In Fig. 21, we show the allowed regions in the

ò Ù � � – Ù Ù � �� planes following Ref. [105], where the
crosses represent the averages of the

�
-factory data. As can be read off from the contours in these

figures, both the charged and the neutral
� � � ( data favour � 	 # H 3 ü , which would be in conflict

with the results of the usual CKM fits, as summarized in (43). Moreover, we observe that the charged
modes point towards Ã Ê Ù Ã 	 � H 3 ü (QCD factorization predicts Ê Ù to be close to 3 ü [75], [108]), whereas
the neutral decays prefer Ã Ê � Ã 	 # H 3 ü . Since we do not expect Ê Ù to differ significantly from Ê � , we arrive
at a ‘puzzling’ picture of the kind that was already pointed out in the year 2000 [141], and was recently
reconsidered in Refs. [48], [54], [108], [144], [145], [146]. In the experimental valuesò Ù m 1 U 1 � � 3 U 1ZD�
 ò � m 3 U � -C� 3 U 143�
 (209)

this puzzle is reflected in particular by

ò � � 1 , while

ò Ù # 1 , as is now consistently favoured by the
separate BaBar, Belle and CLEO data [86]. Concerning the mixed

� � � ( system, the data fall well
into the SM region in observable space and do not indicate any ‘anomalous’ behaviour [105].

7.2.3 The ‘
� �+� ( puzzle’ and recent developments

Since

ò Ù and

ò � are affected significantly by colour-allowed EW penguins, whereas such topologies may
only contribute to

ò
in colour-suppressed form, the experimental pattern for these observables discussed

above may be a manifestation of NP in the EW penguin sector [108], [141], [144]– [146], offering an
attractive avenue for physics beyond the SM to enter the

� � � ( system [147], [148]. In order to deal
with these effects quantitatively, we have to replace the parameter in (208), which characterizes the EW
penguins in the SM, through a generalized parameter � , which may, in particular, also be associated with
a CP-violating NP phase

Ð
.

A detailed analysis of the
� � � ( puzzle was recently performed in Refs. [48], [54]. The

starting point is the
� �+�6� puzzle addressed in Subsection 6.2.2, which indicates that another hadronic

parameter of the neutral
� � � ( system, Ú � � ¯FEãâ , is not as small as naı̈vely expected. However, using

the =CB:/ ¬ 7 flavour symmetry and plausible dynamical assumptions, it can be shown that we may fix all
relevant hadronic

� � � ( parameters—including CP-conserving strong phases—through their
� ��6� counterparts, i.e. with the help of the

�
-factory data. Moreover, if we complement

�:s � � � � !
with

�Üs � � ! ( é , we may also extract � (see Subsection 8.3.3), with a result in excellent accordance
with the range for � in (168). Since EW penguins play a very minor role in

� � �6� and
�:s � � ! ( é

decays, these modes—and the parameters extracted from their observables—are essentially unaffected
by NP in the EW penguin sector. Having all

� � � ( parameters at hand, we may then analyse the� �+� ( system in the SM.
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Fig. 22: The situation in the æ Ö – æ Ð plane, where the current experimental and SM ranges are indicated in grey.
We show also contours for the EW penguin parameters £ ¯çÑ�Ó ÚmÙ , £ ¯èØmÓ*ÔmÔ and £ ¯éØÛÓ*êmë , with a NP phase� §íì ÑÛî ¦|ï ÚmÑÛîñð .

As far as the ‘mixed’
� �+� ( system is concerned, we obtainò Ã I l m 3 UIH ; ¬ � � D � ®^®! � D � � ß 
 (210)

which agrees well with the experimental result

ò m 3 UIH 1u��3 U 3 � following from the averages compiled in
Ref. [86]. Additional information is provided by direct CP violation. Whereas the direct CP asymmetry
of
� é � � é ( vanishes within our working assumptions, in accordance with the experimental value in

(206), we find Þ »('*)&�Á / � s �+� ! ( é 7 ôôô I l m 3 U 1K;�3 � � D¸5H®"F! � D � ä\à 
 (211)

which is in agreement with the current
�

-factory average
Þ »('*)&�Á / �Üs � � ! ( é 7 m � 3 U 3 H 
4� 3 U 3�D Þ .

In order to discuss the observables

ò � and

ò Ù , it is convenient to consider the

ò � – ò Ù plane. Since
all hadronic parameters are fixed through the

� � �6� data, these observables now depend only on the
EW penguin parameters � and

Ð
, where the SM is described by (208), corresponding to

Ð m 3 ü . As can
nicely be seen in Fig. 22, the pattern of the SM predictionsò Ù Ã I l m 1 U 1K; � � D � ä! � D � à 
 ò � Ã I l m 1 U 1$1 � � D � ß! � D � à (212)

is not in accordance with the current experimental picture (209), so that we are actually back at the� � � ( puzzle described above. In this figure, we have also included various contours corresponding
to different fixed values of � , where each point is parametrized through the value of

Ð � á 3 ü 
 ¬ -�3 ü ã . We
observe that we may in fact move to the experimental region for an enhanced value of � 	 1 U Þ andÐ 	  H 3 ü , where in particular the large CP-violating phase is in stark contrast to the SM. In order to put
these observations on a more quantitative level, we may convert the experimental values of

ò Ù and

ò �
into values of � and

Ð
, with the following result:� m 1 U � 
 �%5"D � à! � D F"F 
 Ð m  / Þ 
 �%5^5!65 Ý 7 ü U (213)

Because of the large, non-vanishing value of
Ð

, this scenario of NP would require new sources for CP
violation, i.e. would not belong to the simple class of MFV models specified in Subsection 6.4.4. As far
as direct CP violation in

� é ��� �K( é is concerned, we obtainÞ »('*)&�Á / � é �+� � ( é 7 m 3 U 3�; � � D ® à! � D � ä (214)
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in our NP scenario, in accordance with the experimental number
Þ »('*)&�Á / � é �+� �4( é 7 m 3 U 3$3À�03 U 3 � . As

was pointed out in Ref. [134], also the CP asymmetries of
��s � � � ( I are an important tool to explore

the KM mechanism of CP violation, where the SM corresponds (for Ú � m 3 ) to the relationsÞ »('*)&�Á / �Üs ��� � ( I 7 m 3�
 Þ P ' +&�Á / �Üs �+� � ( I 7 m  ¥�¦x§ Ðcs m Þ P ' +&�Á / �Üs � À ø65 ( I 7 
 (215)

in analogy to (177). Recently, the BaBar collaboration reported the following results [149]:Þ »('*)&�Á / � s �+� � ( I 7 m 3 U ;�3 � � D � à! � D � ä �?3 U 3 H 
 Þ P ' +&�Á / � s �+� � ( I 7 m  3 U ; Þ ! � D ® ä� � D Ý à � 3 U 3Z- U (216)

Moreover, also a measurement of the direct CP asymmetry of the
���s �+� �4(
� channel is available [86]:Þ »('*)&�Á / � �s �+� � ( � 7 m  3 U 3 ¬ � 3 U ¬ -4� 3 U 3 H 
 (217)

which is supposed to agree with the direct CP asymmetry in (216). Consequently, these experimental
numbers are expected to change significantly in the future. On the other hand, the

� ���6� 
 � ( analysis
described above yields the predictionsÞ »('*)&�Á / � s �+� � ( I 7 m � 3 U 3Z
 � � D � Ý! � D � F 
 Þ P ' +&rÁ / �Üs ��� � ( I 7 m  3 UIHdH � � D � Ý! � D � 5 U (218)

The measurement of these CP asymmetries will allow an interesting test of the NP scenario of enhanced
EW penguins with a large CP-violating phase that is suggested by the

� � � ( puzzle. In this respect,
it is important to consider also rare

�
and

(
decays, which offer particularly sensitive probes for the

exploration of this kind of NP. We shall return to the corresponding NP effects in Subsection 9.4, where
we shall also briefly address the impact on Re /{, - ø , 7 , �Üs � À ø65 ( I and

�Üs � Ðc( I .
8 THE J á -MESON SYSTEM

8.1 General features
8.1.1 Comparison of the

�Ts
and

� � systems

At the � � � ! � factories operating at the 9:/<;>= 7 resonance (BaBar and Belle), the
� � -meson system is

not accessible since 9:/<;>= 7 states decay only into
�TqZ� s

but not into
� � mesons.10 On the other hand,

plenty of
� � mesons will be produced at hadron colliders. Consequently, these particles are the ‘El

Dorado’ for
�

-decay studies at run II of the Tevatron [18], and later on at the LHC [19]. There are
important differences between the

�gs
and

� � systems:
– The

� �� – �� �� mixing phase is negligibly small in the SM,Ð � · D arg / a fw � arwxu\7 m  D Ê � m  D�Ø � Û m .0/  D ü 7 
 (219)

whereas
Ðcs · D arg / aÉfwxs arwxu�7 m D È�m .0/q
�3 ü 7 .

– A large mixing parameter ù � is expected in the SM,ù � · �°� �f � m .0/ED�3 7 
 (220)

whereas ù s m 3 U �d� 13�?3 U 3r1ZD . Consequently, we have to deal with rapid
� �� – �� �� oscillations. The

current experimental lower bound for the mass difference of the
� � mass eigenstates is given by�°� � #­1K; U 
 ps !65 , corresponding to ù � # D�3 U Þ (95% C.L.) [85], [86].

– There may be a sizeable difference between the decay widths of the
� � mass eigenstates,� f �f � m .0/  143�l 7 
 (221)

whereas � f%s ø f s is negligibly small, as we have seen in Subsection 5.1.2. The current CDF and
LEP average is given by � f � ø f � m  3 U 1.- � � D¸5 ß! � D¸5HÌ , Ã � f � Ã ø f � � 3 U 
¾; (95% C.L.) [85], [86].

10Operating these machines on the ò¾u2ó×ô-y resonance would also allow the production of � n mesons.
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8.1.2 Impact of ��� � on the unitarity triangle

As we discussed in Subsection 5.1, the mass differences of the
� � mass eigenstates satisfy�°� � g � U ì j� U ì e �U ì Ã a fw � arwxu Ã � U (222)

In the
��s

-meson case, this particular structure leads to (111), allowing us to determine the side

ò w
of the

UT. To this end, in addition to the CKM parameter Ù (see (72)), also the non-perturbative quantityö j� U � e U � m /ED ¬ 
C� ¬$¬ � �! � Ý 7 MeV (223)

has to be known, where the numerical value follows from lattice QCD studies [41]; QCD sum rules give
a similar picture [150]. On the other hand, if we apply the expressions for

a%vQu
and

a w � in (21), we obtainò w · 1Øõôôôô
a�wxsa�vQu ôôôô m 1Øõôôôô

a�wxsa w � ôôôô z 1 � .0/QØ � 7 { U (224)

Consequently, we may—up to corrections entering at the Ø � level—determine

ò w
through the ratioÃ a�wxs ø a w � Ã . Using now (222) yields the following expression [82]:ò w m 3 UIH 3 å �1 U D¾; æ 1 Þ U ; � ¥ !65��� � ��� s3 U 
 � ¥ !65 
 (225)

where � · ó j� � e U nö j�Üs e U � (226)

is an =CB:/ ¬ 7 -breaking parameter; lattice QCD studies give� m 1 U 1 Þ �?3 U 3�; � � D¸5 �! � 
 (227)

where � m 1 U D¾;�� 3 U 3 Þ should be used for analyses of the UT, as discussed in [41]. In comparison with
the quantity in (223) entering (111), the ratio in (226) is more favourable and represents an important
aspect of current non-perturbative research [41]. Another advantage of (225) is that Ù , the Inami–Lim
function = � /yù w 7 , and the short-distance QCD correction factor Û U cancel in this expression. Interestingly,
it allows us also to convert the lower experimental bound �°� � # 1K; U 
 � ¥ !65 into the upper boundò w �­1 U 3 F á � ø 1 U D¾; ã , which implies � 	 � H 3 ü , thereby excluding a large fraction of the �Ú – �Û plane.

8.1.3 � f � and ‘untagged’
� � rates

The width difference of the
� � -meson system may provide interesting studies of CP violation through

‘untagged’
� � rates [151]– [153], which are defined asR f / � � /<] 7 � e 7 S · f / � �� /<] 7 � e 7 � f / �� �� /<] 7 � e 7 
 (228)

and are characterized by the feature that we do not distinguish between initially, i.e. at time ] m 3 , present���� or ����� mesons. If we consider a final state e to which both a
���� and a ����� may decay, and use the

expressions in (123), we findR f / � � /<] 7 � e 7 S g á £K¤�¥�, /q� f � ] ø D 7  Þ ç ÷ / � � � e 7 ¥\¦x§õ, /q� f � ] ø D 7Hã � ! ÷ n w 
 (229)

where
Þ ç ÷ / � � � e 7 g Re � L was introduced in (129). We observe that the rapidly oscillating ��� � ]

terms cancel, and that we may obtain information on the phase structure of the observable � L , thereby
providing valuable insights into CP violation. For instance, the untagged observables offered by the
angular distribution of the

� � � ( f � ( f ! 
 ( f2� �( f2� decay products allow the determination of the UT
angle � , provided � f � is actually sizeable [152]. Although

�
-decay experiments at hadron colliders

should be able to resolve the
� �� – ����� oscillations, untagged

� � rates are interesting in terms of efficiency,
acceptance and purity.
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8.2 J á 0 8�9O:ö�
This particularly promising channel is the

� � -meson counterpart of the ‘golden’ mode
�gs � À ø65 ( I , as

can be seen from the diagrams shown in Fig. 13, where we just have to replace the down spectator quark
by a strange quark in order to obtain the

� � � À ø65 Ð diagrams. Consequently, this decay is described by
a transition amplitude with a structure that is completely analogous to that of (143). On the other hand,
in contrast to

��s � À ø65 ( I , the final state of
� � � À ø65 Ð is an admixture of different CP eigenstates,

which can, however, be disentangled through an angular analysis of the
À ø65 á � « � « ! ãyÐ á � ( � ( ! ã

decay products [154], [155]. Their angular distribution exhibits tiny direct CP violation, whereas mixing-
induced CP-violating effects allow the extraction of¥\¦x§ Ð � � .0/ Ø ® 7 m ¥\¦¨§ Ð � � .0/2143 !A® 7 U (230)

Since we have
Ð � m  D�Ø � Û m .0/2143 ! � 7 in the SM, the determination of this phase from (230) is affected

by generic hadronic uncertainties of .0/2143�l 7 , which may become an important issue for the LHC era.
These uncertainties can be controlled with the help of flavour-symmetry arguments through the decay�Üs � À ø65 Ú � [156]. Needless to say, the big hope is that experiments will find a sizeable value of ¥\¦¨§ Ð � ,which would immediately signal the presence of NP contributions to

�0�� – ����� mixing.

Other interesting aspects of the
� � � À ø65 Ð angular distribution are the determination of the width

difference � f � from untagged data samples [155] (for recent LHC feasibility studies, see Ref. [157]), and
the extraction of £K¤�¥cÊ L £K¤�¥ Ð � terms, where the Ê L are CP-conserving strong phases. If we fix the signs of£K¤�¥cÊ L through factorization, we may extract the sign of £K¤�¥ Ð � , allowing an unambiguous determination
of
Ð � [95]. In this context,

� � � R é Û � � � , R é Ð , ... decays offer also interesting methods [158], [159].

8.3 J á 0 /á÷ /�ø
As can be seen from Fig. 14, the decay

�gs � � � � ! is related to the
� � � ( � ( ! channel through

an interchange of all down and strange quarks. Because of this feature, the B -spin flavour symmetry
of strong interactions, which connects the down and strange quarks through =_B�/ED 7 transformations in
the same manner as the ordinary isospin symmetry connects the down and up quarks, allows us to relate
the hadronic

��s � � � � ! parameters to their
� � � ( � ( ! counterparts. It can then be shown that

these quantities—and the angle � of the UT—can be extracted from the measured CP asymmetries of
the

�Üs � � � � ! ,
� � � ( � ( ! system [96]. Also other B -spin strategies were developed, using� � � s � � À ø65 ( I or
� s � � � � R �s � � � R !s � � � [87],

� s � � � � (
� � f � �( � � f � [26], [156],
� � � � � � ( [160], or� � � s � � À ø65 Û modes [161]. Since the

� � � ( � ( ! ,
�Üs � � � � ! system is particularly promising

from an experimental point of view, thereby providing an interesting playground for CDF-II [18] and
LHCb [19], [162], let us now have a closer look at the corresponding strategy [96].

8.3.1 Amplitude structure and CP asymmetries

If we follow Subsection 6.2, we may write the
�És ��� � � ! ,

� � � ( � ( ! amplitudes asÙ�/ � �s ��� � � ! 7 m � Ó � ¯ïù  � � ¯FEEÕ (231)Ù�/ � �� � ( � ( ! 7 m ¡ Ø1  Ø ��ø D © � - å �4¯êù � ¡ 1  Ø �Ø � © � - �4¯FE � æ 
 (232)

where � � ¯FE was introduced in (154), ��- � ¯FE � is the
� � � ( � ( ! counterpart of this quantity, and the over-

all normalization factors � and � - are CP-conserving strong amplitudes. Using these general parametriza-
tions, we may write the corresponding CP-violating observables in the following generic form:Þ »('*)&rÁ / �Üs �+� � � ! 7 m fct /{��
\��
 � 7 
 Þ P ' +&�Á / � s �+� � � ! 7 m fct /{��
\�r
 � 
 Ðcs¾7 (233)Þ »('*)&�Á / � � � ( � ( ! 7 m fct /{� - 
\� - 
 � 7 
 Þ P ' +&�Á / � � � ( � ( ! 7 m fct /{� - 
\� - 
 � 
 Ð � 7 U (234)
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Fig. 23: The contours in the ± –
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plane for a specific example with
% ¯ %
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êÕî ,� µ ¯ÒÑÛî , ± ¯ ÚÛÑÛî , corresponding to ����� ��	� ��` � � �u�M�ÿa�� ¯�
�Ñ�Ó ï Ñ , �
��� ��	� � ` � � �u�ÿ�ÿaÿ� ¯��¾Ñ�Ó Ú ï , �
��� ���� � ` µ ��°�M� a � ¯��¾Ñ�Ó ØÞÚ and �
��� ���� � ` µ ���°�M� a � ¯�
�Ñ�Ó Ø�ê .

The explicit expressions for the direct and mixing-induced CP asymmetries of
�:s � � � � ! are given

in (158) and (159), respectively, whereas those for their
� � � ( � ( ! counterparts can be found in

Ref. [96]. Fortunately, these rather complicated expressions are not required for the following discussion.

8.3.2 Extraction of � and hadronic parameters

As we saw in Subsection 6.1,
Ðes

can be extracted through the ‘golden’ mode
�gs � À ø65 ( I , with the

result in (151). On the other hand,
Ð � can be assumed to be negligibly small in the SM, or can be

fixed through
� � � À ø65 Ð , as we discussed above. These experimental determinations work also in the

presence of NP contributions to
� �� – ����� mixing, as is obvious from the discussion in Subsection 6.4.

Looking at (233), we observe that a measurement of
Þ »Þ'*)&�Á / �Üs �+� � � ! 7 and

Þ P ' +&�Á / �Üs �+� � � ! 7
allows us to eliminate the strong phase � , thereby yielding � as a function of � in a theoretically clean
way. In complete analogy, we may use the general parametrizations of the form in (234) to eliminate�$- , and to determine �>- in a theoretically clean manner as a function of � from the measured values ofÞ »Þ'*)&�Á / � � � ( � ( ! 7 and

Þ P ' +&�Á / � � � ( � ( ! 7 . Since
��s � � � � ! and

� � � ( � ( ! are related
to each other by interchanging all down and strange quarks, the B -spin flavour symmetry of strong
interactions implies the following relations: � - m �A
 � - m � U (235)

Applying the former, we may extract � and � from the theoretically clean � – � and � – � - contours, which
we have illustrated for a specific example in Fig. 23. As discussed in Ref. [96], it is also possible to
resolve the twofold ambiguity for / � 
\� 7 arising from the intersections of the solid and dot-dashed curves
in Fig. 23. Moreover, we may determine � and ��- , thereby allowing an interesting internal consistency
check of the second B -spin relation in (235).11

This strategy is very promising from an experimental point of view: at run II of the Tevatron and
at the LHC, experimental accuracies for � of .0/2143 ü 7 and .0/21 ü 7 , respectively, are expected [18], [162].
As far as the B -spin-breaking corrections to � - m � are concerned, they enter the determination of �
through a relative shift of the � – � and � – ��- contours; their impact on the extracted value of � therefore
depends on the form of these curves, which is fixed through the measured observables. In the examples
discussed in Refs. [26], [96], as well as in the one shown in Fig. 23, the extracted value of � would be

11Alternatively, we may eliminate 
 and 
 � , and may then extract these parameters and � through the relation � � q � .
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very stable under such corrections. Let us also note that the B -spin relations in (235) appear to be quite
robust, since the relevant form factors and decay constants cancel within factorization, so that they do
not receive B -spin-breaking corrections in this approach [96]. On the other hand, the ratio Ã � - ø � Ã , which
equals 1 in the strict B -spin limit and enters the B -spin relationÞ P ' +&�Á / � � � ( � ( ! 7Þ »('*)&�Á / �Üs � � � � ! 7 m  ôôôô ��-� ôôôô � å BR / �Üs �+� � � ! 7

BR / � � � ( � ( ! 7 æ j U nj U � 
 (236)

is affected by B -spin-breaking effects within factorization. An estimate of the corresponding form factors
was recently performed in Ref. [163], and certain non-factorizable effects were addressed in Ref. [164].

8.3.3 Replacing
� � � ( � ( ! by

�Üs �+� ! ( é
Since

� � � ( � ( ! is not accessible at the � � � ! � factories operating at the 9:/<;>= 7 resonance, we
may not yet implement the strategy discussed above. However, as can easily be seen by looking at the
corresponding Feynman diagrams,

� � � ( � ( ! is related to
��s � � ! ( é through an interchange of

spectator quarks. Consequently, we may approximately replace
� � � ( � ( ! through

��s � � ! ( é
in order to deal with the penguin problem in

�gs � � � � ! [165]. The utility of
��s �t� ! ( é decays

to control the penguin effects in
�gs � � � � ! was also emphasized in Ref. [98]. In order to explore the

implications of the
�

-factory data, the following quantity plays a key role:ã m 1� ¡ e =e 7 © � å BR / �Üs �+� � � ! 7
BR / �Üs �+� ! ( é 7 æ m � U 1 � � 3 U � 
 U (237)

Here � · Ø � ø /21  Ø � 7 , the ratio e = ø e 7 m 1.-�3 ø 1 ¬ 1 describes factorizable =CB:/ ¬ 7 -breaking corrections,
and the numerical value refers to the averages compiled in [86]. Applying (235), we obtainã¢m 1  D�� £K¤�¥ � £K¤�¥ � � � �� � � D � � £K¤�¥ � £K¤�¥ � � � � U (238)

If we now combine the CP asymmetries
Þ »('*)&�Á / � s � � � � ! 7 and

Þ P ' +&�Á / �Üs � � � � ! 7 with ã , we
have sufficient information available to determine � , as well as � and � [96], [165]. In practice, this
can be done with the help of the expressions in (158), (159) and (238). A detailed discussion of this
strategy was given in Refs. [47], [105], where also the impact of NP contributions to

� �s – �� �s mixing was
explored. Using additional information from the

� � � ( analysis discussed in Subsection 7.2.3, the
corresponding determination of � was recently refined in [48], where in particular a twofold ambiguity
for � could be resolved, yielding � m /q-¾; U � � ß D ®! ß D F 7 ü 
 (239)

which is in excellent agreement with the SM picture summarized in (168). If we complement this result
with the experimental range for

ò u
and apply the simple relations�Ú m ò u £K¤�¥ � 
 �Û m ò u ¥\¦x§ � 
 (240)

which follow straightforwardly from Fig. 4, we may also determine Ç and È :Ç m / H ¬ U - �%5 � D ®!ûFED¸5 7 ü 
 È
m /ED�1 U � � � D Ì! � D ß 7 ü U (241)

In Fig. 24, we compare these results with the allowed region for the apex of the UT that follows from
the CKM fits, as implemented in [166].12 Here the solid window corresponds to the range for � in
(239), whereas the dashed window indicates how the results change when the recently reported new
Belle data [167] are used. Needless to note, the consistency of the overall picture is very remarkable.

12The small and large ellipses in Fig. 24 refer to the analyses of the SM and NP scenarios with MFV, respectively, as obtained
in a recent update, see Ref. [82] of Ref. [166].
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Fig. 24: Comparison of the determination of ± from the ` � ��� ¦ �u� data with the CKM fits, as discussed in the
text.

In the analysis leading to (239) and (241), it has been assumed that
Ð%s 	 ; � ü , as in the SM.

However, as discussed in Refs. [47], [105], it is interesting to consider also the second, unconventional
solution of

Ðcs 	 1 ¬$¬ ü in (151). There are simple relations to go from one solution to the other. In
particular, if

Ð�s
, � , � and � are solutions of (158), (159) and (238), then�  Ðcs 
 �  � 
 �A
 �  � (242)

are solutions as well. Consequently, (242) allows us to go easily from the
Ð"s 	 ; � ü to the

Ðcs 	 1 ¬$¬ ü
case. Interestingly, for the value of � in (169), we obtain £K¤�¥ � 	  3 U � �Ä3 , having the same sign as
in factorization, where £K¤�¥ � Ã ÖÛ×¼ÙqÚ m  1 . On the other hand, the value of � corresponding to

Ð�s 	 1 ¬$¬ ü
yields £K¤�¥ � 	 � 3 U � # 3 , i.e. the opposite sign, thereby disfavouring the

Ð s 	 1 ¬$¬ ü solution [48].

Let us finally note that the results for � and � in (169) following from the
� � �6� analysis

discussed in Subsection 6.2.2 allow us also to obtain SM predictions for the CP-violating
� � � ( � ( !

observables with the help of (235) [48]:Þ »Þ'*)&�Á / � � � ( � ( ! 7 ôôô I l m 3 U 1K; � � D¸5 Ý! � D � F 
 Þ P ' +&�Á / � � � ( � ( ! 7 ôô I l m  3 U 1 Þ � � D � ä! � D � à U (243)

On the other hand, the prediction of BR / � � � ( � ( ! 7 requires information on the =CB�/ ¬ 7 -breaking
form-factor ratios entering Ã � - ø � Ã , where the estimates of Ref. [163] correspond to a branching ratio at
the ¬ U 
 F 143 !AÌ level. It will be very interesting to see the first data for the

� � � ( � ( ! channel from run
II of the Tevatron, and to fully expoit its physics potential at LHCb and BTeV. The decay

� � � � é ( !
offers also various ways to complement the

� ���6� 
 � ( strategy discussed in Subsection 7.2.3.

8.4 J á�0 � ��� �"!á /�#
Decays of the kind

� � � R � f � é� ( ! 
 U±U±U and their counterparts
�Ts � R � f � é � ! 
 U±U±U provide another

important tool to explore CP violation [168], [169]. Since these transitions can be described on the same
theoretical basis, we will consider them simultaneously in this subsection, following Ref. [170].

8.4.1 Basic features

It is convenient to write
� � � R � f � é� ( ! 
 U±U±U and

�Üs � R � f � é � ! 
 U±U±U decays generically as
�*�� � R � �Y � ,

so that we may easily distinguish between the following cases:
– � m � : R � �
	 R �� 
 R f �� 
 U±U±U � , Y � � 	 ( � 
 ( f � 
 U±U±U � .
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Fig. 25: Feynman diagrams contributing to `4,è � � è ýª è and ý`~,è � � è ýª è .
– � m � :

R s �
	 R � 
 R f � 
 U±U±U � , Y s � 	 � � 
^Ú � 
 U±U±U � .
In the discussion given below, we shall consider only those

� �� � R � �Y � decays where at least one of theR � , �Y � states is a pseudoscalar meson. In the opposite case, for example
�0�� � R f �� (�f ! , the extraction

of weak phases would require a complicated angular analysis. If we look at Fig. 25, we observe that� �� � R � �Y � originates from colour-allowed tree topologies, and that also a �� �� meson may decay into
the same final-state

R � �Y � . The latter feature leads to interference effects between
���� – ����� mixing and

decay processes, providing valuable information about the CP-violating phase
Ð � � � .

8.4.2 Rate asymmetries

Let us first consider
� � decays into

R � �Y � . Since both a
� �� and a �� �� meson may decay into this state,

we obtain a time-dependent rate asymmetry of the following form:f / ���� /<] 7 � R � �Y � 7  f /6����� /<] 7 � R � �Y � 7f / � �� /<] 7 � R � �Y � 7 � f /6�� �� /<] 7 � R � �Y � 7m å ¹ / � � � R � �Y � 7 £K¤�¥ /q��� � ] 7 � =�/ � � � R � �Y � 7 ¥\¦x§ /q�°� � ] 7£K¤�¥�, /q� f � ] ø D 7  Þ ç ÷ / � � � R � �Y � 7 ¥\¦x§õ, /q� f � ] ø D 7 æ 
 (244)

having a structure that is completely analogous to the one of (126). Applying the formalism discussed in
Section 5, we find that these observables are given by¹ / � � � R � �Y � 7 · ¹ � m 1  Ã � � Ã �1 � Ã � � Ã � 
 =�/ � � � R � �Y � 7 · = � m D Im � �1 � Ã � � Ã � 
 (245)

where � � ·  � !�¯Åú ì ä � ¯Åú2143 � U ì � Ù�/ �� �� � R � �Y � 7Ù�/ � �� � R � �Y � 7 æ (246)

measures the strength of the interference effects between the
���� – ����� mixing and decay processes.

If we take the Feynman diagrams shown in Fig. 25 into account and use an appropriate low-energy
effective Hamiltonian of the kind discussed in Subsection 4.3.2, we may writeÙ�/ �� �� � R � �Y � 7 m R �Y � R � Ã ´ Nqµ / �� �� � R � �Y � 7 Ã �� �� S m YC[� D �O � �� � 
 (247)

where the hadronic matrix element�� � · R �Y � R � Ã �. �5 ¹ 5 / h 7 � �. �� ¹ � / h 7 Ã �� �� S (248)

involves the current–current operators�. �5 · / �� Å Y Æ 7 V–A / �[ Æ W Å 7 V–A 
 �. �� · / �� Å Y Å 7 V–A / �[ Æ W Æ 7 V–A 
 (249)

48

R. FLEISCHER

128



and the CKM factors �O � are given by�O � · a fq � a�vQu m Ù�Ø ® 
 �O$s · a fq�s a�vHu m ÙÜØ � /21  Ø � ø D 7 U (250)

On the other hand, the
�:�� � R � �Y � decay amplitude takes the following form:Ù�/ � �� � R � �Y � 7 m R �Y � R � Ã ´ Nqµ / � �� � R � �Y � 7 Ã � �� S m YC[� D O f� R �Y � R � Ã . � �5 ¹×5 / h 7 � . � �� ¹ � / h 7 Ã � �� S 


(251)
where we have to deal with the current–current operators. �5 · / �� Å [ Æ 7 V–A / �Y Æ W Å 7 V–A 
 . �� · / �� Å [ Å 7 V–A / �Y Æ W Æ 7 V–A 
 (252)

and the CKM factors
O � are defined asO � · a fv � arq�u m ÙÜØ ® ò u � !�¯êù 
 O$s · a fvQs arq8u m  ¡ ÙÜØ�Ý ò u1  Ø ��ø D © � !�¯êù U (253)

If we introduce CP phases for the
R � and Y � mesons in analogy to (105), we obtain/��ÿ� 7 Ã R � �Y � S m /  1 7 ? � ¯65 ú2143 � d ì � !ûú4123 � q ì � 7 Ã �R � Y � S 
 (254)

where
=

denotes the angular momentum of the
R � �Y � state. Using now the relations /��ÿ� 7 � /��ÿ� 7 m j1 and/��ÿ� 7 . � �¸ /���� 7 � m . �¸ as in Subsection 5.2, we may rewrite (251) asÙ�/ � �� � R � �Y � 7 m /  1 7 ? � ¯65 ú2143 � U ì � !ûú4123 � d ì � �ÿú2143 � q ì � 7 YC[� D O f� � � 
 (255)

with � � · R Y � �R � Ã . � 5 ¹ 5 / h 7 � . �� ¹ � / h 7 Ã �� �� S U (256)

An analogous calculation for the �� �� � �R � Y � and
� �� � �R � Y � transitions yieldsÙ�/ �� �� � �R � Y � 7 m YC[� D O � � � (257)Ù�/ � �� � �R � Y � 7 m /  1 7 ? �4¯65 ú2143 � U ì � �ÿú4123 � d ì � !ûú2143 � q ì � 7 YC[� D �O f� �� � 
 (258)

where the same hadronic matrix elements as in the
� �� � R � �Y � and �� �� � R � �Y � modes arise.

If we now insert (247) and (255) into (246), we observe that the convention-dependent phaseÐ &�Á / � � 7 is cancelled through the amplitude ratio, and arrive at� � m  /  1 7 ? ��!�¯ � ú ì �cù � å 1ù � � ¯±° ì æ 
 (259)

where ù � · ò u"Ô � 
 ù s ·  ¡ Ø � ò u1  Ø � © Ô�s 
 (260)

with Ô � � ¯±° ì · � !�¯65 ú2143 � d ì � !ûú2143 � q ì � 7 � ��� � U (261)

It should be noted that the convention-dependent phases
Ð &�Á / R � 7 and

Ð &�Á /<Y � 7 in (261) are cancelled
through the ratio of hadronic matrix elements, so that

Ô � � ¯±° ì is actually a physical observable (this is
shown explicitly in Ref. [170]). Applying now (245), we finally arrive at¹ � m  ä 1  ù ��1 � ù �� æ 
 = � m /  1 7 ? å D ù � ¥\¦x§ / Ð � � � � Ê � 71 � ù �� æ U (262)
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An analogous calculation for the decays into the CP-conjugate final-state �R � Y � yields�� � m  � !�¯Åú ì ä � ¯Åú2143 � U ì � Ù�/e����� � �R � Y � 7Ù�/ � �� � �R � Y � 7 æ m  /  1 7 ? � !�¯ � ú ì �cù � Ó ù � � ¯±° ì Õ 
 (263)

which implies �¹ � m � ä 1  ù ��1 � ù �� æ 
 �= � m /  1 7 ? å D ù � ¥\¦x§ / Ð � � �  Ê � 71 � ù �� æ 
 (264)

where �¹ � · ¹ / � � � �R � Y � 7 and �= � · =�/ � � � �R � Y � 7 . Note that �� � and � � satisfy the relation�� � F � � m � !�¯ � � ú ì �cù � 
 (265)

where the hadronic parameter ù � � ¯±° ì cancels. Consequently, we may extract
Ð � � � in a theoretically

clean way from the corresponding observables.

8.4.3 Conventional extraction of
Ð � � �

It is convenient to introduce the following combinations of observables:R ¹ � S �÷· �¹ � � ¹ �D m 3 (266)R ¹ � S ! · �¹ �  ¹ �D m 1  ù ��1 � ù �� (267)R = � S �÷· �= � � = �D m � /  1 7 ? å D ù � £K¤�¥cÊ �1 � ù �� æÓ¥�¦x§ / Ð � � � 7 (268)R = � S ! · �= �  = �D m  /  1 7 ? å D ù � ¥\¦¨§ÓÊ �1 � ù �� æ�£K¤�¥ / Ð � � � 7 U (269)

We observe that (267) allows us—in principle—to determine ù � from
R ¹ � S ! . However, to this

end, terms entering at the ù �� level have to be resolved experimentally. In the case of � m � , we haveù � m .0/ ò u�7 , implying ù � � m .0/{3 U 1.- 7 , so that this may actually be possible, although challenging [168].
On the other hand, ù s m .0/  Ø � ò u\7 is doubly Cabibbo-suppressed. Although it should be possible to
resolve terms of .0/yù s87 , this will be impossible for the vanishingly small ù �s m .0/{3 U 3$3$3�; 7 terms, so that
alternative approaches to fix ù s are required [169].

In contrast to the observables associated with the £K¤�¥ /q�°� � ] 7 terms, the mixing-induced observ-
ables entering the rate asymmetries with ¥�¦x§ /q��� � ] 7 provide information on

Ð � � � . Let us now assume
that ù � is known. We may then consider� � · /  1 7 ? ä 1 � ù ��D�ù � æ R = � S � m � £K¤�¥cÊ � ¥\¦x§ / Ð � � � 7 (270)

� ! · /  1 7 ? ä 1 � ù ��D�ù � æ R = � S ! m  ¥\¦x§ËÊ � £K¤�¥ / Ð � � � 7 
 (271)

yielding ¥\¦¨§ � / Ð � � � 7 m 1D å /21 � � � �  � � ! 7 � ö /21 � � � �  � � ! 7 �  ;|� �� æ U (272)

This expression implies an eightfold solution for
Ð � � � . If we fix the sign of £K¤�¥cÊ � with the help

of factorization, a fourfold discrete ambiguity emerges. Since we may determine
Ð"s

and
Ð � through

analyses of
��s � À ø65 ( I and

� � � À ø65 Ð decays, respectively, we may extract � from
Ð � � � .

50

R. FLEISCHER

130



8.4.4 New strategies and recent developments

Let us now discuss new strategies to explore the
� � � R � �Y � modes [170]. If the width difference � f �

is sizeable, the time-dependent untagged rates [see (229)]R f / � � /<] 7 � R � �Y � 7 S m R f / � � � R � �Y � 7 Seá £K¤�¥�, /q� f � ] ø D 7  Þ ç ÷ / � � � R � Y � 7 ¥\¦¨§õ, /q� f � ] ø D 7Hã ��! ÷ ì w(273)
and their CP conjugates provide

Þ ç ÷ / � � � R � �Y � 7 · Þ ç ÷98 and
Þ ç ÷ / � � � �R � Y � 7 · �Þ ç ÷98 . It can be

shown that these ‘untagged’ observables can be combined with their ‘tagged’ counterparts
R = � S é in the

form of the following simple relation:��� § / Ð � � � 7 m  å R = � S �R Þ ç ÷98 S � æ m � å R Þ ç ÷98 S !R = � S ! æ 
 (274)

where
R Þ ç ÷ 8 S � and

R Þ ç ÷ 8 S ! are defined in analogy to (268) and (269), respectively. Obviously, (274)
offers an elegant extraction of

Ð � � � , up to a twofold ambiguity. If we fix again the sign of £K¤�¥cÊ � through
factorization, we may determine

Ð � � � in an unambiguous manner, which should be compared with the
fourfold ambiguity arising in this case from (272). In particular, we may decide whether � � á 3 ü 
Z1 Þ 3 ü ã ,
as in the SM, or � � á 1 Þ 3 ü 
 ¬ -�3 ü ã . Another important advantage of (274) is that we do not have to
rely on the resolution of .0/yù � � 7 terms, as

R = � S é and
R Þ ç ÷:8 S é are both proportional to ù � . On the other

hand, we need a sizeable value of � f � . Measurements of untagged rates are also very useful in the case
of a vanishingly small � f � , since the ‘unevolved’ (i.e. time-independent) untagged rates in (273) offer
various interesting strategies to determine ù � from the ratio of

R f / � � � R � �Y � 7 S � R f / � � � �R � Y � 7 S to
CP-averaged rates of appropriate

� é
or flavour-specific

� � decays.

If we keep the hadronic parameter ù � and the associated strong phase Ê � as ‘unknown’, free pa-
rameters in the expressions for the

R = � S é , we may derive the relationsÃ ¥\¦x§ / Ð � � � 7 Ã<;�Ã R = � S ��Ã 
 Ã £K¤�¥ / Ð � � � 7 Ã<;JÃ R = � S !CÃ 
 (275)

which can straightforwardly be converted into bounds on
Ð � � � . If ù � is known, stronger constraints are

implied by Ã ¥\¦x§ / Ð � � � 7 Ã=;�Ã � ��Ã 
 Ã £K¤�¥ / Ð � � � 7 Ã<;JÃ � !CÃ U (276)

Once � � and � ! are known, we may of course determine
Ð � � � through the ‘conventional’ approach,

using (272). However, the bounds following from (276) provide essentially the same information and
are much simpler to implement. Moreover, as discussed in detail in Ref. [170] for several examples,
the bounds following from the

� � and
��s

modes may be highly complementary, thereby providing
particularly narrow, theoretically clean ranges for � . Whereas the

� � decays are not yet accessible, first
results for the

��s � R � f � é � ! modes obtained by BaBar give Ã ¥\¦x§ / Ðes � � 7 Ã #­3 U Þ � ( 3 U 
 Þ ) at the 68%
(95%) C.L. [171]. Looking at (268), we observe that we may extract the sign of ¥\¦x§ / Ð � � � 7 fromR = � S � if we assume that the sign of £K¤�¥�Ê � is as in factorization. To this end, the factor /  1 7 ? has to
be properly taken into account. The information on the sign of ¥�¦x§ / Ð s � � 7 is very useful, as it allows
us to distinguish directly between the two solutions for / Ð s 
 � 7 discussed in Subsection 8.3.3. If we
apply (242), the analysis of CP violation in

�És � � � � ! gives / Ðcs 
 � 7 	 /<; � ü 
�-d
 ü 7 or /21 ¬$¬ ü 
Z1$1.
 ü 7
[47], [105], corresponding to ¥\¦x§ / Ð � � � 7 	 � 3 UIH or  3 UIH , respectively. The BaBar analysis favours
the former case [170], i.e. the picture of the SM, in accordance with the discussion after (242). The
exploration of

��s � R � f � é � ! modes is also in progress at Belle [172]. Unfortunately, the current Belle
results for (fully reconstructed)

�gs � R � f � é � ! decays favour the sign opposite to the one obtained by
BaBar (see also Ref. [86]), so that the experimental picture is not yet conclusive.

Let us now further exploit the complementarity between the
� �� � R � f � �� ( ! and

� �s � R � f � � � !
modes. If we look at their decay topologies, we observe that these channels are related to each other
through an interchange of all down and strange quarks. Consequently, the B -spin flavour symmetry of
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strong interactions implies
Ô � m Ô�s

and Ê � m Ê s . There are various possibilities to implement these
relations. A particularly simple picture emerges if we assume that

Ô � m Ô�s and Ê � m Ê s , which yields��� § � m  å ¥\¦¨§ Ðcs  = ¥\¦x§ Ð �£K¤�¥ Ðcs  = £K¤�¥ Ð � æ ú n É �?>m  å ¥�¦x§ Ðcs£K¤�¥ ÐAs  = æ U (277)

Here we have introduced = ·  ò å R = s S �R = � S � æ (278)

with ò ·¢¡ 1  Ø �Ø � © å 11 � ù � � æ 
 (279)

which can be fixed from untagged
� � rates throughò m ¡ e =e 7 © � ä f / �� �� � R � f � �� � ! 7 � f / � �� � R � f � !� � � 7R f / � � � R � f � �� ( ! 7 S � R f / � � � R � f � !� ( � 7 S æ U (280)

Alternatively, we may only assume that Ê � m Ê s or that
Ô � m Ô�s . Apart from features related to multiple

discrete ambiguities, the most important advantage with respect to the ‘conventional’ approach is that
the experimental resolution of the ù �� terms is not required. In particular, ù s does not have to be fixed,
and ù � may only enter through a 1 � ù � � correction, which can straightforwardly be determined through
untagged

� � rate measurements. In the most refined implementation of this strategy, the measurement
of ù s ø ù � would only be interesting for the inclusion of B -spin-breaking effects in

Ô�s ø Ô � .
9 RARE DECAYS

9.1 General features and impact of New Physics in models with minimal flavour violation
In order to complement the exploration of flavour physics through the CP-violating phenomena discussed
above, also various rare decays of

�
and

(
mesons offer very interesting strategies. As we have already

noted, by ‘rare’ decays we mean transitions that do not arise at the tree level in the SM, but may originate
through loop effects. Consequently, rare

�
decays are mediated by FCNC processes of the kind �W � ��

or � W � �� , whereas rare
(

decays originate from their �� � �� counterparts. Prominent examples of rare�
decays are the following exclusive decay modes:

–
� � (�f � ,

� � Ú � , U±U±U
–
� � ( h � h ! ,

� ��� h � h ! , U±U±U
–
� � � s � h � h ! .

While the
� � � s � h � h ! transitions are very clean, the former two decay classes suffer from theoretical

uncertainties that are related to hadronic form factors and long-distance contributions. On the other
hand, the hadronic uncertainties are much smaller in the corresponding inclusive decays,

� � � � � s �
and

� � � � � s h � h ! , which are therefore more promising from the theoretical point of view, but are
unfortunately more difficult to measure; the cleanest rare

�
decays are given by

� ��� � � s � �� processes.
Let us note that a tremendous amount of work went into the calculation of the branching ratio of the
prominent

� � � � � channel (for an overview, see [173]); the agreement of the experimental value
with the SM expectation implies important constraints for the allowed parameter space of popular NP
scenarios. The phenomenology of the kaon system includes also interesting rare decays:

–
( ) � h � h !

–
( ) �+� � � � � !

–
( ) �+� � � �� ,

( � ��� � � �� ,

52

R. FLEISCHER

132



where the ‘golden’ modes are given by the
( � ��� �� processes, which are essentially theoretically

clean, as we have already noted in Subsection 3.2.

In order to deal with rare decays theoretically, appropriate low-energy effective Hamiltonians are
used, in analogy to the analysis of non-leptonic

�
decays. The structure of the corresponding transition

amplitudes is similar to the one of (77), i.e. the short-distance physics is described by perturbatively cal-
culable Wilson coefficient functions, whereas the long-distance dynamics is encoded in non-perturbative
hadronic matrix elements of local operators. It is useful to follow Refs. [174], [175], and to rewrite the
rare-decay implementation of (77) asÙ�/ � � £ �A@ 7 m < � / � � £ � @ 7 � ¶ Ã < Ã / � � £ � @ 7 � Ã / O�7 U (281)

For the derivation of this expression, we choose h@m h � m .0/q� Q 7 , and rewrite the corresponding
Wilson coefficients ¹ ¸ / h � 7 as linear combinations of ‘master functions’ � Ã / Or7 , which follow from the
evaluation of penguin and box diagrams with heavy particle exchanges. Expression (281) applies not
only to the SM, but also to NP scenarios with MFV (see Subsection 6.4.4), where the parameters involved
are collectively denoted by

O
. In the SM, the functions � Ã / O�7 reduce to the well-known Inami–Lim

functions [81], with
O m ù w m ¿ �w ø � �Q . The term < � summarizes the contributions that originate from

light internal quarks, such as the charm and up quarks, and the sum takes the remaining contributions
into account. For a detailed discussion of this formalism and the general features of the < � , < Ã and � Ã ,
we refer the reader to Ref. [122]. Let us here just emphasize the following important points:

– The � Ã / O�7 are process-independent, universal functions that depend on the particular model con-
sidered. NP enters the decay amplitudes only through these functions.

– The < � and < Ã are process-dependent quantities. In particular, they depend on the hadronic matrix
elements of the operators � ¸ .

In models with MFV, the set of the � Ã / O�7 consists of seven functions=�/ O�7 
 � / Or7 
CB�/ Or7 
EDÉ/ Or7 
GF�/ O�7 
 R - / Or7 
CF - / O�7 
 (282)

which are discussed in detail in Ref. [122]. In (184), we already encountered one of them, the function=�/ Or7 , which governs
� �� – �� �� and

( �
– �( � mixing; below, we shall come across � / O�7 and B�/ Or7 , which

characterize rare
(

,
�

decays with � �� and « � « ! in the final states, respectively. The important property
of the functions in (282) is that they do not—within the framework of MFV—contain complex phases,
so that the CP-violating effects are governed entirely by the KM phase hiding in the parameters < Ã .

For detailed discussions of the many interesting aspects of rare
�

and
(

decays and recent de-
velopments, we refer the reader to Refs. [21], [22], [173], [176]. Let us here choose

� � � s � h � h !
and

( � ��� �� processes as representative examples, which are particularly clean from the theoretical
point of view; the former channels are also an important element of the

�
-physics programme of the

LHC [19]. Finally, we shall illustrate the impact of NP that does not belong to the class of MFV models
on rare decays. To this end, we consider a NP scenario that is suggested by the ‘

� � � ( puzzle’
discussed in Subsection 7.2.3.

9.2 J á­àoßb0 H¾÷IH ø
As can be seen in Fig. 26, within the framework of the SM, the decays

� � � s � h � h ! originate from
D � penguins and box diagrams. These transitions belong to the cleanest modes in the category of rare�

decays, since they involve only the hadronic matrix element of a quark current between a
� � -meson

and the vacuum state, i.e. the decay constant e U ì that we introduced in (56), NLO QCD corrections were
calculated, and long-distance contributions are expected to play a negligible role [177]. The low-energy
effective Hamiltonian describing

� � � h � h ! decays is given as follows ( �:�
	8�|
\�r� ):´ Nqµ m  Y [� D å ÇD � ¥\¦x§ � ô J æ a fwxu a w � Û	KLB � /yù w 7 / �WK� 7³ý !uþ / �hMh 7³ý !uþ � , U £ U 
 (283)
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Fig. 26: Decay processes contributing to ` µQP � � M � M a in the SM.

where Ç denotes the QED coupling and ô J is the Weinberg angle. Here the short-distance physics is
described by

B�/yù w 7 m Û	KRB � /yù w 7 
 (284)

where Û�K m 1 U 3r1ZD is a perturbative QCD correction factor [177], [178], [179], and B � /yù w 7 , which is
another Inami–Lim function [81], describes the top-quark mass dependence of the Feynman diagrams
shown in Fig. 26. In the SM, we may write B � /yù w 7 —to a very good approximation—as follows [122]:

B � /yù w 7 m 3 UIH Þ F Ó ¿ w1.- � GeV
Õ 5"D Ì ß U (285)

We observe that the matrix element of (283) between a
R h ! h � Ã final state and a Ã � � S initial state

indeed involves the decay constant e U ì . The corresponding SM branching ratios then take the following
form [37]:

BR / � � � h � h ! 7 m ; U 1 F 143 !ûF å e U n3 U D¾; GeV æ � å Ã a w � Ã3 U 3�;�3 æ � å j U n1 U 
 ps æ Ó ¿ w1.- � GeV
Õ ®ED¸5 � (286)

BR / �Üs � h � h ! 7 m 1 U 1 F 143 !65 � å e U �3 U D�3 GeV æ � å Ã a�wxs Ã3 U 3$3 Þ æ � å j U �1 U 
 ps æ Ó ¿ w1.- � GeV
Õ ®ED¸5 � 
 (287)

which should be compared with the experimental H 3�l C.L. bounds

BR / � � � h � h ! 7 �G
 U Þ F 143 ! à 
 BR / �Üs � h � h ! 7 �­1 U 
�/21 U - 7 F 143 ! à (288)

obtained by the CDF (Belle) collaboration [180]. Looking at (286) and (287), we see that a measurement
of these branching ratios would allow clean determinations of Ã a w � Ã and Ã a�wxs Ã , respectively, provided the
non-perturbative decay constants e U n and e U � were known reliably. The current status following from
lattice QCD studies is given as follows [41]:e U � m /ED�3 ¬ �?D � � �! � � 7 MeV 
 e U n m /ED ¬ Þ � ¬ 1 7 MeV Á (289)

similar results were obtained with the help of QCD sum rules [150]. If we consider the ratio

BR / �Üs � h � h ! 7
BR / � � � h � h ! 7 m å j U �j U n æ å � U �� U n æ å e U �e U n æ � ôôôô arwxsa w � ôôôô � 
 (290)

these parameters enter only in the form of the following =_B�/ ¬ 7 -breaking ratio (see also (227)):e U ne U � m 1 U 1 Þ � 3 U 3�; � � D¸5 �! � U (291)

Using now (224), the relation in (290) allows a determination of the side

ò w
of the UT. On the other

hand, we may also write (see (222))��� s�°� � m å � U �� U n æ ä j� U �j� U n æ å e U �e U n æ � ôôôô a�wxsa w � ôôôô � 
 (292)
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allowing us to fix

ò w
with the help of (225). Consequently, (290) and (292) provide complementary

determinations of the UT side

ò w
. Moreover, these expressions imply also the following relation:

BR / � � � h � h ! 7
BR / �Üs � h � h ! 7 m å j U nj U � æ ä j� U �j� U n æ å ��� ��°� s æ 
 (293)

which suffers from theoretical uncertainties that are smaller than those affecting (290) and (292), since
the dependence on /qe U � ø e U n 7 � cancels, and

j� U � ø j� U n m 1 up to tiny =CB�/ ¬ 7 -breaking corrections [181].
In particular, QCD lattice simulations give the following numbers [41]:j� U � m 1 U ¬ ; � 3 U 1ZD�
 j� U n m 1 U ¬ ; �?3 U 1ZD�
 j� U nj� U � m 1 U 3$3C��3 U 3 ¬ U (294)

Moreover, we may also use the (future) experimental data for ��� � � � s to reduce the hadronic uncertain-
ties in the SM predictions for the

� � � h � h ! branching ratios [181], yielding

BR / � � � h � h ! 7 ôô I l m / ¬ U ;|D4�?3 U 
 ¬ 7 F å �°� �1 Þ U 3 � ¥ !65 æ F 143 !ûF (295)

BR / �Üs � h � h ! 7 ôô I l m /21 U 3$3C� 3 U 1K; 7 F 143 !65 � U (296)

Since these branching ratios are very small, we could only hope to observe the
� � � h � h !

decays at the LHC, should they actually be governed by their SM contributions [19]. However, as these
transitions are mediated by rare FCNC processes, they are sensitive probes for NP. In particular, as was
recently reviewed in Ref. [182], the

� � � h � h ! branching ratios may be dramatically enhanced in
specific NP (SUSY) scenarios. Should this actually be the case, these decays may be seen at run II of the
Tevatron, and the � � � ! � factories could observe

�Ts � h � h ! . In the case of models with MFV, we
just have to make the replacement

B0/yù w 7 � B�/ Or7 (297)

in order to take the NP contributions to the
� � � h � h ! decays into account. In particular, the same B / O�7

enters the
� � � h � h ! and

��s � h � h ! channels (see (282)). In analogy, the same generalized function=�/ Or7 governs the mass differences �°� � and ��� s , as we have seen in Subsection 6.4.4. Consequently,
within MFV scenarios, the NP effects cancel in (290), (292) and (293), where in particular the latter
relation offers an interesting test of this picture.

9.3 / 0 132C�2
As we discussed in Subsection 3.2,

( � ��� �� decays originate from D � penguins and box diagrams.
Let us first have a closer look at the charged mode

( � � � � � �� . The low-energy effective Hamiltonian
describing this decay is given as follows [37]:´ Nqµ m YC[� D å ÇD � ¥\¦¨§ � ô J æ ¶N É � � � � S Ó Ø v � N� ) � Ø w � /yù w 7 Õ / ��8� 7 ý !uþ / �� N � N 7 ý !uþ 
 (298)

where Ø v · a fv � aAvQs m  Ø ¡ 1  Ø �D © (299)

and Ø w · agfw � arwxs with

TQU Ø w m Û�Ù � Ø Ì 
 A � Ø w m  ¡ 1  Ø �D © Ù � Ø Ì /21  �Ú 7 (300)
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are CKM factors, and � /yù w 7 m Û9V � � /yù w 7 (301)

describes the top-quark mass dependence originating from the D � penguin and box diagrams, where� � /yù w 7 is another Inam–Lim function [81], and ÛWV m 3 UIHdH ; is a perturbative NLO QCD correction
factor [177], [178], [179], [183]. Within the SM, we may write � � /yù w 7 —to a very good approximation—
as follows [122]: � � /yù w 7 m 1 U 
 ¬ F Ó ¿ w1.- � GeV

Õ 5"D¸5HÌ U (302)

The counterpart of � /yù w 7 in the charm sector is given by � N� ) . For the analysis of
( � � � � � �� , the

following combination is relevant:13

< v / � �� 7 m 1Ø Ý å D ¬ � �� ) � 1¬ � S� ) æ m 3 U ¬ H � 3 U 3Z- U (303)

If we calculate the matrix element of (298) between the
R ����r� � Ã final state and the Ã ( � S initial state, we

encounter a hadronic matrix element of the / ��8� 7 ý !uþ current that can be extracted—with the help of the
isospin flavour symmetry of strong interactions—from the semileptonic decay

( � � � � � � � , which is
a tree decay that is described by the following Hamiltonian [37]:´ Nqµ / ( � ��� � � � � 7 m YC[� D a fq � / ��ZY 7³ý !uþ / �� � � 7³ý !uþ U (304)

Using the isospin relation R � � Ã / ��8� 7³ý !uþÓÃ ( �?S m � D R � � Ã / ���Y 7³ý !uþÓÃ ( �?S 
 (305)

and neglecting the phase-space differences due to � 7 � Âm � 7 } and � � Âm 3 , we obtain

BR / ( � �+� � � �� 7
BR / ( � �+� � � � � 7 m Ç �Ã a q � Ã � D � � ¥\¦x§ Ý ô J ¶N É � � � � S Ã Ø v � N� ) � Ø w � /yù w 7 Ã � U (306)

Consequently, we may determine the hadronic matrix element relevant to the rare decay
( � � � � � ��

through the experimental data for the (non-rare) decay
( � ��� � � � � . Because of this important feature,( � �+� � � �� is a very clean decay.

It is useful to write the
( � �+� � � �� branching ratio as� 5C· 1X � @BA / ( ��� ���"� �� 7 
 (307)

with
X � m Æ = � å ¬ Ç � @BA / ( � �+� � � � � 7D � � ¥\¦x§ Ý ô J æ Ø ä m ; U � Þ F 143 !65^5 
 (308)

where Æ = � m 3 UIH 3r1 describes the isospin-breaking corrections that arise in relating
( � � � � � �� to( � �+� � � � � . Let us now consider the general MFV case, where� /yù w 7 ��� / Or7 U (309)

The ‘reduced’
( � �+� � � �� branching ratio

� 5 can then be expressed as follows [126]:� 5 m å TQU Ø wØ Ì Ã � / Or7 Ã æ � � å A � Ø vØ ¥"¿�§ / � / O�7^7 < v / � �� 7 � A � Ø wØ Ì Ã � / O�7 Ã æ � Á (310)

13The small numerical difference of Y § u[Z �Z7y with respect to the value given in Ref. [37], where \ q�]A^ _`_�](ó was used, is
related to the very recent value of \¥qa] ^ _�_�b`] [41]. A similar comment applies to the quantities c � and c � , to be introduced
below.
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the corresponding SM prediction following from the very recent update in Ref. [48] was given in (49).
It is now an easy exercise to show that the measured

( � �+� � � �� branching ratio determines an ellipse
in the �Ú – �Û plane, ¡ �Ú  Ú ��Ú 5 © � � ¡ �Û�Û 5 © � m 1�
 (311)

centred at /<Ú � 
\3 7 with Ú � m 1 � ¥"¿�§ / � / Or7^7 < v / � �� 7Ù � Ã � / Or7 Ã 
 (312)

and having the squared axes �Ú � 5 m Æ �� 
 �Û �5 m @ Æ �d C � 
 (313)

with Æ �� m d � 5Ù Ý Ã � / Or7 Ã � 
 d m 1/21  Ø � ø D 7 � U (314)

Concerning
( ) �+� � � �� , we may introduce—in analogy to (307)—the reduced branching ratio� � · 1X ) @BA / ( ) ��� � � �� 7 
 (315)

which is characterized by
X ) m å Æ = �Æ = � j = �j = � æ X �÷m D U 3 H F 143 !65 � 
 (316)

where Æ = � m 3 UIH ;$; describes the isospin-breaking corrections that arise in relating
( ) � � � � �� to( � � � � � � � . As discussed in detail in Ref. [37], the decay

( ) � � � � �� is dominated in the SM by
direct CP violation, and is completely governed by the short-distance loop diagrams with internal top-
quark exchanges. Since the charm contribution can be fully neglected, the decay

(#) � � � � �� is even
cleaner than

( � � � � � �� . In models with MFV, the reduced
(0) � � � � �� branching ratio is given as

follows: � � m å TQU Ø wØ Ì Ã � / Or7 Ã æ � Á (317)

the SM corresponds to (49). If we now follow Ref. [45], but admit both signs of � / Or7 and =�/ O�7 , we
obtain �Ú m 1 � ä � ó d / � 5  � � 7 � ¥�¿�§ / � / Or7^7 < v / � �� 7Ù � Ã � / O�7 Ã æ 
 �Û m ¥"¿�§ /Q=�/ Or7^7 � � �� d Ù � Ã � / Or7 Ã U (318)

The dependence on Ã � / O�7 Ã cancels in the following quantity [126]:Æ � · 1  ÚÛ m £ � ¿ È�m ¥"¿�§ /Q=�/ Or7^7 � d ä . ó d / � 5  � � 7  ¥�¿�§ / � / Or7^7 < v / � �� 7� � � æ 
 (319)

which allows the determination of / ¥�¦x§ D È 7"7:9:;9 in (48) through

¥\¦x§ D È
m D�Æ �1 � Æ �� U (320)

Note that (319) reduces to Æ � m � d ä ó d / � 5  � � 7  < v / � �� 7� � � æ
(321)
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in the case of positive values of =�/ O�7 and � / O�7 [45]. Because of the relation in (186), it is actually more
appropriate to consider the CP-violating observable

Ôu<�=?>
instead of ¥\¦x§ D È . Consequently, we obtain a

very interesting link between the mixing-induced CP violation in the ‘golden’ mode
�:s � À ø65 ( I and

the branching ratios of the rare
( �+��� �� decays.

Since
Ô <�=?>

has already been measured with impressive accuracy and BR / ( � � � � � �� 7 will be
known rather accurately prior to the measurement of BR / (�) � � � � �� 7 , it is of particular interest to
calculate BR / ( ) ��� � � �� 7 as a function of BR / ( � ��� � � �� 7 for a given value of

Ô�<�=?>
[126]. To this

end, it is useful to introduce the quantitye�/ È 7 · sgn /Q=�/ Or7^7 £ � ¿ È m 1  �ÚÃ �Û Ã 
 (322)

which can be determined unambiguously throughe�/ È 7 m 1 � ö 1  Ô �<�= >Ô <�= > m D U D � H � � D � ®^Ì! � D � 5HÌ Á (323)

the numerical value corresponds to
Ô�<�=?> m 3 U � ¬ -C� 3 U 3�; H . We then obtain the following expression:� 5Cm � � � å e�/ È 7 � � � � ¥"¿�§ / � / Or7^7 � d < v / � �� 7d æ � U (324)

In comparison with (319), the advantage of (324) is the absence of the sign ambiguities due to ¥"¿�§ /Q=Ë/ O�7^7and the . in front of ó d / � 5  � � 7 . Consequently, for given values of
Ô�<�=?>

and BR / ( � � � � � �� 7 ,
only two values of BR / ( ) ��� � � �� 7 are allowed for the full class of MFV models, independently of any
new parameter present in these models. These two values of the

(ª) ��� � � �� branching ratio correspond
to the two possible signs of � / O�7 . The measurement of BR / ( ) �t� � � �� 7 will therefore either select
one of these two possible values or will rule out all MFV models.

9.4 New Physics beyond minimal flavour violation: an example
As we have seen in Subsection 7.2.3, the pattern of the current

�
-factory data for the

� � � ( system
suggests an enhancement of the corresponding EW penguin parameter � , and the presence of a CP-
violating NP phase

Ð
in the EW penguin sector, as summarized in (213). Since we encounter here

CP-violating effects that are not associated with the CKM matrix, the corresponding NP does not belong
to the category of MFV models considered above. In order to explore the implications for rare

�
and(

decays, let us follow Refs. [48], [54], and consider a specific scenario, where the NP effects enter
through enhanced D � penguins, which are described by a short-distance function ¹ .

The implications of enhanced D � penguins with a large new complex phase for rare and CP-
violating

(
and

�
decays were already discussed in Refs. [184]– [186], where model-independent anal-

yses and studies within particular supersymmetric scenarios were presented. Here we determine the size
of the enhancement of the D � -penguin function ¹ and the magnitude of its complex phase through the� � � ( data. As was pointed out in Ref. [146], a connection between rare decays and the

� � � (
system can be established by relating the EW penguin parameter � to the D � -penguin function ¹ , which
can be properly done with the help of a renormalization-group analysis. In the case of a complex EW
penguin parameter, with a non-vanishing weak phase

Ð
, we obtain the following relation [48], [54]:¹ ·�Ã ¹ Ã �4¯FE Æ m D U ¬ 
 �� �4¯Åú  3 U Þ D�
 �� m � å Ã arq�u ø aAvQu Ã3 U 3 Þ - æ U (325)

This quantity enters the short-distance functions � and B , which govern the rare
(

,
�

decays with � ��
and h � h ! in the final states, respectively, in the linear combinations� ·ÄÃ � Ã �Z¯FE"e m ¹ � � 9d;9 
 B ·ÄÃ B Ã �Z¯FEgf m ¹ � � � � � � 
 (326)
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where
� 9d;9

and
� � � � � describe the box diagrams with � �� and h � h ! , respectively. If we evaluate, in the

spirit of Refs. [146], [184], [185], these box-diagram contributions in the SM and use (325), we obtainÃ � Ã � ¯FEge m�Ã ¹ Ã � ¯FE Æ � 3 U � ¬ and Ã B Ã � ¯FEQf mÄÃ ¹ Ã � ¯FE Æ � 3 U 1 Þ U (327)

While the analysis described here does not rely on a particular model, concrete models with enhanced
CP-violating D � -mediated FCNC couplings, generated either at the one-loop level or even at the tree
level, were discussed in the literature (see, for instance, Refs. [9], [148], [184], [185], [186]). Let us also
note that models with D - -mediated FCNCs could be put in this class, provided their contributions can
effectively be absorbed in the function ¹ (for a recent analysis, see Ref. [187]).

If we now insert the numerical values in (213) into (327), we obtain a central value for Ã B Ã that
violates the upper bound Ã B Ã ß D U D following from the BaBar and Belle data on

� � � � h � h ! [188],
and the upper bound on BR / (�) � � � � � � ! 7 of D U Þ F 143 !65 � from KTeV [189]. However, we may still
encounter significant deviations from the SM. In order to illustrate this exciting feature, we consider only
the subset of those values of /{��
 Ðe7 in (213) that satisfy the constraint of Ã B Ã�m D U D . If we then use (325)
and (327), we obtain Ã ¹ Ã m D U D¾;ü� 3 U 3�;r
 � Ê m  /2143Z

�V1ZD 7 ü 
Ã � Ã m D U 1 � � 3 U 1ZD�
 � V m  / Þ � �V1ZD 7 ü 
Ã B Ã m D U D#/ ¦x§ �ih � 7 
 �2K m  /2143 ¬ �V1ZD 7 ü 
 (328)

which should be compared with the SM values ¹ /yù w 7 m 3 U � H , � /yù w 7 m 1 U 
 ¬ and B0/yù w 7 m 3 UIH Þ ,
corresponding to ¿ w m 1.- �kj ��� .

Going back now to the
� � � h � h ! decays, we find

BR / � � � h � h ! 7
BR / � � � h � h ! 7 I l m BR / �Üs � h � h ! 7

BR / �Üs � h � h ! 7 I l m ôôôô B
B I l ôôôô

� � 
 U 3 U (329)

This significant enhancement corresponds to the branching ratios

BR / � � � h � h ! 7 � 1 � F 143 !ûF 
 BR / �Üs � h � h ! 7 � 
 F 143 !65 � 
 (330)

which are still well below the experimental bounds summarized in (288).

As far as the
( �+��� �� decays are concerned, this NP analysis implies

BR / ( �
� ���â� �� 7 m / � U 

� D U 1 7 F 143 !65^5 
 BR / (*) �+� � � �� 7 m / ¬ U 1^�V1 U 3 7 F 143 !65 � 
 (331)

which should be compared with the SM predictions in (49). We observe that the impact of NP on
the

( � � � � � �� branching ratio would be small, whereas BR / (�) � � � � �� 7 would be dramatically
enhanced. If we introduce È V ·VÈ  È �  �AV with È � ·  Ê � m  Ø � Ûc
 (332)

we see that this exciting pattern is dominantly the consequence of È V � 1$1$1 ü , as

BR / ( ) �+� � � �� 7
BR / ( ) �+� � � �� 7 I l m ôôôô

�� I l ôôôô � å ¥\¦x§ È V¥�¦x§ / È  È � 7 æ � (333)

and
BR / ( ) �+� � � �� 7
BR / ( � ��� � � �� 7 ��; U ; F / ¥�¦x§ È V 7 � ��; U D
� 3 U D U (334)

It is interesting to note that BR / (�) � � � � �� 7 is very close to its model-independent upper bound [190]:

BR / ( ) ��� � � �� 7 ß ; U ; F BR / ( �÷�+���â� �� 7 U (335)
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Fig. 27: BR ���°� � �u� ' ý' � as a function of BR �����b� ��, ' ý' � for various values of q<r . The dotted horizontal
lines indicate the experimental range (50) and the grey area the SM prediction. We also show the bound in (335).

A spectacular implication of these findings is a strong violation of the relation in (48). Indeed,/ ¥\¦x§ D È 787�9d;9 m ¥\¦x§ D È V m  /{3 U - H � � D � ®! � D Ý 5 7 
 (336)

in striking disagreement with / ¥\¦x§ D È 7"<�= > m 3 U � ¬ -b�@3 U 3�; H . In Fig. 27, we plot—in the spirit of
Ref. [126]—BR / ( � �+� � � �� 7 as a function of BR / ( ) ��� � � �� 7 for fixed values of È V . As this plot is
independent of Ã � Ã , it offers a direct measurement of the phase È V . The first line on the left represents the
MFV models with È V m�È  È � , whereas the first line on the right corresponds to the model-independent
Grossman–Nir bound given in (335). The central value È V m 1$1$1 ü found in Refs. [48], [54] is very close
to this bound. As can be seen in Fig. 27, the measured

( �+��� �� branching ratios allow us to determineÈ V up to discrete ambiguities, which can be resolved by considering other rare decays simultaneously.
The corresponding plot for different values of È V that are close to È can be found in Ref. [126].

In addition to the significant and—in the case of
(�) � � � � �� and / ¥�¦x§ D È 787:9d;9 —even spectacular

NP effects discussed above, there are further interesting implications of this scenario [48], [54]:

– The branching ratio
BR / ( ) �+� � � � � ! 7 m / � U Þ �V1 U - 7 F 143 !65^5 (337)

is significantly enhanced and governed by direct CP violation. On the other hand, the SM result/ ¬ U D �%5"D �! � D ä 7 F 143 !65^5 [191] is dominated by indirect CP violation. In a very recent analysis [192], the
same NP scenario was considered as well, addressing also the decay

( ) � � � h � h ! .
– The integrated forward–backward CP asymmetry for

�És � (�f h � h ! [186], which is given byÙ &�Á[ L m /{3 U 3 ¬ � 3 U 3r1 7 F ��� § �4KÓ
 (338)

can be very large in view of �9KW�  143$3 ü . The corresponding NP effects for the lepton polarization
asymmetries of

� ��� � « � « ! decays were recently studied in Ref. [193].
– The

� ��� � � s � �� branching ratios are enhanced by a factor of D with respect to the SM.
– Enhanced D � penguins may also play an important role in Re /{, - ø , 7 [184]. As far as the enhance-

ment of Ã ¹ Ã and its large negative phase suggested by the
� � � ( analysis are concerned, the

consistency with (47) requires a significant enhancement of the hadronic matrix element of the
relevant QCD penguin operator with respect to that of the relevant EW penguin operator. The
corresponding large hadronic uncertainties leave sufficient room for such effects.
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– It is also interesting to explore the implications for
��s � À ø65 ( I and

�Üs � Ðc( I . As far as the
former channel is concerned, the NP corrections to the determination of ¥\¦x§ D È from the mixing-
induced

��s � À ø65 ( I CP asymmetry are at the 0.05 level, corresponding to a shift of È by at
most ��D ü . Such small effects are still beyond the current experimental and theoretical accuracy,
but could be reinvestigated in the LHC era. Concerning the decay

��s � Ðc( I , large hadronic
uncertainties preclude a precise prediction. However, if we assume that the sign of the cosine of a
strong phase agrees with factorization, we find/ ¥\¦x§ D È 7 ú =?>� �K� �!tsvu=w x143 � U �`y ú =?> � # / ¥\¦¨§ D È 78<�=?> m 3 U � ¬ - � 3 U 3�; H� �K� �!tsvu=w x123 � U �`y >�ö <�=?> � 
 (339)

where / ¥\¦x§ D È 7 ú =?> 	 1 may well be possible. This pattern is qualitatively different from the
present

�
-factory data summarized in (179), which are, however, not yet conclusive. In particular,

we could easily accommodate a value of / ¥�¦x§ D È 7 ú =?> of the same magnitude as the central value
found by Belle but of opposite sign. On the other hand, a future confirmation of the pattern in
(339) would be another signal of enhanced CP-violating D � penguins at work.

If future, more accurate
� � �6� 
 � ( data will not significantly modify the currently observed patterns

in these decays discussed in Subsections 6.2.2 and 7.2.3, the scenario of enhanced D � penguins with a
large CP-violating NP phase

Ð
will remain an attractive possibility for physics beyond the SM. It will

then be very interesting to confront the corresponding predictions for the rare
�

and
(

decays discussed
above with experiment.

10 CONCLUSIONS

The field of flavour physics and CP violation is very rich and represents an exciting topic for theoretical
and experimental research. In these lectures, we have put our focus on the

�
-meson system, which

provides a particularly fertile testing ground for the SM picture of flavour physics, where CP violation
can be accommodated by means of the KM mechanism through a single phase in the parametrization of
the quark-mixing matrix. The corresponding UT represents one of the central targets of the

�
factories,

which govern the current experimental stage of quark-flavour physics, run II of the Tevatron, and of the
LHCb and BTeV experiments, which will join these efforts in the not too distant future.

In 1964, the observation of indirect CP violation, which originates from the fact that the mass
eigenstates of the neutral kaon system are not eigenstates of the CP operator, came as a big surprise.
After tremendous efforts, also direct CP violation could be established in neutral

(
decays in 1999 by

the NA48 and KTeV collaborations. Unfortunately, the calculations of the corresponding observable
Re /{,�- ø , 7 , which is governed by the competition between QCD and EW penguins, suffer from large the-
oretical uncertainties. Consequently, unless better techniques to deal with the relevant hadronic matrix
elements become available, Re /{, - ø , 7 unfortunately does not provide a stringent test of the SM, although
the SM analyses give results of the same order of magnitude as the experimental value. From the the-
oretical point of view, the rare decays

( � � � � � �� and
(*) � � � � �� are much more promising. On

the other hand, these decays exhibit extremely tiny branching ratios at the 143 !65 � and 143 !65^5 levels in
the SM, respectively, and are extremely challenging from the experimental point of view. Nevertheless,
three events for

( � �+� � � �� were already observed at BNL.

Concerning the decays of
�

mesons, we distinguish between leptonic, semileptonic and non-
leptonic transitions. The former exhibit the simplest structure and would be interesting to measure the
non-perturbative decay constants e U , but suffer from tiny branching ratios. The semileptonic

�
decays

are more complicated than the leptonic ones. However, applications of the HQET and heavy-quark ex-
pansions allow us to determine Ã aevQu Ã and Ã a�q�u Ã , which are important ingredients for theoretical predictions
and the analysis of the UT in the �Ú – �Û plane. Finally, the non-leptonic decays are the most complicated
transitions, as far as the impact of strong interactions is concerned. In order to deal with them theo-
retically, low-energy effective Hamiltonians are used, which consist of perturbatively calculable Wilson
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coefficients and local four-quark operators. The former encode the whole short-distance dynamics of the
decay class at hand, whereas the long-distance contributions of a specific channel show up as the corre-
sponding hadronic matrix elements of the four-quark operators. The same formalism applies of course
also to non-leptonic kaon decays and is at the basis of the calculations of Re /{,|- ø , 7 . The non-leptonic

�
decays play the key role for the exploration of CP violation, since non-vanishing CP asymmetries may be
induced by interference effects in such transitions. In general, the theoretical interpretation of such CP
asymmetries is affected by large hadronic uncertainties, in analogy to Re /{, - ø , 7 . However, the

�
-meson

system provides tools to deal with these uncertainties: there are fortunate cases, where relations between
various decay amplitudes allow us to eliminate the—essentially unknown—hadronic matrix elements,
and we may exploit mixing-induced CP asymmetries, where the hadronic matrix elements cancel if the
decay is governed by a single CKM amplitude. The latter observables can also be nicely combined
with amplitude relations. Following these lines, we may also determine—in addition to the angles of
the UT—certain hadronic parameters, which can then be compared with the corresponding theoretical
calculations, where also a lot of progress could be made over recent years.

Thanks to the efforts of the BaBar and Belle collaborations, CP violation could be established in
the

�
-meson system in 2001, with the help of the ‘golden’ mode

��s � À ø65 ( I , thereby opening a new
era in the exploration of this phenomenon. The current experimental status of the mixing-induced CP
asymmetry of this (and similar) channel(s) implies ¥\¦x§ D Ènm 3 U � ¬ -���3 U 3�; H , in impressive accordance
with the indirect value following from the CKM fits of the UT in the �Ú – �Û plane. The physics potential of
the

�
factories goes far beyond the famous

�gs � À ø65 ( I decay, allowing us now to confront many more
strategies to explore CP violation with data. Here the main goal is to overconstrain the UT as much as
possible, thereby performing a stringent test of the KM mechanism of CP violation. Important

�
-factory

benchmark modes to complement the
� � À ø65 ( system are given by

� � �6� and
� � Ðc(

decays,
and exciting data on these channels are already available. The pattern of the

� ���6� data favours large
non-factorizable effects, and the analyses of CP violation in

��s � � � � ! point towards large direct
and mixing-induced CP asymmetries, which can be interpreted in terms of � 	 -d
 ü , in accordance with
the CKM fits. Although the BaBar and Belle measurements of these asymmetries are not yet in full
accordance, they already moved towards each other and it seems plausible that they will meet close to
the current averages. On the other hand, the Belle measurement of the mixing-induced CP asymmetry
of
�Üs � Ðc( I raises the exciting possibility of having large NP effects in the �W � ���� �� quark-level

processes. However, the corresponding BaBar analysis is consistent with the SM, so that we cannot yet
draw firm conclusions. Let us hope that this unsatisfactory experimental situation will be clarified soon.

As far as the exploration of CP violation with the help of amplitude relations is concerned, we
distinguish between exact and flavour-symmetry relations. The prototype of the former is provided by� é � ( é R

decays, whereas
� év � R é� R transitions offer the ideal theoretical realization of the

corresponding triangle strategy to determine the angle � of the UT. An important example for the appli-
cation of flavour-symmetry relations is given by

� �t� ( decays. Here the corresponding
�

-factory
data point again to a puzzling pattern, which may be due to the presence of enhanced EW penguins with
a large CP-violating NP phase. Although BaBar, Belle and CLEO indicate separately the corresponding
‘
� � � ( puzzle’, it is still too early for definite conclusions. This kind of NP would yield striking

effects in various rare
�

and
(

decays, of which an enhancement of the
( ) �+� � � �� branching ratio by

one order of magnitude and a negative value of / ¥\¦¨§ D È 7�7:9:;9 would be the most spectacular ones.

Another key element for the testing of the SM description of CP violation is the
� � -meson system,

which is not accessible at the � � � ! � factories operating at the 9*/<;>= 7 resonance, BaBar and Belle, but
can be studied nicely at hadron collider experiments. Interesting results on

� � physics are soon expected
from run II of the Tevatron, where

�*�� – ����� mixing should be discovered, which is an important ingredient
for the CKM fits of the UT. The most prominent

� � decays include
� � � À ø65 Ð , which is a powerful

probe for NP contributions to
� �� – ����� mixing manifesting themselves through a sizeable value of

Ð � ;� � � ( � ( ! , which can be combined with
�Ts � � � � ! through the B -spin flavour symmetry to
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determine � ; and
� � � R � f � é� ( !

modes, which allow clean determinations of
Ð � � � and can be

combined in a variety of ways with their
�gs � R � f � é � ! counterparts, offering advantages from the

practical point of view. Although the Tevatron will provide first insights into these decays, they can only
be fully exploited at the experiments of the LHC era, in particular LHCb and BTeV.

Finally, it should be emphasized again that it is crucial to complement the studies of CP violation
with measurements of rare

�
and

(
decays, which are sensitive probes for NP. Moreover, it is important

to keep also an eye on the
R

-meson system, which exhibits tiny mixing and CP-violating effects in the
SM [121], as well as on various other interesting aspects of flavour physics, such as flavour-violating
charged-lepton decays (for a very recent study, see Ref. [194]), which we could not cover in these lec-
tures.

In this decade, the successful exploration of flavour physics and CP violation will certainly be
continued, thereby leading to many further exciting results and valuable new insights. Let us hope that
eventually also several ‘surprises’ can be established, shedding light on the physics beyond the SM!
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BEYOND THE STANDARD MODEL: EXTRA DIMENSIONS AND
SUPERSYMMETRY

G. Gabadadze
Center for Cosmology and Particle Physics, Department of Physics, New York University, New York,
NY, 10003

Abstract
I give an elementary introduction to two possible extensions of the Standard
Model of particle physics. The first one assumes the existence of extra dimen-
sions and the second one of a supersymmetric world. I outline the basic prin-
ciples of the theories with extra dimensions and/or supersymmetry and discuss
certain phenomenological consequences of these models.

1 INTRODUCTION

The Standard Model (SM) of strong and electroweak interactions is an extremely successful model that
parametrizes all the existing particle physics data with an extraordinary accuracy (for a recent, brief
status review see, for example, Ref. [1]).

However, the SM does not give an explanation of many interesting particle properties and inter-
actions that it describes with such success. To name just one, the origin of fermion mass patterns, the
reason for the existence of the three generations, charge quantization, and certain properties that make
the SM consistent with the observations, cannot be understood within the SM itself.

Moreover, some cosmological and astrophysical issues, such as the baryon asymmetry of the Uni-
verse, the problem of Dark Matter, and the origin of ultra-high-energy cosmic rays, are hard to understand
without invoking certain new physics beyond the SM. These issues were covered in detail by I. Tkachev
in this school [2].

Based on one or all of the above argumentations, physicists are searching for theories beyond the
Standard Model. A new, successful model has to include in it all the ingredients of the SM and has to go
beyond the SM in explaining the mysteries that cannot be explained by the SM.

During the last 30 years or so, this search was mainly driven by the following two theoretical
concepts:

– Unification of strong and electroweak interactions
– The hierarchy problem

The unification is an extremely powerful concept that explores the possibility that the strong,
electromagnetic, and weak interactions have a common origin [3]. A typical unification takes place at
energies of the order of

�������
GeV.

The hierarchy problem is the theorist’s dissatisfaction with the fact that the Higgs mass in the
SM is very sensitive to high-energy physics because of the quantum loops. A tremendous fine-tuning
is needed in order to keep the Higgs mass light enough for it to be relevant for electroweak symmetry
breaking.

Attempts to solve the hierarchy (or Higgs mass) problem gave rise to at least three major directions
beyond the SM that have been explored in some detail. Each of these directions contains a number
of interesting and elaborate models that by themselves introduce new concepts and give rise to new
consequences, so putting them in the three directions is convenient but not very fair. These models
typically predict new physics in a few-TeV region that could be tested at the LHC!

In an arbitrary order these directions are

151



– Supersymmetry
– Large extra dimensions
– Composite/Nambu–Goldstone Higgs models

These lectures will give an introduction to the first two approaches—large extra dimensions and
supersymmetry. Because of lack of time, the third approach was not covered at this School. This is un-
fortunate since there were interesting recent developments in the above direction. The reader is referred
to the literature [4].

2 THE HIERARCHY PROBLEM

In this section we review briefly what is called the hierarchy problem. Any parameter in the SM La-
grangian can potentially get renormalized due to quantum loop corrections. The particle masses are
among these parameters. The masses of the SM fermions and gauge bosons are protected from large
quantum-loop renormalizations by symmetries of the theory. However, there is no such symmetry for a
scalar Higgs particle in the SM.

Let us parametrize the renormalized Higgs mass as follows:���
	���
� ����� ���
���� ����� � ��������� �!#" �%$ (1)

Here � � �� " � denotes the bare Higgs mass that enters the bare SM Lagrangian. In order for the Higgs
particle to be relevant for Electroweak (EW) symmetry-breaking, the renormalized Higgs mass has to be& ' TeV.

However, � � �� is power-sensitive to ultraviolet (UV) physics. In particular, if (*),+ is a UV cutoff
of the theory at hand, then we get � � �� &.-0/�132� 465�77 � & ( �)�+ $ (2)

Furthermore, if one assumes that there is no new physics all the way up to the Planck scale, then ( )�+ &�98;:
,and ��� 	���
� � �=< ���� �!#" � $ (3)

Such a high Higgs mass is not acceptable. The above arguments indicate that a possible new physics can
be entering at much lower energies, (=)�+?> �98@:

, rendering the Higgs light.

There are the following possibilities:

(i) Higgs is a composite state with the compositness scale & TeV. Then, (*)�+ & TeV, and there is
no problem.

(ii) Supersymmetry (SUSY). Typically, in this case (A)�+ & ��� ��� GeV, however, SUSY is broken
at a low scale, & TeV, and the SUSY particles are entering the game at around a TeV.

(iii) Large extra dimensions. One declares that (B)�+ & �0CEDGF 
IH DGJLKEMNF�OQP HSR & TeV. This nullifies the
hierarchy problem.

(iv) Yet another possibility is to assume that (B),+ & �T8@: and to accept a fine-tuning of 1 part in��� ��U
that is needed to arrange for the cancellation between the bare Higgs mass and � � �� .

In what follows we shall explore the consequences of (iii) and (ii).

3 INTRODUCTION TO EXTRA DIMENSIONS

Extra dimensions had been studied long before the SM and particle physics emerged. They were intro-
duced with the aim of unifying the gravitational and electromagnetic interactions. In this section we shall
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more or less follow the historical course of the development of theories with extra dimensions (in this
section we follow Ref. [5]).

The magnitude of gravitational force V between two macroscopic objects separated at a distanceW obeys the inverse-square law, V & W�X � . This would not be so if the world had Y[Z �
extra spatial

dimensions that are similar to our three—in that case we would instead measure V & W X]\ �_^]`ba . Similar
arguments hold for the microworld of elementary particles. For instance, we know from accelerator
experiments that electromagnetic interactions of charged particles obey the inverse-square law.

However, experimental capabilities are limited and so is our knowledge of the validity of these laws
of nature. For instance, it has not been established how gravity behaves at distances shorter than

��� X 5 cm,
or at distances larger than

��� �dc cm. All we know is that for
��� X 5fe�g & ' W & ' ��� �dc cm the inverse-square

law provides a good description of nonrelativistic gravitational interactions, but laws of nature might
be different outside of that interval. Likewise, we are certain that electromagnetic interactions obey the
inverse-square law all the way down to distances of order

��� X ��� cm, but they might change somewhere
below that scale.

At present, it is not clear how exactly these laws of nature might change. There is a possibility that
they will change according to the laws of higher-dimensional space if extra dimensions exist. However,
it is fair to wonder why one should think in the first place that the world might have extra dimensions. I
shall give below major theoretical arguments that motivated an enormous amount of research in the field
of extra dimensions.

The first scientific exploration of the idea of extra dimensions was by Kaluza [6] and Klein [7].
They noticed that gravitational and electromagnetic interactions, since they are so alike, could be de-
scendants of a common origin. However, amazingly enough, the unified theory of gravity and electro-
magnetism could be formulated only in space with extra dimensions. Subsequently, non-Abelian gauge
fields, similar to those describing weak and strong interactions, were also unified with Einstein’s gravity
in models with extra dimensions. Therefore, the first reason why extra dimensions were studied was:

– Unification of gravity and gauge interactions of elementary particles.
So far we have been discussing classical gravitation. However, quantization of gravity is a very

nontrivial task. A candidate theory of quantum gravity, string theory (M-theory), can be formulated con-
sistently in space with extra six or seven dimensions; hence, the second reason to study extra dimensions:

– Quantization of gravitational interactions.
All the extra dimensions considered above were very small, of the Planckian size and therefore

undetectable. A new wave of activity in the field of extra dimensions came with the framework of
Arkani-Hamed, Dimopoulos and Dvali (ADD) [8] who observed that the Higgs mass hierarchy problem
can be addressed in models with large extra dimensions. Because the extra dimensions are large in
the ADD framework, their effects can be measurable in future accelerator, astrophysical, and table-top
experiments. Moreover, these models can be embedded in a string theory framework [9]. Subsequently
Randall and Sundrum proposed a model with warped extra dimension [10] that also provides an attractive
set-up for addressing the Higgs mass hierarchy problem and for studying physical consequences of extra
dimensions. Thus, the third reason is:

– The Higgs mass hierarchy problem.
Another type of hierarchy problem is the problem of the cosmological constant. The latter is

very hard to address unless one of the conventional notions such as locality, unitarity, causality, or four-
dimensionality of space–time is given up. In that regard, theories with infinite volume extra dimensions
[11]—the only theories that are not four-dimensional at very low energies—were proposed as a candidate
for solving the cosmological constant problem [12, 13]. Hence the fourth reason is:

– The cosmological constant problem.
In what follows I shall discuss some of the developments in extra dimensional theories listed

above.
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4 INTRODUCTION TO KALUZA–KLEIN THEORIES

Extra spatial dimensions are not similar to our three dimensions in the Kaluza–Klein (KK) approach.
Instead, the extra dimensions form a compact space with a certain compactification scale h . For instance,
one extra dimension can be a circle of radius h , or simply an interval of size h . For more than one extra
dimension this space could be a higher dimensional sphere, torus, or some other manifold. In general,i

-dimensional space–time in the KK approach has a geometry of a direct product
� 5Lj�kml X 5 where� 5 denotes four-dimensional Minkowski space–time, and k l X 5 denotes a compact manifold of extra

dimensions—called an internal manifold1 .

In the KK approach there is a certain dynamics in
i

-dimensional space–time that gives rise to
preferential compactification of the extra � i.npo " -dimensions leaving four Minkowskian dimensions
intact. The geometry

� 5qjrksl X 5 should be a solution of
i

-dimensional Einstein equations.

Let us now discuss the physical implications of the compact extra dimensions. Based on common
sense, it is clear that at distance scales much larger than h , the extra dimensions should not be noticeable.
They only become ‘visible’ when one probes very short distances of order h .

To discuss these properties in detail we start with the simplest example of a real scalar field in� o � � " -dimensional space–time. In the the paper we use the mostly positive metric t n �u�u�u� $S$ v . The
Lagrangian density takes the formw � n �xzy;{%|}y { |s~ � � � ~ � ~ x ~I�@~�� $ (4)

Here the field | ��� ~@�� ~d� "�� | � ��� ~d� " ~�� � � ~ � ~ x ~I� , depends on four-dimensional coordinates �]� as
well as on an extra coordinate � . The extra dimension is assumed to be compactified on a circle � � of
radius h . Therefore, the five-dimensional space–time has a geometry of

� 5 j � � . In this space the
scalar field should be periodic with respect to ����� � x�� h :| � � ~d� "�� | � � ~d� � x�� h " $ (5)

Let us now expand this field in the harmonics on a circle| � � ~d� "�� ^]����� X ��� � � � "���� �3��� � $ (6)

[Note that �¢¡� � � "£� � X � � � " .] Substituting this expansion into Eq. (4) the Lagrangian density (4) can be
rewritten as followsw � n �x ^]���;¤ ¥b� X �§¦ y � � � y � � ¥ n©¨]ªh � � � � ¥B« � � \ � ^ ¥ a �G� � ~ (7)

while the action takes the form� � - 4 5 � - � ¬ �� 4 � w � n x�� hx - 4 5 � ^]����� X � ­ y � � � y � � ¡� � ¨ �h � � � � ¡�;® $ (8)

On the right-hand side of the above equation we performed integration w.r.t. � . The resulting expression
is an action for an infinite number of four-dimensional fields � � � � " . To study properties of these fields it
is convenient to introduce the notation ¯ � �±° x�� h � � $ (9)

1The ²q³]´�µ does not have to be a manifold in a strict mathematical definition of this notion (see examples below), however,
we shall use this name most of the time for the sake of simplicity.
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The latter allows us to rewrite the action in the following form� � - 4 5 ��¶ n �xzy �
¯ � y � ¯ �¸· n - 4 5 � ^]��¹ � � ­ y � � ¹ y � � ¡¹ � 7 �h � � ¹ � ¡¹ ®º$ (10)

Therefore, the spectrum of a compactified theory consists of:

– A single, real, massless scalar field, called a zero-mode,

¯ � ;
– An infinite number of massive, complex, scalar fields with masses inversely proportional to the

compactification radius, ª �¹ � 7 ��» h � .
All the states mentioned above are called the Kaluza–Klein modes. At low energies, i.e., when ¼½> � » h ,
only the zero mode is important; while at higher energies ¼�&¾ � » h , all the KK modes become essential.

As a next step we consider a � o � � " -dimensional example of Abelian gauge fields. An additional
ingredient, compared to the scalar case, is the local gauge invariance, the consequences of which we shall
emphasize below.

Let us start with the Lagrangian densityw � n �o�¿ �U V�ÀEÁ¢V À¢Á ~ (11)

where the dimensionalities are set as follows: t �#Â v � tÄÃ�Å3ÆIÆ v , t ¿ X �U v � tÄÃ�Å3ÆIÆ v . As in the previous
example, we assume compactification on a circle � � of radius h and periodic boundary conditions on
the fields. We decompose V �ÀEÁ � V ��ÈÇ � x � y � � U n y U � � " � , and expand the fields � � and � U in the
harmonics on a circle� � � � ~d� "�� ^]����� X � � \ � a� � � "�� � �È�G� � ~ � U � � ~d� "�� ^]����� X � � \ � aU � � "�� � �3��� � $ (12)

As in the scalar example, we integrate w.r.t. � to calculate the effective 4D action� � - 4 5 � - � ¬ �� 4 � w � - 4 5 � w 5 $ (13)

Using gauge transformation, the expression for
w 5 can be cast in the following formw 5 � n �o�¿ �5

É V \ � a�3Ç V \ � a �ÈÇ � x ^]��¹ � � ¶ V \ ¹ a�3Ç V ¡ \ ¹ a �ÈÇ � x 7 �h � � \ ¹ a� � ¡ \ ¹ a � · � x � y � � \ � aU " ��Ê $ (14)

Therefore, we conclude that the spectrum of the compactified model consists of the following states:

– A zero-mode—a massless gauge field � \ � a� with the gauge coupling
¿ �5 � ¿ �U » � x�� h " ;– Massive KK gauge bosons with the mass ª �¹ � 7 � » h � ;– Massless scalar field � \ � aU .

A few words on local gauge invariance are in order here. The five-dimensional model is invariant
under five-dimensional local gauge transformations �LÂ � � ~d� " �Ë�*Â � � ~d� " � y;Â£Ì � � ~d� " . After compact-
ification the five-dimensional gauge transformations reduce to an infinite number of four-dimensional
gauge transformations—one for each KK level � \ � a� � � " � � \ � a� � � " � y � Ì \ � a � � " . However, only the
zero-mode is a massless gauge field, all the higher KK modes are massive. This can be interpreted as
a consequence of the Higgs mechanism taking place on each massive KK level where a massless gauge
field ‘eats’ one massless scalar � \ � aU and becomes a massive gauge field with three physical degrees of
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freedom. On the massless level there is a 4D massless gauge field with two physical degrees of freedom
plus one real massless scalar � \ � aU .

Finally we come to the main subject of this section and consider a � o � � " -dimensional example
of gravity. It demonstrates how 4D Einstein gravity can be unified with electromagnetism in a 5d theory
— the original proposal of Kaluza and Klein.

The 5d action takes the form � � �
Í¡x - 4 5 � 4 � ° ÎzÏ U $ (15)

As in the previous examples, the space is
� \ 5 a j � � and we expand fields in the harmonics on a circle

of radius h Î À¢Á � � ~d� "�� ^]����� X � Î \ � aÀ¢Á � � "�� � �3��� � $ (16)

In what follows we shall concentrate on the zero mode Î \ � aÀEÁ neglecting all the massive modes.

Let us introduce the notationsÎ \ � a�ÈÇ �Ð�fÑ �dÒ Í � ¿ �3Ç � � " � � X Ò Í Ñ � � � Ç " ~ (17)Î \ � a� U � Î \ � aU � �Ð� X � Ñ �dÒ Í � � ~Î \ � aUdU �Ð� X � Ñ �dÒ Í $
Using these expressions we find the 4D action for the zero-mode fields�EÓ J � � Í¡ � h - 4 5 � ° ¿

­ Ï 5 � ¿ " n �x y � � y � � n �o � X Ò Í Ñ V ��3Ç ® $ (18)

Recalling that the conventional 4D action for gravity has a form� �8;:x - 4 5 � ° ¿ Ï 5 � ¿ " ~ (19)

we find that
� �8;: � �
Í¡ x�� h . As a result, the Newton constant Î#Ô �Õ��Ö � � �8;: " X � can be related to the

higher dimensional scale and the compactification radiusÎ×Ô � ��fØ�� � � Í¡ h $ (20)

The main result of the above discussion is that four-dimensional gauge and gravitational fields have a
common origin in five-dimensional gravitational field.

Let us count physical degrees of freedom. A four-dimensional massless graviton has two physical
degrees of freedom (pdf’s); A four-dimensional massless gauge boson has also two pdf’s, and a real
scalar has one pdf. The total is five pdf’s, in agreement with five pdf’s of a massless five-dimensional
graviton2 .

Let us now turn to the massive KK levels. The analysis is similar to that of gauge fields but
more cumbersome. Nevertheless, the main results can be summarized as follows. There is a massive
graviton with the mass ª �¹ � 7 � » h � at each 7 ’th level. These gravitons acquire masses via the Higgs

2In general, the total number of independent components of a rank 2 symmetric tensor in Ù -dimensions is Ù×ÚÛÙTÜÞÝ_ß�àQá ,
however, only Ù×ÚÛÙuâäã�ß�à�á of those correspond to physical degrees of freedom of a Ù -dimensional massless graviton; the
remaining extra components are the redundancy of manifestly gauge- and Lorentz-invariant descriptions of the theory.
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mechanism—one massless graviton (two pdf’s) ‘eats’ one massless gauge boson (two pdf’s) and one
real scalar (one pdf)—this makes one massive 4D graviton that has five pdf’s. The massive gravitational
KK modes are charged under the massless gauge field. The charges are determined as å ¹ & 7 » h �T8@:& ª � » �T8@: . At the linearized level, gauge transformations do not mix with other different KK levels,
however, this mixing shows up once the nonlinear interactions of gravitational theory are taken into
account [14].

5 INTRODUCTION TO BRANEWORLDS

The idea that our � � � � " -dimensional world could be realized as a 3d surface in higher dimensional
space was actively discussed in the context of general relativity in the 1960s and 1970s.

A first, particle physics application of this idea was put forward by Rubakov and Shaposhnikov
[15] and independently by Akama [16].

In this section, following Ref. [15], we consider a toy example of the braneworld where the main
mechanism of localization can be worked out explicitly.

We start with a scalar field in five dimensions with the following Lagrangian densityw � n �x y { |}y { | n�æx � | � nèç Í � � $ (21)

The Lagrangian is invariant under the é � transformations |ê� n | , however, the vacua of the theory are
not — under the é � the two vacua | ��ë ç Í � � interchange. Therefore, the é � is spontaneously broken.
As a result, there should exist domain walls. We find the following domain wall (kink) solution to the
classical equation of motion|íì : � � "�� ç Í � ��î_ï�ð�ñ ¦ ° æ ç Í � � � « � ç Í � �Gî_ï�ð�ñ � ª � � " $ (22)

Transverse to the domain wall, space is one-dimensional, hence, the domain wall is a codimension-one
object. Its worldvolume has three spatial coordinates, therefore, it is also called a 3-brane.

Let us discuss certain properties of the solution. The tension of the wall is its surface energy
density ò �ôó 4 �@õ � |bì : "#�öó 4 � ò �d� � |bì : " , where õ denotes the Hamiltonian and ò �d� denotes the

���
component of the stress tensor. The tension is determined as followsò & ª Í�æ & ° æ ç Í � � ç Í $ (23)

Below we would like to understand what are the excitations that live on the brane worldvolume.
According to the braneworld idea [15], [16], in a realistic construction, those excitations should be iden-
tified with the Standard Model particles. For this purpose we perform the following decomposition| � � ~d� "�� |bì : � � " ��� | � � ~d� " $ (24)

Then we find that the 5d equations have a solution� | � � ~d� "�� ­ 4 |bì :4 � ®ø÷ � � " ~ (25)

where the four-dimensional field ÷ satisfies the equationy �� ÷ � � $ (26)

Therefore, ÷ is nothing but a massless four-dimensional mode. The wavefunction of this mode is propor-
tional to 4 |íì : » 4 � and vanishes outside of the brane. Therefore, this mode is localized on a brane. This
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excitation is just a Nambu–Goldstone boson of spontaneously broken translation invariance along the �
direction.

Let us now introduce fermions. For this we add to the Lagrangian the following two termsù w �ºú;ûü×ý�þ y þ üÿn�� | ûüqü ~ (27)

where
ü

denotes a 5-dimensional Dirac fermion. The equation of motion for the fermion in the back-
ground of the domain wall reads as follows:ú ý�þ y þ ü n�� |bì : ü � � $ (28)

This equation has a normalizeable solution of the following formü Ó J � � ~d� "��.� X�������
	���
 \�� a�� ��� � � � " ~ (29)

where � � denotes a four-dimensional massless chiral modeú ý � y � � � � � ~ � � �½� � n�� U " � » x $ (30)

From this expression we see that the wavefunction of this mode vanishes outside of the brane. Therefore,
one obtains a four-dimensional chiral mode that is localized on the worldvolume3 .

Summarizing, in a simple construction described above, scalars and fermions can be localized on
a brane. However, for realistic model building one should in addition perform two major steps:

(i) Localize gauge fields on a brane;

(ii) Obtain four-dimensional gravity on the brane.

A mechanism for gauge field localization within the field theory context was proposed by Dvali
and Shifman [17]. It is based on the observation that a gauge field can be in the confining phase, the
bulk, while being in the broken phase on a brane; then confining potential prevents the low-energy brane
gauge fields from propagating into the bulk. This mechanism is discussed in detail in Ref. [17].

Localization of gauge fields is a rather natural property of D-branes in closed string theories [18]—
the gauge fields emerge on a brane as fluctuations of open strings that are attached to the brane and do
not exist in the bulk.

As to issue (ii), we discuss below three distinct mechanisms by means of which the laws of 4D
gravity can be obtained on a brane.

6 BRANEWORLDS WITH COMPACT EXTRA DIMENSIONS

One way to obtain 4D gravity on a brane is to combine the braneworld idea with the idea of KK com-
pactification. This, as was proposed by Arkani-Hamed, Dimopoulos and Dvali (ADD) [8], opens up new
possibilities to solve the Higgs mass hierarchy problem and gives rise to new predictions that can be
tested in accelerator, astrophysical and table-top experiments. Moreover, the framework can be embed-
ded in string theory [9].

The main ingredients of the simplest ADD scenario are:

– Standard Model particles are localized on a 3-brane, while gravity spreads to all
o � Y dimensions.

– The fundamental scale of gravity
� ¡ , and the ultraviolet (UV) scale of the Standard Model, are

around a few TeV or so. This can eliminate the Higgs mass hierarchy problem.
– Y extra dimensions are compactified.

3There also exists a solution with an opposite chirality that is not localized on a brane.
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The action for the simplest ADD model takes the form:�EÀ���� � � �_^]`¡ x - 4 5 � - � ¬ �� 4 ` � ° ÎqÏ \ 5 ^]`£a � - 4 5 � ° ¿ � ò � w���� � ü ~ � ��� "d" (31)

where
� ¡ & � � n ��� "=�� �! ,

¿ � � "ä� Î � � ~d� � � " , ò ��� w������ � �
, the latter condition is a usual

fine-tuning of the cosmological constant.

Technical simplifications which are adopted above but that can be easily lifted are as follow:

(1) The brane width is taken to be zero (generically, the natural scale for the brane width could be� X �¡ ).

(2) Brane fluctuations are neglected (these are Nambu–Goldstone bosons which couple to matter
derivatively).

(3) All extra dimensions have equal size h (in general, different extra dimensions could have
different sizes).

(4) Only gravity can propagate in the bulk (in general, other fields could also live in the bulk; in
fact there are attractive scenarios with right-handed neutrinos living in the bulk [19]).

Let us first study the properties of 4D gravity in the ADD scenario. The low, effective 4D action
for a zero mode takes the form� �_^]`¡ x - 4 5 � - � ¬ �� 4 ` � ° ÎzÏ \ 5 ^]`ba � � �_^]`¡ � x�� h " `x - 4 5 � ° ¿ Ó J Ï Ó J ~ (32)

hence, we should define the 4D Planck mass� �8@: � � �_^]`¡ � x�� h " ` $ (33)

Postulating that the quantum gravity scale is at
� ¡ & TeV we find what should be the size of extra

dimensions h & ��� X �! ^ Í � � ` e�g $ (34)

For one extra dimension, Y � �
, one gets h & ��� � Í

cm, this is excluded within the ADD framework
since gravity below

����� Í
would have been higher dimensional. For Y � x we get h & ��� X � cm; this

particular case is very interesting since it predicts modification of the 4D laws of gravity at submillimetre
distances—the subject of active experimental studies. For larger Y the value of h should decrease; but
even for Y � Ø , h is very large compared to

� » � 8@: .
Two static sources on the brane interact with the following nonrelativistic gravitational potential

" � W " � n Î ` ª � ª � ^]����� X � # ü � � � � � " # � � X ¥�$&%W ~ (35)

where
ü � � � � � " denotes the wavefunction of the n-th KK mode at a position of a brane and ª � �# ¨ # » h . If W < h , from the above expression we find" � W " � n Î ` ª � ª �W $ (36)

This recovers the conventional 4D law of Newtonian dynamics. In the opposite limit, i.e., when W > h
one gets " � W "¸� n ª � ª �� �_^]`¡ W � ^]` $ (37)

That is the law of � o � Y " -dimensional gravitational interactions. Therefore, the laws of gravity are
modified at distances of order h .
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Selected topics of the ADD phenomenology:

– Gauge coupling unification. In a conventional 4D theory the renormalization group running of the
gauge coupling constants is logarithmic. This changes in higher dimensions where the power-law
running takes place [20]. As was shown by Dienes, Dudas and Gherghetta [21], the power-law
running is what gives rise to an accelerated unification of the strong, weak and electromagnetic
couplings at a scale around

� ¡ in braneworlds with compact extra dimensions.
– Missing energy signals in accelerator experiments. The SM particles are localized on a brane

only up to some energy scale that is comparable to
� ¡ . At about that scale the SM particles

could in principle escape into the bulk. This would provide missing energy signals in accelerator
experiments. Another missing energy signal can be due to emission of KK gravitons into the bulk,
see detailed discussions in Refs. [8], [22].

– Energy loss by stars via emission of light KK gravitons. In the 6d ADD model the KK gravitons
are light, ª(')' & h X � & ��� X 5  �! . Therefore, these gravitons can be emitted in the interior of
astrophysical objects the temperature of which exceeds

��� X 5 eV. As a result, these objects, such
as stars, can cool down due to the process of emission of the KK gravitons into the bulk. Each
KK graviton emission is

�08;:
suppressed. However, because of the the high-multiplicity of the

KK graviton, the net result for the emission rate is suppressed by
� » � �¡ . Unless this rate is small

enough, a star would cool down faster than it should by emitting these KK gravitons. This puts a
lower bound on

� ¡ in a 6d theory to be 50 TeV or so [8, 23].
– Cosmological implications. There exist new scenarios of inflation and baryogenesis within the

braneworld context. These scenarios manifestly use properties of branes. For instance, inflation
on ‘our brane’ can be obtained if another brane falls on top of ‘our brane’ in the early period of
development of the brane-universe [24]. The potential that is created by another brane in ‘our
world’ can be viewed as the conventional inflationary potential. Baryon asymmetry of a desired
magnitude can also be produced during the collision of these two branes [25]. For more recent
developments see Refs. [26]– [29].

6.1 Phenomenology of large extra dimensions
In this subsection we shall discuss one representative example of a particle reaction with missing energy
that escapes into extra dimensions. We consider the � ^ � X annihilation into a photon and KK graviton� ^ � X � � Î ¥ . The differential cross section takes the form [22]:4 * ¥4 � � Ì�fØ �+ � �8;:dV � ��� » + ~ ª � » + " ~ (38)

where V � �-, ~/. "£� �,¢� . n , n � " � n}o ,¢� � � ,�"G� � � x , � x , � " � . � � � Ø , � � Ö0, � � �fØ , Í " ��,¢� . n , n � " � n Ø . � ,¢� � � x ,�" � . Í � � � o ,�" � $ (39)

Notice the
� » � �8@: suppression of the differential cross section. However, this suppression will go away

when we sum up the large multiplicity of the KK states Î ¥ . Indeed, the cutoff of the theory is
� ¡ ,and the KKs have masses & � » h . The maximal number of KKs is then ¨ J F21343 & � � ¡ h " ` . Because� �_^]`¡ h ` & � �8;: we find ¨ J F21343 & � �8@: » � �¡ . Since

� ¡ ¾q¾ � » h we obtain� 343 � � x�� h " ` - 4 ` å
5� x�� " ` � � x�� h " `76 ` - þ98� å ` X �5 4 å
5� x�� " ` ~ (40)
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where

6 ` � x�� ` � �ý � Y » x " $ (41)

Finally, the sum can be replaced by the integral� 343 � � �8@:� �_^]`¡ 6 ` - þ 8� ª ` X � 4 ª� x�� " ` $ (42)

Using this fact we obtain

4 � * ¥4 � 4 ª & Ì+ � �_^]`¡ ª ` X � V � ��� » + ~ ª � » + " $ (43)

It is convenient to introduce the notations: : � � � » + and : � � ª » ° + . With these new variables we find:

4 � * ¥4 : � 4 : � & Ì + ` � �� �_^]`¡ : ` X �� V � � : � ~ : �� " $ (44)

The
� » � �8@: suppression is gone! As was pointed out before, this is due to the large multiplicity of the

KK states.

Similar considerations apply to the following processes; û; �=<  î � g >@?A?A> ðCB  ð  �D BFEHG ;C; �I<  î � g >@?/?A> ð�B  ð  �D BFE $ (45)

The above reactions can arise from the following parton subprocessesJ ûJ �LK B ~ B ûJ �MK ûJ ~ BFB � B K%~ J B � J K $ (46)

As can be shown, the differential cross section takes the form4 * ¥4 � # J ûJ �LK B � Ì� Ø �+ � �8;: V � ��� » + ~ ª � » + " $ (47)

As before, the
� » � �8;: suppression will be removed by the KK multiplicity.

7 BRANEWORLDS WITH WARPED EXTRA DIMENSIONS

In this section we describe another way of obtaining 4D gravity on a brane. It is based on a phenomenon
of localization of gravity discovered by Randall and Sundrum (RS) [10].

We start with a so-called RS II model that has a single brane embedded in a 5-dimensions bulk
with negative cosmological constant. The action of the model is written as follows:� 	 � � �øÍ¡x - 4 5 � - ^]�X � 4 � ° Î � Ï U n x ( " � - 4 5 � ° ¿ � ò � wN��� � ü ~ � ��� "d" ~ (48)

where ( denotes the negative cosmological constant and ò is the brane tension.

The equation of motion derived from this action takes the form (the Gibbons–Hawking surface
term in the action is implied and hereafter we put

wO��� � � for simplicity)� ¡ ° Î
­ Ï À¢Á n �x Î À¢Á Ï ® � n � Í¡ ( ° Î Î À¢Á � ò ° ¿ ¿ �ÈÇ � �{ � ÇÂ � � � " $ (49)
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In our conventions the brane is located in extra space at the � � �
point. The above equations have a

solution with a flat 4D worldvolume

4 + � �Ð� XQP � P � � ç �ÈÇ 4 � � 4 � Ç � 4 � � ~ (50)

where
ç �3Ç �SR > ï0B � n � � � " is the four-dimensional flat space metric, and we introduced the following

notations h � T n �x ( ~ ò � � � Í¡h $ (51)

The values of ( and ò have to be carefully adjusted to each other for this solution to exist. Although the
coordinate � runs in the interval � n9U ~ � U " nevertheless, the physical size of extra dimension is finite:- ^]�X � 4 � ° Î & h $ (52)

The primary question that we would like to address is what does gravity look like on the brane?
For this let us consider graviton fluctuations:

4 + � � ¦ � XQP � P � � ç �3Ç � � �3Ç � � ~d� " « 4 � � 4 � Ç � 4 � � $ (53)

We decompose
� �ÈÇ � � ~d� "í�WV � � "�X� �3Ç � � "í�WV � � "ZY �ÈÇ  \[ ; ��ú^] � " with ] � � n ª � . As a result the equation

for the function V takes the following form:­ n ª � � P � P � � n y �� n xh � � � " � �h � ® V � � " � � $ (54)

For a zero-mode ª � � � this equation simplifies and the solution can be found easily:V � � " � e\_ ð ? î $ � XQP � P � � $ (55)

Hence the interval for the zero-mode factorizes as follows

4 + � �±� XQP � P � � X¿ �ÈÇ � � " 4 � � 4 � Ç � 4 � � ~ (56)

where we used the notations X¿ �3Ç � � " � ç �3Ç � X� �ÈÇ � � " .
It is important to emphasize that the five-dimensional action is integrable w.r.t. � for the zero-mode� Í¡x - 4 5 � - ^]�X � 4 � ° ÎzÏ \ U a � � Í¡ � x h "x - 4 5 �a` X¿ XÏ $ (57)

The result of this integration is a conventional 4D action. Hence we find a relation between the 4D Planck
mass and

� ¡ � �8@: � � Í¡ � x h " $ (58)

This looks similar to the relation between the fundamental scale
� ¡ , the size of extra dimension h , and

the Planck mass
�?8@:

in the ADD model with one extra dimension. The similarity is due to the fact that
the effective size of the extra dimension that is felt by the zero-mode graviton is finite & h as in the ADD
as well as in the RS models.

Besides the zero-mode there is an infinite number of KK modes [10]. Since the extra dimension
is not compactified the KK modes have no mass gap. In the zero-mode approximation used in (57) these
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states were neglected. However, at short distances 'q' h , the effects of those modes become important.
This can be seen by calculating a static potential between sources on a brane. The result reads:" � W " � n Î ` ª � ª �W ­ � � � x h " �W � ®�$ (59)

The second term in the parenthesis is due to the exchange of KK modes. We see that this term becomes
dominant when W & ' h .

The above construction with the localized graviton can be used for a new solution of the hierarchy
problem. This is achieved in a so-called RS I model [30].

The model contains two branes that are placed at the endpoints of an interval of a certain size. One
brane, called the ‘hidden brane’, has positive tension and the other one, called the ‘visible brane’, has
negative tension. The equation of motion for this model looks as follows:� ¡ ° Î

­ Ï À¢Á n �x Î À¢Á Ï ® n � Í¡ ( ° Î Î À¢Á �òcb Ped ° ¿ b Ped ¿ b Ped�ÈÇ � �{ � ÇÂ � � � " � ò OQPef ° ¿ OQPef ¿ OQPef�ÈÇ � �{ � ÇÂ � � � n � � " ~ (60)

were we used the notations¿ b Ped�ÈÇ � � "¸� Î �ÈÇ � � ~d� � � " ~ ¿ O�Pef�ÈÇ � � " � Î �3Ç � � ~d� � � � " $ (61)

As we mentioned above, the � direction is compactified on an orbifold � � » é � and � runs in the intervalt n � � ~d� � v . One can check that there exists the following static solution to the equations of motion4 + � �Ð� XQP � P � � ç �ÈÇ 4 � � 4 � Ç � 4 � � $ (62)

The next step is find out fluctuations about this classical background. For this we proceed as in the
RS II case. The derivation is straightforward and the result is that the tensor

ç �3Ç should be replaced asç �ÈÇ � û¿ �ÈÇ � � " , where ¿ b Ped�ÈÇ � � " � û¿ �3Ç � � " ~ ¿ OQPef�3Ç � � " �±� XQP � � P � � û¿ �ÈÇ � � " $ (63)

Let us now look at what this leads to. For this we turn to the matter part of the Lagrangian. In the RS I
case it is assumed that the Standard Model fields are localized on a negative tension brane, i.e., at � � � � .
As a representative SM field we consider the Higgs field � . We obtain:- 4 5 � ° ¿ OQPef�g ¿ �3ÇOQPef � i � � " ^ � i Ç � " n æ � # � # � nih �� " ��j �- 4 5 � ° û¿lk û¿ �ÈÇ � i � � " ^ � i Ç � " n æ � # � # � n � X � � � � h �� " �nm $ (64)

Hence the Higgs VEV on a visible brane is rescaled by an exponential factor
h �½� X � � � � � h � . Thus, all

masses on the visible brane are suppressed by this exponential factor as compared to their natural valuesª � �Ð� X � � � � ª �� $ (65)

If ª � & �98;:
, then in order to get ª & TeV one needs � � » h & �����

. Therefore, a small hierarchy in� � » h gives rise to a large hierarchy between ª and ª � .
The hierarchy problem is solved at the expense of fine tuning of the tension of the hidden brane

to the tension of the visible brane and both these tensions to the bulk cosmological constant. A possible
way to avoid the fine tuning is to use the stabilization mechanism proposed by Goldberger and Wise [31].
Another interesting scenario, studied by Karch and Randall [32], emerges when the tension and bulk
cosmological constant are slightly detuned so that the worldvolume has � 4 � 5 geometry. Regretfully,
detailed discussion of these developments goes beyond the scope of the present lectures.
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Selected topics of RS phenomenology are:

– Missing energy signals in accelerator experiments. The SM particles are localized on a brane
only up to some energy scale that is comparable with

� ¡ . At about that scale the SM particles
could be emitted into the bulk. As in the ADD case, this would provide missing energy signals in
accelerator experiments. See Ref. [33] for details.

– Gauge coupling unification. In a conventional 4D theory the renormalization group running of
the gauge coupling constants is logarithmic. As we discussed before, this changes in flat higher
dimensions, the power-law running takes place [20]. However, in the RS case the extra 5th dimen-
sion is not flat. This affects dramatically the gauge coupling running which can still be logarithmic
as was discussed in Refs. [34], [35].

8 INTRODUCTION TO THE MINIMAL SUPERSYMMETRIC STANDARD MODEL
(MSSM)

The MSSM is a minimal supersymmetric extension of the two-Higgs-doublet SM amended with the soft
SUSY-breaking terms [36]. Each SM particle is assigned a superpartner. The Higgs sector of the model
contains two Higgs doublets and their SUSY partners. The SUSY partners are heavy at the EW scale,
but could be observable at a scale between a few hundred GeV and a few TeV that is relevant for the
LHC. We shall discuss the basic properties of this model below. For detailed discussion of SUSY and
the MSSM phenomenology with references to the original works see, for example, Refs. [37], [38].

8.1 Introduction to supersymmetry
We start with the conventions on spinors in 4D space–time. The Left and Right chirality spinors are
defined in a standard way ü � �½� � no� U " ü » x ~ ü�p �½� � � � U " ü » x ~ (66)

where
ü

is a four-component Dirac spinor. These are two-component entities that are also called the
Weyl spinors. Yet another useful construct is the Majorana spinor. To discuss the Majorana spinor we
define the charge conjugation ü7q �sr ûüOt ~ (67)

where r
� ú � � � � . Then, the Majorana spinor is defined as a charge-self-conjugate spinorü q þ � ü þ $ (68)

Not all of the components of the Majorana four-spinor are independentü t þ � � ü t � ~ � n ú * � ü ¡� " t " $ (69)

It is useful to note that any Dirac spinor
ü

gives rise to two Majorana spinorsü � þ � ú° x � ü � ü q " ü � þ � n ú° x � üÿn0ü q " $ (70)

Having introduced, the basics of the spinors we can take the simplest view of supersymmetry. In
SUSY theories in four dimensions the following properties hold:

– For every bosonic degree of freedom (e.g., a complex scalar � ) there is a superpartner fermionic
degree of freedom (e.g. a Weyl, or Majorana spinor) and vice versa.

– The bosonic and fermionic SUSY partners are degenerate in mass.
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An example of a SUSY theory is the supersymmetric version of a theory of a photon. The La-
grangian reads w � n �o�¿ � V ��3Ç � �x ûæ ú�uy æ $ (71)

This describes a massless photon with two physical degrees of freedom and a massless Majorana spin-1/2
state æ which also has two degrees of freedom.

8.2 Introduction to superspace
The Lagrangian (71) is written in terms of the fields of a photon and its SUSY partner photino. However,
in complicated SUSY theories it is more useful to unify these two fields (or all superpartners) in a single
entity that is called the superfield. We give below an elementary introduction to the superfield formalism.

Let us start with the so-called Grassmann numbers that obey the following properties:v � v � � v � v � � � ~ (72)

therefore v � v � � v � v � � � $ (73)

As a result of this property, any analytic function of
v

can be expressed as a finite series in powers of
v
:w � v "¸�x, � . v $ (74)

This is just a Taylor series expansion and all the higher order terms are zero because of (73).

As a next step we introduce the Grassmann spinors (two-component anticommuting spinors)
which we denote, as customary, by the same letter:vzy{v
| � v
|nv&y � � ~ (75)

where Ì ~~} � � ~ x . There also exists a conjugate spinor ûv��y .

Having introduced these spinors, one could think of an extended space that possesses extra (fer-
mionic) dimensions parametrized by the Grassmann coordinates (this is unlike the ordinary extra dimen-
sions that are described by ordinary numbers)� �½� � � ~ ûv ~ v " $ (76)

These coordinates describe the superspace. Fields defined on this space are called superfields. For the
following discussions it is convenient to introduce the notation:� � � � � � ú v y * �y �| ûv �| $ (77)

Now we are ready to introduce the simplest superfield, the so-called chiral superfield | . It contains the
following components | � �E~ v "¸� � � � " �ê° x v � � � " � v � V � � "¸�� � � � " � ú v * � ûv y � � � �o v � ûv � y � � � ° x v � n ú° x v � y � � * � ûv � v � V $ (78)

Here � denotes a complex scalar field and � is a Weyl spinor. Hence, the chiral superfield describes one
complex scalar and one Weyl fermion and one auxiliary field V . The superspace action for the chiral
superfields can be written as follows:- 4 5 � 4 � v 4 � ûv | ^ | � - 4 5 � ­ � ¡ y � � � V ¡ V � úx]y � û� * � � n úx û� û* � y � � ® $ (79)
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This action gives rise to the kinetic terms for the components of the chiral superfield � and � . As we
see, the V component of the chiral superfield is not dynamical since it has no kinetic term, hence it is an
auxiliary field.

Using the Chiral superfield one can introduce the very important notion of a superpotential. The
superpotential, very roughly, is what replaces an ordinary potential of non-SUSY theories. Very powerful
techniques have been developed that allow one to manipulate the superpotentials, hence this notion is
extremely useful in model building.

We introduce a superpotential � � | " as a function that is analytic in | . Then we define the
interactions as follows: - 4 5 � � 4 � v � � | " � � $��3$ � � - 4 5 � wN� $ (80)

The interaction Lagrangian in terms of components takes the form:w�� � � � # y �yE| � # � n �x � � ¤ � ­ û� � y,� û�y û| � y û| � û� � � � $��3$ ® $ (81)

Hence, the total supersymmetric Lagrangian in superspace takes the form:� � ) �/� � - 4 5 � 4 � v 4 � ûv | ^ | � - 4 5 � � 4 � v � � | " � 4 � ûv û� �Èû| " � $ (82)

The first term is called the Kähler potential or a D-term. It gives rise to the kinetic terms. The second
term is a superpotential. It defines interactions.

Consider as an example the following superpotential:

� � �x , | � � �� | Í $ (83)

Then, y �y¢| �x, | � | � $ (84)

Therefore, the interaction Lagrangian takes the formw � � # , | � | � # � n � | �Q� � | ¡ û� û� " $ (85)

The first term gives a mass , � # | # � and the second one is a Yukawa interaction vertex (in all the above
expressions we used the conventions

ü � � ü y � y and ûü û� � ûü �y û� �y ).

8.3 Vector superfield
In order to describe gauge interactions, one needs to introduce a superfield that contains vector fields.
This is the vector superfield. This can be introduced by looking at the local gauge transformations of a
chiral superfield. Under local gauge group a chiral superfield transforms as| � �E~ v " � � � / \ �f¤ � a | � ��~ v " ~ (86)

where ( has to be a chiral superfield too. As a result, the chiral kinetic term transforms as follows:| ^ |u� | ^ � X � /C� ^ � / | $ (87)

To make the kinetic term invariant one should introduce a vector superfield
"

that satisfies the following
properties: " ^ � " $ (88)
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Under the gauge transformations the vector superfield transforms as����� � � � / � ����� � X � / $ (89)

Therefore, the action � � - 4 5 � 4 � ûv 4 � v | ^ � ��� |s~ (90)

is gauge invariant and supersymmetric.

Let us look at the component form of
"

. In the so-called Wess–Zumino gauge,
"

takes a simple
form: " � n v * � ûv h � n ú ûv � v æ � ú v � ûv � ûæ � �x v � ûv � i ~ (91)

where h � is a vector field that describes a spin-1 state;æ is a Weyl spinor that describes a spin-1/2 state;i
is an auxiliary scalar field.

As a next step we need to find a superfield generalization of the field strength for the vector fields,V �ÈÇ . In the case of Abelian gauge fields this is achieved by introducing

X� y � n �o ûi ûi i y " (92)

where i y � yy v y � ú * �y �y ûv �y y � $ (93)

In terms of the component fields we see that
�

is a SUSY generalization of V �ÈÇX� y n ú æ y n ú * �3Ç |y v&| V �ÈÇ � v y i � v � * �y �y y � ûæ �y $ (94)

Thus, a theory of a photon and photino can be written in the following form:� � - 4 5 � 4 � v ­ �o X� y X� y � ñ $ e $ ® �- 4 5 � ­ n �o V ��3Ç n ú ûæ û* � y � æ � ñ $ e $ ® (95)

Finally, we can also write a most general renormalizable action involving gauge and matter fields� � - 4 5 � 4 � ûv 4 � v | ^ ����� | � ¶ - 4 5 � 4 � v ­ �o X� y X� y � � � | " ® � ñ $ e $ · ~ (96)

where � is a superpotential. In the component form the above action readsw � n # i � � # � n ú û� û* � i � � n �o V ��3Ç n ú ûæ û* � i � æn ú ° x ûæ û� � � ú ° x � ¡ � æ n �x ­ y,� �y¢| � � � � y�� û�y û| � û� � ®# y �y¢| # � n �x ¿ � � � ¡ ò \�� a � " � $ (97)
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8.3.1 Particle content of the MSSM

In this section we discuss the particle content of the MSSM. Let us start with the vector superfields
in the MSSM. Below we list the superfields, their notation and quantum numbers with respect to the��� � � " q j ��� � x " � j � � � "2� gauge group.

KH�@� _ ð ? ï�ð R B �@� > _ ð ? " � ��Ö ~ � ~ � "�x�^? ï�ð Rs� > ð _ ? � X�×" " � � � ~I�@~ � "� � ? ï�ð RS� > ð _ ? � X��" " � � ~ � ~ � "
(98)

The kinetic terms for these particles are written in a standard form:- 4 � v �o ¦ û� \�� a û� \�� a � û� \ � a û� \ � a � û� û� \�� a " � ñ $ e $ « $ (99)

The matter fields are described by chiral superfields. A superfield � contains quark as well as squark
doublets ��V ~ 4 " � ï�ð R�� XV ~ X4 " � ~ (100)

note that the subscript h of the squark field is just for notational purposes and does not denote the chirality
(squarks are scalars and have no chirality). The superfield û� containsûV p ï�ð R XV ¡p ~ (101)

and the superfield ûi contains û4 p ï�ð RMX4 ¡p $ (102)

Finally, the field content of the superfield h is��� ~ �È" � ï�ð R � X� ~0X�È" � $ (103)

The assignment of quantum numbers is as follows:��V ~ 4 " � ï�ð R � XV ~ X4 " � � � �@~ x ~ � » Ø "ûV p ï�ð R XV ¡p û� � û��~ � ~ n x » � "û4 p ï�ð RMX4 ¡p ûi � û��~ � ~ � » � "��� ~ �3" � ï�ð R�� X� ~0X��" � h � � ~ x ~ n � » x "���È" p ï�ð R � X�3" ¡p û¼ � � ~ � ~ � "�9> BFB ? � õ � " ï�ð R �O> BFB ?/> ð _ �ZX� � " õ � � � ~ x ~ n � » x "�9> BFB ? � õ � " ï�ð R �9> BFB ?A> ð _ �~X� � " õ � � � ~ x ~ � » x " $ (104)

After spontaneous EW symmetry breaking three Higgs particles are eaten up by
���

and

�
bosons.

What remains is two neutral CP-even bosons
�

and õ � , two charged bosons õ � and one neutral CP-odd
boson � . This is unlike the minimal SM where only one neutral Higgs boson exists.

Kinetic terms and interactions for the matter fields can be written as follows:w � - 4 � v 4 � ûv | ^ ¦ � �� z� ^ �A¡¢�Q£ t £ ^ �Z¤¥�4¦{§^¦ « |m~ (105)

where | � � � ~ û� ~ ûi ~ h ~ û¼ ~_õ � ~_õ � " t ~ (106)
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and the coupling constants are �*� ¿ � e\_ ? vz� ~ e\_ ? v0� � ¿ ��¿ �� � ¿ �� ~ (107)

where � denotes the electric charge. The most general form of the renormalizable superpotential is:� � � õ � õ � � æc¨ � û� õ � � æ l � ûi õ � � æª© h û¼ õ �� æ � h h û¼ � æ � �zh ûi � æ Í û� ûi ûi $ (108)

For the MSSM to be viable æ � ~ æ � and æ Í should be suppressed since they give rise to the Baryon (B)
and/or Lepton (L) number violation.

8.4 R-parity
R-parity plays an essential role in SUSY phenomenology. This is a discrete

� � symmetry under whichv � n v
. Scalars and their fermionic partners transform differently under the

� �� � ~ û� ~ ûi ~ h ~ û¼ " � n � � ~ û� ~ ûi ~ h ~ û¼ " ~ (109)

while � õ � ~_õ � " � � õ � ~_õ � " $ (110)

Once R-parity is imposed on the MSSM Lagrangian, the terms with æ � ~ æ � and æ Í are forbidden by this
symmetry. The R-parity of all the SM fields is +1, while the R-parity of the SUSY partners is

n �
. There

are very important consequences of R-parity in the MSSM:

– The number of SUSY particles in a given interaction is always conserved modulo 2. SUSY parti-
cles can only be pair-produced from the conventional SM particles.

– The lightest SUSY particle (LSP) should be absolutely stable.
– A generic signal of R-parity-conserving SUSY models is missing energy from non-observed LSP.

The LSP is widely used in constructing the astrophysical models of dark dark matter.

9 SUSY BREAKING

MSSM is regarded as an effective low-energy theory. SUSY breaking occurs at a high scale and is
parametrized by the so-called ‘soft’ mass terms for scalar members of the chiral multiplets and for the
gaugino members of the vector multiplets. The soft terms take the form:w f�«Z¬ H � n ª � � # õ � # � n ª �� # õ � # � �®­ � � õ � õ � � ñ $ e $ " n � � ¯° � XV ¡� XV � � X4 ¡� X4 � "n � �¯± XV ¡p XV p n � � ¯� X4 ¡p X4 p n � � ¯� � X� ¡� X� � � X� ¡� X� � " n � �¯² X� ¡p X� p n �x ¦ � Í û X¿ X¿ � � � û X³ X³ � � � û X. X. «n ¿° x � � ¶ � �e\_ ? } � � õ � X� X4 ¡p � � ±?A> ð } � ± õ � X� XV ¡p � ²e\_ ? } � ² õ � Xh XW ¡p � ñ $ e $ · (111)

As a consequence of the soft SUSY-breaking terms the mass degeneracy between the SM particles and
their SUSY partners is lifted. In particular, the SUSY particles become heavy, typically with masses
that are above the EW symmetry-breaking scale but potentially still accessible in soon-to-come LHC
experiments. For detailed discussions of the SUSY particle phenomenology the reader is referred to
Refs. [37, 38].
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1 QUARKS AND GLUONS

1.1 Introduction
In the Standard Model the properties of quarks and leptons are remarkably similar, as far as the elec-
troweak interactions are concerned. The quarks with six different flavours are grouped into the three
doublets

�������	�
,
��
���
��

,
���������

, in a one-to-one correspondence to the three lepton doublets
�����������

,
�����������

,�����	�����
, as shown in the schematic chart in Fig. 1. Quarks and leptons interact in a similar way with the

electroweak vector bosons  , !#" and $ . Furthermore, it is anticipated that the universal Higgs mecha-
nism is responsible for the generation of the quark and lepton masses (for more details see Ref. [1]).

In addition, quarks interact ‘on their own’, revealing their specific property, the colour charge
(colour), a conserved quantum number which is absent for leptons. A quark of a given flavour has three
different colour states with equal masses and electroweak charges. Colour-induced interactions between
quarks are mediated by gluons, the massless and electroweakly-neutral spin-1 particles.

In these lectures I shall discuss the quark–gluon ‘corner’ of the Standard Model, introducing the
basics of Quantum Chromodynamics (QCD), the theory of quark–gluon interactions. Throughout this
survey, the main emphasis will be put on the relation between QCD and hadrons, the observed bound
states of quarks. This first lecture is devoted to the basic properties of the quark–gluon interactions. I
shall frequently refer to Quantum Electrodynamics (QED), the more familiar theory of electromagnetic
(e.m.) interactions, which is a useful prototype of QCD.

In Fig. 2 the Feynman diagram of the electron–muon e.m. scattering is drawn together with the
analogous diagram of the quark–quark interaction. For definiteness, I specify the quarks as having

�
and


flavours, the counterparts of
�

and
�

in the Standard Model. The two interactions have many important
similarities:

– the colour charged quarks emit and absorb gluons in the same way as the electrically charged
leptons emit and absorb photons;

– the gluon and the photon are massless;
– both the gluon and the photon have spin 1.

Being guided by this analogy, one would expect that gluon exchanges generate a Coulomb-type
interquark force, similar to the usual attraction/repulsion between the electrically charged particles. In
reality, quark–gluon interactions are far more complicated. In particular, since the colour charge has
three components, quarks can change their colour states after emitting/absorbing gluons, as indicated on
the diagram in Fig. 2. Hence, due to colour conservation, gluons also carry colour quantum numbers,
and, as a result, interact with each other. In fact, it is the gluon self-interaction that makes QCD dynamics
so peculiar. Yet QCD has one basic property in common with QED. Both theories have specific ‘internal’
symmetries, named local gauge symmetries, to be discussed below.%
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Fig. 1: Particles of the Standard Model; DFEHG.IKJ,IML and NOEHG�I�PQPRP S are the colour indices of quarks and gluons,
respectively.
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Fig. 2: Diagrams of lepton–photon (left) and quark–gluon (right) interactions. The dashed line is used to denote
gluons and the wavy line photons.

1.2 Local gauge symmetry in QED and QCD
The lepton–photon dynamics is described by one compact formula of the QED Lagrangian,]_^1`ba ��cd�fehgjikml ��n ��cd� l ��n ��cd�1o pqQr ��s �@s �utv q ��c1�w��xzy �  � g|{ q � v q ��cd�}� (1)

where the physical degrees of freedom of the photon field (the electric and magnetic fields) are combined
in the field strength tensor l ��n e�~ �	��n g�~ n����

, with
~ n������������,�R�.����.� . In the above,

v q ��cd� is the
lepton Dirac field with spin 1/2 and mass

{ q , and a compact notation for the covariant derivative
y��Oe~ � o|x�� ���

is introduced. Starting from
]�^1`�a

it is possible to derive Dirac equations for the leptons and
Maxwell equations for the photon. Furthermore, Eq. (1) yields the basics elements of the QED Feynman
diagrams: the photon and lepton propagators and the lepton–photon interaction vertex. Employing these
elements, one obtains the amplitude of a given e.m. process in the form of a perturbative expansion in
the numerically small coupling � �z� e����.� k��

.

For us the most interesting property of
]�^1`�a

is the gauge symmetry which reveals itself if one
locally changes the phase of the lepton fields:v q ��cd��� v��q ��cd��e���c@� �¡g�x£¢F��cd�z¤ v q ��c1�}�tv q ��cd��� tv �q ��cd��e tv q ��cd�K��c�� � xz¢_��cd�z¤_� (2)
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¢_��c1�
being an arbitrary function of the 4-coordinate

c
. If one simultaneously adds the derivative of the

same function to the photon field:��� � � �� ��cd�fe ��� ��cd�1o¥i� ~ � ¢F��cd�}� (3)

the Lagrangian (1) remains invariant. It is easy to check that the transformations (2) and (3) leave intact
the physical observables, such as the e.m. current tv q  � v q or l ��n . Importantly, the local gauge symmetry
implies that the photon mass vanishes,

{§¦¨eª©
. Indeed, adding to

]F^1`ba
a mass term

{ �¦ ���>� �
for

the photon field would evidently violate the symmetry because the latter term changes under (3). The
particular case

¢«e­¬w®�¯±°�²
(when only the lepton fields are transformed) corresponds to the global gauge

symmetry which is responsible for the e.m. current conservation in QED.

From the mathematical point of view the QED gauge transformations form a group. Let me remind
you that a given set of elements ³�´�µM¶ can be qualified as a group if three conditions are simultaneously
fulfilled: 1) a multiplication rule can be defined ´>µ}·¸´,¹ e ´ q , that is, a correspondence is established be-
tween a given pair of elements ´�µ and ´,¹ and a certain third element ´ q belonging to the same set; 2) the
unit element ´�º exists, so that ´�º1·}´ µ e ´ µ for each ´ µ ; and 3) the inverse element ´�» �¹ can be specified for
each ´,¹ , so that ´,¹b·±´ » �¹ e ´ º . All three conditions are valid for the (infinite and continuous) set of trans-
formations (2) and (3) generated by the set of the arbitrary functions

¢_��c1�
. Indeed, performing two gauge

transformations one after the other, with
¢ � ��cd� and

¢ � ��cd� , is equivalent to the gauge transformation with¢ � � ��c1�¼e½¢ � ��cd�fo­¢ � ��cd� . The unit element of this ‘multiplication’ rule is simply the transformation
with

¢ º ��cd� � ©
and the inverse element for each

¢F��cd�
is
g�¢_��cd�

. Importantly, the group multiplication
is commutative (the group is Abelian) because the result of the overlap of two phase transformations is
independent of their order. The group we are discussing is called ¾ � i � . Mathematically, it is equivalent
to the group of rotations of the Cartesian coordinate system around one of its axes. The rotation angle
plays the same role as the phase

¢
.

Gauge transformations in QCD have a richer geometry. They are somewhat similar to the general
rotations in the 3-dimensional space, involving ¿ÁÀÂ¿ matrices, which do not commute. More specifically,
a colour gauge transformation of the quark fieldv µÃ ��cd��eÅÄÆÇ v �Ã ��c1�v �Ã ��c1�vÁÈÃ ��c1�

É�ÊË �
with a given flavour Ì eh�b������
���Í¡Í¡Í

, involves transitions between different colour components, a sort of
‘rotations of colour coordinates’: v µÃ ��c1�f� v � µÃ ��cd��e ¾ µ¹ ��cd� v ¹Ã ��c1�}�tv Ã µ ��c1�f� tv �Ã µ ��cd�fe tv ¹@¾ÏÎ ¹µ ��c1�}Í

(4)

The elements of the ¿ÐÀ§¿ matrix ¾ µ¹ ��cd� depend arbitrarily on the 4-point
c

. Furthermore, this matrix is
unitary: ¾ÏÎ µ¹ ¾ ¹Ñ e�Ò ¹Ñ � (5)

or, in a symbolic form, ¾ Î ¾ e i . To explain why unitarity is necessary, let me invoke the following
physical argument. Since a photon does not distinguish quark colours, the only admissible form for the
e.m. interaction of quarks is ] �z� ��cd�fe���Ó Ã p¹ r � s � s È tv Ã ¹ ��c1�  � v ¹Ã ��c1� � � ��cd�}� (6)
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where
Ó Ã eÔoÖÕ�� ¿ �Kg i � ¿ � for Ì e��b��
����1���±��
@����� and the summation goes over the quark colour indices.

The gauge transformation (4) applied to the quark fields yields] ��� ��c1�f� ] � ��× ��× ��cd��e tv Ã µ ��c1� ¾ÏÎ µ¹ ��c1�  � ¾ ��cd� ¹Ñ v Ñ Ã ��cd� � � ��c1�}Í (7)

Clearly, only if (5) is valid, does
] �z�

remain invariant.

The usual exponential representation of the gauge transformation matrix is:¾ µ¹ ��c1�fe�ØwÙ;Ú¨Û�g�x­ÜpÝ r � ¢ Ý ��cd� �zÞ
Ý � µ ¹Õ ß Í (8)

It contains eight independent and arbitrary functions
¢ Ý ��cd�

multiplied by eight reference matrices
Þ Ý

( à e i ��Í¡Í¡Íâá ). The latter have the form chosen by Gell-Mann:Þ � e ÄÇ © i ©i © ©© © © ÉË �fÞ � e ÄÇ © g�xã©x © ©© © © ÉË �fÞ±È�e ÄÇ i © ©© g i ©© © © ÉË �
Þ±ä�e ÄÇ © © i© © ©i © © ÉË ��Þ±å�e ÄÇ © © g�x© © ©x © © ÉË �

Þ±æ�e ÄÇ © © ©© © i© i © ÉË �fÞ�ç�e ÄÇ © © ©© © g�x© x © ÉË �¸Þ Ü e iè ¿ ÄÇ i © ©© i ©© © g�Õ ÉË Í
(9)

The
Þ

-matrices have the following properties:
Þ Ý Î eéÞ Ý

(hermiticity), ê�ë Þ Ý e­© , and
�ìÞ Ý ��Þ�íz¤me�î Ý í�ï�Þ�ï

(noncommutativity), where
î Ý í�ï

are totally antisymmetric constants (
î � � È eðg�î � � È

, etc.). It is easy to
check that ¾ ��cd� defined in (8) obeys unitarity and has a unit determinant ñ Ø�² ¾ e i . The (infinite and
continuous) set of noncommutative ¾ matrices forms a group, which is called òÁ¾ � ¿ � . One may ask:
Why are there eight independent functions

¢ Ý
determining the rotations of the three colour states? Isn’t

eight too many? The point is that the quark fields
v µÃ are complex functions, hence the matrix ¾ ��cd�

is also a complex function of
c

determined by
Õ À¨ó real functions. Only 8 of them are independent

because there are altogether 10 constraints: nine provided by the unitarity relation (5) and one by the unit
determinant. With eight ‘rotation angles’ the group ò_¾ � ¿ � is of course quite different from the group of
rotations in three dimensions which has only three parameters.

1.3 QCD Lagrangian
The QCD Lagrangian has to be exactly symmetric with respect to the local gauge transformations (4)
with matrices (8). This property serves as a guiding principle for constructing

]ô^bõ1a
.

We start from the part of the Lagrangian which describes the propagation of free quarks:] Ã�ö Ý�÷ ¹ ��c1�fe pÃ r ö s øws ù�sú×ú×ú× ÄÇ p¹ r � s � s È tv Ã ¹ ��cd�w��x�~ �  � g«{ Ã � v ¹Ã ��cd� ÉË �
(10)

and yields the usual Dirac equation for spin 1/2 particle for each quark with a given flavour and colour.
Similar to the case of QED, the expression (10) is not invariant with respect to the local gauge transfor-
mations (4). An additional term with derivatives of

¢ Ý ��c1�
remains:] ÃMö Ý�÷ ¹ ��cd�f� ] ÃMö Ý�÷ ¹ ��cd�mo pÃ r ö s øws ù�sú×ú×ú× tv Ã µ ��c1��ûüx ¾ÏÎ µ¹ ��c1�K~ � ¾ ¹Ñ ��cd�zý  � v Ñ Ã ��cd�}Í (11)
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To restore gauge invariance one follows the same scenario as in QED or in the electroweak theory [1].
The idea (put forward long ago by Yang and Mills) is to introduce ‘compensating’ spin-1 fields interact-
ing with quark fields. There should be one separate spin-1 field for each of the eight degrees of freedom
determining the gauge transformations (4). In this way eight gluons enter the game, with the following
quark–gluon interaction term added to the Lagrangian:] µQþ�ÿ ��cd��e ´ ù pÃ r ö s øws ù�sú×ú×ú× tv Ã µ ��cd� �£Þ

Ý � µ ¹Õ  � v ¹Ã ��cd� � Ý� ��cd�}Í (12)

Here ´ ù is the dimensionless coupling analogous to
�

in
]�^1`�a

. In contrast to e.m. interaction, where
the photon field is electrically neutral, the gluon fields also carry colour charge, so that the colour state
of a quark changes after emitting/absorbing a gluon. The colour of the gluon distinguished by the indexà e i Í¡Í¡Íâá can be identified with a superposition of quark and antiquark colours. For example, the gluon
field

� �� ��cd�
is in the same colour state as the quark–antiquark pair tv Ã � v �Ã o tv Ã � v �Ã . The

� Ý�
-fields in

(12) have to be gauge-transformed in the following way:Þ ÝÕ � Ý� ��cd�f� ¾ ��cd� Þ ÝÕ � Ý� ��c1� ¾ Î ��c1�(g x´ ù ~ � ¾ ��c1� ¾ Î ��c1�}� (13)

so that the overall change of
] µ þ�ÿ cancels the symmetry breaking term on the r.h.s. of (11). It is a simple

exercise to check that the combination of transformations (4) and (13) leaves the sum
] Ã�ö Ý�÷ ¹ o ] µQþ�ÿ

invariant. We see that in QCD the ‘compensating’ transformation of gluon fields (13) is more complicated
than its analog (3) in QED: the addition of the derivative over

¢
-functions is accompanied by a ‘colour

rotation’.

To complete the Lagrangian one has to add a gauge-invariant term describing the propagation of
gluon fields: ] � q ö � ��cd�fehg ik � Ý��n ��c1� � Ý ��n ��cd�}� (14)

where � Ý��n e�~ �>� Ýn g ~ n�� Ý� o ´ ù î Ý í�ï � í� � ïn � (15)

is the gluon field-strength tensor. The local gauge invariance of
] � q ö � implies that gluons are massless.

At the same time,
� Ý��n

is a more complicated object than its QED analog l ��n . Indeed, substituting (15) to
(14), we notice that not only the terms quadratic in

� Ý�
emerge (propagation of gluons) but also the three-

and four-gluon vertices (gluon self-interactions). Note that, formally, both properties of gluons, colour
quantum number and self-interactions, are due to the noncommutativity of the gauge-transformation
group (the fact that

î Ý í�ï��e­© ). The final form of the QCD Lagrangian is obtained by adding together the
three pieces introduced above: ]Á^bõ1a e ] � q ö � o ] Ã�ö Ý�÷ ¹ o ] µ þ�ÿeHgjik � Ý��n � Ý ��n o p Ã tv Ã ��xzy¼�  � g«{ Ã � v Ã � (16)

where
y � e­~ � g x ´ ù����� � Ý� . To summarize,

]F^mõ1a
describes not only quark–gluon interactions but also

gluodynamics, the specific gluon self-interactions which have no analog in QED 1.
1In QCD ‘light emits light’ at the level of the fundamental interactions entering Lagrangian, as opposed to QED where light-

by-light interaction appears only as 	�

�������� quantum correction (when photons exchange virtual electrons via box diagrams).
For a classical Maxwellian electrodynamics, self-interacting e.m. fields would mean ‘new physics beyond standard theory’. I
am not aware of any discussions of photon self-interactions in the times before quantum field theory. Interestingly, the light
emitting light was mentioned in poetry. I found the following sentence written in the XIIIth century by the Armenian poet
Kostandin Erznkazi [2]: “And so the light was born from the light, the great light of sun...” (in translation from Armenian).
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Table 1: Propagators and vertices in QCD

Quark propagator � ©�� v µÃ ��cd� tv Ã ¹ ��©@��� ©��_e�x�Ò µ¹�� � ä ������� ¦ � � �"!� � » � �!$# � » µ � �
Gluon propagator � ©�� � Ý� ��cd� � ín ��©@��� ©���eHg�x�Ò Ý í � � ä�% � � �¹ � � µ ¹ �

Quark–gluon vertex ´ ù tv Ã ��c1�  � ���� v Ã ��cd� � � ��c1�
3-gluon vertex

g �'&� î Ý í�ï��ú~ �>� Ýn ��c1� g ~ n�� Ý� ��c1�z¤ � í � ��cd� � ï n ��cd�
4-gluon vertex

g � �&ä î Ý í�ï�î Ý ø�� � í� ��cd� � ïn ��cd� � ø�� ��cd� � ��n ��cd�
The quark and gluon propagators and vertices derived from

]�^bõ1a
are collected in Table 1. The

formula of the gluon propagator has a certain degree of freedom related to the fact that the physical
massless gluon has only two polarization/spin states whereas the field

� Ý�
has four components. To

make things work, one follows the same recipe as in QED. An additional constraint on the gluon field is
introduced, the so called gauge-fixing condition. The gluon propagator given in Table 1 corresponds to
the usual Feynman gauge. Note that in QCD purely gluonic loop diagrams are possible, in which case
one has to take care of subtracting the contributions of unphysical components of

� Ý�
also in these loops.

It is usually done by adding specially designed fictitious particles (the so called Fadeev–Popov ghosts)
which only appear in the loops, and are not shown in Table 1.

Feynman diagrams in QCD are obtained by employing the quark–gluon propagators and vertices
as building blocks. However, the use of diagrams makes sense only if the perturbative expansion in ´ ù is
meaningful. To obey this condition, the quark–gluon coupling� ù e ´ �ùk�� � (17)

the QCD analog of the e.m. coupling � ��� eã� � � k��
, has to be sufficiently small, � ù)( i . If this

condition is fulfilled, then, for example, the * � � ù � diagram of the quark–quark interaction in Fig. 2
dominates over the higher-order diagrams with additional gluon exchanges. One has then a tractable
situation, with quarks and gluons propagating quasi-freely. Thus, there is an important question to be
addressed: How large is � ù ?
1.4 Running of the quark–gluon coupling
To answer the above question, one has to investigate quantum effects in QCD, i.e., creation and annihi-
lation of virtual gluons and quarks described by loop diagrams. In QED, which we use as a prototype,
quantum loops generate very small effects, such as Lamb shift (the correction to the Coulomb force due
to the virtual electron–positron pairs) or the * � � ��� � one-loop correction to the muon magnetic moment.
These effects, being accessible in precision experiments, play a minor role in the bulk of electromagnetic
processes.

In QCD, quark–gluon loops are far more pronounced and play a crucial role in determining � ù . To
have a closer look, let us consider the quark–quark scattering amplitude. In the lowest-order (at the tree
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Fig. 3: Some of the diagrams corresponding to quantum loop corrections to the quark–quark scattering.

level) the amplitude is given by the one-gluon exchange diagram shown in Fig. 2 for the particular choice
of quark flavours. Having at hand the Feynman rules in QCD it is easy to write down the amplitude:5 e k�� � ùÌ � 6 tv ù µ  � �£Þ Ý � µ ¹Õ v ¹ù�798 tv ø Ñ  � �£Þ Ý � Ñ qÕ v qø�: �

(18)

where Ì �<; ©
is the momentum transfer squared. Below I shall also use the notation for the momentum

scale:
Ó �>= Ó �

, where
ÓÂ�Ïe g Ì �@?­©

. Considering * � � ù � corrections to the amplitude (18) one en-
counters the diagrams shown in Fig. 3. They contain gluon or quark loops inserted within the exchanged
gluon line or in the vertices. These loop effects turn out to be extremely important for evaluating � ù .

Let me first explain the loop diagram calculation in more detail. After substituting propagators
of virtual particles, one arrives at four-dimensional Feynman integrals over the 4-momentum

%
flowing

inside the loop, typically:A qCBDB � � Ì ��{ Ã �feFE � äG%��Õ � � ä Í¡Í¡Í� % � g«{ �Ã �w��� % o Ì � � g«{ �Ã � � (19)

where the explicit expression in the numerator (depending on the spin of the loop particles) does not
play a role in our discussion. For simplicity, I shall also put to zero the quark masses, a reasonable
approximation if

Ó9H { Ã . To calculate loop integrals, one usually employs the method of dimensional
regularization. The idea is to lower the number of dimensions in the integral (19) making it convergent.
One replaces 4 by a generic integer number

y
, then calculates the integral as a function of

y
and after

that considers the result at an arbitrary noninteger
y e k gJI

, schematically:A qKB'B � � Ì ��©@�feFE¥�@ä % î¸� % � Ì �f��� � ä » a � E¥� a % î¸� % � Ì �fe A � Ì ���¸��y �f� A � Ì ���¸� k gJI �}Í
(20)

The auxiliary mass scale
�

is introduced to keep unchanged the physical dimension of the integral. The
major advantage of dimensional regularization is in preserving the gauge symmetry of the amplitudes at
each step of the calculation. The divergent part of the integral in this scheme is represented in the form
of terms proportional to i �LI . A generic expression for the loop integral has the form:A qCBDB � � Ì ��©@��� �1ä » a E � a %��Õ � � a Í¡Í¡Í% � � % o Ì � � e A ��M ® N}�Kg Ì � ��� � �mo¥iI o A � � (21)

where

A � s � are calculable finite coefficients.
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QCD is a renormalizable theory (similar to QED), which means one can absorb all divergenti �LI terms into the so-called $ -factors. Multiplying by $ » �� the coupling ´ ù , and by the corresponding
factors the quark masses, quark and gluon fields, one defines the finite (renormalized) quantities; e.g., the
renormalized coupling is ´ ÷ � þù e $ » �� ´ ù . Having in mind the validity of the renormalization procedure I
shall simply ignore divergent terms appearing in (21) and in other loop integrals.

Adding the * � � ù � diagrams in Fig. 3 to the tree-level amplitude results in the same expression
(18), but with � ù replaced by an effective coupling depending on the momentum scale:� �'O�Où �£Ó � � � ù�P i g � ùk�� 6RQ}º M ® N Ó �� � o 
TSVUb
.� 7XW � (22)

where a shorthand notation Q�º e i,i g Õ¿ U O (23)

is introduced. Here
U O

is the number of ‘active’ quark flavours in the loop diagrams. Only those quarks
which have

{ Ã ( Ó
contribute to � �DO�Où �£ÓÖ�.�

. Importantly, Q}º is positive, because the term 11 originating
from the gluon loops exceeds the quark-loop contribution

g�ÕVU O � ¿ (since
U O ;ZY

in any case).

Taking � �'O�Où at a different scale
Ó º ,� �DOGOù �£Ó º � � � ù�P i g � ùk�� 6[Q�º M ® N Ó �º� � o ¬w®�¯±°�² 7XW � (24)

and dividing (22) by (24) one obtains, with an accuracy of * � � � ù � :� �'O�Où �£Ó ��e � �'O�Où �£Ó º �ÏÛ i g � �'O�Où �£Ó º �k�� Q�º M ® N Ó �Ó �º ß � (25)

the relation between effective couplings at two different scales. The approximation (25) is valid only if� �DO�Où �£Ó º � is sufficiently small and the higher-order corrections are negligible. Remarkably, (25) predicts
that � �'O�Où �£Ó �

decreases when the momentum scale
Ó

increases. Thus, if the perturbative expansion in� ù is applicable at certain
Ó º , it should behave even better at

Ó\? Ó º .
Note that (25) still has to be improved. At

Ó � ]
the logarithm becomes very large driving

the combination � ù M ® N_Ó � to rather big values, so that the * �>� � ù M ® N@^�Ó � �,Ó �º`_ � # correction originating
from the two-loop diagrams shown in Fig. 4 becomes important, and the whole perturbative construction
is again in danger. Fortunately, a systematic resummation of all * ^�� � ù M ® Na^zÓÂ�.�,ÓÖ�ºT_ þcb corrections is
possible. In practice, one does not need to calculate all multiloop diagrams, which would be a tremendous
work. Instead, the renormalization-group method is used, which is, however, beyond our scope. The
resulting expression for the running coupling is:� ù �£Ó �fe � ù��£Ó º �i oed & � ^gf �äih Q}º Í M ® N ^ �^ �f (26)

(hereafter the superscript ‘
��î1î

’ is omitted). Expanding the denominator in (26) and retaining only the
first two terms we return to the relation (25).

1.5 Asymptotic freedom
A consistent use of the running QCD coupling is possible if one can find a range of

Ó
where � ù �£Ó �

is numerically small. The first indications that � ù is indeed small at large momentum transfers were
obtained in the studies of deep-inelastic lepton–nucleon scattering (to be discussed in Lecture 3). This
remarkable discovery paved the way for using QCD perturbation theory with the running coupling in
many other processes.
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Fig. 4: One- and two-loop diagrams contributing to the running of jlk .
To trace the numerical behaviour of � ù �£Ó � one has to fix the coupling at a certain large scale

using an experimental input. One possibility is the decay of $ boson to a quark–antiquark pair. Quarks
originating in this decay inevitably build hadrons in the final state (see the next subsection). To avoid
hadronic complexity, one measures the total inclusive width m � $ �on à � ë SVUb
�� , so that the probabilities
of all possible quark

�
hadron transitions add up to a unit. The majority of $ �pn à � ë SqUb
 events ob-

served at LEP has a spectacular structure of two hadronic jets originating from the initial, very energetic
quark and antiquark ( r Ã e rasÃ e#{ut���Õ

in the $ rest-frame, see, for example, Ref. [3]). On the other
hand, the share of v ¿ -jet events in $ �pn à � ë SVUb
 , with additional jets originating from gluons and/or
from secondary quark–antiquark pairs, is small. This observation clearly indicates that the quark–gluon
coupling at the scale

{)t
is small, or in other words the initial quark pair interacts weakly during the

short time after its creation.

The perturbative diagrams of $ � Ì tÌ ( Ì e �����±��
@��
����
) including the gluon emission $ � tÌ�Ì �

are shown in Fig. 5. Evaluating these diagrams one gets the perturbative expansion for the total hadronic
width, schematically:m � $ �wn à � ë SVUb
��¸e pÃ r ö s øws ù�sú×ú× Û m � $ � tÌ�Ì � ^ i oyx Ã� � ù ��{ut��1ozx Ã� � � ù ��{ut��1o�Í¡Í¡Í b

o m � $ � tÌ�Ì � �{� i oyx Ã'|� � ù ��{ut(�1o�Í¡Í¡Í # o�Í¡Í¡Í ß � (27)

where m � $ � tÌ�Ì � and m � $ � tÌ�Ì � � (the latter starting from * � � ù � ) are the corresponding perturbative
widths, and

x Ã� s � �}x Ãi|� ��Í¡Í¡Í
are the calculable coefficients. Smallness of � ù allows one to neglect all

higher-order corrections starting, say from * � � È ù � . In the above expression � ù is taken at the scale
{)t

,
the characteristic scale in this process. One can trace how the running coupling builds up in (27) by
summing up all logarithmic corrections generated by the loop insertions similar to the one shown in
Fig. 5(c). Comparing the result (27) of the theoretical calculation with the experimental data yields [4]:� ù���{ t ��~­©;Í i Õ Í (28)

As expected, it is a rather small number, so that the whole perturbative treatment turns out to
be quite consistent. Using (26) and (28), one predicts � ù��£Ó � at lower scales. The curve plotted in
Fig. 6 is taken from Ref. [4] and reflects the current status of the running coupling, including all known
(and reasonably small) higher-order corrections to (26). As can be seen in this figure, there is a wide
region spreading up to

Ó��
1 GeV, where � ù is small and perturbative QCD is applicable. Furthermore,� ù extracted from various processes at different scales agrees with the running behaviour predicted in

QCD. The most spectacular consequence of (26) is the vanishing of the running quark–gluon coupling
at
Ó �o]

, revealing that QCD is asymptotically free.
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Fig. 5: The lowest-order diagram (a) and some of the higher-order in jlk diagrams (b)–(d) determining the total
width �������G�����q��� .
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Fig. 6: The dependence of j k`����� on the running scale � [4]: the upper and lower curves indicate the theoretical
uncertainty, the points with errors are the values of j�k extracted at different scales using various methods.

1.6 Confinement and hadrons
Quite an opposite situation takes place in the quark–gluon interactions at small momentum transfers (at
long distances). According to (26), if one starts from

Ó9H i GeV and drifts towards smaller scales, � ù
grows to * � i � at

Ó ; i GeV (see Fig. 7). Perturbation theory becomes useless in this region, because
in the quark-quark scattering, for example, an infinite amount of higher-order quark–gluon diagrams has
to be taken into account. Moreover, at a certain momentum scale denoted by � ^mõ1a the denominator in
(26) vanishes and � ù �£Ó � diverges. The relation between � ù �£Ó � and � ^mõ1a following from (26) is:� ù �£Ó �¸e Õ �Q�º M ® N � ^�R�c��� # Í (29)

The experimentally measured value (28) corresponds, roughly, to� ^mõ1a e�Õ�©,©�g ¿ ©,© MeV
Í

(30)
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Fig. 7: Schematic view of the j k behaviour at different scales.

I skip some details concerning the dependence of � ^bõ1a on the number of active quark flavours, and on
the theoretical scheme of the loop-diagram evaluation, relevant for the higher-order corrections to (29).
The important fact is that (29) and (30) were derived neglecting the quark masses. We could have put
to zero the quark masses in

]�^mõ1a
from the very beginning, starting with a theory without dimensionful

parameters. The emergence of an intrinsic energy scale in a theory with dimensionless coupling ´ ù
(dimensional transmutation) is a specific property of QCD, due entirely to quantum effects.

The breakdown of perturbation theory and the exploding behaviour of � ù �£Ó � at
Ó � � ^mõ1a are

actually anticipated. Long before QCD was invented it was known that at long distances quarks and
antiquarks strongly interact and form hadrons, the quark–antiquark (meson) and 3-quark (baryon) bound
states. The properties of hadrons will be considered in a more systematic way in the next Lecture. For
the present discussion it is important that the characteristic energy scale of hadronic interactions is of* � � ^mõ1a � . Hence, it is quite natural that the formation of hadrons is due to the strong, nonperturbative
quark–gluon force emerging in QCD at momenta

� � ^mõ1a .

Moreover, hadronic matter is the only observable form of quarks and gluons at long distances.
In any process of quark and antiquark production, independent of the energy/momenta involved, quarks
form hadrons in the final state2. Note that in QED the situation is quite different: isolated leptons
and other electrically charged particles are observed, and the e.m. bound states (e.g., hydrogen atom,
positronium or muonium) can always be split into constituents if a sufficient energy is supplied.

In QCD, the non-observation of free colour-charged particles (quarks, antiquarks and gluons) is
arranged in a form of the colour confinement principle, postulating that all observable states, i.e., all
hadrons, have to be colour-neutral. The confinement principle was never rigorously proved, because of
our limited ability to work with QCD beyond perturbation theory. Nevertheless, all experimental results
concerning hadrons, as well as lattice simulations of QCD at long distances, unambiguously support
colour confinement.

Before the era of QCD the search for free quarks was very popular among experimentalists. The
fractional electric charge was a smoking-gun signal to be observed. The hunt for quarks was a part of
many accelerator experiments. Not surprisingly, free quarks have never been found at accelerators or in
other places (in cosmic rays, water, ice, meteorites etc.). Nowadays, one would hardly invest efforts in
the search for free quarks. We are confident that QCD obeys confinement.

2There is one exception: the t-quark, decaying via weak interactions, is too short-lived to be bound by quark–gluon forces.
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(a) (b)

Fig. 8: The free quark propagator (a) and the gluon correction to it (b).

1.7 Quark masses
The current intervals of quark masses presented in the Particle Data Tables [4] are:{ ö e i ÍK�2� k ÍK� MeV

� { ï e i Íì©�� i Í k GeV
�§{ ÿ e iG� k Í ¿�� �	Í i GeV �{ ø e���� á	ÍK�

MeV
� { ù eÔá�©�� i � � MeV

�j{ í e k Íì©�� k ÍK�
GeV

Í
(31)

The fact that the masses are spread over five orders of magnitude, is a reflection of some fundamen-
tal flavour physics not related to QCD, e.g., the Higgs mechanism of the Standard Model. Hence, the
masses

{ Ã entering QCD Lagrangian (16) are ‘external’ parameters. At the same time quark masses are
evidently changed in the presence of quark–gluon interactions. At long distances, within hadrons, each
quark acquires, roughly speaking, an extra addition of * � � ^mõ1a � to its ‘bare’ mass. It is, however, very
difficult, if not impossible, to define this constituent quark mass in a model-independent way. Represent-
ing the hadron mass as a sum of the constituent quark masses plus some interaction energy, e.g., for a
meson:   �_�Mù B þ e�{ ï B þ ù ÿ¡µQÿÃ o { ï B þ ù ÿ¡µQÿsÃ o r µ þ�ÿ � (32)

one can always redistribute the part of rÏµQþ�ÿ between the quark and antiquark masses. Since free, on-shell
quarks are not observed, the usual definition of the particle mass (the minimal possible energy of the
one-particle state) does not work.

The mass values presented in (31) have nevertheless quite a definite meaning. These are ‘short-
distance’ masses of the virtual quarks. As we already know, at large virtualities quark propagation is
quasi-free and a consistent use of perturbation theory derived from QCD Lagranigian is possible. In
particular, the free quark propagator ò �R�d��e � d  d o { Ã� � g«{ �Ã (33)

is applicable at
� � � ��H � � ^mõ1a , with the bare mass

{ Ã from
]_^mõ1a

. Furthermore, at short distances the
quark–gluon interactions are calculable in terms of series in � ù . The quark propagating at short distances
can emit and absorb a gluon (see diagram (b) in Fig. 8). From the experience with the running coupling,
one expects such loops to be important. Adding the loop diagram to the free propagator yields the same
expression as (33) with

{ Ã replaced by an effective mass depending on the momentum scale{ �'O�OÃ �£Ó ��e�{ Ã P i g � ùk�� 6� º M ® N Ó �� � o ¬w®�¯±°�² 7XW � (34)

where I omit the divergent part knowing that it will be absorbed by renormalization. In this case the scaleÓ¡� = � � � �
is determined by the virtuality of the quark and  º e k is the result of the explicit calculation.

Again, as in the case of � ù , we can relate the effective masses at two different scales. Writing down the
above equation for another scale

Ó º and using instead of
{ �DO�OÃ a conventional notation

{ Ã we obtain:{ Ã �£Ó �fe { Ã �£Ó º � 6 i g 6  ºQ}º 7 � ù �£Ó º �k�� Q}º M ® N Ó �Ó �º 7 �
(35)
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where I have multiplied and divided the logarithmic term by Q º and used � ù�e � ù.�£Ó º � which is correct
with * � � ù � accuracy. With the same accuracy, the expression in parentheses can be transformed further:i g 6  ºQ}º 7 � ù �£Ó º �k�� Q}º M ® N ÓÂ�Ó �º ~ 6 i g � ù �£Ó º �k�� Q�º M ® N ÓÂ�Ó �º 7 ¦ f£¢D¤�f Í (36)

Using (25) we obtain t{ Ã �£Ó �fe t{ Ã �£Ó º � 6 � ù �£Ó �� ù �£Ó º � 7 ¦ f£¢D¤�f � (37)

the formula for the running mass. A more rigorous derivation is possible using the renormalization group
method. Also in recent years, the higher-order corrections to (37) have been calculated.

The masses presented in Ref. [4] are the running masses (also called
  ò masses if one specifies

the appropriate renormalization procedure) normalized at some large scale. The light
�����±��


quark masses
are traditionally taken at

Óée�Õ
GeV, whereas a more appropriate scale for the heavy



and

�
quark masses

is the quark mass itself,
Ó e#{ ï and

Ó eh{ í , respectively, (which means, for example, the virtuality
of the



quark is

�d�Ðe g�{j�ï ). The fact that quark masses run with the scale is in accordance with the
absence of isolated quarks among observable states.

1.8 Two branches of QCD
To summarize, QCD yields two qualitatively different pictures of quark–gluon interactions:

1) at high-momentum transfers, i.e., at short average distances, perturbative expansions in � ù are
applicable in terms of Feynman diagrams with quark and gluon propagators and vertices. In this region
the scale-dependence (running) of the coupling and quark masses should be properly taken into account.

2) at low scales, that is, at long distances, one loses control over perturbative interactions between
individual quarks and gluons; the latter strongly interact and form hadrons.

Accordingly, QCD is being developed in two different directions. The first one deals with short-
distance physics accessible at high energies. One studies specific processes/observables calculable (at
least partly) in a form of a perturbative expansion in � ù . A typical short-distance process is the jet
production in $ decays considered above, other examples will be presented in Lecture 3.

The second direction deals with nonperturbative quark–gluon interactions at long distances and
with hadron dynamics. A complete analytical evaluation of hadronic masses and other parameters di-
rectly from

]F^mõ1a
is not yet accessible. Instead, a powerful numerical method of simulating QCD on

the space–time lattice has been developed. Lattice QCD has become a separate field, which is beyond
the scope of these lectures (for a pedagogical introduction see, for example, Ref. [5]). Still there are a lot
of interesting advances in the long-distance ‘branch’ of QCD, so I shall only be able to cover a part of
them. As demonstrated in Lecture 2, many important features of hadron spectroscopy follow from QCD
at the qualitative level. The relation of long-distance dynamics to the nontrivial structure of the QCD
vacuum will be discussed in Lecture 4. An approximate analytical method of QCD sum rules based on
this relation and used to calculate hadronic parameters will be overviewed in Lecture 5.

One might think that physics of hadrons plays a secondary role, because the most important di-
rect tests of QCD in terms of quarks and gluons are done at short distances. Let me emphasize the
fundamental importance of hadron dynamics by mentioning two topical problems:

1) The origin of the nucleon mass

The proton and the neutron are the lowest and most stable baryons, with the quark content
���}�

and
���@�

, respectively. Their masses { � ~­{ þ ~ ó k © MeV
�

(38)
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Fig. 9: ¬­�>®[¯±°`² decay involves a hadronic transition between ¬ and ® states.

are substantially larger than the tripled quark mass
{ ö s ø e * � few MeV

�
. We conclude that

� ó,ó�³ of
the baryon matter in the Universe is not related to the ‘fundamental’ quark masses generated by the Higgs
mechanism or from some other flavour dynamics. The bulk of the baryon mass is due to the long-distance
quark–gluon interactions. Indeed, adding a ‘constituent’ mass of * � � ^mõ1a � to each quark, one gets the
order-of-magnitude value of

{ � s þ . Certainly, the problem of the nucleon mass is quite fundamental and
has to be solved within long-distance QCD.

2) Extracting electroweak parameters from ´ decays

The weak decays of ´ mesons (the bound states of
�

quark and light antiquark) represent a valuable
source of information on fundamental aspects of electroweak interactions, such as the quark-mixing
CKM matrix and the origin of CP violation (see Ref. [6]). One topical example is the ´ � �gµ � q
decay observed at ´ factories [4]. This decay (see Fig. 9) is driven by the

�|� �
weak transition,

proportional to ¶ ö í , one of the poorly known CKM matrix elements. In order to extract this fundamental
parameter from the experimentally measured partial width, one needs to divide out the hadronic ´ � �
transition amplitude (form factor). The latter is essentially determined by the long-distance quark–gluon
interactions.

Below, in Lecture 5 we shall discuss the (approximate) solutions of the two above-mentioned
problems.

2 FROM QUARKS TO HADRONS

2.1 Mesons and baryons
Let us now have a closer look at the properties of hadrons3 , the bound states of quarks. Much experimen-
tal data on hadrons is accumulated in the Review of Particle Physics [4]. As we shall see, by employing
various symmetries of QCD, it is possible to predict, at least qualitatively, many observable regularities
of hadronic spectra and interactions.

The pre-QCD quark model of hadrons failed to explain why only mesons ( tÌ�Ì ), baryons ( Ì�Ì�Ì ) and
antibaryons

� tÌ tÌ tÌ � are observed. Why, for example, are the diquark ( Ì�Ì ) or four-quark ( Ì�Ì�Ì�Ì ) bound
states absent? In QCD, one immediately gets an explanation based on the colour confinement principle.
The quark–antiquark and three-quark combinations can form colour-singlet states, whereas diquark and
four-quark compounds are always colour-charged. The colour-singlet meson state is obtained by sim-
ply summing over the colour indices of the quark and antiquark. For example, the

� �
meson has the

following flavour/colour structure: � � � �fe iè ¿ Èp µ r � � � µ t� µ �}Í (39)

The way baryons are built is less trivial. Two quarks are arranged in a coloured diquark state
I µ Ñ ¹ � Ì Ñ Ì ¹ � ,

3The word ‘hadron’ was coined by Okun in Ref. [7] where he wrote: “It is reasonable to call strongly interacting particles
hadrons, and the corresponding decays - hadronic. In Greek the word ‘hadros’ means ‘large’, ‘massive’, in contrast to the word
‘leptos’, which means ‘small’, ‘light’. The term hadron refers to long-lived mesons and baryons, as well as to resonances”.
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where
I µ Ñ ¹ is totally antisymmetric with

I � � È e i . This state has the colour SU(3)-transformation prop-
erties of an antiquark (with a colour index

x
). Hence, we can obtain a colour-neutral state combining a

diquark with the third quark and summing over colours in the same way as in mesons. One important
example of a three-quark baryon state4 is · » baryon with spin 3/2:� · �¸e iè Y Èpµ s Ñ s ¹ r � I µ Ñ ¹ � 
 µ 
 Ñ 
 ¹ ��Í (40)

With respect to the flavour and spin this state is totally symmetric: all quark have the same flavour and
parallel spins. Therefore, colour degrees of freedom provide the antisymmetry demanded by the Pauli
principle for any bound state of fermions.

2.2 Quark model of hadrons
The hadron decompositions (39) and (40) resemble chemical formulae, displaying the content of a com-
posite state. In reality hadrons are far more complicated than atoms and molecules, because the masses
of the

�b������

quarks are smaller than the QCD long-distance scale:

{ ö s ø ( � ^mõ1a and
{ ù ; � ^bõ1a .

Hence, light quarks are purely relativistic and the number of quarks, antiquarks and gluons within a
hadron cannot be fixed. Since QCD is a quantum field theory, additional quark–antiquark pairs or gluons
are created and annihilated inside the bound states virtually, i.e., within the time/distance intervals of* � i � � ^mõ1a � . As a result, the general decomposition of the physical pion state is not simply (39) but
rather � � � �fe � � µ t� µ �1o pÃ r ö s øws ù�sú×ú× ��� µ t� µ Ì Ñ tÌ Ñ ��o¸� � ¹ �£Þ Ý � µ ¹ t� µ � Ý �mo�Í¡Í¡Í�� (41)

where
�

denotes a gluon, the Lorentz indices are not specified, and a summation over colour indices
is implied. In the above sum, the first term represents a state with the minimal particle content (the
so-called valence-quark content), and ellipses indicate all other multiparticle fluctuations. Naturally, all
components of the pion state have to be colourless, with the same

� t� overall flavour, to obey the colour-
neutrality and flavour conservation. We conclude that hadrons are, in general, many-body systems with
relativistic constituents. Therefore, simple quantum-mechanical models with an interquark potential
cannot fully describe pion or other light-quark hadrons.

Before attempting to solve the QCD dynamics, it is useful to apply the symmetries of QCD La-
grangian. The space–time (Lorentz–Poincare) invariance implies that the total angular momentum (or
total spin) ¹ of a hadron is a well defined and conserved quantum number. In addition º - and

x
- parities

are conserved in QCD (as opposed to the electroweak theory). Therefore, for a given hadron, the spin-
parity combination ¹¼» ( ¹�» õ for flavour-neutral hadrons) is the next important signature after the mass.
Spin parities are indicated for each observed hadron in its entry in [4].

To proceed in hadron spectroscopy, let us have a more detailed look at the mesons having the same
flavour content

� t� as
� �

. Each meson state is a complicated coherent decomposition similar to (41).
Nevertheless, since ¹¼» is conserved, it is sufficient to consider the valence-quark component to count
all possible combinations of ¹ » starting from the lowest possible spin. The total angular momentum
of the valence quark–antiquark state is a sum of the quark and antiquark spins plus the orbital angular
momentum: ½¹ e ½ò o ½] �

(42)

where
½ò e ½
 Ã o ½
 sÃ is the total quark spin; ò e i ��©@� if the individual spins are parallel (antiparallel).

Accordingly, there are two possible states with
] eð©

and ¹ e ò . One is with ¹ » eð© » (pion) and
the other with ¹¼» e i » ( ¾ meson). The negative º parity attributed to these states is obtained from

4Note that if there were four colours of quarks, with the corresponding SU(4) symmetry, baryons would have been built
from four quarks, with profound consequences for the physical world, e.g., atoms with fractional electric charge.
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Table 2: Spectrum of the lowest ¿�ÀÁ statesò e­© ò e i] ¹g» meson ¹l» meson© © » � � i k ©@� i » ¾ � � � ©@�i i � � � � i Õ ¿ ��� © � à º � ó á�©@�i � à � � i Õ Y ©@�Õ � à � � i ¿ Õ�©@�
the following rule: º e g �Kg i �iÂ . Notice an additional minus which has to be added to account for the
so-called ‘intrinsic’ º parity of the relativistic quark–antiquark system.

Turning to the states with
] e i , one encounters three mesons with ò e i ( ¹ » e¥© � � i � ��Õ � )

and one with ò e ©
( ¹l» e i � ). They are listed in Table 2 according to the classification of Ref. [4].

A similar counting can be done for
] e Õ	� ¿ ��Í¡Í¡Í , predicting ¹ ? Õ

mesons. Some of them can be
found in Ref. [4]. Generally, it is rather difficult to observe hadrons with higher spins. Having larger
masses, these states have many decay channels and, therefore, a large total width, complicating their
experimental identification in the form of a resonance. Baryons from

�b������

quarks with different ¹ »

listed in Ref. [4] can also be interpreted, at least qualitatively, in terms of three-quark valence states with
the orbital momentum

]
between diquark and the third quark.

The angular momentum is not the only source of excited hadron resonances. There are mesons
which have the same ¹ » as

�
or ¾ but a larger mass. These states are somewhat similar to the radially

excited levels in a potential. For the pion a natural candidate of such excitation is the
� � � i ¿ ©,©@� state with¹�» e © » , whereas the ¾ meson has at least two experimentally established radially-excited partners

with ¹ » e i » : ¾ � � i k ©,©@� and ¾ � � � iG� ©,©@� [4]. Note that because the orbital momentum
]

is not conserved
in relativistic theory, the

] e Õ
state with ¹Ã» e i » cannot be simply distinguished from the ‘radial

excitation’ of the
] e ©

state with the same spin-parity—another difficulty for the potential models of
light-quark hadrons. Ultimately, one has to think in terms of purely relativistic extended objects, some
kind of quark–gluon strings having a spectrum of ‘radial’ and ¹ excitations. However, attempts to derive
a string picture for hadrons directly from

]�^mõ1a
have not been successful so far.

Quark–gluon interaction is flavour-independent. Therefore, given that a
� t� meson with a certain¹ » exists, the mesons with the same ¹ » containing all possible quark–antiquark flavour combinations

should also be observed. The flavour partners of the pion ( ¾ meson) with ¹�» e © » ( ¹�» e i » ) are
listed in Table 3. Almost all of them have been observed; the masses and other characteristics are given
in Ref. [4]. The only temporary exceptions are the pseudoscalar

� t� meson ( Ä í ) and the vector t � 
 meson
( ´ÆÅï ). These two states are not yet in Ref. [4], owing mainly to experimental reasons.

The heavy quarkonia, i.e., the mesons consisting of a heavy quark and antiquark ( t
�
 or t�w� ) are of
special interest. Here the masses of interacting quarks are large enough compared to their characteristic
energies within hadrons:

{ í s ï H � ^mõ1a . In other words, heavy quarks are nonrelativistic objects with
respect to QCD interactions. It is therefore possible to approximate the quark–gluon interactions with a
nonrelativistic potential, putting the hadronic calculus on the safe ground of quantum mechanics. The
Coulomb quark–antiquark potential ¶ � ë �¸e � ù � ë , derived from the one-gluon exchange, is valid at small
distances. To provide quark confinement, a certain long-distance part of the potential, infinitely growing
at ë � ]

should also exist (e.g., oscillator or linear potential). This part of the potential cannot be
directly calculated from

]F^bõ1a
and is usually modelled and fitted to the observed quarkonium spectra.

Importantly, numerical studies of QCD on the lattice confirm the existence of the confining potential
force between heavy quark and antiquark.
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Table 3: Pseudoscalar ( Ç�È§EJÉ�Ê ) (upper lines) and vector ( Ç�È§EËÉ Ê ) (lower lines) mesons with different flavour
content � � 
 


b

t� � º � Ä � Ä � � » Ì¨» y º t´ »¾ º �iÍ ¾ » Ì Å » y Å º t´ Å »t� � � � º � Ä � Ä � tÌ º y � t´ º¾ � ¾ º �iÍ tÌ Å º y Å � t´ÆÅ º
t
 Ì � Ì º Ä � Ä � y ù t´ ùÌ Å � tÌ Å º Î y Åù t´ Åù
t
 ty º y » ty ù Ä ï t´ ïty Å º y Å » ty Åù ¹ � v t´ÆÅït � ´ � ´ º ´ ù ´ ï Ä í´�Å � ´ÆÅ º ´ÆÅù ´ÆÅï Ï

2.3 Isospin
In addition to the exact colour and space–time symmetries, the QCD Lagrangian possesses approximate
flavour symmetries originating from the pattern of quark masses. Since the latter are generated by some
external mechanism, the flavour symmetries do not have fundamental roots in QCD. Nevertheless, they
provide very important relations for hadron masses and hadronic amplitudes.

Let us start with the
�

and
�

quarks and rewrite the QCD Lagrangian, isolating these two flavours:]Á^bõ1a e tv ö ��x�y �  � g«{ ö � v ö o tv ø ��xzy �  � g«{ ø � v ø o ] � q ö � o ] ù�s ï s í s ÿ Í (43)

The smallness of the
�

and
�

masses,
{ ö � { ø ( � ^mõ1a , implies that their difference also is small:{ ø g|{ ö ( � ^mõ1a Í (44)

Neglecting this difference we use a new notation for the common
�����

quark mass:{ ö ~�{ ø ~oÐ{hÍ
(45)

In this approximation, ]_^mõ1a ~ ] � ö r ø �^mõ1a e Ñ¼��y �  � gÒÐ{ �iÑ o ] � q ö � o�Í¡Í�� (46)

where a new, two-component spinor field (doublet) is introduced:Ñ�e 6 v öv ø 7 � tÑÔe#� tv ö � tv ø �}Í
The theory described by the r.h.s. of (46) is not exactly QCD, but is very close to it. The new Lagrangian] � ö r ø �^bõ1a contains two degenerate quark flavours and has a symmetry with respect to the general phase
rotations in the ‘two-flavour space’:ÑÔ�ÓÑ � e�ØwÙ;Ú 8 g�x ÈpÝ r � Í Ý�Ô ÝÕ : Ñ¼� Ñé� Ñ � e Ñ ØwÙ;Ú 8 x Èp Ý r � Í Ý[Ô ÝÕ : �

(47)
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where
Í Ý

are arbitrary (
c

-independent) parameters and

Ô � � Ô � � Ô È
are the

Õ À Õ Pauli matrices. The
symmetry transformations (47) form a group SU(2)5.

One has to emphasize that the approximate SU(2)-flavour symmetry emerges ‘by chance’, simply
because the

�
and

�
quark masses turn out to be almost degenerate. Note also that e.m. interaction

violates this symmetry, owing to different electric charges of
�

and
�

quarks. But this * � � �z� � effect is
again small, at the same level of

� i ³ , as the * � �{Õ » �"Ö�R�c��� �
violation due to the quark mass difference.

The approximate degeneracy of
�

and
�

flavours manifests itself in hadrons. Replacing
�

quarks
by

�
quarks or vice versa in a given hadron, yields a different hadron which has a very close mass

and other properties. This qualitative prediction is nicely confirmed by the measured mass differences
between proton (

���}�
) and neutron (

�}�>�
),
� � � t�d�	� and

� º ��� t��� g t�>��¤�� è Õ@� , Ì � ��� t
�� and Ì º ��� t
�� , etc.
The typical mass splittings for the

�Ë×��
hadronic partners are at the level of a few MeV. Thus, QCD

nicely explains the origin of isospin symmetry introduced by Heisenberg in the 1930s in nuclear physics
to describe the similarities between the ‘mirror’ isotopes, obtained from each other by interchanging
protons and neutrons. The second part in the word ‘isospin’ reflects the analogy with the electron spin
symmetry, the degeneracy of the spin-up and spin-down electron states in quantum mechanics.

In fact, one introduces a similar formalism in QCD, attributing isospin

A e i ��Õ to the doublet
of
�

and
�

quarks and treating these two flavours as ‘up’ and ‘down’ components with

A È e o i ��Õ
and

A È e5g i ��Õ , respectively. The hadrons containing
�

and
�

quarks in different combinations form
isomultiplets, with the isospin counting similar to the spin algebra in quantum mechanics. In the case
of the proton and neutron, the diquark

���
has isospin 0, therefore, adding

�
or
�

quark to the diquark,
we get the nucleon isodoublet (

A e i ��Õ ) consisting of a proton with

A È e o i ��Õ and a neutron with

A È e5g i ��Õ . Another isodoublet is formed by Ì �
and Ì º , where the t
 quark, which has no isospin,

is combined with
�

and
�
, respectively. In the same way,

y º ��� t
.� and
y » ��� t
.� , or ´ � ��� t��� and ´ º ��� t ���

build isodoublets.

Note that antiquarks have the opposite signs of

A È : t� ( t� ) has

A È eHg i ��Õ (

A È eéo i ��Õ ). Combining
the

�
and

�
quarks with their antiquarks, one gets four states. Three of them belong to isotriplet (

A e i ):� t�u� A È eéo i ��� � t��g|� t�è Õ � A È e�©@��� � t�§�
A È ehg i �}Í (48)

For example, pions (
� �

,
� º and

� » ), as well as ¾ mesons ( ¾ � , ¾ º and ¾ » ) form isotriplets. The fourth
quark–antiquark state is an isosinglet (

A e­©
): � t� o � t�è Õ �

(49)

which deserves a separate discussion. In general, the
� t� and

� t� states transform into each other via
intermediate gluons. In mesons this transition takes place at long distances, owing to some nonpertur-
bative mechanism, not necessarily described by diagrams with a fixed number of gluons. In any case,
the transition amplitude has a characteristic scale of * � � ^mõ1a � , much larger than the mass difference~ãÕ���{ ö g { ø � between the

� t� and
� t� states. The t��� – t�>� degeneracy yields two orthogonal phys-

ical states, the

A È e ©
component of the isotriplet (48) and the isosinglet (49). Turning to strange

quarks, one encounters the second

A e ©
state t
�
 . The same gluonic transition mechanism provides

a mixing between (49) and the t
�
 state. Now, the difference between the masses is not small, being of* ��Õ�{ ù gÐÕ2Ð{ ��� � ^mõ1a . Hence, the amount of mixing depends on the magnitude of the

 t
�× ��� t��o � t�;�

transition amplitude. The latter is quite sensitive to the spin parity of the meson state. For example, the

5The number of independent parameters for SU(2) is determined in the same way as for SU(3) in Lecture 1: one counts the
number of independent elements in the unitary ØÚÙÛØ matrix with the unit determinant.
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Fig. 10: Quark diagram for ÜÝ�ÞÜß® hadronic decays; the four possible combinations of àÏEá¿�I Á and àVâ�Eá¿�I Á
correspond to the four decay modes related by isospin symmetry.

two isosinglet mesons with ¹¼» e­© » shown in Table 3 have (up to small deviations) the following quark
content: Ä �ã� k � �Ú~ iè Y ��� t�¼o � t� g¨Õ t
�
��}� (50)Ä � � ó �,á��{~ iè ¿ ��� t� o � t�Öo t
.
��}� (51)

indicating that mixing in the * » channel is large. For the ¹¼» e i » mesons the situation is completely
different. From the quark content of the isosinglet mesons:Í�� � á,Õ��"~ � t�uo � t�è Õ � Î � i ©�Õ�©@�"~ t
.
�� (52)

one concludes that the transition from strange to nonstrange quark pairs in the i » state is suppressed.

Returning to the isospin symmetry, it is worth mentioning that it yields useful relations between
hadronic amplitudes. To give just one simple example, let us consider the four observable hadronic
decays of the Ì Å meson. The amplitudes of these decays are related via isospin symmetry, so that only
one amplitude is independent:� � Ì Å º � Ì � � » �feHg iè Õ � � Ì Å º � Ì º � º �¸e � � Ì Å � � Ì º � � �fe iè Õ � � Ì Å � � Ì � � º �}Í (53)

To obtain these relations, one does not necessarily need to apply the formulae for the SU(2) group. In
the isospin limit, all four decays are described by a single quark diagram, shown in Fig. 10, where the
initial and final mesons are taken in the valence-quark state. Each individual decay mode has its own
combination of

�
and

�
quarks to be substituted in this diagram. Furthermore, the coefficients i � è Õ

originate from the quark content of the
� º . Naturally, the hadronic amplitude attributed to the quark

diagram in Fig. 10 is a nonperturbative, long-distance object and cannot be directly calculated in QCD.
However, all we need are the amplitude relations between individual decay modes and not the value of
the amplitude itself. Squaring the relations (53) and taking into account the phase space, one predicts the
ratios of branching fractions confirmed by the experimental values given in Ref. [4].

2.4 SU(3) flavour symmetry
Another flavour symmetry, widely used in hadron phenomenology, is òÁ¾ � ¿ � O q corresponding to the limit
of QCD with all three quarks,

�
,
�

and


, having equal masses. Since in reality

{ ù
is only inessentially

smaller than � ^mõ1a , the magnitude of ò_¾ � ¿ � O q violation in hadrons is not universal, depending on their
quark content and quantum numbers.
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Neglecting the mass differences between
�

,
�
,



quarks and introducing a common mass
Ð{ È one

approximates
]F^mõ1a

as ]Á^mõ1a ~ ] � ö r ø r ù �^mõ1a e Ñ È ��y �  � gÞÐ{ È �iÑ È o ] � q ö � o�Í¡Í�� (54)

where
Ñ È is a triplet: Ñ È e ÄÇ v öv øv ù ÉË � tÑ È eh� tv ö � tv ø � tv ù �}Í

The modified QCD with
] � ö r ø r ù �^mõ1a has a symmetry with respect to the transitions between three flavour

states: Ñ È �ÓÑ � È e�ØwÙ	Ú Û�g�x ÜpÝ r � Í Ý Þ ÝÕ ß Ñ È � tÑ È � tÑ � È e tÑ È ØwÙ	Ú Û£x ÜpÝ r � Í Ý Þ ÝÕ ß Í (55)

Although physically, òÁ¾ � ¿ � O q and the fundamental òÁ¾ � ¿ � colour have completely different origins, the
group-theoretical formalism of both symmetries is the same. In particular, the eight

Þ Ý
matrices entering

(55) are already given in (8).

The òÁ¾ � ¿ � O q symmetry is very helpful in ‘organizing’ the spectra of strange and nonstrange
hadrons in multiplets. The light-quark meson multiplets are obtained by combining quark flavour-triplets
and antiquark flavour-antitriplets. Without using the specific rules of òÁ¾ � ¿ � algebra, which can be found
in many textbooks, it is easy to figure out that the nine quark–antiquark states split into a singlet tÑ È Ñ È
and octet tÑ È Þ Ý Ñ È . The octet has its own isospin substructure6 . The singlet-octet pattern provides a rea-
sonable description for pseudoscalar mesons, in particular, the Ä � meson is close to the òÁ¾ � ¿ � O q singlet
state (51). The isotriplet of pions (

� � � � º � � » ), two isodoublets of kaons ( Ì � � Ì º and tÌ º � Ì¨» ) and the
isosinglet Ä , given by (50), together form an octet. However, this pattern is not universal. For example,
in the case of vector mesons,

Í
and Î states in (52) are neither octets, nor singlets. To complete the

counting of meson òÁ¾ � ¿ � O q multiplets, one has to mention also triplets and antitriplets of heavy–light
mesons. For example, in the case of



quark, ty º ��y » � ty ù (

y º ��y » ��y ù ) form a triplet (antitriplet).

Generally, òÁ¾ � ¿ � O q works quite well for baryons, because their characteristic mass scale is a few
times larger than � ^bõ1a . Importantly, the spin-parity of the lowest baryon ò_¾ � ¿ � O q multiplets is fixed,
owing to the total antisymmetry of the baryon ‘wave function’ in the òÁ¾ � ¿ � O q /spin/ colour coordinates
required by Fermi statistics. There is an octet with ¹ e i ��Õ (including proton and neutron) and decuplet
with ¹ e ¿ ��Õ . Let us, for instance, have a look at the latter. It contains the isoquadruplet (

A e ¿ ��Õ )
of ä resonances ( ä �g� �����}�d�

, ä � �������	�
, ä º �����@�	� , ä » ���>�@�;� ), the isotriplet of å resonances ( å � �����d
��

,å º ���}�	
�� , å » ���@�	
�� ), the isodoublet of æ resonances ( æ º ���d
�
�� , æ » ���	
�
�� ) and the isosinglet · ��
�
�
�� .
Consulting Ref. [4] for the masses of these baryons, one notices a distinct hierarchy: each constituent



quark adds an amount of * ��{ ù � to the baryon mass.

Returning to the quark diagram in Fig. 10, we may now replace the



quark by a
�

or
�

quark. In
the òÁ¾ � ¿ � O q limit the new diagram obtained after this replacement is equal to the one with the



quark,

yielding relations between the Ì Å � Ì � and ¾ � �1�
hadronic amplitudes, e.g.,� � Ì Å � � Ì º � � ��~Hg iè Õ � � ¾ � � � º � � �}Í (56)

Such relations are typically violated at the level of 20–30%, but are still useful from the phenomenolog-
ical point of view.

6In mathematical terms ç�è"
�Ø �ãé &ëêì&�í éKî is a subgroup of ç�è"
ðï �òñió .
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2.5 Heavy quark symmetry
To complete our survey of flavour symmeties, we now turn to the ³ 
���� ¶ quark sector of the QCD La-
grangian. The fact that

{ ï s í H � ^mõ1a , together with the flavour-independence of quark–gluon inter-
actions, allows one to consider an interesting limit of

]�^mõ1a
where both



and

�
quarks have infinitely

heavy mass: { ï ��{ í ��{ ^ �Ó]ªÍ
(57)

At first sight, the limit is not justified, because in reality
{ í is substantially larger than

{ ï . As we shall
see, the fact that both masses are large turns out to be more important for QCD dynamics. Formally, in
the limit (57) one can introduce a doublet of heavy-flavour fieldsÑÔe 6 v ïv í 7 � tÑÔeh� tv ï � tv í �}�
and rewrite the Lagrangian in a form invariant with respect to SU(2) rotations in the


����
flavour space:]Á^mõ1a e p^ r ï s í Ñ ^ ��x�y �  � g«{ ^ �iÑ ^ o ] � q ö � o ] ö s øws ù Í (58)

This particular form of the heavy-quark limit for
]�^mõ1a

is, however, not convenient, because the heavy
mass scale

{ ^
is still present explicitly. To understand why it is desirable to effectively remove that scale,

let us consider the heavy-quark limit (57) for
y

or ´ meson. Since
{ ï and

{ í have no direct relation to
QCD, it makes sense to discuss a hypothetical heavy-light meson ô with a mass

{Ëõ
containing a heavy

quark with an arbitrarily large mass
{ ^

. In the rest frame of ô the constituent heavy quark stays almost
at rest, providing a static source of colour charge which emits and absorbs gluon fields. The meson mass,
to a good approximation is {uõ e�{ ^ o t� � (59)

where � is the energy of the light quark–gluon cloud surrounding the heavy quark. The situation very
much resembles the hydrogen atom where the total mass of the atom is a sum of an extremely large
(
�

GeV) proton mass and a small energy of the electron cloud (
�

MeV). The essential point is that the
electron itself is nonrelativistic. One can isolate the electron mass from the rest of the energy, introduce
the Coulomb potential and kinetic energy, and eventually solve the equations of motion, determining the
electron energy levels. In heavy hadrons the light-quark cloud is purely relativistic (

{ ö s øws ù ; � ^mõ1a )
and has a complicated long-distance nature.

Nevertheless, one essential feature is common for both bound states. In the atom the energy of
the electron cloud does not depend on the proton mass. Likewise, in the heavy-light meson, t� in (59)
is approximately independent of

{ ^
. From atomic physics we know that the electron energy levels in

hydrogen and deuterium coincide to a great precision. The fact that a deuteron is twice as massive as
the proton does not play a role for the energy levels, because in both cases the atomic nuclei are static.
What is important is that the electric charge does not change by switching from proton to deuteron.
Similarly, in the ô meson, t� changes very little if one replaces

{ ^
by
{ í or by

{ ï , because the colour
charge of the heavy quark does not change. Thus, the heavy-flavour symmetry is in reality the symmetry
between the light-quark remnants of the heavy hadrons, so that the heavy-quark mass scale indeed plays
a secondary role.

To achieve a quantitative level, a special formalism of heavy quark effective theory (HQET) was
developed for applications of QCD to heavy-light hadrons. One starts from

]ô^mõ1a
and introduces trans-

formations which decouple the
��{ ^

part of the heavy-quark field from the part which has the remnant
momentum

� � ^mõ1a . Only the latter part strongly interacting with the light quark–gluon cloud is rele-
vant for QCD dynamics. Therefore, in HQET one usually integrates out the heavy degrees of freedom
and works with the Lagrangian containing a new effective quark field carrying the flavour of

Ó
but no
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mass. Not only the static limit (57) but also an expansion in powers of i ��{ ^ corrections can be system-
atically treated in HQET. The field-theoretical aspects of heavy-mass expansion are nicely explained in
the literature (see, for example, Refs. [8], [9]); I shall only focus on some important phenomenological
consequences of heavy-flavour symmetry.

One famous example is the ´ � y µ � q decay involving the weak
�F� 


transition of the Standard
Model. The unknown part of the decay amplitude is the hadronic matrix element� y �R� a ��� t
  � �L� ´ �R�÷ö"� (60)

determined by the long-distance interactions involving the initial and final heavy quarks as well as the
surrounding light quark–gluon ‘cloud’. One chooses a special kinematical configuration, the ‘zero recoil
point’ where the momentum transfer to the lepton pair is equal toÌ � eh�R�÷ö|g � a � � eh��{uö«g { a � � Í

(61)

In the ´ meson rest system
�gö�eª��{uö_��©;��©;��©@�

this point corresponds to the final
y

meson at rest. In
the heavy-quark limit the replacement of the

�
quark by the



quark does not change the hadronic state:� y �R� a ���@e ��´ �R� ö ���

and the matrix element (61) reduces to a trivial normalization factor. One can therefore predict the decay
amplitude in the zero recoil point up to i ��{ ^ corrections. In fact there is a theorem stating that these
corrections are even smaller and start from * � i ��{ � ^ � , but to derive this and other important details one
needs a full-scale HQET framework.

Without resorting to the effective theory, it is possible to understand the origin of another im-
portant symmetry emerging in the heavy-quark limit. In the hydrogen atom, the electron and proton
have magnetic moments related to their spins and yielding interactions with the external magnetic fields
or with each other (spin–spin interactions). The magnetic moments are inversely proportional to the
masses, so that the proton magnetic moment plays no role for the electron energy levels. Each level is
degenerate with respect to the proton spin direction. Since QED and QCD have very similar vector boson
interactions with spin 1/2 particles, the spin i ��Õ quarks also have chromomagnetic moments and interact
with the ‘magnetic’ parts of gluonic fields and with other quarks. For the heavy nonrelativistic quark
the chromomagnetic moment is inversely proportional to the heavy quark mass

{ ^
. In the infinite mass

limit the interaction vanishes, and hence the light-cloud energy t� is independent of the spin orientation
of the heavy quark.

One arrives at a new classification of heavy-light states based on this heavy-quark spin symmetry.
Instead of adding together the orbital momentum and the total spin of quarks as we did in (42) it is more
appropriate to introduce, for a

Ó tÌ meson (
Ó½e 
����

, Ì e#�����±��

), the total angular momentum of light

degrees of freedom: ½¹ q µ �ùø ÿ e ½] o ½
 Ã Í (62)

Adding the heavy-quark spin

 ^ e i ��Õ to ¹ q µ �ùø ÿ one gets degenerate doublets of heavy-light mesons

with total angular momentum ¹ e ¹ q µ �ùø ÿ � i ��Õ . At
] e ©

one simply has ¹ q µ �ùø ÿ e i ��Õ and therefore
a doublet of mesons with ¹ » e i » and ¹ » e © » consisting of ´ and ´ Å (

y
and

y Å ) in the
�

quark
(charm) sector. The mass differences within doublets are indeed very small [4]:Ò�ö¨e�{uö¼ú_g«{uö e k � MeV

� Ò a e­{ a ú_g«{ a e i k Õ MeV
�

(63)

indicating that the heavy-quark spin symmetry works quite well, especially for the heavier
�

quark.
Taking into account that the mass differences are

� i ��{ ^ effects, one expects that
Òqö���Ò a ~ ��{ ï ��{ í �

which is also in accordance with (63) and (31). I leave as an exercise to show that at
] e i there are two

degenerate doublets: one with ¹ » e­© � � i � and another one with ¹ » eÔÕ � � i � .
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2.6 Exotic hadrons
The colour confinement principle does not exclude hadronic states with an ‘exotic’ valence quark content,
different from Ì tÌ or Ì�Ì�Ì . Quarks, antiquarks, and gluons can be added together in any combination, e.g.,Ì tÌ � ,

�û�
, Ì tÌ�Ì tÌ or Ì tÌ�Ì�Ì�Ì , provided they are in a colour-neutral state. Since one cannot calculate the

spectrum of hadrons in QCD with a good precision, predictions of exotic states are generally model-
dependent. It is always problematic to distinguish an exotic hadron from the excitation of an ordinary
hadron with the same ¹l» and flavour quantum numbers. Moreover, in this case one expects mixing
between ordinary and exotic hadrons. For example, if there is a ¹ » e�© » state composed of two gluons�û�

(glueball), it should be mixed with Ä � to a certain degree, so that Ä � acquires a glueball component.

Therefore, the most interesting, ‘smoking gun’ signatures are the hadrons with exotic quantum
numbers (flavour content and/or ¹ » õ ), forbidden for quark–antiquark mesons or three-quark baryons.
For example it is impossible to arrange a flavour-neutral, quark–antiquark state with ¹{» õ e i » � . Theº and

x
( charge-conjugation) parities of a fermion–antifermion state are determined by the rules: º eg �Kg i �DÂ and

x e �Kg i �DÂ �gü , so that º e g i means
] e½©;��Õ	��Í¡Í

. Hence, the only possibility to havex e o i is ò e ©;��Õ	��Í¡Í
. However, adding together even values of

]
and ò one cannot get ¹ e i . On

the other hand, adding one constituent gluon to a Ì tÌ pair, one easily makes a ‘hybrid’ meson with Ì tÌ �
content and ¹l» õ e i » � quantum numbers. Searches for hybrid mesons are currently being carried out,
but the experimental situation is not yet settled.

The recently observed narrow baryon resonance ý � i � k ©@� decaying to Ì � U
Ref. [10] is another

promising candidate for hadron exotics, a state t
��}�}�@� with five valence constituents (pentaquark).
Flavour symmetries are important model-independent tools to confirm/reject the experimental candi-
dates for exotic resonances. In particular, an important task is to find the symmetry partners of these
hadrons and to fill the relevant isospin and òÁ¾ � ¿ � O q multiplets (in the case of the pentaquark it is actually
the ò_¾ � ¿ � O q antidecuplet).

3 QCD AT SHORT DISTANCES

3.1 Probing short distances with electroweak quark currents
In this lecture we return to the quark–gluon interactions at large momentum transfers (short distances).
In this region, practically at

Ó v i GeV, � ù is small, allowing one to apply the perturbative expansion. It
is then possible to test QCD quantitatively, calculating various quark–gluon interaction processes at largeÓ

and comparing the results with the available experimental data. Note, however, that the traditional way
to study interactions by scattering one object on the other is not applicable to quarks and gluons. They
simply are not available in free-particle states. One needs to trace quarks inside hadrons, where the long-
distance forces are important. Take as an example the elastic pion–proton scattering at large momentum
transfers (see Fig. 11). Here one has to combine the perturbative quark–quark scattering amplitudes
(two-gluon exchange) with the ‘wave functions’ of quarks inside the initial and final hadrons. To obtain
these functions one needs to go beyond perturbative QCD. Therefore, an unambiguous extraction of the
perturbative amplitude from the data on the scattering cross section is not a realistic task.

The situation is not so hopeless, actually, since we have at our disposal electroweak bosons
(  � ! � $ ) interacting with quarks in a pointlike way. Electroweak interactions at large momentum trans-
fer serve as external probes of short-distance dynamics. In Lecture 1, we already discussed one example:
the quark–antiquark pair production in $ decay. To list all possible electroweak sources of quarks in a
more systematic way, I start with the photon. Its interaction with the quark e.m. current was already
given in (6), let me write it down again: ] �z� ��cd�feHg��ùþ ���� � � �

(64)
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Fig. 11: A schematic view of pion–proton elastic scattering at large momentum transfers.
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Fig. 12: The virtual-photon exchange diagram for ÿ��gÿGÊ � hadrons.

introducing a compact notation for the quark e.m. current:þ ���� e pÃ r ö s øws ù�s ï sú×ú× Ó Ã tv Ã  � v Ã � (65)

where the summation over colour indices is not shown for the sake of brevity. The quark weak current
entering the quark– ! flavour-changing interaction:]�� ��cd�¸eHg ´Õ è Õ þ �� ! � o 
�Íì
�Í

(66)

is more complicated and includes the CKM mixing matrix:þ �� ��cd�fe#� t��� t
�� t���  � � i g  å � ÄÇ ¶ ö ø ¶ ö ù ¶ ö í¶ ï ø ¶ ï ù ¶ ïzí¶ ÿ ø ¶ ÿ ù ¶ ÿ í ÉË ÄÇ � 
� ÉË Í
(67)

Finally, the quark– $ interaction is ] t ehg ´Õ�
`S�
�� � þ t� $ � � (68)

where the quark electroweak neutral current is a mixture of vector and axial-vector parts.

3.2 Perturbative QCD in ���	��

� �������������
In
� � � » annihilation at high energies the virtual photon provides a short-distance source of quark–

antiquark pairs. This process is hadron-free in the initial state. The photon-exchange diagram is depicted
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in Fig. 12 (for simplicity I ignore the additional $ -exchange diagram). The experimentally measured
total cross-section

Ô ÿ B ÿ ��� � � » �Ón}�
depends on one kinematical variable


Öeh�R� � » o � ��� �M� . The virtual
timelike photon transfers its energy

è 

to the hadronic state. At very large

è 
�H � ^bõ1a and
è 
�H�{ Ã ,

the initial pair of quarks is produced at an average distance of * � i � è 
�� , much smaller than the typical
hadronic distance scale i � � ^mõ1a . Owing to asymptotic freedom of QCD, gluonic interactions of the
produced quark pair are suppressed by small � ù . Hence,

� � � » annihilation at high energies provides an
almost pointlike source of quasi-free quark pairs. At long distances the created quarks and antiquarks
are inevitably converted into some hadronic state. Since in the total cross section the summation is done
over all hadronic states produced at a given energy, the total probability of hadronization sums up to a
unit. Hence, at

è 
Ï�Ó]
the hadronic cross section is well approximated by the cross section of the free

quark–antiquark pair production:Ô � � � ����� ø �ÿ B ÿ ��
���~ pÃ r ö s øws ù�sú×ú× Ô � � � ����� Ã sÃ � ��
��}� (69)

summed over all quark flavours with
{ Ã ( è 


. This, so-called parton model approximation for� � � » � n
is confirmed by experimental data. Moreover, the majority of events saturating the cross

section at high
è 


consists of two distinct hadronic jets originating from the initial quark pair.

The way we obtained (69) may seem too qualitative and a bit ‘hand-waving’. In the following, we
shall derive the asymptotic cross section (69) in a more rigorous way. In this derivation several important
concepts will be introduced, to be used in discussing further topics covered by these lectures.

We start with the formal definition of the total cross section:Ô � � � � � � ø �ÿ B ÿ ��
��¸e iÕ,
 p ø î   � n þ � ê ��� � � » �   � � (70)

where the sum over the final hadronic states
n þ includes phase-space integration and implies summation

over spins (polarizations). The matrix elements � î�� ê � xD� � ê O µ (in (70)
� xD�Öe � � � � » � and � î���e � n þ � )

determine the general ò -matrix of the theory:ò O µ � � î�� ò � x'�fe�Ò O µ o x ê O µ Í (71)

The usual representation of the ò -matrix in terms of Lagrangian has the time-ordered exponential form:ò e ê ! ØwÙ;Ú P x E � ä c¼� ]Á^mõ1a ��cd�bo ]Á^1`�a ��c1��� W#" �
(72)

where
]_^1`ba

includes e.m. interactions of quarks and leptons. Furthermore, the unitarity of the ò matrix
is used: ò�ò Î e i � (73)

or p þ � î�� ò � U¼� � U"� ò Î � xD�feÔÒ O µ Í (74)

From now on we consider the forward scattering
îje�x

. Replacing � U"� ò Î � xD�Áe � xT� ò � U¼� Å and substituting
(71) in (74), one obtains the unitarity relation for ê µ µ (the optical theorem):Õ

Im ê µ µ eÔp þ � ê µ þ � � Í (75)

To apply this universal relation to
� � � » scattering, we take

� x'�Oe � � � � » � with four-momentum Ì e� � � o|� � �
, so that Ì � e 
 ? ©

. Furthermore, we choose
� U¼��eÞ� n þ � restricting the set of intermediate

states by hadronic states. As a result we obtain a rigorous relation between the amplitude of the forward
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Fig. 13: Unitarity relation for ÿ$�gÿqÊß� hadrons.

� � � » � n � � � � » scattering via hadronic intermediate states, ê�µQµ e 5 � � � � � � ø �Ö� � � � � , and the sum
over the squared

� � � » � n þ amplitudes. The latter sum, according to (70) is proportional to the total
hadronic cross section. The optical theorem (75) takes the form:Õ

Im
5 � � � � � � ø �Ö� � � � � ��
��fe p ø î � � n þ � ê � � � � » ��� � e�Õ,
 Ô � � � � � � ø �ÿ B ÿ ��
��}Í

(76)

Diagrammatically, this relation is represented in Fig. 13. The amplitude5 � � � � � � ø �Â� � � � � � Ì � �fe � ä� Ì � � � � tv �  � v � �w� tv �  n v � ��% ��n � Ì � (77)

contains the photon propagators and the products of electron and positron spinors in both initial and final
states, written according to the QED Feynman rules. The nontrivial part of this amplitude, denoted as% ��n

, describes the
þ �z�� � n|� þ ���n

transition, and is called the correlation function (or correlator) of
quark currents. The formal expression for this object reads:% ��n � Ì �¸e�xcE½� ä cu� µ Ã � � ©�� êÂ³ þ ���� ��cd��þ �z�n ��cd� ¶ � ©��}Í (78)

Owing to the conservation of e.m. current (
~ � þ �z�� e ©

), the correlation function depends on one
invariant amplitude: %���n�� Ì �¸eh�Kg ´ ��n Ì � o Ì � Ì n���%¼� Ì � �}Í (79)

Substituting (79) in (77) and taking the imaginary part from both sides, we obtain

Im
5 � � � �&��� ø �Â� � �&� � ��
��feHg � ä
 � tv �  � v � �w� tv �  � v � � Im % ��
��}Í

(80)

It is convenient to normalize the hadronic cross section to the
� � � » ��� � � » cross section known

from QED. One can literally repeat the derivation done above, taking instead of hadronic states the
� � � »

states:
� U¼�fe¸� � � � » � . The resulting relations are quite similar to (76), (77) and (80):Õ

Im
5 � � � � � �Ï� � � � �Ö� � � � � ��
��fe p�'��� � � � � � � » � ê � � � � » ��� � e�Õ,
 Ô � � � � � �Ï� � � � � ��
��}�

(81)5 � � � � � �Ï� � � � �Ö� � � � � � Ì � �¸e � ä� Ì � � � � tv �  �( v � �w� tv �  � v � ��% � � �( � � Ì �}� (82)

and

Im
5 � � � � � �Ï� � � � �Ö� � � � � ��
���eHg � ä
 � tv �  � v � �w� tv �  � v � � Im % � � � ��
��}�

(83)
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Fig. 14: Diagrams corresponding to the perturbative contributions to the correlation function of two quark cur-
rents: (a) the leading-order loop and (b)–(d) the ) � j k£� corrections. Wavy lines denote external currents with
4-momentum à , solid lines quarks, and dashed lines gluons.

where the muonic correlation function
% � � � is nothing but a simple 2-point muon-loop diagram. Further-

more, the cross section in (81) taken from QED textbooks, reads:Ô � � � � � �Ï� � � � � ��
��¸e k�� � ����¿ 
 Í
(84)

Dividing the hadronic unitarity relation (76) by the muonic one (81) and using (80) and (83), we obtain
a useful ratio:

Im
%¼��
��

Im
% � � � ��
�� e Ô � � � ���*� ø �ÿ B ÿ ��
��Ô � �+��� � �Ï�,�;� � � ��
�� �.- ��
��}Í

(85)

The next key point in our derivation is the analysis of the correlation function
% � Ì �.� at space-

like Ì �Ë; ©
. At large

� Ì � �_e Ó � H � � ^mõ1a , the long-distance domain in the space–time integral in
(78) is suppressed by the strongly oscillating exponent, and the short distances/times

� ½c � �hc º � i �,Ó
dominate. This justifies using QCD perturbation theory with � ù �£Ó ��� ©

at
Ó �o]

. The leading-order
asymptotically free result is given by the 2-point quark-loop diagram [Fig. 14(a)], and the next-to-leading
corrections are determined by * � � ù � two-loop diagrams [Fig. 14(b), (c), (d)]. Calculation of these dia-
grams yields (at

{ Ã ( Ó
):%¼� Ì � �¸eHg ik�� � 8 p Ã Ó �Ã : M ® N 6 g Ì �� � 7 � i o � ù� # o *\6 iI 7 o ¬w®�¯±°�²1� (86)

where each flavour Ì contributes with the same expression and a coefficient
Óu�Ã . The natural scale for � ù

is Ì � . In recent years, thanks to tremendous calculational efforts, the * � � � ù � and even * � � È ù � corrections
to
%

have been calculated; also the loop diagrams for the massive quark are known with a high accuracy.

In the final stage of our derivation the calculated function
%¼� Ì � � at Ì �<; ©

is related to Im
%¼��
��

at
positive



. One employs Cauchy’s theorem for the function

% �0/>�
obtained from

% � Ì � � by analytically
continuing the real variable Ì � to the complex values, Ì ���1/

:% � Ì � �fe iÕ � x Eõ �2/ %¼�0/>�/ g Ì � Í (87)
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Fig. 15: The integration contour in (87). The crosses on the positive real axis indicate singularities of 3 � à,4 � .
The integration contour C is shown in Fig. 15. It circumvents the singularities of the function

% �0/>�
,

i.e., the points/regions where Im
% �eH©

. According to (76) and (80) the location of singularities at realÌ � ?­©
is determined by the masses of resonances and/or the thresholds of multiparticle hadronic states

produced in
� � � » � n

; the lowest one is at

 � µ þ e k {j�h corresponding to the threshold of the lightest

two-pion state. Subdividing the contour
x

into 1) a large circle with the radius
-

, 2) an infinitely small
semicircle

Ðx
surrounding


.� µ þ , and 3) two straight lines from

�� µ þ to

-
, we can rewrite the integral in

terms of three separate contributions:% � Ì � �fe iÕ � x E5 675 r98 �2/ % �0/>�/ g Ì � o iÕ � x 8Eù � éKî �2/ % �0/Ïo x�Ò��¸g:%¼�0/ g|x�Ò��/Âg Ì � o iÕ � E ;õ �2/ %¼�0/>�/ g Ì � Í (88)

Suppose the function decreases at
� Ì � ��� ]

,
%¼� Ì � �<� i �R� Ì � � � , where

Þ$? ©
. Then the first integral

vanishes at
- � ]

. Taking an infinitely small semicircle, one makes the third integral also vanishing.
Furthermore, since there are no singularities of

% �0/	�
at Re

/ ; 
 � µQþ , the integrand in the second integral
reduces to the imaginary part:

%¼� Ì � o­xMÒ���g<%¼� Ì � g xMÒ���e5Õ�x
Im

% � Ì � � (due to Schwartz reflection
principle). Finally, we obtain the desired dispersion relation%¼� Ì � ��e i� =Eù � éCî �	
 Im

% ��
��
�g Ì � g«x�Ò (89)

with the l.h.s. calculated in QCD in a form of perturbative expansion (86) and the r.h.s. related to the
cross section via (85):

Im
% ��
��fe - ��
��

Im
% � � � ��
��}Í

(90)

The quantity
- ��
��

is directly measurable in
� � � » experiments. It remains to determine Im

% � � � ��
�� .
Knowing the answer for the quark loop diagram in Fig. 14a it is very easy to write down the expression
for the muon loop. Since we neglect masses in both diagrams, the only difference is the factor 3, from
summing up the colour states in the quark loop. This factor is naturally absent for the muon loop. From
(86), taking imaginary part, one obtains

Im
% � � � ��
��fe ii Õ � Í (91)
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Finally, to guarantee the convergence of the dispersion integral (89),7 let us differentiate both parts in Ì � :�2% � Ì � �� Ì � eãi� =Eù � éKî �>
 Im
% ��
����
�g Ì � � � Í (92)

where (86) gives for the l.h.s. �>%¼� Ì � �� Ì � e 8 þ ñp Ã Ó �Ã : 6 g ik�� � Ì � 7 Í
(93)

Note that divergent and constant terms disappeared after differentiation and play no role in our derivation.
The final form of the dispersion relation is¿ 8 þ ñ? Ã Ó �Ã :g Ì � � i o � ù� o�Í¡Í¡Í # e =Eù � éKî �>
 - ��
����
�g Ì � � � � (94)

where ellipses denote higher-order in � ù corrections. The fact that (94) is valid at
�Kg Ì ���Ï� ]

unam-
biguously fixes the constant limit of

- ��
��
at large



:- ��
��¸� ¿ þ ñp Ã Ó �Ã � (95)

where
U O

indicates that
-

includes all ‘active’ quark flavours, for which the condition
è 
 H { Ã is

fulfilled. Finally, we notice that (95) coincides with the parton model prediction (69), taking into account
that the free-quark and muon-pair cross sections differ only by the colour factor times the quark charge
squared: Ô � � � �&��� Ã sÃ � ��
��fe ¿ Ó �Ã Ô � � � �&���Ï� � �@� � ��
��}Í
Importantly, QCD not only reproduces the parton model prediction for

- ��
��
but also provides perturba-

tive corrections, as well as predicting the integral (94) over
- ��
��

.

The experimental data collected in various regions of
è 


nicely confirm (95). According to Fig. 16
taken from Ref. [4], the ratio

- ��
��
approaches first the constant value

- ~ðÕ
at energies

�
2–3 GeV,

above the region of vector meson resonances ¾ ,
Í

, Î (and below the charm threshold). That is exactly the
value anticipated from (95) for

U O e ¿ . Well above charmonium resonances, a new constant level is
achieved:

- e ÕÂo ¿ Ó �ï e i ©@� ¿ . And finally,
- e i ©@� ¿ o ¿ Ó �í e i,i � ¿ is settled at energies aboveÏ resonances, where all five quark flavours are in their asymptotic regime. Actually, the current data on- ��
��

are so precise that one should also include small � ù corrections to
- ^mõ1a

.

There are other similar inclusive observables calculable in QCD, among them the total widthsmmÿ B ÿ � $ �wn à � ë SVUb
�� and mmÿ B ÿ � ! �wn à � ë SVUb
�� . They have the same status as
- ��
��

, but a fixed scale
{ t

or
{ �

instead of
è 


. One has also to mention an interesting and well developed sub-field of perturbative
QCD related to the jet and/or heavy-quark production in

� � � » and hadron collisions at high energies. The
underlying short-distance quark–gluon processes are successfully traced in the experimentally observed
multijet structure of the final state. Naturally, hadrons cannot be completely avoided, because, after
all, quarks and gluons hadronize. In fact, hadronization in jet physics is nowadays a somewhat routine
procedure described by QCD-oriented models (e.g., the Lund model integrated within PYTHIA [11]).
At lower scales,

Ó��
1–2 GeV, inclusive decays of

�
-lepton are among useful tools to study perturbative

QCD (see, for example, Ref. [12]).
7For brevity, I avoid a longer derivation which includes some special mathematical construction (subtractions).
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Fig. 16: Ratio A from Ref. [4].

3.3 Deep inelastic scattering and operator-product expansion
The processes of lepton–nucleon deep inelastic scattering (DIS),

µ0B � µ n
and

� q B � µ n
(
µ e½�,���

),
are among the best testing grounds of QCD. The long-distance structure of the initial nucleon makes
these processes more complicated than

� � � » �on à � ë SVUb
 . For definiteness, let us consider the electron–
nucleon scattering mediated by the virtual photon  ÃÅ with the 4-momentum Ì , whereas

�
is the nucleon

4-momentum. To measure the DIS cross section, one only has to detect the final electron. In the nucleon
rest frame the invariant variables

Ó � ehg Ì � and
�Ðe Ì�C � are related to the initial and final energies and

the scattering angle of the electron:
Ó � e k r@r � 
�xìU � � ,

�Oeh� r g r � ��{ED .

The specific kinematical region
Ó � ��� H � � ^mõ1a has to be chosen to reveal the spectacular effect

of asymptotic freedom. In this region the experimentally measured DIS cross section, normalized to the
cross section of the electron scattering on a free pointlike quark

Ô � B µ þ�ÿ , depends essentially on the ratioc eéÓ � ��Õ,�
. This effect (Bjorken scaling), was first interpreted in terms of a beautiful phenomenological

model suggested by Feynman. One considers the reference frame with large nucleon momentum
�

, so
that

g ½Ì gives the longitudinal direction. Neglecting long-distance binding forces between quarks, the
initial nucleon is represented as a bunch of free constituents (partons): quarks, antiquarks, and gluons
moving in the longitudinal direction8 . For simplicity the quark masses and transverse momenta as well
as the nucleon mass are neglected, in comparison with

Ó �
and

�
. The electron scatters on one of the

nucleon constituents (excluding gluons, of course, because they are electrically neutral) which has the
momentum fraction F , so that after the pointlike collision the quark 4-momentum is

� F o Ì . The massless
quark has to remain on-shell,

� F �¼o Ì ����e­© , therefore
Õ F �R� C.Ì �1o Ì ��e­© andF eÔÓ � ��Õ,�Oe­c Í

(96)

The cross section is then represented as a sum of all possible ‘elementary’ processes integrated over F� Ô � ��D��Ö� ø � �£Ó � �����fe �E º pµ r ö s sö s ø�s søw×ú×ú× î µ � F �M� Ô µ� B µQþ�ÿ �£Ó � ���}�KÒ>� F g|cd�M� F e p µ � Ô µ� B µQþ�ÿ �£Ó � �����Kî µ ��cd�}� (97)

8We refer here to a generic picture of the nucleon, where all possible multiparticle components are coherently added to the
valence three-quark state, similar to (41) for the pion.
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Fig. 17: Unitarity relation for DIS cross-section.

where the
Ò
-function takes into account (96). The sum goes over all quark and antiquark species inside

the proton, and
î µ � F � are the parton distributions defined as the probabilities to find the

x
-th constituent

with the momentum fraction F .
In QCD, the scaling behaviour (97) corresponds to the asymptotic-freedom ( � ù e ©

) approx-
imation. Switching on the perturbative quark–gluon interactions one predicts logarithmic corrections� M ® N��£Ó � � to this formula which are nicely reproduced by experiment. There are many excellent re-
views and lectures where DIS in perturbative QCD are discussed (see, for example, Ref. [13]). Here we
shall concentrate on one essential aspect: separation of long- and short-distance effects.

Let us approach DIS from the quantum-field theory side, as we did above for
� � � » � n à � ë SVUb
 .

Omitting for simplicity the initial and final electrons, one can represent the hadronic part of the DIS cross
section in a form of  �Å B � n

cross section. Employing the unitarity relation (75) with
� xD�Âe �  Å B �

,
one is able to relate the DIS cross section to the  Å � Ì � B �R�d�Á�  Å � Ì � B �R�d� forward-scattering amplitude
(see Fig. 17): Õ

Im
5 � ¦ ú DG� ø � ¦ ú D � � Ì ���d�fe p ø î � � n þ � ê �  Å B ��� � �­� Ô � ¦ ú D�� ø � �£Ó � �����}Í

(98)

The amplitude 5 � ¦ ú DG� ø � ¦ ú D � � Ì ���d�fe�I � � Ì �'I n � Ì � ê ��n � Ì ���d� (99)

contains the photon polarization vectors multiplied by a new purely hadronic objectê ��n��R�b� Ì �fe­xcE¥��ä�cd� µ Ã � � B �R�d��� ê ³ þ ���� ��c1��þ ���n ��©@� ¶ � B �R�d�i�}� (100)

which resembles the correlation function of the two currents we introduced above, but, instead of vac-
uum, has nucleons in the initial and final states:

One can prove that at large
Ó �

and
�

the dominant contribution to the above integral stems from
small space–time intervals

c � � i �,Ó � � i ��� 9. In other words, the points of absorption and emission of
the virtual photon are located close to the light-cone

cb�Âe ©
. The process takes place in the asymptotic

freedom regime, that is a single quark absorbs the photon and penetrates quasi-freely at small
c �

before
emitting the photon. All other contributions, for example, with different quarks emitting and absorbing
initial and final photons are suppressed by powers of i �,Ó¼��� i ��� . To describe the free-quark propagation
from

c
to 0 we use the quark propagator� ©�� v Ã ��cd� tv Ã ��©@��� ©��ÁeFE � ä � 6 � d  d� � 7 � » µ � � e x£c d  dÕ �1� ��c � � � � (101)

9Note that the light-cone dominance H �JI H �f>KMLH �9NPO is a more general condition than the small-distance/time dominanceH f N LH NPO which takes place in Q � Q �SRUT�V�W$X&Y&Z\[
.
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neglecting the quark mass. Substituting the e.m. currents in (99) in terms of quark fields, contracting the
fields of the propagating quark and using (101) we obtainê ��n �R�b� Ì �fe�x E � ä c�� µ Ã � pÃ r ö s øws ù�sú×ú× � B �R�d��� êÂ³ tv Ã ��cd�  � v Ã ��cd� tv Ã ��©@�  n v Ã ��©@� ¶ � B �R�d�i�e�x E � ä c�� µ Ã � x£c dÕ � � ��c � � � pÃ r ö s øws ù�sú×ú× � B �R�d��� tv Ã ��cd�  �  d  n tv Ã ��©@��� B �R�d�i�bo�Í�Í�Í¨Í (102)

In this expression, where only the leading term is shown, the calculable short-distance part (the quark
propagator) is separated from the long-distance part which is represented by the quark–antiquark matrix
element taken between nucleon states. This hadronic matrix element is a complicated object which
has to be either determined from experiment or calculated using methods beyond perturbative QCD
which will be discussed in the next two lectures. I skip the derivation of the cross section formula from
the imaginary part of ê ��n which allows one to relate the matrix element introduced in (102) with the
parton distributions. Also � ù corrections can be systematically calculated; they contain important and
observable M ® NÏÓ � effects. Important is that the long-distance matrix element (or parton distributions) are
universal characteristics of the nucleon and they do not change if the short-distance part of the process
changes (e.g., by switching to neutrino–nucleon scattering ! Å B � n ï where the charmed quark is
produced). To summarize, in DIS it is possible to separate the short-distance domain by choosing the
appropriate kinematical region and defining convenient physical observables. The short-distance quark–
gluon interactions are calculable in a form of perturbation theory in � ù , whereas the long-distance part
is parametrized in terms of universal hadronic matrix elements. The procedure of approximating the
product of current in (102) by a quark–antiquark operator and separating short and long distances is
called operator-product expansion (OPE) and is implicitly or explicitly used in almost any perturbative
QCD treatment of hadronic processes.

4 LONG-DISTANCE DYNAMICS AND QCD VACUUM

4.1 Vacuum condensates
QCD at short distances does not essentially help in understanding the long-distance dynamics of quarks
and gluons. From the short-distance side we only know that the running coupling � ù �£Ó � increases at
low momentum scales and eventually diverges at

Óo� � ^bõ1a (see Fig. 7). Is the growth of � ù the
only dynamical reason for confinement? It is not possible to answer this question remaining within the
perturbative QCD framework, because the language of Feynman diagrams with propagators and vertices
is already not applicable at � ù � i . QCD in the nonperturbative regime is currently being studied using
other methods, first of all, lattice simulations. From these studies, there is a growing confidence that
long-distance dynamics is closely related to the nontrivial properties of the physical vacuum in QCD.

For a given dynamical system, vacuum is a state with the minimal possible energy. Evidently, in
QCD the vacuum state contains no hadrons, because creating any hadron always costs a certain amount
of energy. In that sense, the QCD vacuum has to be identified with the � © �

state in the correlation
function (78). Given that the vacuum state contains no hadrons does not yet mean that it is completely
empty. There could be quantum fluctuations of quark and gluon fields with nonvanishing densities. The
existence of vacuum fields is manifested, e.g., by instantons, special solutions of QCD equations of
motion having a form of localized dense gluonic fields (for an introductionary review on instantons see,
for example, Ref. [14]). Lattice QCD provides an independent evidence for quark/gluon fields in the
vacuum. Without going into further theoretical details, I shall rather concentrate on the phenomenology
of vacuum fields in QCD. We shall see that properties of hadrons are influenced by the existence of quark
and gluon vacuum fluctuations with nonvanishing average densities, the so-called vacuum condensates.

Formally, in the presence of vacuum fields, the matrix elements of quark and gluon field operators
between the initial

�¡©��
and final � ©Ã� states are different from zero. The combinations of fields have to
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obey Lorentz-invariance, colour gauge symmetry, and flavour conservation, so that the simplest allowed
composite operators are* È e tv Ã µ v µÃ � * ä e � Ý��n � Ý ��n � * å e tv Ã µ �£Þ Ý � µ ¹ Ô ��n � Ý ��n v ¹Ã �* æ e û tv Ã µ � m Ý � µ ¹ v ¹Ã ýÐû tv Ã�] Ñ � m Ý � Ñ q v qÃ�] ý � (103)

where

Ô ��n eh��xK��Õ��w�  � �  n ¤ and m Ý are various combinations of Lorentz and colour matrices. The indices
at * ø reflect their dimension

�
in GeV units. Furthermore, if the operators are taken at different 4-points,

care should be taken of the local gauge invariance. For instance, the quark–antiquark nonlocal matrix
element has the following form: � © � tv Ã ��c1�w� cb��©�¤ v Ã ��©@�2��©��}� (104)

where
� c���©�¤de�ØwÙ;Ú«û x ´ ù � �º �@^@c � � Ý� �_^>cd�w�£Þ Ý ��Õ��zý is the so-called gauge factor. Only the matrix elements

with the light quarks Ì e �b������

are relevant for the nonperturbative long-distance dynamics. A pair of

heavy



(
�
) quarks can be created in vacuum only at short distances/times of * � i ��Õ�{ ï � ( * � i ��Õ�{ í � ),

that is, perturbatively.

Without fully solving QCD, very little could be said about vacuum fields, in particular about their
fluctuations at long distances which have typical ‘wavelengths’ of * � i � � ^mõ1a � . Thus, we are not able
to calculate the matrix element (104) explicitly, as a function of

c
. It is still possible to investigate the

vacuum phenomena in QCD applying certain approximations. One possibility is to study the average
local densities. The vacuum average of the product of quark and antiquark fields,� © � tv Ã ¹ v ¹Ã ��©�� � � tÌ�Ì �}� (105)

corresponds to the
cj� ©

limit of the matrix element (104). The simplest vacuum density of gluon fields
is � © � � Ý��n � Ý ��n ��©�� � � �û� �}Í

(106)

Because of translational invariance, both � tÌ�Ì � and � �û� �
are independent of the 4-coordinate. These

universal parameters are usually called the densities of quark and gluon condensates, respectively. As
we shall see in the following subsection, the nonvanishing quark condensate drastically influences the
symmetry properties of QCD.

4.2 Chiral symmetry and its violation in QCD
Let us return to the isospin symmetry limit (46) of the QCD Lagrangian:] � ö r ø �^bõ1a e Ñ¼��xzy �  � gÒÐ{ �iÑ o ] � q ö � o­Í¡Í¡Í Í (107)

Since
Ð{ ~#{ ö ~h{ ø ( � ^mõ1a , a reasonable approximation is to put

Ð{ã� ©
, so that

�
- and

�
-quark

components of the
Ñ

-doublet become massless.

Each Dirac spinor can be decomposed into the left- and right-handed components,v Ã e i o  åÕ v Ã o i g  åÕ v Ã � v Ã 8 o v Ã Â � (108)

where, by definition, the left-handed (right-handed) quark has an antiparallel (parallel) spin projection
on its ¿ -momentum. Similarly, for the conjugated fields one has:tv Ã e tv Ã i g  åÕ o tv Ã i o  åÕ � tv Ã 8 o v Ã Â Í (109)

Rewriting
Ñ

in terms of the left- and right-handed components, we obtain the following decomposition
of the Lagrangian (107) in the massless limit:] � ö r ø �^mõ1a e Ñ 8 xzy �  � Ñ 8 o Ñ Â xzy �  � Ñ Â o ] � q ö � o�Í¡Í¡Í|Í (110)
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Fig. 18: One of the diagrams describing photon–proton scattering. The second diagram is obtained by interchang-
ing the photon lines.

The quark–gluon interaction term in
] � ö r ø �^mõ1a is now split into two parts, ´ ù Ñ 8  �>� � Ý �£Þ Ý ��Õ��iÑ 8 and´ ù Ñ Â  �>� � Ý �£Þ Ý ��Õ��iÑ Â , so that quarks conserve their chirality (left- or right-handedness) after emit-

ting/absorbing an arbitrary number of gluons. Importantly, also the interaction of quarks with photons
has the same property (take the e.m. interaction (64) and decompose it into

]
and

-
parts in the same

way as above). In the massless (chiral) limit, quarks of left and right chiralities propagate and inter-
act independently from each other. In fact, it is possible to introduce two independent isospin òÁ¾ ��Õ��
transformations, separately for

]
and

-
fields:Ñ Â �ÓÑ � Â e�ØwÙ	Ú 6 g�x Ô ÝÕ Í ÝÂ 7 Ñ Â � Ñ 8 �ÓÑ � 8 e�ØwÙ	Ú 6 g�x Ô ÝÕ Í ÝÂ 7 Ñ 8 Í (111)

Restoring the mass in
] � ö r ø �^bõ1a leads to the violation of chiral symmetry. The Lagrangian mass term can

be represented as an effective transition between left- and right-handed quarks:Ð{ Ñ�ÑÔeÓÐ{ ^ Ñ Â Ñ 8 o Ñ 8 Ñ Â b Í (112)

Having in mind the smallness of the
�����

-quark masses, one naturally expects that an approximate chiral
symmetry manifests itself in the observable properties of hadrons. In reality, the symmetry is violated
quite substantially, as the two following examples demonstrate.

The first one is a real hadronic process: the photon scattering on a longitudinally-polarized (e.g.
left-handed) proton. One of the diagrams is shown in Fig. 18. This process is a very complicated mixture
of quark–photon and quark–gluon interactions at long distances, determined by the quark structure of the
proton. Importantly, all these interactions obey an approximate chiral symmetry at the Lagrangian level.
Hence, the amplitude of the proton-chirality flip is expected to be very small, * ��{ ö s ø � � ^mõ1a ��� i ³ of
the total scattering amplitude. To check this conjecture, let me consider the case when the initial photon
energy is much smaller than the proton mass. In this case, it is possible to approximate the proton with
a point-like particle. The  �¨�  � amplitude is then simply obtained from the  �u�  � amplitude in
QED (Compton effect), replacing the electron spinors and propagators by the proton ones:� �  �j�  �1��~�� � t�¸�R� � � P  d �R� � o % � ���  � o { ��R� � o % � � � g«{ ��  ¤ o  ¤ �R� � g % � ���  � o¨{ ��R� � g % � � � g { ��  ¤ W � Â �R� � �'I d� I ¤ � � (113)

where
I � s � are the polarization vectors of the initial and final photons with the 4-momenta

% � and
% � ,

respectively. Without even completing the calculation, we notice that the
�h{ � terms in the amplitude

flip the initial proton chirality
] � -

, whereas the
�  � terms preserve chirality. Importantly, the

contributions of both types are of the same order, determined by the scale
{ � , indicating that chiral

symmetry for the photon–proton scattering is broken at the 100% level.
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To present the second example of the chiral symmetry violation, I start from the correlation func-
tion % ��n e�xcE¥�@ä�c�� µ Ã � � ©�� êÂ³ þ � ��cd��þ n ��©@� ¶ � ©��Áe#�Kg ´ ��n Ì � o Ì � Ì n ��% � Ì � �}� (114)

very similar to the one introduced in Lecture 3, but containing a slightly different quark current:þ � e iè Õ � tv ö  � v ö g tv ø  � v ø �}� (115)

which produces the

A e i and ¹¼» e i » quark–antiquark states. Note that this current is conserved,~@�Vþ � e ©
, even if

{ ö s ø �e ©
. We then follow the same derivation as in Lecture 3 and obtain the

dispersion relation (89) for
%¼� Ì �.� . The only change is in the imaginary part (90), where now only the

states with

A e i contribute to the total cross section ( ¾ meson and its radial excitations, the two-pion
state and other states with an even number of pions), so that the ratio

- ��
��
has to be replaced by- �a` r � � ��
��fe Ô ÿ B ÿ ��� � � » �Ónb� A e i ���Ô ��� � � » ��� � � » � Í

(116)

In parallel, we consider the correlation function% å��n e­x E � ä cd� µ Ã � � ©�� êÂ³ þ � å ��cd��þ n å ��©@� ¶ � ©�� (117)

of two axial-vector currents with

A e i :þ � å e iè Õ � tv ö  �  å v ö g tv ø  �  å v ø �}Í (118)

This current is conserved only in the chiral symmetry (
{ ö s ø e�©

) limit:~ � þ � å e iè Õ ��Õ�{ ö tv ö  å v ö g¨Õ�{ ø tv ø  å v ø �}Í (119)

Decomposing the correlation function (117) in two tensor structures:%ôå��n � Ì �feHg ´ ��n % � å � Ì � �1o Ì � Ì n % å � Ì � �}� (120)

we notice that in the chiral limit there is only one independent invariant amplitude:% å � Ì � �¸e % � å � Ì � �Ì � Í
(121)

The dispersion relation for
% å has the same form as (89):% å � Ì � �fe i� =Eù�b� éKî �>
 Im

% å ��
��
�g Ì � g«x�Ò � (122)

where

 å� µQþ is the corresponding threshold. In order to determine the imaginary part via a relation

similar to (90), we introduce a slightly artificial cross section

Ô ÿ B ÿ ��� � � » � $ � �Ón�� A e i ��� of hadron
production mediated by a $ boson coupled to the axial-vector current. Then,

Im
% å ��
��fe ii Õ � - �c` r � �å ��
��}�

(123)

where - �a` r � �å ��
���e Ô � � � � � � t�d � ø �a` r � �ü�ÿ B ÿ ��
��Ô � �+�±� � � t d �Ï�,�	� � � ��
�� Í (124)
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Fig. 19: A schematic pattern of the resonances produced by the vector (above) and axial-vector (below) quark
currents with e�E G .

Both
% � Ì ��� and

% å � Ì �.� can be calculated at large
� Ì ��� from the same 2-point quark-loop diagrams

shown in Fig. 14. In the chiral limit, the only difference is in two extra  å matrices present in
% å��n

.
Hence, in perturbative QCD % å � Ì � �fe.%¼� Ì � �}� (125)

at any order in � ù . This equation is trivial for the leading-order loop diagrams [Fig. 14(a)]. Using Dirac
algebra, it is easy to check that the extra  å matrices cancel each other (  �å e i ) in the absence of masses
in the propagators. Furthermore, each gluon line inserted in the loop brings two more  -matrices which
do not influence that cancellation.

From (125) follows the equation of two dispersion relations (89) and (122). To keep the dispersion
integrals convergent, we differentiate them

U
times at some Ì � ; ©

. The result is:=Eù � éKî �>
 - å ��
����
�g Ì � � þ e =Eù � éCî �	
 - ��
����
�g Ì � � þ Í (126)

Note that even in the presence of quark masses the corrections to (125) and to (126) are very small,* ��{j�ö s ø � . If Ì � is not very large,
� Ì ��� � i GeV

�
, the integrals in (126) are dominated by the contributions

of the low-mass hadronic states to the corresponding
� � � » � n

cross-sections. In the case of a vector
current, the states are ¾ meson and its radial excitations. Hence,

- ��
��
represents a resonance curve

with the peaks located at

Ðe { �( , { �( ] etc. (see Fig. 19). The validity of (126) at arbitrary (but large)Ì �z; ©

implies that also
- å ��
��u~ - ��
��

. We then expect the spectrum of resonances generated by
the axial-vector current to resemble, in gross features, the ¾ spectrum. However, experimental data [4]
reveal a completely different picture. The lowest resonances in the axial-vector channel are the pion
with ¹l» e�© » , the axial meson à � � i Õ Y ©@� and the radial excitation

� � i ¿ ©,©@� . Summarizing, there is clear
evidence, based on the observed properties of hadrons, that chiral symmetry in QCD is violated much
stronger than expected from

] ^mõ1a
.

An additional source of the chiral symmetry violation is provided by the quark condensate. De-
composing the quark and antiquark fields in (105) in the left-handed and right-handed components,� ©�� tv Ã µ v µÃ � ©��fe � ©�� � tv Ã 8 o tv Ã Â �w� v Ã 8 o v Ã Â ��� ©���e � ©�� tv Ã 8 v Ã Â o tv Ã Â v Ã 8 ����� ©�� �e�©F�

(127)
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Fig. 20: Diagrams used to calculate condensate contributions to the correlation functions of two quark currents.
Lines with crosses denote vacuum fields.

we realize that the condensate causes vacuum transitions between quarks of different chiralities. Hence,
in QCD one encounters a spontaneous broken chiral symmetry, a specific situation when the interaction
(in this case

]_^bõ1a
) obeys the symmetry (up to the small * ��{ ö s ø � corrections), whereas the lowest-

energy state (QCD vacuum) violates it10. We conclude that in order to correctly reproduce the properties
of hadrons and hadronic amplitudes (e.g., correlation functions), one has to take into account the vacuum
fields, in particular, the quark condensate.

4.3 Condensate contributions to correlation functions
Let us return to the correlation functions (114) and (117), restoring nonzero

�
and

�
quark masses,

that is, working with full QCD. The vacuum quark–gluon fields generate new contributions to
%

or% å . In addition to the perturbative loop diagrams in Fig. 14, there are diagrams shown in Fig. 20,
where gluons, quarks, and antiquarks penetrate to long distances, being absorbed and emitted by vacuum
fluctuations. The vacuum fields have characteristic momenta of * � � ^mõ1a � . Therefore, if the momentum
scale in the correlator is large,

Ó e = g Ì � H � ^mõ1a , one can approximate the vacuum state by a
set of constant fields. In other words, the virtual quark propagating at short distances/times between
the points

c
and

©
, cannot ‘resolve’ the long-distance fluctuations of vacuum fields and percepts them

in a form of averaged static fields. This approximation makes the calculation of diagrams in Fig. 20
straightforward. In addition to Feynman rules of perturbative QCD for virtual quarks and gluons, one
has to form all possible combinations (103) of vacuum fields and replace them by the corresponding
condensate densities, so that the 4-momenta of the crossed lines on these diagrams are neglected. For
example, the product of quark and antiquark vacuum fields in Fig. 20(d) has to be replaced by � tÌ,Ì � .
More details on these calculations can be found, for example, in the review [15]. The result for the
vector-current correlator has the following schematic form:%¼� Ì � �fe.% � � ÷ ÿ � Ì � �mo pø r È s ä sú×ú×ú× x ø � Ì � � � ©�� * ø � ©��}� (128)

where the first term on the r.h.s. corresponds to the perturbative diagrams in Fig. 14, whereas the sum
contains the contributions of vacuum condensates with dimensions

�
obtained from the diagrams in

Fig. 20. To compensate the growing dimension of the operators * ø , the coefficients
x ø

contain increasing
powers of i �,Ó . Thus, the condensate contributions die away at

Ó �Ó]
and do not alter the perturbative

10That is quite similar to the electroweak sector of the Standard Model [1], where the electroweak gauge symmetry is
spontaneously broken by the nonvanishing vacuum average of the Higgs field.
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asymptotics of the correlator given by
% � � ÷ ÿ � Ì � � . Furthermore, as soon as we work at relatively largeÓ¡H � ^mõ1a , it is possible to retain only a few first terms in the sum, that is, neglect diagrams with more

than 3–4 vacuum fields emitted from the virtual quarks in the correlation function.

For the axial-vector correlation function
% å � Ì ��� one obtains an expression similar to (128) with

the same perturbative part (up to very small corrections of * ��{ �ö s ø � ), but with different coefficients
x ø

at certain condensate terms. The most important deviation from the vector-current case is in the value
and sign of

x æ , i.e., in the 4-quark condensate terms. Thus, the addition of condensate effects leads to
an explicit violation of (125). It is then not surprising that hadron resonances contributing to

- ��
��
and- å ��
�� in (126) are different.

Furthermore, the method of correlation functions allows one to reproduce an important relation
for the pion mass, explaining the smallness of

{ h . Note that from the point of view of the naive quark
model,

�
and ¾ mesons differ only by orientations of quark spins. Why is then

{ h ( { ( and, moreover,{ h ; � ^mõ1a ? We consider the correlation function similar to (117), but for simplicity, containing
charged axial currents:% å��n e�x E � ä cd� µ Ã � � ©�� êÂ³ þ�� å ��cd��þ În å ��©@� ¶ � ©��OeHg ´ ��n'% � å � Ì � �1o Ì � Ì n'% å � Ì � �}� (129)

where
þ � å e t�  �  å � . This current is the part of the Standard Model weak current (67), responsible for

the
�­� �

transition, e.g., the
� � �b� �

decay. The hadronic matrix element which determines this
decay, � ©�� t�  �  å �÷� � � � Ì �i��e­x Ì �>î h � (130)

is parametrized via the pion decay constant
î h which plays an essential role in our analysis. It is conve-

nient to multiply (129) by Ì � Ì n,� Ì � , forming a combination of invariant amplitudes:g Ì � Ì nÌ � % å��n e.% � å � Ì � �¸g Ì � % å � Ì � � � Ð% å � Ì � �}Í
Note that

Ð% å eã©
at
{ ö s ø e�©

and, in particular, the perturbative part of
Ð% å vanishes as * ��{§�ö s ø � .

Concerning the nonperturbative part, the only first-order in the
{ ö s ø contribution is given by the quark

condensate diagram in Fig. 20(d)Ð% å � Ì � ��eHg ��{ ö o { ø �w� � t��� �mo � t�>� ���Ì � o * ��{ �ö s ø �}Í (131)

To proceed, we use for
Ð% å the dispersion relation of the type (122). To obtain the imaginary part, one

has to return to the unitarity relation (75), identifying
� x'�

with
� ©��

and ê µ µ with the correlation function.
The result is: Õ

Im
Ð% å ��
��¸ehg Ì � Ì nÌ � p ø î � ©�� þ � å � n þ � � n þ � þ În å � Ì ��� ©��}Í (132)

Importantly, only pseudoscalar states contribute to the above sum, because the matrix elements for the
axial-vector mesons à � and its excitations vanish, being proportional to the transverse polarization vec-
tors of these mesons: Ì � � ©�� þ � å � à � ��� Ì � I Ý %� e�© Í
Using (132) and the definition (130) we obtain the following expression for the dispersion relation:Ð% å � Ì � � e iÕ � =E� �f �>

�g Ì � g«x�Ò ! g Ì � Ì nÌ � ��î h Ì � �w��î h Ì n � E � È � h ��Õ � �Õ r h Ò � ä � �R� h g Ì � " Ã � r ù o�Í¡Í¡Í¡Í
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e =E� �f �>

�g Ì � g x�Òhg g�î �h 
�Ò	��
�g|{ �h �$iôo�Í¡Í¡Í � (133)

where the one-pion state contribution is shown explicitly (with
���h e {j�h ) including the phase space

proportional to
Ò
-function. Ellipses denote excited pions and multiparticle states with the same quantum

numbers. Integrating out the
Ò

function and substituting (131) in the l.h.s. we obtaing ��{ ö o¨{ ø �w� � t�}�g�1o � t�>� ���Ì � o * ��{ �ö s ø �feHg î �h { �h{ �h g Ì � g p h'] îd�h ] {j�h ]{ �h'] g Ì � � (134)

where the sum over the higher state is also shown schematically. To fulfil this equation at large Ì � one
has to demand that

{ �h �­{ ö o¨{ ø . Simultaneously, the decay constants of excited states have to obey:î h'] ��{ ö o { ø , otherwise the i � Ì � asymptotics of both parts in (134) is violated at * ��{ ö s ø � . We then
reproduce the well known Gell-Mann–Oakes–Renner relationg ��{ ö o { ø �w� � t�}�g�1o � t�>� ���mo * ��{ �ö s ø �fe�î �h { �h Í

(135)

This relation reflects the special nature of the pion in QCD. The anomalously small pion mass is not acci-
dental and is closely related to the spontaneous chiral-symmetry breaking via condensate. If a symmetry
in quantum field theory is broken spontaneously, there should be massless states (Nambu–Goldstone
particles), one per each degree of freedom of broken symmetry. The three pions,

� � � � » � � º play a role
of massless Nambu–Goldstone particles in QCD. In other words, due to the specific structure of QCD
vacuum fields, the amount of energy needed to produce a pion state tends to zero. The fact that pions
still have small nonvanishing masses is due to the explicit violation of chiral symmetry via

�����
quark

masses.

How large is the quark condensate density? Using
{ hkj ~ i k © MeV,

î h e i ¿ i MeV [4] and
taking the

�b���
quark mass values from (31), renormalizing them at

Ó e i GeV, one obtains from (135),
typically, � tÌ,Ì �w��� e iml Ø$n ��~#�Kg�Õ k © � i © MeV

� È �
(136)

where we assume isospin symmetry for the condensates � tÌ�Ì � ~ � t�}� � ~ � t�	�c� . Not surprisingly, the
estimated value is in the ballpark of � ^mõ1a ! Being not a measurable physical quantity, the condensate
density is a scale-dependent parameter. Since the r.h.s. of (135) is determined by the hadronic parametersî h ��{ h , which are both scale-independent, the running of the quark condensate should compensate the
running of the quark mass given in (37), that is:� tÌ�Ì �w�£Ó �fe � tÌ�Ì �w�£Ó º � 6 � ù �£Ó �� ù �£Ó º � 7 » ¦ f ¢D¤ f Í (137)

4.4 Gluon condensate
The gluon condensate density is another important characteristic of nonperturbative QCD. This param-
eter cannot be easily estimated from correlation functions with light quarks, because the latter are dom-
inated by quark condensates. A very useful object, sensitive to the gluon condensate, is the correlation
function of



-quark currents:% ï��n e�x E � ä cd� µ Ã � � ©�� ê ³ þ ï� ��cd��þ ïn ��©@� ¶ � ©��_eh�Kg ´ ��n Ì � o Ì � Ì n ��% ï � Ì � �}� (138)

where
þ ï� e t
  � 
 is the



-quark part of the quark e.m. current

þ ����
. Following the same derivation as

in Lecture 3, we write down the dispersion relation for
% ï�� Ì � � relating Im

%Ïï���
��
with the ratio

- ï ��
��
defined as: - ï e Ô ��� � � » � 
�n à>ë { �Ô ��� � � » � � � � » � � (139)
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where the cross section

Ô ��� � � » �ã
�n à>ë { � includes hadronic states with t
w
 content produced in
� � � » :

charmonium resonances ( ¹ � v � v � ��Í¡Í¡Í ), pairs of charmed hadrons, etc. In addition to the perturbative

-quark loop diagrams in Fig 14, one has to include also the contribution of the diagrams shown in

Fig 20(a), (b), (c), with



quarks emitting vacuum gluons. (Remember that the nonperturbative quark
condensate for the heavy



quark is absent.) The resulting relation has the following form:=E� �o �	

�g Ì � - ï ��
���e.% � � ÷ ÿ � Ì � ��{ �ï � � ù��bo � ù�y� �û� �Kî ï � Ì � ��{ �ï �}� (140)

where
{Pp

is the mass of the lowest ¹ � v state in this channel. The function
% � � ÷ ÿ evaluated from the

massive



-quark loop diagrams has a more complicated form than in the massless case. The functionî ï is the calculable short-distance part of the diagrams in Fig. 20(a), (b), (c). To achieve a better
convergence at


�� ]
, the dispersion relation is usually differentiated

U
times. Note that in this case

the point Ì � eH©
is also accessible:



quarks are still highly virtual at Ì � e ©

because the long-distance
region starts at Ì �a� k {j�ï . The set of power moments obtained from (140) with * � � � ù � accuracy has a
form =E� �o �>

 þ � � - ï ��
��¸e ¿ ÓÂ�ï� k { �ï � þ ë�þ P i o � ù ��{ ï � à@þ o�� � ù ��{ ï ��� � à �þ o � þ � d &h �<� �� k { �ï � � W � (141)

with calculable coefficients ë�þ � à>þ � à �þ ��� þ . The natural scale for � ù in the perturbative loops is in this
case the virtuality

Ó � { ï . The moments (141) are used to extract the gluon condensate density and,
simultaneously the



quark mass, employing the experimental data on

- ï ��
�� on the l.h.s. The estimate
of the condensate density obtained first in Ref. [16] is:� ù�z� �û� �Áeh� ¿,¿ © MeV

� ä � ��© ³ �
(142)

again within the range of � ^mõ1a . The value of the gluon condensate density is usually given multiplied
by � ù for convenience, because this product is scale-independent.

5 RELATING QUARKS AND HADRONS: QCD SUM RULES

5.1 Introducing the method
The relation (141) obtained first in [17] is a well-known example of a QCD sum rule. The method devel-
oped by Shifman, Vainshtein and Zakharov [16] employs quark-current correlation functions calculating
them in the spacelike region, including perturbative and condensate contributions. Consider for example
the correlation function (114), with the result of QCD calculation having the form (128). Note that in
the latter expression short- and long-distance effects are separated. The perturbative part

% � � ÷ ÿ � Ì �.� and
the coefficients

x ø � Ì � � take into account short-distance quark–gluon interactions with characteristic mo-
menta larger than the scale

Ó
. Both

% � � ÷ ÿ and
x ø

are process-dependent, i.e., depend on the choice of
the currents. On the other hand, the condensate densities absorb, in an averaged way, the long-distance
interactions with momenta less than

Ó
and are process-independent. The universality of condensates

allows one to calculate correlation functions in different channels without introducing new inputs, in an
almost model-independent way11. To obtain the sum rule, the QCD result for the correlation function
is matched, via a dispersion relation, to the sum over hadronic contributions (the integral over hadronic
cross section).

11The expansions similar to (128) represent another example of OPE in QCD (see Lecture 3.3), when a product of two
currents is expanded in a set of local operators 	 Õ . The perturbative part in this case is interpreted as a unit operator with no
dimension.
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A twofold use of the sum rule relations is possible. Firstly, using experimental data, one saturates
the hadronic sum in the dispersion integral and extracts the universal QCD parameters: quark masses,� ù , condensate densities. One example is the


 t
 sum rule (141) discussed above. Secondly, having fixed
QCD parameters, one calculates, with a certain accuracy, the masses and decay amplitudes of the lowest
hadrons entering the dispersion integral. The relation (135) obtained from the sum rule (134) can serve
as an example. Note that (134) is unique, because all states in the hadronic sum except the pion and all
QCD terms except the quark condensate are absent at * ��{ ö s ø � .
5.2 The q -meson decay constant
To demonstrate in more detail how the method works12, let me outline the calculation of the ¾ -meson
decay constant, from the correlation function (114). The dispersion relation for

% ��n
can be written in

the following form: %���n�� Ì �fe iÕ � =Eù � éKî �>

�g Ì � g«xMÒsrtvu p ø î � ©�� þ���� n þ � � n þ � þ�n�� Ì ��� ©��kwvxye =Eù � éKî �	

�g Ì � g|x�Ò{z Û îd�( {j�(Õ Ò>��
ôg«{ �( �1o ¾ ø ��
�� ß �Kg ´ ��n Ì � o Ì � Ì n �'| Ã � r ù � (143)

where the ¾ -meson contribution (
n þ e ¾ º ) is isolated from the sum and the hadronic matrix element is

substituted: � ©�� þ � � ¾ º �¸e î (è Õ { ( I � ( �� �
(144)

determined by the ¾ decay constant
î ( . The integrand ¾ ø ��
�� (spectral density) includes the sum over

excited and multihadron states. We take into account the experimental fact that the ¾ resonance strongly
dominates in the low-energy region

Õ�{ h ; è 
 ; i GeV, so that ¾ ø ��
�� practically starts from some
threshold value


 º � i GeV. Switching to the invariant amplitude
% � Ì � � and using the result (128) of

QCD calculation, one obtains from (143) the desired relation, a prototype of the QCD sum rule:î �( { �(Õ���{ �( g Ì � � o =Eù f �>
 ¾ ø ��
��
�g Ì � g x�Ò e.% � � ÷ ÿ � Ì � �mo pø r È s ä sú×ú×ú× x ø � Ì � � � ©�� * ø � ©��}� (145)

which is valid at sufficiently large
� Ì � � . To proceed, one applies to both sides of this equation the Borel

transformation defined as:}´�~ � %¼� Ì � �¸e M����� ! ��� î����» Ã � ¢ þ r ~ � �Kg Ì � � � þ � � �U�� 6 �� Ì � 7 þ % � Ì � � � %¼�   � �¸Í
(146)

This transformation deserves a clarifying comment. Differentiating
%¼� Ì � � many times in Ì � , means that

one is effectively approaching the long-distance region. Indeed, with an infinite amount of derivatives
the function

% � Ì � � is defined at any Ì � , including Ì � ?h©
. The Ì � � g�]

limit works in the opposite
direction: one penetrates into the deep spacelike asymptotics. Combining two transformations in (146)
at

  � e5g Ì � �qU , one fixes the virtuality scale at * �   �
. Using the school-textbook definition of the

exponent:
� � e M���� þ � = � i o cd�qU�� þ , it is an easy exercise to prove that}´�~ � ! i{ �ø g Ì � " e�� » � �� ¢ ~ � Í (147)

12Reviews can be found, for example, in Refs. [15] and [18].

QUANTUM CHROMODYNAMICS AND HADRONS: AN ELEMENTARY INTRODUCTION

213



180

200

220

240

260

280

300

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

�>�2�v���$���
��� �v���7� � �

Fig. 21: The � meson decay constant calculated from the sum rule (148) neglecting all excited and continuum
states (solid), as a function of the Borel parameter, in comparison with the experimental value (boxes). The dashed
curve corresponds to an improved calculation, where the sum over excited and continuum states is estimated using
quark–hadron duality with a threshold �$�� E G�Pv� GeV 4 .
As a result, the Borel transformation exponentially suppresses the integral over ¾ ø ��
�� in (145) with re-
spect to the ¾ -meson term. Furthermore, after applying

}´ to the r.h.s. of (145) the coefficients
x ø �   �

contain powers of i �   �
. Hence, at large

  �
it is possible to retain only a few low-dimension conden-

sates in the sum, e.g., at
  � � i GeV

�
a reasonable approximation is to neglect all operators with

� ? Y
.

The explicit form of the QCD sum rule (145) after Borel transformation is [16]:î �( � » � �� ¢ ~ � o =�ù f �>
 ¾ ø ��
��K� » ù ¢ ~ �e   �bû �äih � � i o d & � ~ �h # o � �ÚÖ � �"Õ �0� sÃ�Ã+ ~¢¡ o �� � � ��&f |÷� � � |÷� � �  ~¢¡ g ��� � hÜ � d & � sÃKÃ£  �~¢¤ ýFÍ
(148)

In obtaining the above relation, the four-quark vacuum densities are factorized into a product of quark
condensates. The quark–gluon condensate has very small coefficient and is neglected. The running
coupling � ù is taken at the scale

 
, i.e., at the characteristic virtuality of the loop diagrams after the

Borel transformation.

Importantly, there exists a SVZ [16] region of intermediate
  �

where the ¾ meson contribution
alone saturates the l.h.s. of the sum rule (148).

To illustrate this statement numerically, in Fig. 21 the experimentally measured
î ( (obtained from

the ¾ º � � � � » width) is compared with the same hadronic parameter calculated from the sum rule
(148) where all contributions of excited and continuum states are neglected. One indeed observes a good
agreement in the region

  � �
1 GeV

�
.

An important step to improve the sum rule (148) is to use the quark–hadron duality approximation.
The perturbative contribution to the correlation function (the sum of Fig. 14 diagrams) is represented in
the form of a dispersion integral split into two parts:% � � ÷ ÿ � Ì � �fe ù fE º �	
 ¾ � � ÷ ÿ ��
��
�g Ì � g«x�Ò o =Eù f �	
 ¾ � � ÷ ÿ ��
��
�g Ì � g x�Ò Í

(149)

The integral over the spectral function ¾ ø ��
�� in (145) is approximated by the second integral over the
perturbative spectral density ¾ � � ÷ ÿ ��
�� in (149). The latter integral is then subtracted from both parts of
(145). Correspondingly (148) is modified: the l.h.s. contains only the ¾ term, and, on the r.h.s., the
perturbative contribution has to be multiplied by a factor

� i g � » ù fi¢ ~ � � . The numerical result obtained
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Fig. 22: The ® meson decay constant calculated from the QCD sum rule [16] for the correlation function of
axial-vector currents (solid line), in comparison with the experimental value (boxes). The quark–hadron duality
threshold is fitted simultaneously as �$�� E É�P¥� GeV 4 . The uncertainty of about 10–15% has to be added to the
theoretical curve.
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Fig. 23: Some of the diagrams contributing to the correlation function of two baryon currents: (a) the lowest-order
tree-quark two-loop diagram; (b) the ) � jgk � correction, (c),(d) quark condensate diagrams.

from the duality-improved sum rule (148) is also shown in Fig. 21. The agreement between the sum rule
prediction and experiment is impressive:î � ^mõ1a ü 8 �( e�Õ i ¿ MeV � � i ©�g i ��� ³ (150)

whereas
î � � �( e#Õ i Y � �

MeV [4]. The estimated theoretical uncertainty quoted in (150) is typical for
QCD sum rules, reflecting the approximate nature of this method. So far we only reproduced

î ( , using
the experimental value of

{ ( . In principle, it is possible to go one step further and estimate also the¾ -mass from the sum rule. Furthermore, a very similar sum-rule analysis for the correlation function of
axial currents (129) (the invariant amplitude

% å ) successfully reproduces the value of
î h (see Fig. 22).

5.3 Baryons
It is possible to extend the method of QCD sum rules to baryons [19, 20]. The idea is to construct
special quark currents with baryon quantum numbers which can serve as a source of baryon produc-
tion/annihilation from/to QCD vacuum. In reality, such currents hardly exist 13, but they are allowed

13In models of Grand Unification predicting proton decay via intermediate superheavy particles, the currents we are dis-
cussing are realized effectively in a form of localized 3-quark operators annihilating the proton.
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in QCD if the colour-neutrality is obeyed. A well-known example is the Ioffe current with the nucleon
quantum numbers (i.e., spin 1/2):¹ D ��cd��e�I Ý í�ï ��� Ý£¦ ��cd� }x  � � í ��c1���  å  � � ï ��cd�}� (151)

where à ������
 are colour indices,
}xªe  �  º is the charge conjugation matrix, and, for definiteness, the

proton flavour content is chosen. As a next step, one constructs a correlation function% D � Ì �fe�x E � ä c�� µ Ã � � ©�� ¹ D ��cd� t¹ D ��©@��� ©��}Í (152)

The corresponding diagrams are shown in Fig. 23, including perturbative loops and vacuum condensates.
They look quite different from the quark–antiquark loops, but differences concern the short-distance parts
of the diagrams. The universality of condensates allows one to calculate

% D � Ì � without introducing new
input parameters. The hadronic contribution contains a total sum over states produced and annihilated
by the current ¹ D , starting from the lowest possible state, the nucleon:% D � Ì �¸e � ©�� ¹ D � B � � ©�� t¹ D � B �{j� D g Ì � o ³ excited resonances, multiparticle states ¶ Í (153)

The derivation of the QCD sum rule is done along the same lines as in the previous subsection. Omitting
the details, let me only mention that from this sum rule an approximate formula for the nucleon mass is
obtained, {ED$~#� g ��Õ	Íì©@�w��Õ � � � � ©�� tÌ,Ì � ©��w��� e i GeV

�z¤ � ¢ È¸�
(154)

relating it to the quark-condensate density. In fact, the quark masses
{ ö s ø themselves generate very small

corrections to this relation and are neglected. Thus, QCD sum rules provide an answer to the question
that was raised in Lecture 1: almost ó,ó�³ of the baryonic mass in the Universe is due to the vacuum
condensates.

5.4 Quark mass determination
As already mentioned, the sum rule (141) can be used to extract the



-quark mass. Here, the role of Borel

transformation is played by a simple differentiation at Ì � eð©
, which turns out to be more useful. At

low
U

, the moments (141) are especially convenient for
{ ï determination because the gluon condensate

effects are small. Replacing

�� �

,
v � Ï , etc., one obtains analogous sum rule relations for the

�
quark,

where the gluon condensate is much less important, being suppressed by
{ » äí . Recent analysis [21] of

these sum rules yields
{ ï ��{ ï �fe i Í ¿ © k � ©;Íì©�Õ � GeV,

{ í ��{ í ��e k ÍâÕ�© óÛ� ©;Íì©�� GeV. Another subset of
charmonium sum rules (higher moments at fixed large Ì ��; ©

) was recently employed in Ref. [22], with
a prediction for

{ ï in agreement with the above.

The heavy-quark mass determination using sum rules is also done in a different way, employing
the large

U
moments (141) which are less sensitive to the cross-section above the open flavour thresh-

old. These moments, however, demand a careful treatment of Coulomb interactions between heavy
quark and antiquark in the perturbative diagrams. Remember that one-gluon exchange yields Coulomb
potential. Close to the threshold of heavy quark-pair production,

è 
 ~ Õ�{ ^
(
Ó e ����


) this part of
the quark–antiquark interaction becomes important, and at large

U
the near-threshold region dominates

in the perturbative coefficients à þ � à �þ in (141). A systematic treatment of this problem is possible in
nonrelativistic QCD (NRQCD), a specially designed effective theory obtained from QCD in the infinite
heavy-quark mass limit (for a review see, for example, Ref. [23]).

Equally well, QCD sum rules allow one to estimate the masses of light
�����±��


quarks. To give
only one typical example from the vast literature, let me refer to the recent analysis [24], based on the
correlation function for derivatives of the



-flavoured vector current

þ ù�� e t
  � Ì , ( Ì e��b��� ):% ù � Ì �fe�x E ��äwcd� µ Ã � � ©�� ê ³ ~���þ �ù ��cd�K~>n�þ Î nù ��©@� ¶ � ©��}Í (155)
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The QCD answer for
% ù

is proportional to
��{ ùFg¨{ Ã � � ~h{ �ù

(due to
~@�Vþ �ù eð��{§ùFg¨{ Ã � t
 Ì ) making

this correlator very sensitive to
{ ù

. One calculates the usual set of diagrams shown in Figs. 14 and 20,
where the quark lines are now



and Ì . Furthermore, the recent progress in the multiloop QCD calcula-

tions allows one to reach the * � � È ù � accuracy in the perturbative part of
% ù

and to include also * � � ù �
corrections to the condensate contributions. The hadronic spectral density ¾9§ ��
�� for this correlator is
saturated by ¹ » e­© � states with



-flavour, e.g., Ì � states with

] e­©
. The sum rule has the formE �	
 ¾�§ ��
��K� » ù ¢ ~ � eh��{ ù g«{ ö s ø � � P % � � ÷ ÿ �   �mo x §ä  ä o x §æ  æ W �

(156)

Data of kaon ò -wave scattering on
� � Ä � Ä � were used to reproduce ¾ § ��
�� . The resulting prediction [24]

for the mass is { ù ��Õ
GeV

�¸e ó,ó2� i Y MeV
Í

(157)

The ratios of the light (
�b������


) quark masses can be predicted in QCD from the relations for pions
and kaons, similar to (135). A systematic derivation is done employing chiral perturbation theory, an
effective theory obtained from QCD in the a low-energy limit, using instead of quarks and gluons, the
pion and kaon degrees of freedom (for a review see Ref. [25]). The result is [26]:{ ö{ ø e­©;ÍK� � ¿�� ©;Íì© k ¿ � { ù{ ø e i á	Í ó�� ©;Íâá	� Õ�{ ù{ ö o { ø e�Õ k Í k � i ÍK�_Í (158)

From the above ratios and the value (157) one obtains
{ ö ��Õ GeV

�feÔÕ	Í ó�� ©;Í Y MeV and
{ ø ��Õ

GeV
�fe�	ÍâÕ � ©;Í ó MeV.

We see that QCD sum rules are extremely useful for the quark mass determination. The
{ Ã

values extracted from sum rules are included, together with the lattice determinations and results of other
methods, in the world-average intervals in Ref. [4] presented in (31).

5.5 Calculation of the ¨ -meson decay constant
In ´ -meson decays the CKM parameters of the Standard Model are inseparable from hadronic matrix
elements. Hence, without QCD calculation of these matrix elements with an estimated accuracy, it is
impossible to use experimental data on ´ decays for extracting the Standard Model parameters and for
detecting/constraining new physics effects. Currently, lattice QCD provides many hadronic parameters
for ´ physics, with a continuously improving accuracy. QCD sum rules represent another actively used
working tool. With condensates and quark masses determined from a set of experimentally proven sum
rules for light-quark and heavy quarkonium systems, one has a real possibility to assess the theoretical
accuracy of the sum rule predictions by varying the input within allowed intervals.

One of the most important applications of QCD sum rules is the determination of the ´ -meson
decay constant

î�ö
defined via the matrix element{ í � © � tÌ x  å ��� ´ �fe�{ � ö î ö �

(159)

( Ì e �b������

). Note that

î�ö
multiplied by ¶ ö í determines the width of leptonic ´ decays, such as´ » � � » t� � . To calculate

î ö
from QCD sum rules, one usually employs the correlation function:% � ö �å � Ì �¸e­x E � ä c�� µ Ã � � ©�� êÂ³ { í tÌ ��cd��x  å ����cd����{ í t����©@��x  å Ì ��©@� ¶ � ©��}� (160)

so that the lowest ´ meson term in the hadronic sum for the above correlation function contains
î ö

:% � ö �å � Ì �¸e { ä ö î �ö{ � ö g Ì � o�Í¡Í¡ÍÂÍ (161)
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Fig. 24: Diagrams contributing to the correlation function (163), from left to right: the leading-order, ) � j¼k �
correction, soft gluon. The blob with ® denotes the pion distribution amplitude.

To obtain the sum rule, one needs to calculate
% � ö �å � Ì � from the perturbative and condensate diagrams

in Figs. 14 and 20, with  å vertices emitting and absorbing
�

and Ì lines. One, therefore needs an
input value for

{ í and
{ ù

(
{ ö s ø can safely be neglected). These values are taken from the analyses

overviewed in the previous subsection. The sum rule has a form similar to the one for
î ( . Naturally,

the expressions for the perturbative part and for the coefficients
x ø

are completely different. Also the
hierarchy of contributions in the heavy-light correlation function differs from the light-quark case. Now
the quark condensate becomes very important being proportional to

{ í � tÌ�Ì � . The recent updates of the
sum rule for

î�ö
obtained in Refs. [27,28] take into account the * � � � ù � corrections to the heavy-light loop

calculated in Ref. [29]. The numerical prediction of the sum rule, taking
{ í ��{ í ��e k ÍâÕ i � ©;Íì©��

GeV,
is
î ö e Õ i © � i ó MeV and

î�ö & e Õ k,k � Õ i MeV [27], in good agreement with the most recent lattice
QCD determinations.

5.6 Light-cone sum rules and ¨1� ± form factor
To complete our brief survey of QCD sum rules, let me introduce one important version of this method,
the light-cone sum rules (LCSR) [30, 31] used to calculate various hadronic amplitudes relevant for
exclusive processes. In the following, we consider the application of LCSR to the ´ � �

transition
amplitude (see Fig. 9). The latter is determined by the hadronic matrix element; � � �R�d��� t�  � � � ´ �R�¼o Ì �Ú?�eÔÕ,î �ö h � Ì � �ü� � o³²Qî �ö h � Ì � �mo î »ö h � Ì � � _ Ì � � (162)

generated by the
��� �

weak current (67). Owing to spin-parity conservation only the vector part of the
current contributes. There are two independent 4-momenta

�
and Ì , and one independent invariant Ì � ,

the momentum transfer squared. The initial and final mesons are on shell,
� � e­{ �h and

�R�Âo Ì � � e�{ � ö .
It is quite obvious that one needs two invariant functions of Ì � , the form factors

î �ö h � Ì � � and
î »ö h � Ì � � , to

parametrize this matrix element. Only one form factor
î �ö h is interesting, the other one is kinematically

suppressed in the measurable ´ � �gµ � q semileptonic decay rate (
µ eÔ�,���

).

To derive LCSR for
î �ö h � Ì �.� one uses a new type of correlation function, which itself represents

a hadronic matrix element. It is constructed from the product of the weak t�  � � current and the current{ í t ��x  å � used to generate ´ in (159). The currents are taken at two different 4-points and sandwiched
between vacuum and the one-pion state. The formal definition of this correlation function reads:l �d� Ì ���1�fe�xcE¥� ä c�� µ Ã � � � � �R�d� � ê ³ t�(��cd�  �	����cd����{ í t����©@��x  å �}��©@� ¶ ��©��e l � Ì � �.�R� o Ì � � �ü���Öo Ðl � Ì � �.�R� o Ì � � � Ì � � (163)

where it is sufficient to consider only one invariant amplitude l . Note that we now have two kinematical
invariants, Ì � and

�R�¼o Ì � � , still
� � e�{ �h .
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Diagrammatically, the correlation function (163) is represented in Fig. 24. At Ì ��; ©
and spacelike�R�¼o Ì �M� ; ©

very similar diagrams describe the process  Å  Å � � º , the one-pion production by two
virtual photons via e.m. currents14 . One only has to replace all quarks in the diagrams in Fig. 24 by either�

or
�

quarks. Both objects, the heavy-light correlation function (163) and the  Å  Å � � º amplitude,
contain one virtual quark propagating between vertices and a quark–antiquark pair which is emitted at
points

c
and

©
and converted into a real pion state. At large spacelike external momenta

� �R�fo Ì ��� �R�q� Ì ����H� � ^mõ1a the space–time interval
c � ~­©

approaches the light-cone. Hence, the virtual quark in both � two-
currents

�
pion

�
amplitudes propagates at short distances allowing a perturbative QCD description.

The calculable short-distance parts are process-dependent. In the case of the correlation function (163)
we have a virtual

�
quark propagating between vertices of flavour-changing currents, whereas in the Å  Å � � º amplitude the light quark propagates between e.m. vertices. The long-distance part in both

cases is, however, the same vacuum-to-pion matrix element of light quark and antiquark emitted at pointsc
and

©
: � � �R�d�2� tÌ � ��cd� m Ý Ì � ��©@�2��©��}� (164)

where in one case Ì � eª�
, Ì � e �

,
� e � �

and in the other case Ì � eª� ���	�
, Ì � eª�(���;�

,
� e � º .

Owing to isospin symmetry, the difference between these two configurations is indeed very small. In
order to treat the diagram with one extra gluon entering the pion, one has to introduce an additional
quark–antiquark–gluon matrix elements of the type� � �R�d� � t� ��cd� ´ ù � ��n �_´�� m í �}��©@�2��©���� (165)

where
c � �µ´ � �h��c�g¶´�� � �ã©

. In the above m Ý s í denote certain combinations of Dirac matrices.

Having separated short and long distances, one is able to calculate the correlation function (163)
in a form of light-cone OPE, where the short-distance part (the virtual

�
quark propagator plus gluon

corrections) is multiplied by a long-distance part, the universal matrix elements such as (164), (165).
The latter can be parametrized in terms of light-cone distribution amplitudes of the pion [32], The most
important of them is defined by� � �R�d��� t�¸��cd�  �  å �}��©@��� ©��_eHg�x¡� � î h E �º ���Ï� µ ö � �>· h ���b�����f� (166)

where
�

is a characteristic momentum scale, determined by the average
c �

in the correlation function. In
the above definition,

�
and i g�� are the fractions of the pion momentum

�
carried by the constituent quark

and antiquark, in the approximation where one neglects the transverse momenta of the constituents with
respect to the longitudinal constituents. The leading-order answer for l obtained from the first diagram
in Fig. 24 using (166) is quite simplel � Ì � �.�R�uo Ì � � �fe�{ í î h E �º ��� · h ���b�����{ �í g � Ì o �@�d� � Í (167)

The pion DA
· h ���d� plays here the same role of nonperturbative input as the condensates in the conven-

tional QCD sum rules considered above. Asymptotically, that is at
� � ]

, QCD perturbation theory
implies

· h �����}] �Ïe Y �(� i g �d� . However, at the physical scale
�­� { í , at which the OPE is applied

to the correlation function (163), nonasymptotic effects are to be expected, which we shall not discuss
for the sake of brevity. Importantly, there is a power hierarchy of different contributions stemming from
diagrams in Fig. 24 determined by the large scale in the correlation function. This scale is given by the
virtuality of the

�
quark, i.e., by the quantity which stands in the denominator of the

�
-quark propagator:{j�í g­� Ì o ���d�M� e {j�í g­�R��o Ì �M� �§g Ì ��� i g �1� . Importantly, this quantity remains large when Ì � is

positive (timelike) but not very large, Ì � ( { �í , allowing one to penetrate into the lower part of the kine-
matical region

© ; Ì ��; ��{ ö g { h � � of the ´ � �
transition. An example of a subleading contribution

14This process is experimentally accessible in Q � Q �¸R Q � Q �>¹ f two-photon (double-tagged) collisions.
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Fig. 25: A schematic dispersion relation.

is the diagram with an additional gluon entering pion DA (the third one in Fig. 24). It has two powers
of inverse scale and is suppressed with respect to the leading-order diagram. Over recent years * � � ù �
corrections and quark–antiquark–gluon contributions have been calculated to improve the result (167).

Having evaluated l as a function of Ì � and
�R�Öo Ì � � , we are still half-way from the final sum rule.

The next important step is writing a dispersion relation in the variable
�R� o Ì � � , the external momentum

of the current with ´ meson quantum numbers. The diagrammatical representation of the dispersion
relation is shown in Fig. 25. It contains the same set of hadronic states as in the sum rule for

î�ö
, starting

from the ´ meson ground state. Using (159) and (8) one obtains the hadronic representation we need:l � Ì � �.�R�uo Ì � � �fe Õ�{j� ö î ö¸î �ö �R�}���{ í ��{ � ö g �R�¼o Ì � � � o­Í�Í�Í_Í (168)

The ellipses in the above denote the contributions from the excited ´ and from continuum states. Equat-
ing the QCD result (167) in the region of validity at

�R� o Ì ��� ; ©
with the dispersion relation (168),

one obtains a raw sum rule relation for
îcö¸î �ö �R� � � . The rest of the calculation follows the usual QCD

sum rule procedure: Borel transformation in
�R� o Ì � � and subtraction of the contribution from higher

states invoking quark–hadron duality. One finally arrives at an expression for the desired form factor, the
dominant term of which obtained directly from (167) is given byî �ö h � Ì � �fe î h { �íÕ,î ö({ � ö E �Í �@�� � · h ���b��� í �1o�Í�Í�ÍQ��ØwÙ;Ú 6 { � ö  � g { �í g Ì � � i g«�1��   � 7 Í

(169)

Here,
 

is the Borel mass parameter, and the scale
� í is of the order of the characteristic virtuality of

the correlation function,
� �í e�{ � ö gu{ �í . The integration limit ä e#��{ �í gÖ� � ���;��
 º gÂ� � � depends on the

effective threshold

 öº above which the contribution from higher states to the dispersion relation (168)

is cancelled against the corresponding piece in the QCD representation (167). The parameters
î ö_��
 öº

are usually taken from the sum rule for
î ö

considered in the previous subsection. The most recent
predictions for

î �ö h � Ì �.� obtained from LCSR [33] were used to extract
� ¶ ö í � from the measurements of

the exclusive semileptonic width at ´ factories [34], using the formula for the decay rate:� m � ´ � �gµ t���� Ì � e � � � ¶ ö í � �Õ k�� È � r �h g«{ �h �MÈ ¢ � �úî �ö h � Ì � �z¤ � � (170)

where r h is the pion energy in the ´ meson rest frame.

6 CONCLUSIONS

QCD has a thirty-year history and embraces many approaches, some of them developed quite indepen-
dently from the others. Owing to self-interactions of gluons, this theory has an extremely rich dynamics,
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combining asymptotic freedom at short distances with the self-emerging energy scale � ^mõ1a and con-
finement at long distances. Accordingly, QCD has two different phases: the perturbative one responsible
for the quark–gluon processes at large momentum transfers, and the nonperturbative one where the only
observable states are hadrons formed by confined quarks and gluons. Yet there is no complete analytical
solution for the hadronic phase of QCD. One has to rely on approximations: either numerical (QCD
on the lattice) or analytical (QCD sum rules). In addition, several effective theories corresponding to
different limits of QCD and exploiting the rich symmetry pattern of the theory are successfully used. In
the overview of QCD given in these lectures I tried to emphasize the importance of the hadronic aspects
of QCD, where the most nontrivial phenomena and challenging problems are accumulated.
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ON THE THERMODYNAMICS OF INELASTIC HADRON
PROCESSES

J. Manjavidze, IP, Tbilisi, Georgia and JINR, Dubna, Russia
A. Sissakian, JINR, Dubna, Russia

Abstract

We discuss the
�

-matrix interpretation of thermodynamics for the multiple
production process. Two possible boundary conditions are considered. One of
them is usual in a field theory vacuum boundary condition. The corresponding
thermodynamics formalism can be used in particle physics. Another type as-
sumes that the system under consideration is in the environment of black-body
radiation. The latter leads to canonical thermodynamics. The comparison with
Schwinger–Keldysh real-time finite-temperature field theory and with the non-
stationary statistical operator approach of Zubarev are considered. The range
of applicability of the finite-temperature description of the multiple production
process is shown.

1 INTRODUCTION

We shall discuss the conditions of the thermodynamic description of multiple production processes. It
will be shown that in definite conditions one can actually adopt the formalism of equilibrium thermody-
namics to multiple production processes: But the formulae of thermodynamics must be modified.

We hope that the questions will be of interest not only for experts in particle physics and not only
for theorists. Special attention will be paid to the qualitative side of the question. The technical details
are given in the Appendices.

A few words of history. The first experimental observation of a multiple production process in
cosmic rays was made by Skobeltzyn in 1927. It became clear after Powell’s discovery in 1947 that
the cosmic rays consisted of � -mesons. But even now, after half a century of development, there is
no quantitative understanding of the multiple production phenomenon. Why? We shall try to give an
answer.

So, we want to understand: can one use the language of thermodynamics for multiple production
processes? We think this question needs a special discussion. First of all, we are trying to describe the
process of dissipation of kinetic energy into the mass of particles and this process proceeds in a vacuum,
i.e. it can freely evolve. It must be noted also that we can measure only a restricted set of parameters: the
three-dimensional momentum, energy, charge and spin of the mass-shell particle; the number of particles
(with definite accuracy); and, finally, the number of discussed interactions in the given coordinate frame.
This is all that we know! We will see what it will do for the thermodynamical description.

The idea to use thermodynamics was intensively worked out after the pioneering work of Fermi
and Landau [1]. There have also been a number of modern attempts to use some properties of thermody-
namics especially for high-energy ion inelastic collisions [2]. The attempts show a good agreement. But
there is agreement only in particulars instants.

The experiment shows that the immediate use of thermodynamics leads to dubious predictions.
For instance, the Fermi–Landau model predicts that the hadron mean multiplicity is ��� , where � is the
CM total energy. The experiment gives ���� �
	���
 ����� ��	�������� (1)
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Therefore, the distinction is too large at high energies, see Fig. 1.

Nevertheless, why is thermodynamics so attractive to particle physics? One can start from the
remark that both quantum and thermodynamical theories have a probabilistic background [4]. It is natural
for this reason that they use such similar notions as probability, ground state, correlation functions,
distribution functions (also inclusive), phase transitions, Higgs phenomena and so on.

But there is also an important property peculiar to thermodynamics. Namely, the possibility to
describe a huge number of particles (the Avogadro number is �������! ) with only a few parameters.
Temperature and chemical potential are the most popular among them.

S

data

data

e+e-

p(p) ~ p
_

Average e e ,+ - pp,  and  pp  Multiplicity
_

M
A

R
K

 II
, A

LE
P

H
,


D
E

LP
H

I, 
L3

, O
PA

L

UA5
AMY

JADE, TASSO

H
R

S
, T

P
C

C
LE

O

LENA

ISR

bubble
chambers

gg2, MARK I

(GeV)S

10 10 102 31
0

5

10

15

20

25

30

35

40

+1.350.39

Fig. 1: Mean multiplicity [3]. The line: "#%$�&�')(+*-, .0/21435, .-6�7 8 .
The question is that the amplitude of the production of � particles depends on �:9;�=<?> 	 variables.

The mean multiplicity ���� ��	@�A���B� in the modern experiments and, therefore, even if the probabilistic
character of measurements is not taken into account, there are too many degrees of freedom to be de-
scribable analytically. One may consider the integral quantities, the total cross section, or one particle
differential (inclusive) cross sections. But in this case we can not be sure that the important physical
properties are not lost because of integration.

There is also one more problem in hadron physics. It is connected to the high symmetry of un-
derlying field theory. It is assumed that the future theory of hadrons will be constructed on the basis
of the non-Abelian gauge theory of Yang and Mills. The reason of such a hope is based on asymptotic
freedom. The observable consequence of it is Bjorken scaling which appears if the quarks are free at
small distances. Another prediction is high-transverse-momentum jets.

Both phenomena, as stated above, are a short-distance effect. At these distances the role of sym-
metry as a source of long-range constraints is not high and one can use ‘perturbative QCD’ which has
approximately the same structure as QED. But we will consider hadron multiple production phenomena
where apparently the role of symmetries is high. The latter follows from the comparable smallness of
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the hadron mean multiplicity, see Eq. (1).

Indeed, it is natural to consider multiplicity as the measure of incident energy dissipation. Then the
symmetry through the conservation laws, including the ‘hidden’, must prevent the dissipation process and
must lead to Eq. (1). Fermi, Pasta and Uhlam (FPU) were the first to observe this phenomenon [5]. They
were confused when observing the negative result of the Monte Carlo experiment: the local perturbation
of the one-dimensional nonlinear chain of small massive balls had not distributed over the chain degrees
of freedom uniformly. The theoretical explanation of the FPU effect was given in the seventies by
Zabuski, Kruskal and Zakharov [6]. It was shown (Zabuski and Kruskal) that the perturbation in the FPU
chain produces the soliton. It was shown also that the FPU chain hides the high symmetry (Zakharov).

One may conclude when observing the low value of hadron mean multiplicity that the role of non-
Abelian gauge symmetry is high, ���� ��	DCE� , but can not be neglected, ���� ��	DFG� . Therefore, the highly
unstable system is produced in high-energy hadron interactions. For example, the fluctuations over the
rapidity are large, see Fig. 2.

Fig. 2: Pseudo-rapidity fluctuations in the event-by-event analysis.

It must be noted that the Fermi–Landau model ignores the influence of symmetry assuming that
the final state of the inelastic collision is equilibrium and the energy spreads over all degrees of freedom
uniformly. At the same time, following Fermi and Landau, if one considers the very high multiplicity
(VHM) final state, when �IH �2JDKML �N� , then such a state will be in equilibrium and the symmetry
would not play an important role during the process of dissipation [7]. This interesting idea is examined
experimentally in the various experiments of CERN, FNAL, RHIC and Protvino.

It will be useful to have in mind the following toy model offered at the very beginning of the 20th
century by a couple, P. and T. Ehrenfest, to explain in simple terms the Boltzmann interpretation of the
irreversibility phenomenon in statistics. The model is extremely simple and fruitful [4]. It considers two
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Fig. 3: Ehrenfest model description of non-equilibrium flow. Four Monte Carlo simulations are shown; O is the number of

permutations; P�Q $ PDR ' is the number of balls in the S $UTV' box; P�R (W3 at O (W3 . The absence of fluctuation is noticeable forOYX[Z 3\3-3 : the fluctuation rate increases near to equilibrium.

boxes with ]_^ numerated balls. Choosing number `a�b�_cd]ec��U�U�Ucd]_^EfBg �ihkj;l `nm one must take the ball
with the label ` from the box and put it in another one. Starting from the highly ‘nonequilibrium’ state
with all the balls in one box, the number of balls in the boxes tends to equalize, Fig. 3.

So, there is an irreversible flow towards a preferable (equilibrium) state. One can hope [4] that
this model reflects a physical reality of nonequilibrium processes. If the initial state is very far from
equilibrium, a theory of such processes should be sufficiently simple. Just this situation can be realized
in the case of VHM processes. In the ordinary no-bias inelastic hadron experiments we have the highly
fluctuating system, see Fig. 3 for oqpr]_�B�B� , i.e. when the number of balls becomes equal in both boxes.

Therefore, the equilibrium noticeably simplifies the situation since in this case the whole system
can be described well by the mean value of the measurement parameters. However, to have equilibrium,
it is necessary and sufficient to have Gaussian fluctuations in the vicinity of the corresponding mean
value. In this case the temperature s , which coincides with the mean value of energy, would be a ‘good’
parameter. Exactly this supposition will be discussed.

Notice that it is hard to assume that in the no-bias inelastic hadron reactions the energy is dis-
tributed uniformly. Indeed, the energy spectra show rather the approximate Feynman scaling law [8]: the
inclusive spectra over the energy t are rather � h t;u;t , see Fig. 4. In any case, the spectra of Fig. 4 are
not the Gaussian distributions.

In addition, the experimental proof of the Gaussian fluctuations is a hard task. Much more useful
is to check the relaxation of correlations [7] since it signifies the situation when the system becomes
‘calm’. For this purpose we will construct the

�
-matrix interpretation of thermodynamics.

2 v -MATRIX INTERPRETATION OF THERMODYNAMICS

2.1 v -matrix approach and thermodynamics
For the particle production process we are dealing with a non-equilibrium process. To formulate the
corresponding theory one must introduce the notion of lxw5y�z g �|{}y g~` perturbation. It is considered as the
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Fig. 4: Rapidity distribution.

additional energy of the controlled environment to the given Hamiltonian of the system. But at the same
time there are o z%w f l g~` perturbations. They can not be included in the Hamiltonian since they are the
result of averaging over the existing degrees of freedom. Therefore, the question of the thermalization� f j_y�w5�;� is open in the canonical formalism [9].

In our case the temperature is defined as the mean energy of produced particles. In this case it is not
necessary to consider the thermalization. This process is ‘hidden’ in the box where the interactions were
performed. This position is correct since the local theory is considered. This means that the interaction
field’s energy is completely transformed into the energy of produced particles. Some of it ‘thermalizes’,
i.e. is spread as the kinetic energy, and the other part is transformed into the mass of particles.

Following Gibbs, see for example Ref. [10], we must introduce the density of states in the phase
space, hk� . The corresponding unnormalized probability is defined by the integral

� � � h~� � (2)

The probability realized in the phase space domain � is defined by the ratio

� � �a	D����� hk�� h~� � (3)

It must be noted that � sometimes does not have a definite boundary. Then, to define � correctly, it
is useful to introduce the ‘probe functions’, e.g. �:� c��e	 [11]. Therefore, we will calculate the so-called
generating functional, ���:� c��~	 .

We will distinguish the initial and final states. This distinction follows from the wave nature of
our quantum process. It must be assumed that the wave should disappear on the infinite hypersurface

5

ON THE THERMODYNAMICS OF INELASTIC HADRON PROCESSES

227



��� [12]. At the same time the measurable asymptotic states must be the eigenfunctions of the energy
and momentum operators [13]. These two conditions can be satisfied introducing the { t prescription of
Feynman. Therefore, our wave processes can not be time reversible.

We will consider the l -into- � particle transition amplitude, see Fig. 5. Then the density of state
is equal to the Lorentz-covariant phase space element

Fig. 5: The amplitude S���� . The plane wave �0�B���:����� , � (�*-� Z �!,�,�,�� � , is associated to each incoming particle and �d� ¡��V¢£� ,� (¤*-� Z �!,�,�,�� # , to each outgoing one. It is supposed that ¥0¦§ (©¨ ¦§ (xª ¦ . The integration over all configurations of « $U¬­' must

be performed.

h­®°¯±��² 	D� ¯³´�µ°¶ h~² ´� ]_�2	M·�]_t ´ l¹¸ cºt ´ ��»4¼ ² �´ » l � �
The factor �5u l¹¸ is the consequence of particle identity.

It is necessary to take into account the condition that the final state can not be free from the initial
one. The density of probability ½ g ¯a¾ ¿���² c � 	�½ � , where g ¯À¾ ¿���² c � 	 is the amplitude, must be introduced for
this reason.

Notice that the probability defines the time reversible motion. Therefore, (i) to have a possibility
to describe correctly the quantum interference effects and, at the same time, (ii) to have the quantum
processes time reversible, one must introduce the amplitudes and must suppose that their norm are mea-
surable quantities only.

One must take into account the conservation laws. It is useful to introduce the factor¯³Á\µ°¶ � ´ ��² Á 	
¿³Á\µ°¶ �kÂ �Ã� Á 	\c

to have a possibility to regulate the number of in- and outgoing particles. We distinguish the initial
and final states and for this reason we will have two Lagrange multipliers of the energy-momentum
conservation laws. For this reason we introduce¯³Á-µ°¶ w_Ä ´UÅ �ÇÆÇÈ

¿³Á-µ°¶ w_Ä ´UÅ­É!Ê È �
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The two factors depending on � and � are the � f jBË0wÍÌ�Î%�iy o {}j;�2� through which we will extract � , i.e.
model the measuring devices.

As a result, h~�i¯�¿ � h­®°¯���²eÏd� ´ c�� ´ 	 hk®2¿Y�Ã�2Ïd� Â c�� Â 	�½ g ¯À¾ ¿Y��² c � 	�½ � c (4)

where hk®2¯
��²~Ïd� ´ c�� ´ 	D� ¯³Á-µ°¶ hk² Á �
´ ��² Á 	 w Ä ´UÅ � ÆÇÈ� ]_�2	 · ]_t Á l¹¸ cxt Á ��» ¼ ² �Á » l � (5)

and hk®°¿ has the same definition.

+u
−u

Fig. 6: The diagram for Ð $UÑ�� Ò�' . Each incoming line carries the factor Ò � $ ¥ § ' � �B��Ó�ÔU�:� , � (Õ*\� Z �V,�,�,�� � , and the outgoing one

carries Ò � $Ö¨ § ' � �_��Ó Ô ¡ � , � (?*-� Z �!,�,�,�� # . The field «­× is defined on the Mills complex time contour Ø and « � is defined on ØDÙ .
The summation over the number of particles, # and � , is assumed

The definition of � is given in Eq. (2). The rule for � is constructed shown in Fig. 6. The calcula-
tions are described in Appendix A and the result of integrations is as follows:

���:� c��~	���Ú0ÛÝÜ|Þ { � h­ß�h­ß%à:�5áÎ�â��nß 	Mã â Ä �nßä<¹ß�à c � Â c�� Â 	 áÎ Ä �nß%à 	 <
<[áÎ Ä �nß 	Mã Ä âq�nß[<¹ß�à c � ´ c�� ´ 	 áÎ�â��nß�à 	V	då �~æB�nÎ 	\c áÎç�nß 	Dè éé Îç�nß 	 c

where �~æ­� ê 	D��ë �nÎ�â 	Vë@ì �nÎ Ä 	
and ã ´�Á are the frequency Green functions if � is equal to 1, see Eqs. (A.8), (A.9). Calculating � æ
perturbatively, one can find: ���:� c��~	���Ú0ÛÝÜ|Þ <�{!í©�!<�{ áî â 	i» {!í©�!<�{ áî Ä 	då%ï

ï4Ú0ÛÝÜYÞ {]
� hkß�h­ß à î ´ �nß 	Vð ´�Á �nßä<¹ß à c � c��~	 î Á �nß à 	då­c áî �nß 	Dè éé î �nß 	 (6)

and the summation over the repeated indexes is assumed, ã â|â is the Feynman causal Green function
and ã Ä|Ä ��ã ìâ|â is the anticausal Green function.

Taking o ´ � <òñ and o Â �ó» ñ and calculating the integral (8) perturbatively we find the coin-
cidence of �Ýô:õ defined in Eq. (A.27) and � from Eq. (6) {£Ìºö ´ � ö Â . The distinction is hidden in the
definition of the Green functions.

The ‘factorization’ of contributions from contours ÷ â and ÷ Ä in the integral (8) follows from the
Rieman–Lebesgue lemma [14] which is applicable in the perturbation framework [15]. Note the absence
of the Matsubara parts of the contour on the remote hypersurface, ½ o�½ Høñ .
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2.2 Schwinger–Keldysh formalism
There are various approaches to building the real-time finite-temperature field theories of the Schwinger–
Keldysh type (see, for example Ref. [14]). All of them use various tricks for analytical continuation of
imaginary-time the Matsubara formalism to the real time. The basis of the approaches is the introduction
of the Matsubara field operator ùÀú �nû c ö 	ü� w�ýBþ ù�ÿ �nû 	 w Ä ýBþ c (7)

where
ù ÿ �nû 	 is the interaction-picture operator, instead of the Heisenberg operatorù �nû cVo�	D� w ´�� þ ùÀÿ �nû 	 w_Ä ´�� þ �

This introduces the averaging over the Gibbs ensemble instead of averaging over zero-temperature vac-
uum states.

If the interaction switched on adiabatically at the instant o ´ and switched off at o Â then there is the
unitary transformation: ù �nß 	�� � � o ´ cVo Â 	 � � o ´ cVo�	 ù�ÿ �nß 	 � � o\cVo ´ 	\�
Introducing the complex Mills time contours [16] to connect o ´ to o , o to o Â and o Â to o ´ we form the
‘closed-time’ contour ÷ (the end-points of the contours ÷ â and ÷ Ä are

î j;{ �2w�h together), see Fig. 7.
This allows the last equality to be written in the compact form:ù �nß 	���s���Þ ù �nß 	 w ´����
	���
���� � ����� 
���� å ÿ c
where s�� is the time-ordering on the contour ÷ operator.

The corresponding expression for the generating functional ë � î 	 of Green functions has the form:

ë � î 	ü��� � �k	�� s�� w ´ ��� 	 � 
���� � ����� 
�� â Á � 
��! � 
��#"�$ p�c
where � p means averaging over the initial state.

If the initial correlations have a little effect we can perform averaging over the Gibbs ensemble.
This is the main assumption of formalism: the generating functional of the Green functions ë � î 	 has the
form: ë � î 	D� � ã ù à � ù à Ï o ´ ½ w Ä ýBþ s�� w ´ ��� 	 � 
dÁ � 
��! � 
�� ½ ù à Ï o ´ p
with

ù à � ù à �nû 	 . In accordance with Eq. (7) we have:

� ù à Ï o ´ ½ w_Ä ýBþ �
� ù à Ï o ´ <¹{ ö ½
and, as a result, ë � î 	D� � ã ù à w ´ ����% 	 � 
���� � 
�� â Á � 
��# � 
�� (8)

where the path integration is performed with the KMS periodic boundary condition:ù � o ´ 	�� ù � o ´ <¹{}ö 	\�
In Eq. (8) the contour ÷ ý connects o ´ to o Â , o Â to o ´ and o ´ to o ´ <�{}ö . Therefore it contains

the imaginary-time Matsubara part o ´ to o ´ <�{ ö . A more symmetrical formulation uses the following
realization: o ´ to o Â , o Â to o Â < {}ö u_] , o Â < { ö u_] to o ´ < { ö u_] and o ´ < { ö u_] to o ´ < { ö (e.g. [15]), see
Fig. 5. This case also contains the imaginary-time parts of the time contour. Therefore, Eq. (8) presents
the analytical continuation of the Matsubara generating functional to real times.

One can note that if this analytical continuation is possible in ë � î 	 then the representation (8)
gives a good recipe for regularization of frequency integrals in the Matsubara perturbation theory, see,
for example, Ref. [14], but there is nothing new for our problem since the Matsubara formalism is a
formalism for equilibrium states only.
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Fig. 7: Niemi–Semenoff time contour.

2.3 v -matrix: relaxation of correlations
Let us return now to Eq. (4). It is useful to take � � �!<�{}ö c'&�~	 . This is possible if the number of particles
is sufficiently large [17].

The value of ö can be defined through the equations of state (A.14). In this case we will consider�5u ö ´ � Â � as the mean energy of particles in the initial (final) state. But even knowing solutions of this
equations one can not find �Y� ��c��~	 correctly if the fluctuations near the solutions of Eq.(A.14) are not
Gaussian, i.e. if the energy is not distributed uniformly over the degrees of freedom.

Let us define the conditions when the fluctuations in the vicinity of ö2ô are small. Firstly, to estimate
the integral (A.5) in the vicinity of the extremum ö ô we should expand ���q� ¿ �nö » ö ô 	 over ö :

���q�k¿Y�nö » ö�ô 	D� ��� �k¿Y�nö%ô 	 <)( ��ö » �] ¸ ö �
* �* ö �ô ���q�k¿Y�nö%ô 	 < �9e¸ ö · * ·* ö ·ô � �q�k¿��nö%ô 	i» �U�U� (9)

and, secondly, expand the exponent over, for instance,
* · ���q�~¿��nö%ô 	�u * ö ·ô , if higher terms in Eq. (9) are

neglected. As a result, the + -th term of the perturbation series

� ¿~¾ , � - * · ���q�k¿Y�nö%ô 	Vu * ö ·ô� * � ���q�k¿Y�nö%ô 	Vu * ö �ô 	M·�. �0/ , �21 9 +�»��] 3 � (10)

Therefore, the perturbation theory near ö ô leads to the asymptotic series. The formal assumption that one
can define this series, for instance, in the Borel sense is not interesting from the physical point of view.
Indeed, this solution assumes that the fluctuations near ö ô are arbitrarily high and as a result the quantityö%ô loses its significance.

But we may assume that* · ���q� ¿ �nö ô 	Vu * ö ·ô ��� � * � ���q� ¿ �nö ô 	du * ö �ô 	 ·�. � c (11)

to neglect this term. One possible solution of this condition is* · ���q�~¿��nö%ô 	Vu * ö ·ô54 �Ý� (12)
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If this condition holds, then the fluctuations are Gaussian with dispersion

� Þ * � ���q�~¿��nö%ô 	du * ö �ô å ¶ . � c
see Eq. (9).

Let us consider now (12) carefully. We will find, computing derivatives, that this condition means
the following approximate equality:� � · �¿� ¿ <¤9 � � � �¿ � � ¶6�¿� �¿ »�] �n� � ¶6�¿ 	 ·� ·¿ 4 �Ýc (13)

where � � , �¿ means the + -th derivative. For identical particles,

� � , �¿ �nö%ô 	�� � , �!< �5	 , �87 ¿³´�µ°¶ h · ² ´ w Ä ý:9 � Æ � �� ]_�2	 · ]<; ��² ´ 	>= ½ g ¿ ½ � ,³´�µ°¶ ; ��² ´ 	��
� � 7 ,³´�µ°¶ ; ��² ´ 	 h · ² ´ w Ä ý?9 � Æ � �� ]_�2	M·5]<; ��² ´ 	 = �Ì � , �¿ ��² ¶ c ² � c��U�U�Uc ² , 	\c (14)

where
�Ì � , �¿ coincides with the + -particle momentum distribution function if the � -particle system is

produced. Therefore, the l.h.s. of (13) is the 3-point energy correlator @ · :@ · è � h­® · ��² 	BA�� ·³´�µ°¶ ; ��² ´ 	qp ý�C <a9 � �³´�µ°¶ ; ��² ´ 	qp ý�C �D; ��² · 	 p ý�C »Í] ·³´�µ°¶ �E; ��² ´ 	 p ý�CGF c (15)

where the index means averaging with the Boltzmann factor Ú0ÛÝÜ|Þ <�ö2ô ; ��² 	då .
As a result, to have all fluctuations in the vicinity of öiô Gaussian, we should have @IH 4 � , `KJ 9 .

Notice that, as follows from (11), the set of minimal conditions actually looks as follows:

½ @LHM½ � . H ���M@ � c `NJ 9 � (16)

If the experiment confirms these conditions then, independently from the number of produced particles,
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Fig. 8: PYTHIA prediction.

the final state may be described with high enough accuracy by one parameter ö°ô . The Monte Carlo
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Fig. 9: PYTHIA prediction for ration of the mean values, ¨PORQ}¨TS . This ratio is equal to U QGV for equilibrium kinematics. The

numbers are the corresponding multiplicities.

prediction for the ratio � �E½ @ · ½ � .!· u�½ @ � ½ based on PYTHIA is shown in Fig. 8. Figure 9 shows the
PYTHIA prediction for the �Ã��W u~c �YX 	 plot. Both ‘experiments’ show the absence of thermalization in the
accessible domain of multiplicities.

The condition (16) is a formal consequence of zero convergence radii of the perturbation series
near ö ô . Therefore, the condition (16) is unique if the notion of the temperature �5u ö ô exists.

Considering ö�ô as a physical (measurable) quantity, we are forced to assume that both the total
energy of the system ( � ��� and conjugate to it the variable öYô may be measured with high accuracy1 .

2.4 Temperature fluctuations in the v -matrix approach
It is not necessary to measure the energy of each particle to have � p �� . Indeed, let Z; ´ be the energy
of the { -th cell of particles, Z; ¶ »[Z; � » �U�U�~»\Z; , � ( � and let Z� ´ be the number of particles in the cell,Z� ¶ »[Z� � »I�U�U�_»[Z� , � � . Then, if Z; ´ �]; æ , { � �_cd]ec��U�U�UcG+ , we have the inequality: +xp �2¯ ´ ¿ . Therefore,
we get into the high multiplicities domain since � J^+ , if ; æ � ( � u ����:� 	 . We can use the calorimeter
provided that the energy Z; ´ �E; æ in each cell.

The preparation of such an experiment is not a hopeless task and it may be sufficiently informative.
We will put this formulation of the experiment in the basis of the theory. These forces use the Wigner
functions formalism and the first question that must be solved is how to find a way to adopt this formalism
for the description of our experiment.

We start the consideration from the assumption that the temperature fluctuations are large scale. In
a cell whose dimension is much smaller than the fluctuation scale of the temperature we can assume that
the temperature is a ‘good’ parameter. (The ‘good’ parameter means that the corresponding fluctuations
are Gaussian.)

1Note, the uncertainty principle did not restrict _ & and _a` .
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Let us surround the interaction region, i.e. the system under consideration, with ^ cells with
known space-time position and let us propose that we can measure the energy and momentum of groups
of incoming and outgoing particles in each cell. The fourth-dimension of the cells can not be arbitrarily
small in this case because of the quantum uncertainty principle.

Calculating �Ýæ perturbatively we will find in the case of a periodic boundary condition that� ô Ê �nö 	���Ú0ÛÝÜYÞ <�{Mí[�!<�{ áî â 	i» {Mí[�!<�{ áî Ä 	då±ïÚ0ÛeÜ|Þ { � h f h mcb áî ´ � fò»Õm)u_]­	Vð ´�Á � m�c �nöü� fk	V	 áî Á � f < m)u_]­	då (17)

where, using the matrix notations,

{ ð ��² c �nöü� fk	V	V	 �dA ´Æ ¦ Ä ¯ ¦ â ´�e �� < ´Æ ¦ Ä ¯ ¦ Ä ´fe F »
»Í]_� é ��² � <¹l � 	BA ��� � ý?g â ý ¦ � � õ �� ½ ² æ ½Ö	 ���nö ¶ � fk	�½ ² æ ½Ö	Mg â �nö ¶ 	���nö � � fk	�½ ²�æ ½Ö	Mg Ä �nö � 	 ��� � ý g â ý ¦ � � õ �� ½ ²�æ ½Ö	 F c (18)

and gih �nö 	�� <aw ý �kj Æ6l j h Æ�l � . � c
the occupation number ���nö2² æ 	�� �w ý Æ6l < � �
The details can be found in Appendix B.

It is shown in Appendix C that f in Eq. (17) is the measurement point of the temperature. It is
assumed that the fluctuations are Gaussian in each point f .
3 CONCLUSIONS

Introducing the temperature as the Lagrange multiplier, we should assume that the temperature fluctua-
tions are small (Gaussian). In the opposite case the notion of temperature loses its sense. The ‘working’
idea about nonequilibrium processes is based on the assumption that the evolution of a system goes
through a few phases. In the first ‘fast’ phase the � -particle distribution functions mon , � p � , strongly
depends on the initial conditions. But at the end of this phase the system forgets the initial-state in-
formation. The second phase is the ‘kinetic’ one. One can expect that the space–time fluctuations of
thermodynamical parameters in this phase are large scale, i.e. there are macroscopic domains in which
the subsystems are in equilibrium, with Gaussian fluctuations of the thermodynamical parameters. In
the last ”hydrodynamical’ phase the whole system is described by macroscopic parameters. We shall see
that the Schwinger–Keldysh [14, 18] formalism is applicable for the ‘hydrodynamical’ phase only.

The
�

-matrix finite-temperature description can be realized not only for the uniform temperature
distribution (we have taken the first step in this direction wishing to introduce initial and final temper-
atures separately). So, by introducing cells of a measuring device (calorimeter) and introducing the
energy-momentum shells of each cell separately, we can introduce the individual temperatures in each
cell. This can be done since in the

�
-matrix theory the measurement is performed by free (mass-shell)

particles, i.e. the measurement of energy (and momentum) can be performed in each cell separately.
This allows one to capture the ‘kinetic’ phase also (if the number of calorimeter cells is high enough). In
this phase multiparticle distribution functions m n , � p � , are functionals of the one-particle distribution
function m ¶ only. This means the ‘shortened’ description of the nonequilibrium medium [11].

The logic of our construction of the thermodynamics is the following.

12

I. MANJAVIDZE AND A. SISSAKIAN

234



A. Let us assume that, for definiteness, a given system can be characterized by the ‘good’ param-
eter ö�ô which is conjugate to the energy of a produced particle, i.e. let us assume that the fluctuations
in the vicinity of ö ô are Gaussian. In this case we can construct a closed perturbation theory for the
generating functional of observables ���nö|ô c��~	 . The parameter � will be defined later.

Then, if the system is surrounded by black-body radiation, �Y�nöiô c��~	 coincides with the generating
functional of the correlation function in the real-time finite-temperature statistics of Schwinger–Keldysh
[18]. We can also apply the vacuum boundary condition. The corresponding formalism can be applied
to particle physics.

The following step consists in the assumption that there are no correlations on the remote hyper-
surface � � . Then one may analytically continue ���nö|ô c��~	 to the generating functional in the Matsubara
formalism [19], i.e. ���nöYô c��~	 would coincide with the partition function, where öiô is the inverse temper-
ature, s ô � �5u ö%ô , and s ô���� �±�]p is the chemical potential, i.e. � is the activity. But at this stage we can
not use the vacuum boundary conditions.

Therefore, it is impossible to introduce the canonical formalism for the description of accelerator
experiments because of the absence of the thermostat (‘heat bath’). Nevertheless the thermodynamical
method, based on the introduction of ‘good rough’ variables, ö2ô , p , etc., can be applied.

B. In the canonical formalism the temperature is introduced using the periodic boundary condition
of Kubo, Martin and Schwinger (KMS) for a field [10]:ù � oV	�� ù � o <W{ ö 	\�
But, without fail, this method leads to w�²;Î%{ ` {£Ë f { Î�l fluctuation-dissipation conditions [20] (see also
Ref. [21]). Moreover, it leads to the quantization of the energy spectrum and additional troubles in
transitions to the continuous limit, see, for example, Ref. [14]. This is why the real-time formalism is
useful. In our case the KMS boundary condition would be the consequence of Gaussian fluctuations in
the vicinity of ö�ô and of the assumption that the system is surrounded by black body radiation.

Notice also that it is not clear whether the KMS boundary condition can be applied in the case
of local temperature ö ô � ö ô �nß cVo�	 . Having no necessity to use the KMS boundary condition, we will
extend the formalism to the case of öYô � ö�ô��nß cVo�	 . This will allow us to describe the kinetic stage of the
dissipation process [22].

C. We can consider the equilibrium over the other parameters. For instance, the equilibrium
over the charge of produced particles. So, if an initial state is neutral, i.e. if, for example, the Tevatron
experiments are considered, then the charge conservation means that the algebraic sum of a number of the
positive charged particles, � â , and negative charged particles, � Ä , must be equal to zero, �çâ+<¹� Ä ��� .
At the same time the value of � â , � Ä and a number of neutral particles, � æ , can be arbitrary, i.e. these
quantities are fluctuating parameters.

Instead of the temperature s it is useful to introduce the quantity ö � �5u5s which is the Lagrange
multiplier of the energy conservation law. Accordingly, one may introduce p ´ c { � »�c < c�� , which has
the notion of chemical potential and is conjugate to the corresponding numbers � ´ c { � »�c < c�� . The
equilibrium over the charge means that p â �qp Ä �rp æ , i.e. � ´ � � u 9 , where � is o j oMge` multiplicity. In
the case of equilibrium the fluctuations l Î�� o be Gaussian. The reason, why the fluctuations of numbers� ´ are not Gaussian was offered in Ref. [23]. Instead of the examination of the Gaussian distribution one
can examine the charge correlators.
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APPENDIX A: FINITE-TEMPERATURE v -MATRIX FORMALISM

A1 VACUUM BOUNDARY CONDITIONS

The starting point of our calculations is the � - into l -particles transition amplitude g ¿~¾ ¯ , the derivation
of which is a well-known procedure in the perturbation theory framework. For this purpose the �n� » l 	 -
point Green function ð ¿~¾ ¯ is introduced. To calculate the nontrivial elements of the

�
-matrix one must

put the external particles on the mass shell. Formally, this procedure means amputation of the external
legs of ð ô¿~¾ ¯ . As a result the amplitude of the l - into � -particles transition g ¿k¾ ¯ in the momentum
representation has the form:

g ¿~¾ ¯±�V��² 	 ¿�Ï5�Ã� 	 ¯ 	D� �!<�{ 	 ¿Bâ�¯ ¯³, µ°¶ áÎç��² , 	 ¿³, µ°¶ áÎ ì �Ã� , 	Vë �nÎ 	\� (A.1)

Here we introduce the ‘annihilation’ operatoráÎç��² 	D� � hkß�w Ä ´ Æ 
 áÎ �nß 	\c áÎ �nß 	D� éé Îç�nß 	 c (A.2)

áÎ ì �Ã� , 	 is the ‘creation’ operator and ² , and � , are the momentum of the incoming and outgoing particles.
In (A.1) ë �nÎ 	�� � ã ù w ´ ÿ �  s� Ä ´ut �  âwv �
is the generating functional. The total action was divided into two parts, where

� � ù 	 is a free part andíä� ù c ê 	 describes the interactions. At the very end one should put the auxiliary field ê ��� .
To provide the convergence of the integral (A.1) over the scalar field

ù
, the action

� � ù 	 must
contain a positive imaginary part. Usually for this purpose Feynman’s { t -prescription is used. It is better
for us to shift the time contour infinitesimally to the upper half plane [14, 16], i.e. to the Mills contour

÷ â2x o H oi» { t­c t±pr�
and after all calculations to return the time contour on the real axis, t H » � .

In Eq. (A.1) the integration is performed over all field configurations with a standard vacuum
boundary condition: � h  ß *Py � ù * y ù 	�� �Tz|{ h � y ù * y ù �I�Ýc
which assumes zero contribution from the surface term.

Supposing that the particle number and momenta are insufficient for us we introduce the probabil-
ity f �~} 	��q� ¿k¾ ¯ ���¸Öl¹¸ � h­®°¿���² 	 h­®°¯��Ã� 	 é �  � �~} < ¿�, µ°¶ ² , 	 é �  � �~}�< ¿� , µ°¶ � , 	�½ g ¿~¾ ¯ ½ � c (A.3)

where hk®2¿���² 	�� ¿³, µ°¶ hk®a��² , 	�� ¿³, µ°¶ h · ² ,� ]_�2	 · ]<; ��² , 	 c ; � ��² � » l �� 	 ¶ . � c
is the Lorentz-invariant phase space element. We assume that the energy–momentum conservation é -function was extracted from the amplitude. It was divided into two parts:

é �  � � � ² , < � � , 	D� � h  } é �  � �~} < � ² , 	 é �  � �~}�< � � , 	\� (A.4)

It is not too hard to see that, up to the phase space volume,

f�� � h  } f �~} 	
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is the imaginary part of the amplitude ���~g y ½ �eg y p . Therefore, by computing f �~} 	 the standard renor-
malization procedure can be applied and the new divergences will not arise in our formalism.

The Fourier transformation of é -functions in (A.3) allows us to write f �~} 	 in the form:

f �~} 	D� � h  � ¶� ]_�2	  h  � �� ]_�2	  w ´�� � Å g â Å ¦ � ���:� ¶ c � � 	\c (A.5)

where �Y�:� ¶ c � � 	D�q� ¿~¾ ¯ ���¸Öl¹¸ �
¿³, µ°¶ Þ h­®a��² , 	 w Ä ´UÅ g Æ § å ¯³, µ°¶ Þ h­®a�Ã� , 	 w Ä ´UÅ ¦ Ê § åe½ g ¿~¾ ¯ ½ � � (A.6)

The introduction of the ‘Fourier-transformed’ probability ���:� ¶ c � � 	 means only that the phase-space
volume is not fixed exactly, i.e. it is proposed that the 4-vector } is fixed with some accuracy if � ´
is fixed. The energy and momentum in our approach are still locally conserved quantities since the
amplitude g ¿�¯ is translational invariant. So, we can perform the transformation:� ¶ � ² , � �:� ¶ < � ¶ 	�� ² , » � ¶ � ² , H �:� ¶ < � ¶ 	�� ² , » � ¶ }
since four-momenta are conserved. The choice of � ¶ fixes the reference frame. This degree of freedom
of the theory was considered in Ref. [24].

Inserting (A.1) into (A.6) we find that

���:� ¶ c � � 	D��Ú0ÛeÜ|Þ { � h­ß�h­ß à ��áÎYâq�nß 	Mã â Ä �nßä<Wß à c � � 	 áÎ Ä �nß à 	 << áÎ Ä �nß 	Mã Ä â �nßä<Wß à c � ¶ 	 áÎ â �nß à 	V	då;ë �nÎ â 	Vë ì �nÎ Ä 	\c (A.7)

where ã â Ä and ã Ä â are the positive and negative frequency correlation functions:

ã â Ä �nß[<Wß à c � 	D� <�{ � hk®a��² 	 w ´ Æ � 
 Ä 
�� Ä Å'� (A.8)

describes the process of particle creation at the time moment ß æ and its absorption at ß à æ , ß æ p ß à æ , and �
is the centre of mass () 4-coordinate. The function

ã Ä â �nß <¹ß à c � 	D� { � h­®a��² 	 w Ä ´ Æ � 
 Ä 
 � â Å'� (A.9)

describes the opposite process, ß æ � ß à æ . These functions obey the homogeneous equations:� * � » l � 	 
 ð â Ä � � * � » l � 	 
 ð Ä â ���
since the propagation of mass-shell particles is described.

We suppose that ë � ê 	 may be computed perturbatively. For this purpose the following transfor-
mation will be used: w Ä ´ut � v � � w Ä ´ � 	�
<�Á � 
�� �v � � 
�� w ´ � 	�
dÁ � 
�� v � 
�� w Ä ´ut � v � � �� w �>	�
 v � 
�� �v � � 
�� w Ä ´ut � v �f� �� wBÄ ´ut � Ä ´ �Á�� w ´���	�
dÁ � 
�� v � 
�� c (A.10)

where áÎ was defined in (A.2). At the end of the calculations the auxiliary variables
î
, ê à should be taken

equal to zero. Using the first equality in (A.10) we find that

ë �nÎ 	�� w_Ä ´��>	�
 �Á � 
�� �v � 
�� w_Ä ´ut � v�âc� � w_Ä �¦ �>	�
|	�
�� Á � 
��#� ×~× � 
 Ä 
��f�ÃÁ � 
��f� c (A.11)
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where ã â|â is the causal Green function:� * � » l � 	 
 ð â|â �nßä< m�	�� é �nß < m)	\�
Inserting (A.11) into (A.7) after simple manipulations with differential operators, see (A.10) we find the
expression: ���:� ¶ c � � 	�� w_Ä ´ut � Ä ´ �Á × � â ´ut � Ä ´ �Á � � ïï4Ú0ÛeÜYÞ {]

� h­ß�h­ß à � î â��nß 	Mã â Ä �nßä<Wß à c � ¶ 	 î Ä �nß à 	 <î Ä �nß 	Mã Ä â��nßä<Wß à c � � 	 î âq�nß à 	 << î âq�nß 	Mã â|â��nß <?ß à 	 î â��nß à 	i» î Ä �nß 	Mã Ä|Ä �nßä<¹ß à 	 î Ä �nß à 	V	då­c (A.12)

where ã Ä|Ä � � ã â|â 	!ì
is the anticausal Green function.

Considering the system with a large number of particles we can simplify calculations choosing
the CM frame } � �~} æ �ó��c &�Ý	 . It is useful also [17] to rotate the contours of integration over � æ-¾ , :� æ-¾ , � <�{ ö , c�� l ö , � �ÝcG+�� �_cd] . As a result, omitting the unnecessary constant, we will consider� � ���nö ´ c ö Â 	 . The external particles play a double role in the

�
-matrix approach: their interactions

create and annihilate the interacting fields system and, on the other hand, they are probes through which
the measurement of the system is performed. Since ö , are the conjugate to the quantities of particle
energy we will interpret them as the inverse temperatures in the initial ( öçâ ) and final ( ö Ä ) states of
interacting fields. But there is the question: Are constants ö , really the ‘good’ parameters to describe
the system?

The integrals over ö , :
f � �
	D� � hkö ¶]_� { h­ö �]_� { w � ý g â ý ¦ �!� w_ÄR� � ý g ¾ ý ¦ � c (A.13)

where � �nö ¶ c ö � 	�� <=� �q���nö ¶ c ö � 	\c
can be computed by the stationary phase method. This assumes that the total energy � is a fixed quantity.
The solutions of the equations (of state):

� � * � �nö ¶ c ö � 	* ö , cd+©� �_cd]ec (A.14)

gives the most probable values of ö , at a given � . Equations (A.14) always have the real solutions and,
because of the energy conservation law, both Eqs. (A.14) have the same solution with the property:ö , � öü� ��	\c ö p �Ý�
Assuming that ö is the ‘good’ parameter, i.e. the fluctuations of ö , are Gaussian, we can interpret� �nö ´ c ö Â 	 as the free energy and �5u ö , as the temperatures. Such a definition of thermodynamical param-
eters is in the spirit of microcanonical description.

The structure of the generating functional (A.12) is the same as the generating functional of
Niemi–Semenoff [15]. The difference is only in the definition of the Green functions which follows
from the choice of the boundary condition. The Green functions ã ´�Á c { c î � »
c < were defined on the
time contours ÷ h in the complex time plane ( ÷ Ä � ÷ ìâ ). This definition of the time contours coincides
with Keldysh’s time contour [18]. The expression (A.12) can be written in the compact form if the matrix
notations are used. Note also a doubling of the degrees of freedom. This doubling is unavoidable since
the Green functions ã ´�Á are singular on the light cone.
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A2 CLOSED-PATH BOUNDARY CONDITIONS

The generating functional ���:� ¶ c � � 	 has an important factorized structure, see (A.7):

�Y�:� ¶ c � � 	D� w �� � Å g ¾ Å ¦�� � � �eæB� ê h 	\c
where the operator á^ �:� ¶ c � � Ï\ê 	D� � h­ß�hkß%à:� áê�â��nß 	Mã â Ä �nßä<Wß%à c � � 	 áê Ä �nß%à 	 << áê Ä �nß 	Mã Ä â �nß[<¹ß à c � ¶ 	 áê â �nß à 	V	 (A.15)

acts on the generating functional �eæ_� ê h 	���ë � ê�â 	Vë ì � ê Ä 	D�� � ã ù â ã ù Ä w ´ ÿ �  × � Ä ´ ÿ �  � � Ä ´ut �  × âc� × � â ´ut �  � âc� � � c (A.16)

of measurables. All ‘thermodynamical’ information is contained in the operator
á^ �:� ¶ c � � Ï\ê 	 and in-

teractions are hidden in � æ � ê hD	 . One may say that the action of the operator
á^ maps the system of

interacting fields on the measurable states. The last ones are ‘labelled’ by � ¶ and � � . Just this prop-
erty allows us to say that we are dealing with ‘mechanical’ fluctuations only. To regulate the number of
particles we can introduce into

á^ the dependence from ‘activities’ � ¶ and � � for initial and final states
separately.

The independent fields ê â c ê Ä and
ù â c ù Ä were defined on the time contours ÷ â c\÷ Ä . By defi-

nition, the path integral (A.16) describes the closed path motion in the space of fields
ù

. We want to use
this fact and introduce a more general boundary condition which also guarantees cancellation of surface
terms in the perturbation framework. We will introduce the equality:�Tz|{ h � y ù â * y ù â � �iz|{ h � y ù Ä * y ù Ä � (A.17)

The solution of Eq.(A.17) requires that the fields
ù â and

ù Ä (and theirs first derivatives
*Ty ù h ) coincide

on the boundary hypersurface � � : ù h � � � 	�� ù � � � 	\c
where, by definition,

ù � � � 	 is the arbitrary, ‘turning-point’, field.

The existence of the nontrivial field
ù � � � 	 , in the absence of surface terms, has an influence only

on the structure of Green functions

ð â|â �
� s ù â ù â pÍcEð â Ä �
� ù â ù Ä pÍc
ð Ä â �
� ù Ä ù â pÍc ð Ä|Ä �
� Zs ù Ä ù Ä pÍc

where Zs is the antitemporal time ordering operator. These Green functions must obey the equations:� * � » l � 	 
 ð â Ä �nß[< m)	�� � * � » l � 	 
 ð Ä â��nßä< m)	����Ýc� * � » l � 	 
 ð â|â��nß[< m)	�� � * � » l � 	 ì
 ð Ä|Ä �nßä< m)	�� é �nß < m�	\c
and the general solution of these equations:

ð ´ ´ ��ã ´ ´ »2� ´ ´ cð ´�Á ��� ´�Á c {��� î (A.18)
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contains the undefined terms � ´�Á which must obey the homogenous equations:� * � » l � 	 
 � ´�Á �nß < m)	D���Ýc { c î ��»
c < � (A.19)

The general solution of these equations (they are distinguished by the choice of the time contours ÷ h )� ´�Á �nßä<Wß%à 	�� � hk®a��² 	 w ´ Æ � 
 Ä 
���� � ´�Á ��² 	 (A.20)

are defined by the functions � ´�Á . The last ones are the functionals of the ‘turning-point’ field
ù � � � 	 : ifù � � � 	���� we must have � ´�Á �I� and we will come back to the theory of the previous section.

Our aim is to define � ´�Á . We can suppose that� ´�Á �4� ù � � � 	������ ù � � � 	qp��
The simplest supposition gives: � ´�Á �
� ù ´ ù Á pò�4� ù � � � � 	qpI� (A.21)

We will find the exact definition of � ´�Á starting from the
�

-matrix interpretation of the theory.

We should suppose that there are only free, mass-shell, particles on the infinitely far hypersurface� � . Formally this follows from (A.18)–(A.20) and is natural in the
�

-matrix framework [13]. In other
respects the choice of the boundary condition is arbitrary.

Therefore, our aim is the description of evolution of the system in a background field of mass-shell
particles. We will assume that there are not any special correlations among background particles and we
will take into account only the constraints of the energy-momentum conservation laws. Quantitatively
this means that the multiplicity distribution of the background particles is Poisson-like, i.e. is determined
by the mean multiplicity only. This is in the spirit of the definition of � ´�Á in Eqs. (A.20), (A.21).

Our derivation is the same as in Ref. [24]. Here we restrict ourselves mentioning only the main
quantitative points.

In the vacuum case the process of particle creation and their further absorption was described. In
the presence of the background particles this time-ordered picture is wiped out: there appears a possibility
of particle absorption before their creation.

The particle creation and absorption was described by the product of an operator exponent (A.7).
One can derive (see also Ref. [24]) the generalizations of (A.7): the presence of the background particles
will lead to the same structure: � ô Ê � w ´ �� � � Ù� � È � � æ � ê hD	\c
where � æ­� ê h 	 is the same generating functional, see (A.16). But the operator

á^ � ê ì´ ê Á 	 , { c î � »�c < c
should be changed to take into account the external particle environment.

The operator
áê ì´ ��² 	 was interpreted as the creation and

áê ´ ��² 	 as the annihilation operator, see def-
inition (A.1). Correspondingly the product

áê ì´ ��² 	 áê Á ��² 	 acts as the activity operator. So, in the expansion
of

á^ � ê ì´ ê Á 	 we can leave only the first nontrivial term:

á^ � ê ì´ ê Á 	�� � h­®a��² 	 áê ì´ ��² 	 � ´�Á áê Á ��² 	\c (A.22)

since no special correlation among background particles should be expected. If the external (nondynam-
ical) correlations are present then the higher powers of

áê ì´ áê Á will appear in the expansion (A.22) [25].
Following the interpretation of

áê ì´ áê Á we conclude that � ´�Á is the mean multiplicity of the background
particles. In (A.22) the normalization condition ^ � �k	���� was used and the summation over all { c î was
assumed. (In the vacuum case only the combinations {��� î was present.)
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Computing � ô Ê we must conserve the translational invariance of amplitudes and extract the energy-
momentum conservation é -functions. We must adjust to each vertex of an incoming particle in g ¿~¾ ¯ the
factor w Ä ´UÅ g Æ . � and for each outgoing particle w Ä ´UÅ ¦ Æ . � one post Fourier transformation of the é -functions.

So, the product w Ä ´UÅ § Æ . � w Ä ´UÅ È\Æ . � can be interpreted as the probability factor of the one-particle��y f w g~o {}j;� » g �|�|{£z�{ `ng~o {}j;� 	 process. The � -particle ��y f w g~o {}j;� »rg �|�|{Mz�{ `�g~o {}j;� 	 process probability is
the simple product of these factors if there are not special correlations among background particles. This
interpretation is evident in the CM frame � , � �!<À{ ö , c�&�~	 .

After these preliminaries it is easy to find that in the CM frame we have:

�2â|â ��²�æ 	�� � Ä|Ä ��²�æ 	D��� �w % g × % ¦¦ j Æ�l j < � è�Z��� ½ ²�æ ½ ö ¶ » ö �] 	\� (A.23)

Computing � ´�Á for {��� î we must take into account that we have one additional particle:� â Ä ��² æ 	������ ��² æ 	 � �ü»[Z����² æ ö ¶ 	V	2»M� �!<À² æ 	�Z���!<À² æ ö ¶ 	 (A.24)

and � Ä âq��²�æ 	D�q� ��²�æ 	�Z����²�æ-ö � 	2»M� �!<À²�æ 	 � � »�Z���!<a²�æ-ö � 	V	\� (A.25)

Using (A.23), (A.24) and (A.25), and the definition (A.18) we find the Green functions:

ð ´ ¾ Á �nßä<¹ß à c �nö 	V	�� � h  ²� ]_�2	  w ´ Æ � 
 Ä 
 � � Zð ´�Á ��² c �nö 	V	
where

{ Zð ´�Á ��² c �nö 	V	 �dA ´Æ ¦ Ä ¯ ¦ â ´ 9 �� < ´Æ ¦ Ä ¯ ¦ Ä ´ 9 F »
»Í]_� é ��² � <¹l � 	 1 Z��� ý g â ý ¦� ½ ²�æ ½Ö	 Z�D�nö � ½ ²�æ ½Ö	Mg âq�nö � 	Z���nö ¶ ½ ² æ ½Ö	Mg Ä �nö ¶ 	 Z�D� ý g â ý ¦� ½ ² æ ½Ö	 3 (A.26)

and g h �nö 	D� <òw % ¦ �~j Æ�l j h Æ�l � �
The corresponding generating functional has the standard form:� ô Ê � î hD	D��Ú0ÛÝÜ|Þ <�{!í©�!<�{ áî â 	i» {!í©�!<�{ áî Ä 	då±ïï4Ú0ÛÝÜ|Þ {]

� h­ß�hkß à î ´ �nß 	Vð ´�Á �nß <¹ß à c �nö 	V	 î Á �nß à 	då (A.27)

where the summation over repeated indexes is assumed.

Inserting (A.27) in the equation of state (A.14) we can find that ö ¶ � ö � � ö � ��	 . If öü� ��	
is a ‘good’ parameter then ð ´�Á �nßW<rß à ÏVö 	 coincides with the Green functions of the real-time finite-
temperature field theory and the KMS boundary condition:

ð â Ä � o < o à 	���ð Ä â�� o < o à <¹{ ö 	\cEð Ä â�� o < o à 	D� ð â Ä � o < o à » { ö 	\c (A.28)

is restored. Equation (A.28) can be deduced from (A.26) by direct calculations.
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APPENDIX B: LOCAL-TEMPERATURE v -MATRIX FORMALISM

B1 VACUUM BOUNDARY CONDITION

To describe this situation we decompose é -functions in (A.4) on the product of � ^ »��5	 é -functions:

é �  � �~} < ¿�, µ°¶ ² , 	D� � �³� µ°¶ Þ hi� � é ��� � < ¿<��, µ°¶ ² ,�¾ � 	då é �  � �~}�< ��� µ°¶ � � 	\c
where ² ,�¾ � is the momentum of the + -th in-going particle in the � -th cell and � � is the total 4-momenta
of � � in-going particles in this cell, �ä� �_cd]ec��U�U�Uc�^ . The same decomposition will be used for the secondé -function in (A.4). We must take into account the multinomial character of particle decomposition on^ groups. This will give the coefficient:��¸� ¶ ¸ ����� � � ¸ é�� �n�=< ��� µ°¶ � � 	 l¹¸l ¶ ¸ ����� l � ¸ é�� �nlA< ��� µ°¶ l � 	\c
where é � is the Kronecker’s é -function.

As a result, the quantity

f �V��� 	 � c �~} 	 � 	����� ¿¡  ¯ � � ½ g � ¿~¾ ¯ � ½ � ï
ï �³� µ°¶ Þ ¿ �³, µ°¶ h­®a��² ,5¾ � 	� � ¸ é �  � ��� � < ¿ ��, µ°¶ ² ,�¾ � 	 ¯ �³, µ°¶ hk®a�Ã� ,�¾ � 	l � ¸ é �  � �~} � < ¯ ��, µ°¶ � ,�¾ � 	då (B.1)

describes a probability to measure in the � -th cell the fluxes of in-going particles with total 4-momentum� � and of out-going particles with the total 4-momentum } � . The sequence of these two measurements
is not fixed.

The Fourier transformation of é -functions in (B.1) gives:

f �V��� 	 � c �~} 	 � 	�� � �³, µ°¶ h  � ¶ ¾ �� ]_�2	  h  � � ¾ �� ]_�2	  w ´�¢¤£��¥ g ��¦ � Å g¨§ � â � � Å ¦ § � � �Y�V�:� ¶ 	 � c �:� � 	 � 	\c
where ���V�:� ¶ 	 � c �:� � 	 � 	�� ���:� ¶ ¾ ¶ c � ¶ ¾ � �U�U�Uc � ¶ ¾ � Ïd� � ¾ ¶ c � � ¾ � c��U�U�Uc � � ¾ � 	
has the form:

���V�:� ¶ 	 � c �:� � 	 � 	�� � �³� µ°¶ Þ ¿?�³, µ°¶ h­®a��² ,�¾ � 	� � ¸ w Ä ´UÅ g¨§ � Æ § § � ï
ï ¯©�³, µ°¶ hk®a�Ã� ,�¾ � 	l � ¸ w Ä ´UÅ ¦ § � Ê §�ª � åe½ g � ¿k¾ ¯ � ½ � � (B.2)

Inserting (A.1) into (B.2) we find:

�Y�V�:� Ä 	 � c �:�°â 	 � 	D��Ú0ÛÝÜ|Þ { ��� µ°¶ � h­ß�h­ß%à b áê�âq�nß 	Mã â Ä �nß <¹ß%ànÏd� � ¾ � 	 áê Ä �nß%à 	 << áê Ä �nß 	Mã Ä â��nß <¹ß à Ïd� ¶ ¾ � 	 áê�â��nß à 	�«:å;ë � ê�â 	Vë ì � ê Ä 	\c (B.3)

where ê Ä is defined on the complex conjugate contour ÷ Ä x o H o <+{ t and ã â Ä �nß©<?ß à Ïd� 	 , ã Ä â �nß©<ß à Ïd� 	 are the positive and negative frequency correlation functions, respectively.
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We must integrate over sets ��� 	 � and �~} 	 � if the distribution of flux momenta over cells is not
fixed. As a result, f �~} 	D� � ã  � ¶ �~} 	 h  � � �~} 	 ���V�:� ¶ 	 � c �:� � 	 � 	\c (B.4)

where the differential measure

ã  �ü�~} 	�� �³� µ°¶ h  � �� ]_�2	  @ �~} c �:� 	 � 	
takes into account the energy-momentum conservation laws:@ �~} c �:� 	 � 	D� � �³� µ°¶ h  � � w ´ ¢¬£��¥ g Å � ¦ � é �  � �~}�< ��� µ°¶ � � 	\�
The explicit integration gives @ �~} c �:� 	 � 	D� �³� µ°¶ é � · � �:�+<¤� � 	\c
where &� is the centre of mass (CM) 3-vector.

To simplify the consideration let us choose the CM frame and put � � �!<�{ ö c¡&�~	 . As a result,@ � ��c �nö 	 � 	�� � �æ
�³� µ°¶ h � � w ¢­£��¥ g ý � � � é � � < ��� µ°¶ � � 	\�

Correspondingly, in the CM frame,

f � ��	�� � ã ö ¶ � ��	Mã ö � � ��	 �Y�V�nö ¶ 	 � c �nö � 	 � 	\c
where ã öü� �
	D� �³� µ°¶ h­ö �]_� { @ � ��c �nö 	 � 	
and �Y�V�nö 	 � 	 was defined in (B.3) with � ,�¾ � � �!<�{ ö ,�¾ � c�&�~	\c)� w�ö ,5¾ � p �Ýco+ä� �_cd] .

We will calculate integrals over ö , using the stationary phase method. The equations for the most
probable values of ö , :

< �@ � ��c �nö , 	 � 	 ** ö ,�¾ � @ � ��c �nö , 	 � 	D� �� �V�nö ¶ 	 � 	 ** ö ,�¾ � � �V�nö 	 � 	\c®+�� �_cd]ec (B.5)

always have the unique positive solutions Zö ,5¾ � � ��	 . We propose that the fluctuations of ö , near Zö , are
small, i.e. are Gaussian. This is the basis of the local-equilibrium hypothesis [26]. In this case �5u Zö ¶ ¾ �
is the temperature in the initial state in the measurement cell � and �5u Zö � ¾ � is the temperature of the final
state in the � -th measurement cell.

The last formulation (B.4) implies that the 4-momenta ��� 	 � and �~} 	 � can not be measured. It is
possible to consider another formulation also. For instance, we can suppose that the initial set ��� 	 � is
fixed (measured) but �~} 	 � is not. In this case we will have a mixed experiment: Zö ¶ ¾ � is defined by the
equation: � � � < �� ** ö ¶ ¾ � �
and Zö � ¾ � is defined by the second equation in (B.5).
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Considering the limit ^ H ñ the dimension of cells tends to zero. In this case we are forced
by the quantum uncertainty principle to propose that the 4-momenta sets ��� 	 and �~} 	 are not fixed.
This formulation becomes pure thermodynamical: we must assume that �nö ´ 	 and �nö Â 	 are measurable
quantities. For instance, we can fix �nö ´ 	 and try to find �nö Â 	 as the function of the total energy � and the
functional of �nö ´ 	 . In this case Eqs. (B.5) become the functional equations.

In the considered microcanonical description the finiteness of the temperature does not touch the
quantization mechanism. Really, one can see from (B.3) that all thermodynamical information is con-
fined in the operator exponent w �� � � Ù� � È � � ³ � ³´�¯µ�Á w ´ � �� � � � È �� È
the expansion of which describes the environment, and the ‘mechanical’ perturbations are described by
the amplitude ë � ê 	 . This factorization was achieved by the introduction of an auxiliary field ê and
it is independent from the choice of boundary conditions, i.e. from the choice of considered systems
environment.

B2 CLOSED PATH BOUNDARY CONDITIONS

The developed formalism allows one to introduce the more general ‘closed-path’ boundary conditions.
The presence of the external black-body radiation flow will reorganize only Ú0ÛeÜYÞ á^ � ê ì´ ê Á 	då , the differ-
ential operator, and the new generating functional ��ô Ê has the form:

� ô Ê �:� ¶ c � � 	D� w �� � � Ù� � È � � æ � ê hD	\�
Introducing the cells we will find thatá^ � ê ì´ ê Á 	�� � h f h m áê ´ � fa» m�u_]­	�Z� ´�Á �~° cVm)	 áê Á � f < m)u_]­	\c
where the occupation number Z� ´�Á carries the cells index f :Z� ´�Á � f�cVm)	�� � h­®a��² 	 w ´ Æ�± � ´�Á � f;c ² 	
and ( ²5æ �r; ��² 	 )

�2â|â � f�c ²�æ 	�� � Ä|Ä � f�c ²�æ 	��²Z��� f�c �nö ¶ » ö � 	�½ ²�æ ½Öu_]­	ü� �w � ý g â ý ¦ � � õ � j Æ6l j . � < � c� â Ä � f;c ² æ 	��q� ��² æ 	 � � »�Z�D� f�c ö � ² æ 	V	i»M� �!<À² æ 	�Z��� f;c <�ö ¶ ² æ 	\c� Ä â � f;c ²�æ 	�� �2â Ä � f;c <À²�æ 	\�
For simplicity the CM system was used.

Calculating �Ýæ perturbatively we will find that� ô Ê �nö 	���Ú0ÛÝÜYÞ <�{Mí[�!<�{ áî â 	i» {Mí[�!<�{ áî Ä 	då±ïÚ0ÛeÜ|Þ { � h f h mcb áî ´ � fò»Õm)u_]­	Vð ´�Á � m�c �nöü� fk	V	 áî Á � f < m)u_]­	då (B.6)

where, using the matrix notations,

{ ð ��² c �nöü� fk	V	V	 � A ´Æ ¦ Ä ¯ ¦ â ´�e �� < ´Æ ¦ Ä ¯ ¦ Ä ´fe F »
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»Í]_� é ��² � <¹l � 	BA ��� � ý g â ý ¦ � � õ �� ½ ²�æ ½Ö	 ���nö ¶ � fk	�½ ²�æ ½Ö	Mg âq�nö ¶ 	���nö � � fk	�½ ²�æ ½Ö	Mg Ä �nö � 	 ��� � ý?g â ý ¦ � � õ �� ½ ²�æ ½Ö	 F c (B.7)

and g h �nö 	�� <aw ý �kj Æ6l j h Æ�l � . � � (B.8)

Formally these Green functions obey the standard equations in the m space:� * � <¹l � 	 ± ð ´ ´ � é � m�	\c� * � <¹l � 	 ± ð ´�Á �I�Ýc {B�� î
since

ù � � � 	 �� � reflects the mass-shell particles. But the boundary conditions for these equations are
not evident.

It should be underlined that in our consideration f is the coordinate of lxw g ��Î f w�lxw�� o , i.e. f is
like the calorimeter cells coordinate and there is no necessity to divide the interaction region of QGP into
domains (cells). This means that ³ must be smaller then the typical range of fluctuations of QGP. But, on
other hand, ³ can not be arbitrarily small since this will lead to the assumption of the ` j_y ge` factorization
property of correlators, i.e. to the absence of interactions.

So, changing ö H�öü� fk	 we should assume that ö ´ � Â � � fk	 and � â Ä � Ä â � � f�cG+)	 are constants on the
interval ³ . This prescription adopts the Wigner functions formalism for the case of high multiplicities. It
describes the temperature fluctuations larger than ³ and averages the fluctuations smaller than ³ leading
to the absence, on average, of ‘non- Gaussian’ fluctuations.

It is the typical ‘calorimetric’ measurement, since in a dominant number of calorimeter cells the
measured mean values of energy, with exponential accuracy, are the ‘good’ parameters � �5u ö � � f;c���	 .
We will assume that the dimension of calorimeter cells ³ø���8³ ô:õ , where ³ ô:õ is the dimension of
characteristic fluctuations at a given � . In deep asymptotic over � we must have ³ ô:õÕH ñ . This
consideration shows that the offered experiment with calorimeter as the measuring device of particle
energies is sufficiently informative in the high-multiplicities domain.

APPENDIX C: WIGNER FUNCTIONS v -MATRIX FORMALISM

C1 WIGNER FUNCTIONS FORMALISM

We shall use the Wigner functions formalism in the Carrusers–Zachariasen formulation [27]. For the
sake of generality the l into � particles transition will be considered. This will allow us to take the
heavy ion–ion collisions into consideration.

In the previous section the generating functional � �V�nö 	 � 	 was calculated by means of dividing
the ‘measuring device’ (calorimeter) on the ^ cells. It was assumed that the dimension of device cells
tends to zero ( ^ Høñ ). Now we shall specify the cell coordinates using Wigner’s description.

Let us introduce the distribution function
� ¿ which defines the probability to find � particles with

definite momentum and with arbitrary coordinates. These probabilities (cross sections) are usually mea-
sured in particle physics. The corresponding Fourier-transformed generating functional can be deduced
from (B.3): � � ��c �nö�â 	 � c �nö Ä 	 � 	�� �³� µ°¶ ³´�¯µ�Á w � 	�´ � Æ � �� Ù� � Æ �uµ � % È § ��¶~· ��¸ �� È � Æ �u¹ �� È � Æ � ïïüë � ê�â 	Vë@ì � ê Ä 	\� (C.1)

The variation of
�

over � �´�Á ��² 	 generates corresponding distribution functions. One can interpret � �´�Á ��² 	
as the local activity: the logarithm of � �´ÖÁ ��² 	 is conjugate to the particles number in the cell � with
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momentum ² for the initial ( { î � ]Ý� ) or final ( { î �G��] ) states. Note that � �´�Á ��² 	 áê ì´ ��² 	 áê Á ��² 	 can be
considered as the operator of activity.

The Boltzmann factor w Ä ý � § � 9 � Æ � can be interpreted as the probability to find a particle with the
energy ; ��² 	 in the final state ( { � ] ) and in the initial state ( { � � ). The total probability, i.e. the process
of creation and further absorption of � particles, is defined by the multiplication of these factors.

The generating functional (C.1) is normalized as follows:� � ��� �_c �nö 	V	ü�]� �V�nö 	V	\c (C.2)� � �����Ýc �nö 	V	ü� ½Öë � �k	�½ � � �eæ­� ê h 	�½ �:º µ æ
Where �eæB� ê h 	�� ë � ê�â 	Vë ì � ê Ä 	
is the ‘probability’ of the vacuum into vacuum transition in the presence of auxiliary fields ê h . The
one-particle distribution function� ¶ �V�nö ¶ 	 � c �nö � 	 � Ï�² 	D� éé � �´�Á ��² 	 � ½ ¹\µ æ �� Þ áê ì´ ��² 	 w_Ä ý �� 9 � Æ � . � åBÞ áê Á ��² 	 wBÄ ý �� 9 � Æ � . � å �eæ­� ê h 	 (C.3)

describes the probability to find one particle in the vacuum.

So, � ¶ �V�nö ¶ 	 � c �nö � 	 � Ï�² 	D� � h­ß�h­ß à w ´ Æ � 
 Ä 
 � � w Ä ý � § � 9 � Æ � å áê ´ �nß 	 áê Á �nß à 	 �eæ­� ê h 	D�
� � h feÞ h m w ´ Æ�± w Ä ý � § � 9 � Æ � å áê ´ � fÀ» m�u_]­	 áê Á � f < m�u_]­	 �eæ­� ê h 	då­� (C.4)

Using this definition we introduce the one-particle Wigner function
� ¶ [27]:� ¶ �V�nö ¶ 	 � c �nö � 	 � Ï�² 	D��� � h f � ¶ �V�nö ¶ 	 � c �nö � 	 � Ï f;c ² 	\�

So, � ¶ �V�nö ¶ 	 � c �nö � 	 � Ï f;c ² 	ü� � h m w ´ Æ�± w_Ä ý � § � 9 � Æ � áê ´ � fÀ» m�u_]­	 áê Á � f < m�u_]­	 � æ � ê h 	\�
This distribution function describes the probability to find in the vacuum at point f in cell � a particle
with momentum ² .

Since the choice of the device coordinates is in our hands it is natural to adjust the cell coordinate
to the coordinate of the measurement f :� ¶ �V�nö ¶ 	 � c �nö � 	 � Ï f;c ² 	ü� � h m w ´ Æ�± w Ä ý � � õ � 9 � Æ � å áê ´ � fa» m�u_]­	 áê Á � f < m�u_]­	 �eæk� ê h 	\�
This choice of the device coordinates leads to the following generating functional:� � ��c ö 	���Ú0ÛeÜ|Þ { � h m h fsb áê�âq� fa» m�u_]­	Mã â Ä � m ÏVö � � fk	\c��~	 áê Ä � f < m)u_]­	 << áê Ä � fa» m�u_]­	Mã Ä â�� m ÏVö ¶ � fk	\c��~	 áê�â�� f < m)u_]­	�«:å �~æk� ê h 	\c (C.5)

where ã â Ä � m ÏVöü� fk	\c��~	�� <À{ � h­®a��² 	M� â Ä � f�c ² 	 w ´ Æ�± w Ä ý � õ � 9 � Æ � c
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ã Ä âq� m ÏVöü� fk	\c��~	ü� { � h­®a��² 	M� Ä â�� f�c ² 	 w Ä ´ Æ�± w Ä ý � õ � 9 � Æ �
are the modified positive and negative correlation functions.

The inclusive, partial, distribution functions are familiar in particle physics. These functions de-
scribe the distributions in the presence of the arbitrary number of other particles. For instance, the
one-particle partial distribution function} ´ÖÁ � f�c ²eÏ5�nö 	V	 � éé � ´�Á � f;c ² 	

� � �)c �nö 	V	�½ ¹dµ°¶ �
� w Ä ý � � õ � 9 � Æ �� ]_�2	M·|; ��² 	 � h m w ´ Æ�± áê ´ � fa» m)u_]­	 áê Á � f < m)u_]­	 ��� ê h c �nö 	V	\c (C.6)

where Eq. (C.2) was used.

The mean multiplicity � ´�Á � f;c ² 	 of particles in the infinitesimal cell ° with momentum ² is

� ´�Á � f;c ² 	ü� � h~² éé � ´�Á � f�c ² 	 � �
� � ��c �nö 	V	�½ ¹dµ°¶ �

If the interactions among fields are switched out we can find that (omitting indexes):

���~° c ²5æ 	�� �w ý � õ � Æ6l < � c ²�æ �r; ��² 	qp �Ý�
This is the mean multiplicity of the black-body radiation.

C2 LIOUVILLE EQUATION FOR THE WIGNER FUNCTION

Let us consider:� ¶ �V�nö Â 	 � c �nö ´ 	 � Ï�° c ² 	D� � h m w ´ Æ�± w_Ä ý § �f» ��e � Æ � áê , �~° » m�u_]­	 áê Á �~° < m�u_]­	�� æ � ê hD	\�
We would like to investigate under what conditions

� ¶ obey the Liouville equation.

The functional integral representation for
� ¶ has a form:� ¶ �nö�Ï�° c ² 	�� � h m w ´ Æ�± wBÄ ý § �f» ��e � Æ � áê , �~° » m�u_]­	 áê Á �~° < m�u_]­	;ï

ï � ã ù â ã ù Ä w ´
ÿ l� × · � � � ¸ �  × � Ä ´ut � × · � � � ¸ �  × âc� É � Ä ´ ÿ l� � · � � � ¸ �  � � â ´ut � � · � � � ¸ �  � Ä � � � �

� � h m w ´ Æ�± w Ä ý § ��» �ue � Æ � � ã ù â ã ù Ä í à� × � � � � � � ù âüÏ�° » m�u_]­	 í à� � � � � � � � ù Ä Ï�° < m)u_]­	;ï
ï w ´ ÿ � × · � � � ¸ �  × � Ä ´ ÿ � � · � � � ¸ �  � � c (C.7)

where
� æ� º � � � � � is the free part of the total action,� � º � � � � � � ù h�	�� � æ� º � � � � � � ù h�	 <Õí � º � � � � � � ù h�	\c

and the Mills time contour

÷ h � o ´ ¿ 	 x o H½¼@{ ;�c0; H » �Ýc o ´ ¿I¾ o ¾ » ñ cço ´ ¿4HG<òñ (C.8)

was introduced. We should use the closed-path boundary condition:ù h � � � � � 	�� ù � � � � � 	\c (C.9)
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where the hypersurface � � � � crosses the point o ´ ¿ . It should be stressed that the integration over the
‘turning-point’ field

ù � � � � � 	 must be performed. Notice that the closed-path boundary condition only
allows at finite o ´ ¿ to be saved from the unlike ‘surface terms’.

The representation (C.7) contains the vertices

íÍà� � � � � � � � ù h Ï�°]¼ m�u_]­	D� éé ù h �~°r¼ m)u_]­	 í � � � � � � � � ù h 	\�
Notice that there is no necessity to cut the integral over m at m �øo ´ ¿ since the action of the

operators 	 áê Á �~°\¼ m)u_]­	 ends at the time �~°[¼ m)u_]­	 æ � o ´ ¿ . Therefore,
� ¶ �nö�Ï�° c ² 	 exist for the time

interval °Yæ �óo ´ ¿ . The o ´ ¿ dependence of ã ù h on o ´ ¿ is not important since we always can add the
(infinite) integration over � � �³� µ Ä � h ù � o�	
assuming that this infinity may be cancelled by the normalization factor.

It is known that the double functional integral (C.7) is defined on the é -like Dirac measure [7].
The result looks as follows: � ¶ �nöDÏ�° c ² 	�� � h m w ´ Æ6± w Ä ý § �f» �ue � Æ � w Ä ´�¿ � Á�µ�� ï

ï � ãIÀ � ù 	 í à� × � � � � � � ù » w­Ï�° » m�u_]­	 í à� � � � � � � � ù <¤wBÏ�° < m)u_]­	 w Ä ´!Á � �  � µ�� � (C.10)

Expanding Ú0ÛÝÜ|Þ <�{6ÂÕ� î w 	då over the operator

] ÂÕ� î w 	ü� � h­ß éé î �nß 	 éé wk�nß 	 c (C.11)

we will obtain the ordinary perturbation theory. Notice that the operator Â � î w 	 is o ´ ¿ independent.

The functional integral (C.10) is defined on the measure:

ãÃÀ � ù 	�� ³ 
 à h ù �nß 	 é 1 é � � ù 	é ù �nß 	 <
î �nß 	 3 c (C.12)

where the prime means that the functional é -function does not include the time end-point ß�æ ��o ´ ¿ .

At the end of definitions, the functional
� � × � ù Ï\ê c w 	 describes interactions [7]:� � × � ù Ïdw 	�� �U�U� (C.13)

The explicit form of it is not important for us.

Deriving the Liouville equation, the dynamics should be described in the phase space. It is easy
to see that the measure (C.12) has the following form in the phase space:

ãÃÀ � ù 	D� ³ 
 h ù �nß 	 h¡Äò�nß 	 é 1ÆÅù < é�Ç Á � ù c Ä 	é Ä@�nß 	 3 é 1¤ÅÄ » é�Ç Á � ù c Ä 	é ù �nß 	È3 c (C.14)

where the Hamiltonian Ç Á � ù c Ä 	D� � h · ß - �] Ä � » �] �¨É ù 	 � »2� � ù 	 < î ù / (C.15)

explicitly depends on the produced quantum perturbation force
î �nß 	 and � � ù 	 is the potential term. The

transition from (C.12) to (C.14) may raise a doubt caused by a possible symmetry of the problem under
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consideration. To avoid this ambiguity, one may consider this transition as the introduction of the first
order formalism.

Notice now that the equalities:Åù � é�Ç Á � ù c Ä 	é Äò�nß 	 c ÅÄ � < é�Ç Á � ù c Ä 	é ù �nß 	 (C.16)

can not fix the boundary values
ù æ and Äüæ . For this reason one may omit the prime in the measure

(C.14), i.e. including the boundary value of o�� o ´ ¿ in the Dirac measure.

Now it is important to note that, following our definition,� ³ 
 h ù �nß 	 é � Åù �nß 	V	�� � h ù � o ´ ¿ 	�� � h ù æ �
Therefore, the boundary values � ù æ c Äüæ 	 stay undefined by our functional é -functions and, generally
speaking, the integration over them is assumed:� ¶ �nö�Ï�° c ² cVo ´ � 	�� � h ù æ-h¡Ä�æ � ¶ �nöDÏ�° c ² c ù æ c Äüæ 	\� (C.17)

The Liouville equation exists just for
� ¶ �nöDÏ�° c ² c ù æ c Äüæ 	 .

Indeed, let us calculate the total derivative over o ´ ¿ :hh o ´ ¿ � ¶ �nö�Ï�° c ² c ù æ c Ä æ 	�� * � ¶ �nöDÏ�° c ² c ù æ c Ä�æ 	* ù æ Åù æ » * � ¶ �nöDÏ�° c ² c ù æ c Äüæ 	* Ä�æ ÅÄ æ � (C.18)

But having the measure (C.14), one may write thathh o ´ ¿ � ¶ �nöDÏ�° c ² c ù æ c Ä�æ 	D� wBÄ ´�¿ � ÁGµ�� wBÄ ´uÁ � �  � æ-¾ µ�� Þ � ¶ �nöDÏ�° c ² c ù æ c Ä�æ 	\c Ç Á � ù æ c Ä�æ 	då�c (C.19)

where the Poisson bracket Þ � ¶ c Ç Á å � * � ¶* ù * Ç Á* Ä < * � ¶* Ä * Ç Á* ù �
Notice the quantum character of this equation: the r.h.s. contains the operator of quantum perturbationsÂÕ� î w 	 . It acts on

î
in the Hamiltonian Ç Á � Ç Á � ù æ c Äüæ 	 and w in the interaction functional

� � � ù Ï �Ýc w 	 .
Notice, all quantities are defined at the time moment o ´ ¿ .

APPENDIX D: NONSTATIONARY STATISTICAL OPERATOR

One can not expect the evident connection between the above considered
�

-matrix (microcanonical)
and Zubarev’s [26] approaches. The reason is the introduction into Zubarev’s formalism interaction of
a heat bath, external to the system under consideration. This interaction is crucial for the definition
of nonstationary statistical operator (NSL) to explain the trend to a maximal-entropy state, starting the
evolution from the local-equilibrium state2.

Therefore, in Zubarev’s theory the local-equilibrium state was chosen as the boundary condition.
It is assumed that in the suitably defined cells of the � m � o w�l at a given temperature distribution s � &ß cVoV	���5u öü� &ß cVoV	 , where � &ß cVoV	 is the index of the cell, the entropy is maximal. The corresponding nonequilibrium
statistical operator � ¹ � w Ä � 	�Ê�
 ý ��Ë
 ¾ �!��Ì l¨l (D.1)

2This condition is not necessary in the Í -matrix formalism since it is ‘dynamical’ by its nature, i.e. includes the notion of
initial and final states as the boundary conditions.
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describes the evolution of a system in the time scale o . Here s y � is the energy-momentum tensor. It
is assumed that the system ‘follows’ öü� &ß cVo�	 evolution and the local temperature s � &ß cVo�	 is defined as
the external parameter which is the regulator of systems dynamics. For this purpose the special { t -
prescription was introduced (it was not shown in (D.1) [26]. It brings the interaction with the heat bath.

The KMS periodic boundary condition can not be applied for the nonstationary temperature dis-
tribution and by this reason the decomposition:öü� &ß cVo�	D� ö�æ » ö ¶ � &ß cVo�	 (D.2)

was offered [28]. Here ö�æ is the constant and the inequalityö%æ p�p ½ ö ¶ � &ß cVo�	�½
is assumed. Then, � ¹ � wBÄ ý l � þ l â t â�Î � (D.3)

where Ç æ is the free part of the Hamiltonian, í describes the interactions and the linear over ö ¶ u ö%æ
term Ï is connected with the deviation of the temperature from the ‘equilibrium’ value �5u öçæ . The
presence of Ï -perturbations creates the ‘thermal’ flows in the system to explain the increasing entropy.
Considering í and Ï as the perturbations, one can calculate the observables averaging over equilibrium
states, i.e. adopting the KMS boundary condition. Using the standard terminology one can consider í
as the ‘mechanical’ and Ï as the ‘thermal’ perturbations.

The quantization problem of the operator (D.3) is connected to the definition of the space-time
sequence of mechanical ( í ) and thermal ( Ï ) excitations. It is necessary since the mechanical excitations
have the influence on the thermal ones and vice versa. It was assumed in Ref. [28] that í and Ï are
commuting operators, i.e. the sequence of í - and Ï -perturbations is not sufficient. The corresponding
generating functional has the form [28]:

ë � î 	D��Ú0ÛÝÜ|Þ <�{ � � % h  ßç� í[�!<�{ áî �nß 	V	i» ö ´ �nû c�Ð%	ö�æ s æVæ b <�{ áî �nß 	�« <
� æ
Ä � h o ¶

ö ´ �nû c�Ð±» o ¶ 	ö æ s æVæ b <�{ áî �nû c ß�æ o ¶ 	�«n	då�sòf �:wBÄ ý l þ l s�� w ´ � � 	�� ± Á � ± �! � ± � 	\c
where Ð is the measurement time.

It is evident that this solution leads to renormalization by the interactions with the external fieldöü� &ß cVoV	 even without interactions among fundamental fields
ù

. The source of these renormalizations is
the kinetic term in the energy-momentum tensor s æVæ , i.e. follows from ‘thermal’ interactions with the
external heat bath. Note the absence of renormalizations in the

�
-matrix formalism, see, for instance

(A.27), where the interactions are generated by í perturbations only.

This formulation with öü� &ß cVo�	 as the external field reminds one of the old, firstly quantized, field
theory in which matter is quantized but fields are not. It is well known that consistent quantum field the-
ory requires the second quantization. Following this analogy, if we want to take into account consistently
the reciprocal influence of í - and Ï -perturbations, the field ö � &ß cVo�	 must be fundamental, i.e. must be
quantized (and in this case the assumption of Ref. [28] becomes true). But it is evidently the wrong idea
in the canonical Gibbs formalism. So, as in the firstly quantized theory, the theory with the operator
(D.1) must have the restricted range of validity [26].
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ASTROPARTICLE PHYSICS

I. Tkachev
CERN, Geneva, Switzerland
and
Institute for Nuclear Research of the Russian Academy of Sciences, 117312, Moscow, Russia

Abstract
In this astroparticle lecture course I shall try to emphasize evidence of the new
physics which we have in cosmological and astrophysical data. This includes
support of the inflationary model, the necessity of dark energy and of non-
baryonic dark matter, and the Grizen–Zatsepin–Kuzmin puzzle of ultra-high-
energy cosmic rays.

1 INTRODUCTION

The purpose of these CERN physics school lectures is to review the evidence for new physics in cosmo-
logical and astrophysical data, and to give the minimal theoretical frameworks needed to understand and
appreciate the evidence. Beyond any reasonable doubt, we have solid evidence for the new physics in
these data. The strongest is the case for non-baryonic dark matter, followed by the case for dark energy.
The possibility (though very speculative, since a consistent and working model has not been constructed
yet) that the law of gravity should be changed instead is not excluded, but that would mean a new physics
anyway. I will not engage in discussion of relevant particle physics model building, instead the reader is
referred to lectures by G. Gabadadze at this school [1]. Other solid evidence for the new physics beyond
the Standard Model is given by neutrino oscillations. I will not discuss this topic, it is covered in lectures
by S. Petcov at this school [2]. The physics of cosmic rays is partially covered in lectures by A. Chilin-
garian [3], therefore, I restrict myself to the highest-energy part of the spectrum, which is related to the
Grizen–Zatsepin–Kuzmin puzzle and, possibly, to a new physics.

There are many excellent reviews on the subject of cosmology and astroparticle physics, including
lectures at previous CERN schools, for a recent one see Refs. [4–6]. I have tried to be complementary
to these lectures as far as possible, so many additional details can be found there. Proceedings of these
schools can be found at http://physicschool.web.cern.ch/ PhysicSchool. Owing to space and time lim-
itations, I omit several very important traditional topics, most notably Big Bang nucleosynthesis (see,
for example, the review in Ref. [7]) and baryogenesis (see, for example, the review in Ref. [8]). In the
area covered, I have updated experimental results and resulting constraints, where applicable. The most
important developments since the time of the previous school were the release of the first-year observa-
tions of Cosmic Microwave Background Radiation (CMBR) by the Wilkinson Microwave Anisotropy
Probe (WMAP) [9], the first data release by the Sloan Digital Sky Survey (SDSS) of three-dimensional
distribution of galaxies [10], and the release [11] of a statistically significant dataset of Supernovae Ia at
large cosmological redshifts, ����� , which provide the first conclusive evidence for cosmic deceleration
that preceded the current epoch of cosmic acceleration. These are long-awaited cosmological data of un-
precedented quality, and with their appearance cosmology has truly entered the golden era and became a
precision science.

The plan of the lectures is as follows. In Section 2, I review the basics of cosmology: Friedman
equations, Hubble expansion, cosmography. In Section 3, the Cosmic Microwave Background Radiation
(CMBR) is discussed. In Section 4, I briefly review recent results on another cosmological probe—
the large-scale distribution of galaxies. In Section 5, the evidence for the existence of dark energy is
presented. Sections 6 and 6.3 review the evidence for dark matter, and particle physics models of non-
baryonic matter are briefly considered. In Section 7, I review the basics of inflationary cosmology and
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discuss support of the inflationary model by the CMBR data. In Section 8, the physics of ultra-high-
energy cosmic rays is reviewed.

2 BASICS OF COSMOLOGY

2.1 Note on units and scales
Length. Astronomers measure distances in parsecs, which is about ��� �	�
����
�� m or about 3.26 light
years, and is comparable with the distance to the closest star. PARSEC is an abbreviation for the distance
to a star with a semi-annual PARallax of 1 arc SECond. The distance from our Sun to the Galactic centre
is � kiloparsecs, so the kpc is an appropriate unit when discussing galactic structure. The appropriate
unit of extragalactic distance, however, is the megaparsec, or Mpc. The nearest large cluster of galaxies,
the Virgo cluster, is at a distance of 20 Mpc. The size of the visible Universe is 4200 Mpc or 13.7 billion
light years.

Energy. Usually astronomers measure energy in ergs. For example, the luminosity of our Sun is � �������������������
 , while the luminosity of bright quasars reaches ���� ��!�����"����
 . A galaxy like our Milky Way
contains ��� 
�
 stars, and there are ��� 
�
 galaxies in the visible part of the Universe. Particle physicists
measure energy in electronvolts, 1 erg #%$��'& �(���)
�
 eV, and usually choose units where the velocity of
light and the Planck constant are set to unity, *+# �-,/. # � , which I also use, when convenient. In these
units, for example, 1 Mpc # � �'$ �0���21�34��5 ��
 .
2.2 Dynamical frameworks
Dynamics is provided by General Relativity—the Einstein field equations687:9<; �& = 7:9-6 #>�-?A@CB 7D9 , (1)

where B 7:9 is a stress energy tensor describing the distribution of mass in space, @ is Newton’s gravi-
tational constant, and the curvature

6 7:9
is a complicated function of the metric and its first and second

derivatives. Clearly, finding a general solution to a set of equations as complex as the Einstein field
equations is a hopeless task. The problem is simplified greatly by considering mass distributions with
special symmetries. The basic assumption underlying the construction of cosmological models is that of
spatial homogeneity and isotropy. The most general space–time metric consistent with these symmetries
is the Robertson–Walker metric: E�F 1 # EHG 1 ;JI 1�K G�LNMNO 1 , (2)

where
I K G�L is the dimensionless scale factor by which all distances vary as a function of cosmic time

G
.

The scale factor contains all the dynamics of the Universe, while the vector product
MNO 1 describes the

geometry of space, MPO 1 # EHQ 1� ;0R Q 1�S Q 1 K E2T 1 S ��UWV 1 TXE�Y 1 L ,
which can be either Euclidian, or positively or negatively curved. For the spatial 3-dimensional curvature
we find, explicitly Z ��[ 6 # $ RI 1 K G�L \]_^ R # ; � `8ab�cVR # � dNeWf-gR # S � hiekjH���cl � (3)

For example, the space with
R # S � can be thought of as a 3-dimensional sphere with a curvature being

inversely proportional to the square of its radius. In this section we will model the matter content of the
Universe as a perfect fluid with energy density m and pressure n , for which the stress-energy tensor in the

2
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rest frame of the fluid is

B 97 # oppq m � � �� ; n � �� � ; n �� � � ; n
r�sst � (4)

With these assumptions the Einstein equations simplify to the Friedmann equations, which form the
dynamical basis of cosmology uI 1I 1 # �-?A@� m ; RI 1 , (5)vII # ; �H?A@� K m S �wn L � (6)

Let us have a look at the basic physics behind these equations.

1. Differentiating Eq. (5) and subtracting Eq. (6) we obtainE mEHG S � uII K m S n L # �x, (7)

which is nothing but energy-momentum conservation,B 97Cy 9 # � � (8)

On the other hand, the result is nothing but the First Law of thermodynamicsE2z S n E�{ #|B E�} , (9)

with
E�} # � . Here

z #~m { #�m I � {)� is energy, B is temperature and
}

is entropy of some (fixed)
comoving volume

{w�
. Therefore, Friedmann expansion driven by an ideal fluid is isentropic,

E�} # � .
This is not unexpected, and relaxing the assumption of a perfect fluid will lead to entropy production.
However, the dissipation is negligible in cosmological frameworks (except of special moments, like
initial matter creation and possible phase transitions, which will be considered separately) and isentropic
expansion is a very good approximation. This gives a useful integral of the motion,

} # const. On
dimensional grounds,

}
� B � I � {�� and we obtain frequently used relation between the scale factor and
temperature in an expanding Universe I � �B � (10)

To be precise, } # &-? 1�2� =H� B � I � #>� jHV���g+, (11)

where the factor =2� counts the effective number of relativistic degrees of freedom=H� # ��W���c��������� = � S��� ����w���������_����� = �8� K =�� S��� =�� L � (12)

At any given temperature, only particles with ��� B should be counted, i. e. =�� is a function of
temperature, which is shown in Fig. 1. For a gas of photons, =¡� #�& . Considering the current epoch of
the evolution of the Universe, we have to add the neutrino contribution, which will be discussed later and
leads to a different account of effective degrees of freedom at temperatures below ¢�£P¢ � annihilation in
entropy, =2¤ , and in energy density, =�¥ . Namely, =H¤ K B � L #¦���'§ � § and =-¥ K B � L #����'��$�� . At temperatures
above the electroweak scale =��+¨%����� in the Standard Model.

3
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Fig. 1: Number of relativistic degrees of freedom as a function of temperature. From Ref. [12].

Let us give here also other thermodynamical relations, similar to Eq. (11), but for the energy
density, m , and particle number density, ©m # ? 1� � =�� B  , (13)© # ª K � L? 1 K =H� S �� =-� L B � , (14)

where ª K � L # � �'& � & . These relations are a simple consequence of the integration of Bose–Einstein or
Fermi–Dirac distributions =K &-? L �¬« E ��­�c®�¯±°³² � ­D´µ, (15)

where ­ is particle momentum, the plus (minus) sign corresponds to fermions (bosons), and
I # � in

calculation of m , while
I # � in calculation of © (in the latter case the integral cannot be evaluated in

terms of elementary functions and the Riemann ª -function appears). With the use of Eq. (9), the entropy
density, Eq. (11), can be found as

F #¶��m¡·-�:B , since for relativistic particles n¸#Cm¹·-� regardless of spin.

2. The Friedmann equation, Eq. (5), can be interpreted within Newtonian mechanics. Indeed, let us
first re-arrange it as �& uI 1 ;>�H?A@� m I 1 # ; R & � (16)

Now, it is easy to see that for
Q # I Q-�

, the Friedmann equation takes the form of energy conservation
for test particles bounded in the gravitational potential created by mass º»#  �¼� m Q � ,�& uQ 1 ; @½ºQ # ; R Q 1�& � (17)

We see that the constant
R

, which determines the sign of spatial curvature in the language of general
relativity, also determines the sign of the binding energyR # S � Binding energy is negative,

the Universe will recollapseR # ; � Binding energy is positive,
the Universe will expand for ever

4
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Fig. 2: Hubble Diagram. From Ref. [14].

Therefore, the case of zero spatial curvature, or zero binding energy,
R # � , is special and corresponds

to fine tuning between initial kinetic and potential energies. Setting
R # � in Eq. (5), this fine tuning can

be expressed as m³#Cm�¾ , where the critical density is defined asm¿¾ � ��-?A@ À
uIIPÁ 1 � (18)

The critical density is proportional to the square of another fundamental parameter,Â � uII � (19)

The present value of this parameter is called the Hubble constant. It describes the rate of expansion
of the Universe, and can be related to observations in the following way. Consider two points with a
fixed comoving distance

Q-�
between them (this means that points do not feel any other forces and do

not participate in any other motion beyond general expansion of the Universe). The physical distance
between points increases as

Q K G�L # I K G�L±Q-� , and we can find the relative velocity asÃ � uI Q:� # uII I QÄ� # Â Q � (20)

The relation Ã # Â Q
is called the Hubble law. This is shown in Fig. 2. The left panel is original data

used by E. Hubble, the right panel presents recent data from Ref. [13]. We will discuss it in more detail
later on, especially in relation to observations. But the first thing we may notice is that according to
the Hubble law, Ã
¨Å� at

Q ¨ Â ��
 . Separations (or wavelengths) of this order are therefore special
in cosmology and mean super-horizon length scale. At smaller separations, Newtonian gravity should
be valid. Einstein’s equations tell us that energy conservation in Newtonian mechanics, Eq. (5), and
the first law of thermodynamics, Eq. (7), applied to the Universe as a whole, can be extended beyond
horizons without any change. The second Friedmann equation, Eq. (6), can be derived as a consequence
of these two equations. However, Newton would hardly have done it, even if he had known the first law
of thermodynamics. Indeed, in Eq. (6) we recognize Newton’s second law, ÆÇ#¦� uÃ with Æ being the
gravity force, and energy conservation is derived from the equations of motion, not vice versa.

We see that, according to Einstein’s theory, the force law is modified. Not only does mass grav-
itate, but the pressure, too, makes its contribution to the gravitational force. This is a very important
modification, since pressure can be negative, leading to anti-gravity and to accelerated expansion. As we

5
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will see, this stage of expansion may have led to the creation of the Universe in our classical understand-
ing. At present, the expansion of the Universe seems to be dominated by anti-gravity as well. This has
an interesting history. Newton did not know that one should worry about horizons, but he worried why
the Universe does not collapse under the pull of gravity. Einstein was worried about this too. He added
(1917) a cosmological constant to the equations of motion, thinking that it will make the Universe static.
(As we will see, the cosmological constant corresponds to a vacuum with non-zero energy density and
negative pressure, n¸# ; m .) However, Friedmann had shown in 1922 that the Universe will not be static
anyway. After some debate, Einstein admitted his mistake and called the introduction of a cosmological
constant “the greatest blunder of my life”.

So, why did the Universe not collapse under the pull of gravity? Resolution is in awkward initial
conditions called the Big Bang, where velocity in Eq. (17) is highly tuned to potential energy, leading
to practically zero spatial curvature and to mÈ#%m)¾ . This implies enormous fine-tuning for the Universe
to survive till the present. Such fine-tuning is hard to accept, and a modification of classical cosmology
was called for. We will see how modern inflationary cosmology solves the problem of initial conditions.
Again, the resolution is in anti-gravity caused by negative pressure.

2.3 Matter content in the Universe
To solve the Friedmann equations, Eqs. (5)–(6), one has to specify the matter content of the Universe
and the equation of state for each of the constituents. To fit current observations we need at least four
components

– Radiation (relativistic degrees of freedom). Today this component consists of the photons and
neutrino and gives negligible contribution into total energy density. However, it was a major
fraction at early times.

– Baryonic matter. Makes up the observable world today.
– Dark matter. Was not directly detected yet, but should be there. Constitutes major matter fraction

today. Has rather long observational history and can be fitted within frameworks of modern particle
physics nicely, at the price of ‘moderate’ tuning of parameters to provide the required fraction of
matter.

– Dark energy. Looks like it also should be there. It provides the major fraction of the total energy
density today. Was not anticipated and appears as the biggest surprise and challenge for particle
physics, though conceptually it can be very simple, being just a ‘cosmological constant’ or vacuum
energy.

Equations of state. Each of these components has a very simple equation of state, parametriz-ed by a
single constant É É � n m � (21)

With a constant É , solutions of the first law of thermodynamics, Eq. (7), are readily foundm K G�L # I K G�L �)� Z 
 £�Ê [ m � , (22)

where m � stands for the present-day density. For example, for ordinary forms of matter we have

– Radiation: É~# 
� and m0# I �� m � . The result can be understood as a simple consequence of
entropy conservation,

I B># const, since for radiation m � B  .
– Matter: ÉË# � and mx# I �)� m � . The result can be understood as a simple consequence of particle

number conservation, © I � #C� jHV���g and m	#¶�Ì© , where � is particle mass.

For hypothetical matter, which may play the role of dark energy, É is negative.

– Network of cosmic strings: É># ; 
� and m³# I �)1 m � .
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– Network of domain walls: ÉC# ; 1� and m³# I ��
 m � .
– Cosmological constant: ÉÍ# ; � and mÌ#�m � . The result can be understood as a consequence of

the Lorentz invariance of a vacuum, which restricts B 97 to be proportional to the Kronecker tensor,B 97 # {(Î 97 . Comparing with Eq. (4) we find n¸# ; m , or ÉÏ# ; � .
Law of expansion. The Friedmann equation (5) in a spatially flat Universe and with a single matter
component, the energy density of which evolves according to Eq. (22), has the solutionI # K G · GÐ�cL ÑÒÔÓÖÕØ×HÙHÚ � (23)

In particular

– Radiation: ÉÏ# 
� , I # K G · G � L 
 ¯ 1
– Matter: ÉÏ# � , I # K G · G��ÄL 1 ¯ �
– Cosmological constant: ÉÏ# ; � . This case is special, and

I # �:ÛAÜÔÝ .

2.4 Cosmological parameters
These are used to parametrize the Fiedmann equation and its solution

I K G�L . Let me first summarize the
current knowledge of numerical values of those parameters which were introduced already (Table 1);
later in the course we will discuss how these values were deduced.

Table 1: Cosmological parameters

Symbol and definition Description Present valueG
Age of the Universe

G�� # K � ��� � ² � �'& L GyrÂ # uI · I Hubble constant
Â � # � �(Þ�ßà� ��
Ná a � ��
m�¾â#>� Â 1 ·-�-?A@ Critical density m¹¾â# ���äã)10å8��5Cß¸�)�æ #Cm¹·:m ¾ Omega
æ � # � � � & ² � � � &æ+ç�è4é #Cm ç¡è4é ·:m¿¾ Fraction of CMB photons
æ8ç¡è4é #>&��_��ê �����)ëcã��)1æ4ì #Cm ì ·:m ¾ Baryonic fraction
æíì # � � � ��� ² � � ��� �æiî #¶m î ·:m¿¾ Matter fraction
æ+î # � �'& � ² � � � �æiï #¶m ï ·:m�¾ Dark energy fraction
æíï # � � � � ² � � � �

2.5 Cosmography
We can define cosmography (this is my customary definition for these lectures) as a part of cosmology
which tries to map observations into reconstruction of the scale factor: The goal is to find and tabulate
the function

I K G�L . This is important in many respects: for example, it allows us to determine the matter
content in the Universe (assuming the Friedmann equations are correct). One simple and straightforward
way of tabulating the function is in determining its coefficients in Taylor expansion. This can be done
making a Taylor decomposition around present time,

G # Gð� . The value of the scale factor at any moment
of time can be fixed arbitrarily, we can use this freedom to choose

I K G��cL # � . The second term in the
Taylor decomposition is naturally the value of the Hubble constant,

Â �
, Eq. (19). It gives us the rate of

expansion of the Universe at present and can be measured using the Hubble law, Eq. (20). One can go
further in this decomposition and define the second derivative of the Universe at present, the ‘deceleration
parameter’, and so on. We will not do it (at least not at this point), since modern observations probe the
whole function

I K G�L . Therefore, let us start with the preparation of the necessary machinery which allows
us to deduce

I K G�L from observations.

Let me stress now that Eq. (20) involves some degree of cheating since it is not a relation between
the observables. (However, it is a valid relation for small separations.) To apply the Hubble law to
observations, we have to derive its generalization, which would connect quantities we can measure.
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Redshift. Looking at distant objects we see only the light they emit. How can physical quantities like
distance and velocity be derived? Recall how a police officer determines the speed of a car. A similar
principle is used in cosmology to determine the velocity of distant bodies. The shift of emission lines
with respect to the frequency measurements by the local observer is related to velocity, and is used as
an observable instead of the velocity. Systematic recession of objects, or cosmological expansion, leads
to redshift. Note that cosmological redshift is not entirely due to the Doppler effect, but, rather, can be
interpreted as a mixture of the Doppler effect and of the gravitational redshift.

Let us relate now the redshift to cosmological expansion,

uI · I . To this end, we consider photon
trajectories in a cosmological background with metric Eq. (2). The trajectory is given by

E¿F 1 # � .
Since the overall scale factor does not change the solutions of

E¿F 1 # � , it is convenient to introduce the
conformal time ñ defined as EHG # I K ñ L�E ñÌ� (24)

It is sufficient to consider radial trajectories with the observer at the centre, and I restrict myself to a
spatially flat metric

E�F 1 # I 1 K E ñ 1 ; EHò 1 L # �¹, where
ò

denotes the radial coordinate. The solution
of
E ñ 1 ; EHò 1 # � is

ò # ² ñ S � jHV���g . Since the comoving distance between source and observer does
not change, the conformal time interval between two light pulses is the same at the point of emission and
at the point of observation, ó³ñx# const. Using the definition of conformal time,

E ñx# EHG · I , we findó GIÏô �����_���Ø�_��� # ó GICô õ �÷ö���ø÷ö��_��� �
Therefore, for a signal frequency we get ùâú I úí#¶ùPû I û . Defining (measurable) redshift as� � ù û ; ùüúùPú (25)

we obtain � S � # I úI û � (26)

It is convenient to normalize the scale factor by the condition
I úý# � at the point of detection, and to

consider the scale factor at the point of emission as a function of redshift � . On the basis of this relation,
the expansion history of the Universe can be parametrized asI K � L # �� S � � (27)

The differential form of Eq. (27) is
E I · E � # ;+I 1 . For future use, let us find now the relation betweenE ñ and

E � E ñÍ# E ñEHG EHGE I E IE � E � # ; I uI E � # ; E �Â K � L � (28)

Observing that
E ñþ# ; EHò

, we obtain the Hubble low for small separations,
E � # Â EHò

. At this point,
we have succeeded in replacing the velocity by the redshift. Now we aim to relate the distance to some
other quantity, directly measurable in cosmology.

Luminosity distance. Looking at distant objects we see only the light they emit. How can physical
quantities like distance and velocity be derived? There are several ways to introduce a quantity re-
lated to distance: different definitions are not equivalent in curved space–time. A definition based on
flux measurements is the appropriate one, if ‘standard candles’ can be found and used. Detected fluxÿ �����¶� ��
 ��ß �)1�� is inversely proportional to the distance from a source, Æ ��� �)1 . Namely, if � is
intrinsic luminosity

ÿ ��� � �c��
 � , we have � 1� # ��H?�Æ � (29)
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� � is called the ‘luminosity distance’. For this technique to work, one has to find a set of sources with a
known or calibrated luminosity. If such sources can be defined, they are called standard candles.

To see how the luminosity distance enters the Hubble law, let us consider a space-time with the
metric

E¿F 1 # I 1 K E ñ 1 ; EHò 1 ; ò 1 E æ L . Now, go through the following list to find out what happens with
the flux emitted into a frequency interval

E��
by a source located at redshif � :

– Surface area at the point of detection is �H? ò 1 . (Recall our choice
I ú¬# � .)

– Energy and arrival rates are redshifted between the points of emission and detection. This reduces
the flux by K � S � L 1 .

– Opposing this tendency, the bandwidth
E��

is reduced by K � S � L .
– Photons observed at a frequency

�
, were emitted at K � S � L	� .

Therefore, the measured spectral flux density is} K �)L # � K�K � S � L	�)L�H? ò 1 K � S � L � (30)

For the bolometric flux (i.e. integrated over
�

) we findÆ�# ��H? ò 1 K � S � L 1 � (31)

Comparing this with the definition, Eq. (29), we find for the luminosity distance� � # K � S � L¿ò , (32)

where
ò

is the comoving distance between the point of emission and the point of detectionò K � L # « 
��
�
 E ñ�# « �� E ���Â K � � L � (33)

In the last equality we have used Eq. (28). Therefore, the generalization of the Hubble law, which can be
used in observational cosmology, can be written asK � S � L¿ò K � L # � ��H?�Æ � (34)

Parametrization of �����	� . Let us express now the function
Â K � L in the r.h.s. of Eq. (33) through the

cosmological parameters. First, we define the ratio of the total energy density to the critical oneæ � m öØ�Ðöm�¾ � (35)

The present day value is referred to as
æ �

. Similarly, for each energy component we denote its present
day fractional contribution as

æ �	� m � ·:m¿¾ . With these definitions, the Friedmann equation (5) for a
spatially flat Universe can be re-written as Â 1 # �-?A@� � � m � ,
or Â 1 # Â 1� � � æ � K � S � L � Z 
 £�Ê�� [ � (36)

Here I have used m � #¶m ��� � I �)� Z 
 £�Ê�� [ #¶m¿¾ æ � K � S � L � Z 
 £�Ê�� [ ,
and expressed the scale factor as a function of redshift according to Eq. (26), and used the definition of
the critical density,

Â 1� #>�-?A@<m�¾ ·-� .
Parametrization (36) is ready for use in Eq. (33) for the comoving distance. In particular, this

finalizes expression Eq. (34) for the luminosity distance.
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3 COSMIC MICROWAVE BACKGROUND RADIATION

The Universe is filled with radiation which is left over from the Big Bang. The name for this first light
is Cosmic Microwave Background Radiation (CMBR). Measurements of tiny fluctuations (anisotropy)
in CMBR temperature give a wealth of cosmological information and became a most powerful probe of
cosmology.

This radiation was predicted in 1946 by Georgi Gamov, who estimated its temperature to be ¨ � K.
Gamov was trying to understand the origin of chemical elements and their abundances. Most abundant,
after hydrogen, is helium, with its share being ¨ &���� . One possibility which Gamov considered was
nucleosynthesis of He out of H in stars. Dividing the total integrated luminosity of the stars by the energy
released in one reaction, he estimated the number of produced He nuclei. This number was too small
in comparison with observations. Gamov assumed then that the oven where the light elements were
cooked up was the hot early Universe. He calculated abundances of elements successfully and found that
the redshifted relic of thermal radiation left over from this hot early epoch should correspond to ¨ � K
at present. In one stroke, Gamov founded two pillars (out of four) on which modern cosmology rests:
CMBR and Big Bang Nucleosynthesis (BBN). The Hot Big Bang was born.

Cosmic microwave background was accidentally discovered by Penzias and Wilson [15] at Bell
Labs in 1965 as the excess antenna temperature which, within the limits of their observations, was
isotropic, unpolarized, and free from seasonal variations. A possible explanation for the observed excess
noise temperature was immediately given by Dicke, Peebles, Roll, and Wilkinson and was published in
a companion letter in the same issue [16]. They were preparing dedicated search experiment, but were
one month late. Penzias and Wilson measured the excess temperature as ¨ ���'� ² � K. It is interesting to
note that the first (unrecognized) direct measurements of the CMB radiation was done by T. Shmaonov
at Pulkovo in 1955, also as an excess noise while calibrating the RATAN antenna [17]. He published the
temperature as K ��� � ² ��� � L K. Prior to this, in 1940, Andrew McKellar [18] had observed the population of
excited rotational states of CN molecules in interstellar absorption lines, concluding that it was consistent
with being in thermal equilibrium with a temperature of �Ï&�� � K. Its significance was unappreciated and
the result essentially forgotten. Finally, before the discovery, in 1964 Doroshkevich and Novikov in an
unnoticed paper emphasized [19] the detectability of a microwave blackbody as a basic test of Gamov’s
Hot Big Bang model. To me, as a theorist, the detection of CMBR looks nowadays like an easy problem.
Indeed, a few per cent of the ‘snow’ on TV screens is due to CMBR.

The spectrum of CMBR is a perfect black body, with a temperature B # &�� � &�� ² � � ��� & K as
measured by modern instruments. This corresponds to 410.4 photons per cubic centimetre or to the
flux of 10 trillion photons per second per square centimetre. The temperature is slightly different in
different patches of the sky—to 1 part in 100 000. And this is most important: the spectrum of these tiny
fluctuations tells us a lot about the fundamental properties of the Universe.

CMBR is the oldest light in the Universe. When registering it, we are looking directly at the
deepest past we can, using photons. These photons had travelled the longest distances without being
affected by scattering, and geometrically came out almost from the Horizon of the Universe. More
precisely, the CMB comes from the surface of the last scattering. We cannot see past this surface. That
is because at early times the Universe was ionized and not transparent for radiation. With expansion, it
cooled down, and when hydrogen recombined, the universe became transparent. Therefore the CMBR
gives us a snapshot of the baby Universe at this time, which is called the time of last scattering. Let us
determine when the last scattering occurred in the early Universe.

3.1 Hydrogen recombination
At temperatures greater than a few thousand degrees kelvin, the ionized plasma in the Universe consisted
mostly of protons, electrons, and photons, with a small fraction of helium nuclei and a tiny trace of
some other light elements. To a good approximation we can consider only the hydrogen. Matter is then
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ionized at temperatures higher than the hydrogen ionization energy
z �_��� # � ���'$ eV. At lower B neutral

atoms start to form. The baryonic matter is in thermal equilibrium and the equilibrium fraction of ionized
hydrogen can be described by the Saha equation (see Ref. [4] for more details)© � © �©"! # À � � B&-? Á � ¯ 1 � ��#%$ &(' ¯±° , (37)

here © � , © � and © ! are the number densities of electrons, protons, and neutral hydrogen respectively.
Plasma is electrically neutral, i.e. © � #>© � . To find the closed relation for the fraction of ionized atoms,) � © �H· K © � S © ! L # © ��·:© é , we need the relation between the baryon number density, © é , and
temperature. This relation can be parameterized with the help of an important cosmological parameter
called baryon asymmetry ñ�# © é©+* # © � S © !©+* # K $�� � ² � �'� L �½��� ��
 � , (38)

where © * is the number density of photons © * # & ª K � L? 1 B � , (39)

and ª K � L # � �'& � & , see Eq. (14). Baryon asymmetry can be estimated by an order of magnitude by simply
counting the number of baryons, ñþ# &��'$�� � ��� ��, æ4ì ã 1 . This is not the most precise method, though;
the value presented in Eq. (38) was obtained from fitting the spectrum of CMBR fluctuations, see below.
Nowadays, this is the most precise baryometer. Prior to this, the best estimates were obtained comparing
BBN predictions of element abundances to observations. Defining recombination as the temperature
when

) # � � � , we find B ����ø � � �'� ��5 .

The Universe became transparent for radiation when the mean free path of photons became com-
parable to the size of the Universe at that time. Photons scatter mainly on electrons and we find that the
Universe became transparent when K.- * � © � L ��
 ¨ G � (40)

Here, - * � # �-?"/ 1 ·-�D� 1� is the Compton cross-section. For the temperature of last scattering we findB+0 � � � �'&�$ ��5 . Taking the ratio to the current CMBR temeperature we find � 0 � � ������� .
3.2 Spectrum is not distorted by red-shift
Prior to recombination photons were in thermal equilibrium. Therefore, at last scattering they have the
Planck spectrum © K n L # ��21�a K z 0 � ·ÄB+0 � L ; � �
Since then, particle momenta are red-shifted, nÌ# R · I . Since photons are massless,

z # n , their energies
are red-shifted at the same rate,

z<� I � # z 0 � I 0 � , and the spectrum becomes©Ç# ��21�a K z � · I 0 � B30 � L ; � # ��21¹a K z � ·ÄB � L ; � ,
where we have used the notation B � � I 0 � B30 � . Therefore, after decoupling, the shape of the spectrum is
not distorted. This statement would not be true for massive particles,

z 1 # K n�· I L 1 S � 1 .
Measuring CMBR, we should still see the Planckian spectrum, but with red-shifted temperature.

Clearly, this conclusion is true not only for cosmological red-shift, but for the gravitational red-shifts as
well. For example, fluctuations in the gravitational potential at the last scattering surface should cause
fluctuations in CMBR temperature, but do not distort the spectrum.
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Fig. 3: Left panel: uniform spectrum; error-bars are a small fraction of the line thickness. Right panel: dipole
spectrum; vertical lines indicate one 4 uncertainties. From Ref. [20].

3.3 Dipole spectrum
Intensity of the CMB radiation is a function of the frequency &-? � # z and the direction on the sky K.5 ,76 L .
As a function of K.5 ,76 L it can be decomposed in spherical harmonics. Coefficients will be the functions of�

. The first two terms in this decomposition are} K � , 5 ,76 L #98 � K �)L S � K.5 ,76 L�E K �)L S ����� , (41)

where
� K.5 ,76 L # � jH� T , and

T
is an angle between observation and the maximum of the dipole 5 � #&�$����'����: , 6 � #Í�2���'&���: . The dipole is caused by our motion with respect to CMBR (which is composed

of the motion of the Sun in the Galaxy and the Galaxy’s own motion in the Local Cluster of galaxies). It
gives the direction of this motion, 5 � ,76 � , which roughly coincides with the direction towards Virgo. The
dipole induced by the velocity Ã is Ã Bþ� jH� T . This gives the magnitude of the Sun’s peculiar velocity,K � � � ² � L Þ�ß¦����
 .

Let ; � z ·ÄB . The monopole term should have the usual black-body spectrum 8 � K �)Lx� ; � ·K��=< ; � L . The dipole spectrum is actually distorted, because the Doppler frequency shift depends upon
direction. The dipole spectrum can be found as a term linear in Ã in the Taylor decomposition of

} K � , 5 ,76 L ,
with the result

E K �)Li� ;  �>< · K��?< ; � L 1 ; for a recent discussion see Ref. [21]. Functions 8 � K �)L and
E K �)L

are shown in Fig. 3, left and right panels, respectively. Both agree with theoretical expectation.

3.4 Multipoles
Monopole and dipole contributions to CMBR, Eq. (41), can be subtracted. The emission of our Galaxy
and various extragalactic sources can be subtracted also. This procedure uses the fact that the relic
CMBR signal has a black-body spectrum, which allows us to distinguish it from other forms of radiation:
measurements of the intensity at different frequencies allow us to subtract contaminating foregrounds.
What remains corresponds to the primordial cosmological pattern of temperature fluctuations, which is
shown in Fig. 4. The upper panel presents the results of early COBE experiments [22], the lower panel
shows the results of a recent the WMAP experiment [9].

The temperature anisotropy, B K(@ L , as a function of viewing direction vector @ , is naturally ex-
panded in a spherical harmonic basis, A"B îB K(@ L # � B � î I B î A%B î K(@ L � (42)
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Fig. 4: Pattern of primordial temperature fluctuations in Galactic coordinates, from Ref. [9]. The WMAP map has
a resolution 30 times finer than the COBE map.

The coefficients in this decomposition,
I B î , define the angular power spectrum, CDB
CEBw# �& 5 S � � î ô I B î ô 1 � (43)

The CMBR angular power spectrum as measured by the WMAP experiment is shown in Fig. 5. The
harmonic index 5 is related to the angular scale

T
as 5 � ?A· T , so the first peak, at 5 �|&�& � , would

correspond to an angular scale of about one degree. Assuming random phases, the r.m.s. temperature
fluctuation associated with the angular scale 5 can be found asó B B�# � CEB 5�K.5 S � L&-? � (44)

Another representation of temperature fluctuations is given by the angular correlation function, which is
related to CFB as C K T¿L # ��H? � B K & 5 S � L CEB�GHB K *2I FíT¿L , (45)

where GJB is the Legendre polynomial of order 5 .
3.5 Tool of precision cosmology
The functional form of the CMBR power spectrum is very sensitive to both the various cosmological
parameters and to the shape, strength and nature of primordial fluctuations. Measurements of the power
spectrum provide us with a wealth of cosmological information at an unprecedented level of precision.

Right after the discovery of CMBR, it was realized that fluctuations in its temperature should
have fundamental significance as a reflection of the seed perturbations which grew into galaxies and
clusters. In a pure baryonic Universe it was expected that the level of fluctuations should be of the order
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Fig. 5: The angular power spectrum of primordial CMBR temperature fluctuations is shown in the upper panel,
from Ref. [9]. Black symbols ( K+LNM>OPO ) are WMAP measurements, data points at smaller angular scales represent
CBI and ACBAR experiments. Lower panel shows the temperature-polarization cross-power spectrum.Î B+·ÄB ¨à��� �)1 – ��� �)� . Measurements of the CMBR anisotropy with ever-increasing accuracy have begun.
Once the temperature fluctuations were shown to be less than one part in a thousand, it became clear that
baryonic density fluctuations did not have time to evolve into the nonlinear structures visible today. A
gravitationally dominant dark matter component was invoked. Eventually, fluctuations were detected at
the level of

Î B+·ÄB ¨ ���¹�)ë [23], consistent with structure formation in Cold Dark Matter models with the
Harrison–Zel’dovich spectrum of primordial perturbations motivated by cosmological inflation. Already
this magnitude of

Î B+·ÄB is very restrictive by itself. A partial set of best fit cosmological parameters, as
derived from the recent measurments of CMBR anisotropies, is presented in Table 1.

The foundations of the theory of CMBR anisotropy were set out by Sachs and Wolfe [24], Silk
[25], Peebles and Yu [26], Syunyaev and Zel’Dovich [27]. The measured spectrum of CMBR power
has a characteristic shape of multiple peaks. Positions of these peaks and their relative amplitudes are
sensitive to many cosmological parameters in a non-trivial way. Fitting the data to model predictions
gives very accurate values for many of these parameters (though there are some degeneracies between
deferent sets). Numerical calculations for different models were done already in Ref. [28], and power
spectra exhibiting acoustic peaks (similar to those in Fig. 5) were presented. It was realized, in particular,
that positions of the peaks are shifted with respect to each other for adiabatic and isentropic primordial
fluctuations.

3.6 Acoustic oscillations
Let us give a qualitative picture of why the CMBR power spectrum has a specific shape of a sequence of
peaks, and explain how it depends on the values of particular cosmological parameters. Insight, sufficient
for the purposes of these lectures, can be gained with the idealization of a perfect radiation fluid. In
complete treatment, one has to follow the evolution of coupled radiation and metric fluctuations, i.e. to
solve the linearized Einstein equations. However, essential physics of radiation (or matter) fluctuations

14

I. TKACHEV

266



can be extracted without going into the tedious algebra of general relativity. It is sufficient to consider
the energy–momentum conservation, Eq. (8). To solve for metric perturbations, full treatment based on
Einstein equations, Eq. (1), is needed of course. We will not do that here, but simply quote results for the
evolution of the gravitational potentials (coincident in some important cases with the solutions for the
Newtonian potentials).

Perturbations of the ideal radiation fluid, n/#Ëm¹·-� , can be separated into perturbations of its tem-
perature, velocity and gravitational potential. In the general-relativistic treatment gravitational potential
appears as a fractional perturbation of the scale factor in the perturbed metricE�F 1 # I 1HK ñ L ÿ K � S &�Q LÔE ñ 1 ; K � ; &�R LÔE ; � E ; � � � (46)

Two equations contained in the energy–momentum conservation, B 7:9 y 9 # � (i.e. temporal S # � and
spatial S�#UT parts of this equation), written in metric (46), can be combined to exclude the velocity
perturbations. The resulting expression is simplevT?V S R 1� TWV # ; R 1� R V S vR V � (47)

Note that this equation is the exact result for a pure radiation fluid. Here,
T�V

are Fourier amplitudes ofÎ B+·ÄB with wavenumber
R

, and R V is a Fourier transform of gravitational potential. Analysis of solutions
of the Einstein equations for R shows that R V #>� jHV���g in two important cases:

1. For superhorizon scales, which are defined as
R ñ�� � .

2. For all scales in the case of matter dominated expansion, n¸# � .
In these situations the last term in the r.h.s. of Eq. (47), namely,

vR V , can be neglected. The Einstein
equations also restrict the initial conditions for fluctuations. For the adiabatic mode in the limit

R ñ � �
one finds Î � # ; &�R � , (48)

where
Î � � Î m¡·:m . The adiabatic mode is defined as a perturbation in the total energy density. For the

one component fluid, which we consider here, only the adiabatic mode can exist. Note that fractional
perturbation of the scale factor in metric (46),

I K ñ ,�X L # I K ñ L S Î I K ñ ,�X L � I K ñ L K � ; R L , can be
expressed as perturbation of spatial curvature, see Eq. (3). Therefore, adiabatic perturbations are also
called curvature perturbations. Let us re-write Eq. (48) for temperature perturbations:

– Radiation domination,
Î #¶� Î Bí·ÄB , and we findT � # ; R �& � (49)

– Matter domination,
Î #>� Î Bí·ÄB , and we findT � # ;�&�R �� � (50)

Recall now that in the limit
R ñÌ� � the gravitational potentail is time-independent, R>#à� jHV���g . There-

fore, Eq. (47) has to be supplemented by the following initial conditions in the case of the adiabatic
mode: T �FY# �¹, uT � # � � (51)

Temperature fluctuations on largest scales. Let us consider the modes which had entered the horizon
after matter-radiation equality,

R ñ �[Z]\ � . For those modes,

u
R># � all the way from initial moments till

the present, and the solution of Eq. (47) with adiabatic inital conditions isT K ñ L S R # K T � S R L � jH� À R ñ^ � Á � (52)
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Fig. 6: Sensitivity of the CMBR angular power spectrum to four fundamental cosmological parameters (a) the
curvature as quantified by _H`bac` (b) the dark energy as quantified by the cosmological constant _ed ( fJdhgjilk )
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As gravity tries to compress the fluid, radiation pressure resists resulting in acoustic oscillations. It is
important that oscillations are synchronized. All modes have the same phase regardless of

R
. This is a

consequence of

uT � # � , which is valid for all
R

. At the last scattering, the Universe becomes transparent
for the radiation and we see a snapshot of these oscillations at ñx#Cñ 0 � .

To make its way to the observer, the radiation has to climb out of the gravitational wells, R ,
which are formed at the last scattering surface. Therefore the observed temperature fluctuations areT ����� # T K ñ 0 � L S R , or T ����� # �� R � � jH� À R ñ 0 �^ � Á , (53)

where we have used Eq. (50), which relates initial values of
T

and R . Note that overdense regions
correspond to cold spots in the temperature map on the sky, since the gravitational potential is negative.
This is the famous Sachs–Wolfe effect [24].

Acoustic peaks in CMBR. Modes caught in the extrema of their oscillation,
R�� ñ 0 � · ^ �J#�© ? , will

have enhanced fluctuations, yielding a fundamental scale, or frequency, related to the Universe sound
horizon,

F � � ñ 0 � · ^ � . By using a simple geometrical projection, this becomes an angular scale on the
observed sky. In a spatially flat Universe, the position of the first peak corresponds to 5 
 ��& ��� , see
below. Both minima and maxima of the cosine in Eq. (53) give peaks in the CMBR power spectrum,
which follow a harmonic relationship,

R�� #¶© ?A· F � , see Fig. 5.

The amplitudes of the acoustic peaks are recovered correctly after the following effects are taken
into account: 1) baryon loading; 2) time-dependence of R after horizon crossing in a radiation-dominated
Universe; 3) dissipation.

The effect of baryons is exactly the same for the oscillator equation Eq. (52), as if we had increased
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the mass of a load connected to a spring and oscillating in a constant gravitational field starting on top
of an uncompressed coil at rest. The addition of baryons makes a deeper compressional phase, and
therefore increases every other peak in the CMBR power spectrum. (First, third, fifth, ����� ) The CMBR
power spectrum is a precise baryometer.

Gravitational potentials are not constant, but decay inside the horizon during radiation domination.
This decay drives the oscillations: it is timed to leave compressed fluid with no gravitational force to fight
when the fluid turns around. Therefore, the amplitudes of the acoustic peaks increase as the cold dark
matter fraction decreases, which allows us to measure

æ î
.

Dissipation leads to dumping of higher order peaks in the CMBR power spectrum.

The dependence of the CMBR angular power spectrum on different cosmological parameters is
shown in Fig. 6.

The position of the first peak. The Position of the first peak is determined by the angular size of the
sound horizon at last scattering. Let us calculate here a similar quantity: the causal horizon (which is
larger by a factor of

^ � in comparison with the sound horizon). The comoving distance travelled by
light,

E¿F 1 # � , from the ‘Big Bang’ to redshift z is determined by a relation similar to Eq. (33), but with
different integration limits ñ K � L # «���

E � �Â K � � L , (54)

where
Â K � L is given by Eq. (36). One has to integrate this relation with a complete set of

æ � , but for
simplicity let us consider here the Universe dominated by a single component m �ñ K � L # K � S � L � *��� � Â � ,
where � � � K � S �DÉ � L ·-& . From the last scattering to �Ï¨ � , the Universe was matter dominated.
Therefore, the causal horizon in a matter-dominated Universe K É � # � Lñ K � L # &Â � ^ � S �
should give a reasonable first approximation.

Consider two light rays registered at � # � which were separated by a comoving distance
ò #¶ñ K � L

at the moment of emission. Since both propagate in the metric
E¿F 1 # I 1 K E ñ 1 ; EHò 1 ; ò 1 E¿T 1 L # � , we

find for the angular size of horizon at last scatteringT?� # ñ K � 0 � Lñ K � L # �^ � S � 0 � # � B �B+0 � �>& : � (55)

– This gives the position of the first acoustic peak, 5 �>& ��� .
– This tells us that there were ���  causally disconnected regions at the surface of last scattering.

Horizon problem. Regions separated by more than � & : have not been in causal contact prior to the
last scattering in the standard Friedmann cosmology. The microwave sky should not be homogeneous on
scales � &�: . Yet, CMB is isotropic to better than ��� �� on all scales. Observations tell us that all modes
were, indeed, synchronized according to adiabatic initial conditions, Eq. (51), with only small initial
perturbations present, R � � � . This constitutes the so-called ‘Horizon problem’ of standard cosmology.
In Section 7 we will see how this problem is solved in the framework of inflationary cosmology.
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Fig. 7: Left panel: comparison of CMB power spectra in the models with adiabatic and isocurvature initial per-
turbations, from Ref. [30]. Right panel: adiabatic power spectra in comparison with spectra appearing in models
seeded by topological defects, from Ref. [31]. In this panel some older, pre-WMAP, data are also shown.

Non-adiabatic perturbations. For the isocurvature perturbations, instead of Eq. (51), the initial con-
ditions are given by Î � # �¹, uÎ �FY# � � (56)

That is because, in this case, perturbation in total density (and therefore in curvature) are zero initially.
As a consequence, in Eq. (52) we will have sine instead of cosine. Acoustic peaks will be shifted by half
a period, see Fig. 7. Therefore, isocurvature perturbations are ruled out by modern CMBR experiments.

If density perturbations would be seeded by topological defects (e.g. cosmic strings), both sine and
cosine will be present in the solution for temperature fluctuations, Eq. (52). That is because the source
for R V is active inside the horizon and phases of

T�V
will be random. Acoustic peaks will be absent,

see Fig. 7. Structure formation seeded primarily by topological defects is ruled out by modern CMBR
experiments.

4 LARGE-SCALE DISTRIBUTION OF GALAXIES

Primordial cosmological fluctuations leave their imprint as CMBR anisotropies (discussed in the previ-
ous section), and as density perturbations which give rise to galaxies and clusters of galaxies. CMBR
anisotropies are observed on a two-dimensional surface of last scattering, and therefore are measured as
a two-dimensional power spectrum. On the other hand, the distribution of galaxies can be measured in
three dimensions. (Two angular coordinates of the line of sight to a galaxy and its redshift.) Different
physical processes influence the initial perturbations until they are transformed into CMBR fluctuations
or fluctuations of the distribution of galaxies. This influence can be encoded as a function of momenta,
the transfer function B K R L , which simply maps the power spectrum of the initial perturbations into the
observed power spectrum, and is a function of cosmological parameters. Therefore, the distribution of
galaxies gives complementary information with respect to CMBR anisotropies and helps to break degen-
eracy between cosmological parameters and the initial spectrum.

This is illustrated in Fig. 8 with CMBR data from WMAP and large-scale structure data from
SDSS. The left panel corresponds to 95% constraints in the K æ<î , ã L plane. The shaded dark red region is
ruled out by WMAP alone leaving the long banana region. This shows that these two basic cosmological
parameters are not well constrained by WMAP alone. The shaded light red region is ruled out when
SDSS information is added. The small (shown as white) region remains allowed. Note that the allowed
region is in good agreement with a completely independent measurement by the HST key project based
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Fig. 8: Combined CMBR and large-scale structure constraints. Left panel: 95% constraints in the ��_ q�� o�� plane.
Right panel: 95% constraints in the ��_ q�� _Hd�� plane. From Ref. [10].

on entirely different physics. The combined WMAP + SDSS constraint is even tighter than the HST
project measurement.

One should bear in mind that there are caveats here. In deriving the WMAP+SDSS constraints
which are shown in this figure, it was assumed that the Universe is spatially flat, neutrinos have negligible
masses and the primordial spectrum is a pure power law. Without these priors the constraints are less
tight.

The constraints in the K æ+î , æiï L plane with the assumption about spatial curvature being relaxed
is shown in Fig. 8, right panel. The shaded dark red region is ruled out by WMAP alone, illustrating
the well-known geometric degeneracy between models that all have the same acoustic peak locations.
The shaded light red region is ruled out when adding SDSS information. Continuing inwards, the next
two regions are ruled out allowing the assumption that re-ionization optical depth � \ � �'� and when
supernova SN Ia information is included.

æ¬ï � � is required with high confidence only when CMBR is
combined with galaxy clustering information, or SN Ia information, see the next section.

5 DARK ENERGY

Something which is often called ‘dark energy’ reveals itself in a variety of cosmological and astrophysical
observations. This form of matter gravitates, but does not cluster. Contrary to radiation or dark matter,
the dark energy causes the accelerated expansion of the Universe. The need for it was hinted at long
ago to resolve the conflict between the measured Hubble constant and the lower limits on the age of the
Universe. Without the cosmological constant it was also not possible to obtain the correct growth of
large-scale structures in the

æ # � Universe. Recently, the presence of dark energy was derived from the
spectrum CMBR anisotropies and directly detected in the Hubble diagram of high redshift supernovae.

Age of the Universe. If there is no dark energy, the Universe should be matter dominated and should
expand according to

I # K G · G��ÄL 1 ¯ � . Differentiating this expansion law we findÂ G #>&H·-�³� (57)

The value of the Hubble constant, as derived by the Hubble Key Project from the Hubble diagram, is� & ² � km s ��
 Mpc ��
 [14], see Fig. 2. On the other hand, the lower bound on the age of the Universe
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Fig. 9: Graphical representation of Eq. (60) assuming critical density, _ `�a�` g�k .
can be established estimating the ages of various objects it consists of. For example, the temperature of
the coldest white dwarfs in globular clusters yields a cluster age of � &�� � ² � � � Gyr [13]. This givesÂ ��GÔ� � � �'§�� ² � � � & , (58)

in clear disagreement with Eq. (57). In other words, the Universe appears much younger than the ages
of the oldest objects in it. The critical density Universe,

æ # � , cannot consist of pressureless matter if
measurements of the Hubble constant are correct and Friedmann equations are valid.

The simplest cure (but ‘embarrassing’ from the point of view of the particle physicist), is to add a
cosmological constant, or dark energy. It should be stressed that this minimal modification of Friedmann
equations is consistent with all other current cosmological tests and measurements. In the general case,
the age of the Universe can be related to the expansion history asGÐ� # « ÝWÜ� E2G # « ÝWÜ� I E ñx# «��� E �K � S � L Â K � L � (59)

Here we have used Eqs. (24), (27), (28). For two components, pressureless matter and dark energy with
equations of state É , this relation can be written as [see Eq. (36)]:Â ��GÐ� # «��� E �K � S � L ë ¯ 1z� æD� S æl�3� K � S � L � Ê � (60)

The product
Â ��GÐ�

as a function of É , assuming
æ�� S æl�3� # � , is shown in Fig. 9. We see that it

matches the observational constraints when É�� ; � and
æ � � � �'� .

A discussion of further evidence for dark energy, e.g., related to the problem of the growth of
density perturbations, can be found in Ref. [32].

Redshift–luminosity distance relation for Supernovae Ia. For the two-component energy content of
the Universe, presureless matter and dark energy, the expression for the luminosity distance, Eq. (33),
takes the form � � # � S �Â � « �� E ���K � S � � L � ¯ 1 � æ�� S æD�%� K � S � � L � Ê , (61)
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see Eqs. (32), (33), (36). To use this relation as a cosmological test in conjunction with Eq. (34), one
has to find a set of standard candles. This is a big challenge in practice, since we have to find very
bright objects which can be seen from far away. At the same time, all of them should have the same
luminosity, and we have to be sure that they do not evolve intrinsically. These requirements rule out
galaxies and quasars. However, supernovae seem to be suitable. They are bright, as bright as the whole
galaxy at the peak of luminosity, and Type Ia supernovae appear to be standard candles. These types of
supernovae are thought to be nuclear explosions of white dwarfs in binary systems. The white dwarf,
a stellar remnant supported by the degenerate pressure of electrons, accretes matter from a companion
and its mass increases toward the Chandrasekhar limit of about � �_�âº�� . Near this limit, the degenerate
electrons become relativistic, which leads to instability and the white dwarf explodes. This physics
allows the explosions to be calibrated, since instability occurs under the same conditions.

To proceed, I must remark on the units of flux used by astronomers, which are magnitudes. The
system is ancient, and has its origin in the logarithmic response of the human eye. The ratio of the flux
of two objects is then given by a difference in magnitudes; i.e.,� 1 ; � 
 # ; &��'� ekj�� 
 � K Æ 1 ·DÆ 
 L � (62)

A smaller magnitude means larger flux.

Figure 10, left panel, shows the corresponding SNe Ia redshift–luminosity distance diagram. Data
points correspond to magnitudes of SNe Ia measured at different redshifts. The case of

æ�� # � (red
curve) is ruled out. The ‘concordance model’

æ�� # � �'& � and
æiï # � � � � (black dashed curve) is within� - . For a flat geometry prior, best fit corresponds to

æ�� # � �'&�§ ² ��� � ë��� � � (correspondingly
æ+ï # � � � � ).Data are inconsistent with a simple model of evolution of SNe Ia, or dimming due to light absorption by

dust as an alternatives to dark energy. The shaded area in Fig. 10, right panel, corresponds to 68%, 95%
and 99.7% confidence levels in the (

æ��
,
æ4ï

) plane.

Constraints from CMB. Tight constraints on dark energy, and in a direction in parameter space which
is ‘orthogonal’ to SNe Ie constraints, are obtained from fitting the power spectrum of cosmic microwave
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Fig. 11: Left panel: Constraints on the equation of state of dark energy in the ( f , _E� ) plane for a combination of
the CMBR + 2dF + SNe Ia data sets. Right panel: Constraints on the geometry of the Universe in the ( _ � , _ d )
plane assuming the prior o � Ozv x . From Ref. [34].

background anisotropies, see the discussion in Section 3 The WMAP data alone rule out the standardæD� # � CDM model by � - if the prior ãÏ�Ç� �'� is accepted [9]. The resulting confidence levels in
(
æD�

,
æ4ï

) plane are shown in Fig. 11. While the CMBR data alone are compatible with a wide range
of possible properties for the dark energy, the combination of the WMAP data with either the HST key
project measurement of

Â �
, the 2dFGRS measurements of the galaxy power spectrum, or the Type Ia

supernova measurements requires that the dark energy be
æ<ï # � � � � ² � � � � of the total density of the

Universe, and that the equation of state of the dark energy satisfy É \ ; � � � (95% CL) [9].

Constraints from gravitational lensing. Gravitational lensing will be discussed in Section 6. Here we
just note that the analysis of strong lensing of sources with known redshift is sensitive to the value of the
geometrical cosmological parameters of the Universe. A recent study [35] of the lensing configuration
in the cluster Abell 2218 is in agreement with the concordance model. In particular, assuming the flat
Universe, it gives for the equation of state of dark energy É \ ; � �'��� . These constraints are consistent
with the current constraints derived from CMB anisotropies or supernovae studies, but they are com-
pletely independent tests, providing nearly orthogonal constraints in the K æ � , æ ï L plane, see Fig. 18 in
Section 6.

Biggest Blinder – Biggest Surprise. From the point of view of the particle physicist, the cosmological
constant just should not be there. Indeed, in quantum field theory, the cosmological constant corresponds
to vacuum energy, which is infinite and has to be renormalized,mz� � ø # �& K &-? L �¬« V�¡£¢.¤� ù V R 1 E R � (63)

The natural value for the cut-off in this integral is the Planck scale, and then m%��� ø ¨ º  ¥ 0 �����¦Ô ýå8��5  . Exact supersymmetry can make this integral vanish. Indeed, in Eq. (63), the contribution
of one bosonic degree of freedom is counted. Fermions contribute with an opposite sign, and if there is
an equal number of bosons and fermions with equal masses, the vacuum energy will be zero. However,
supersymmetry is broken at least at the electroweak scale, and then m§��� ø should not be smaller than¨ º  ¨ � ��� , å8��5  . Before dark energy was detected, it was believed that some yet unknown
mechanism reduces the cosmological constant to zero. Zero is a natural number. However, it is hard to
understand the smallness of the observed value m ��� ø � ������ ��íå8��5  . Moreover, there is another pressing
issue of fine tuning: Why does the detected value of m£� � ø approximately equal the energy density of
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Fig. 12: The rotational curves of two sample galaxies. Left panel: M33, adapted from Ref. [36]. Right panel:
NGC6503, adapted from Ref. [37]. I superimposed with the rotational curves the optical images of corresponding
galaxies, approximately to scale.

matter at the present epoch of cosmological evolution? The ratio of these two contributions scales as
I �

and, say, at recombination the vacuum energy was only ���w�)3 of matter energy. Detection of dark energy
not only points to a new physics, but hints that we are missing SOMETHING very fundamental.

6 DARK MATTER

CMBR observations accurately measure the geometry of the Universe, its present expansion rate, its
composition, and the nature and spectrum of the primordial fluctuations. Nevertheless, the traditional
cosmological tests are still important. In particular, degeneracies between different parameter sets exist,
which can produce the same CMBR spectra, and the conclusions drawn do rest upon a number of as-
sumptions. Below we consider cosmological observations that are independent of the CMB and point to
the existence of non-baryonic dark matter.

6.1 Dark matter: motivation
The missing mass is seen on all cosmological scales and reveals itself via:

– Flat rotational curves in galaxies.
– Gravitational potential which confines galaxies and hot gas in clusters.
– Gravitational lenses in clusters.
– Gravitational potential which allows structure formation from tiny primeval perturbations.

6.1.1 Dark matter in galaxies

Galactic rotational curves. Consider a test particle which is orbiting a body of mass º at a distanceQ
. Within the frameworks of Newtonian dynamics the velocity of a particle is given byÃ �Ø�Ðö # � @½º K Q2LQ � (64)

Outside of the body, the mass does not depend on distance, and the rotational velocity should obey
Kepler’s law, Ã �Ø�Ðö �%Q ��
 ¯ 1 . Planets of the Solar system obey this law. However, this is not the case for
stars or gas which are orbiting galaxies. Far away from the visible part of a galaxy, rotational curves
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Fig. 13: Left panel: the phase space structure of an infall model. Right panel: rotational curves in an infall models.
Two curves which correspond to different angular momenta are shown. From Ref. [40].

are still rising or remain flat. Two examples are shown in Fig. 12. An optical image of the M33 galaxy
is superimposed with its rotational curve, approximately to correct scale. The contribution of visible
baryons in the form of stars and hot gas can be accounted for, and the expected rotational curve can be
constructed. The corresponding contributions are shown in Fig. 12. One can see that the data-points
are far above the contribution of visible matter. The contribution of missing dark mass, which should be
added to cope with data, is also shown and is indicated as Dark halo. For the rotational velocity to remain
flat, the mass in the halo should grow with the radius as º K QHL��CQ , i.e., the density of dark matter in the
halo should decrease as m K Q2L��¶Q �)1 .
Halo structure. For direct and indirect dark matter searches it is important to know the phase-space
structure of the dark halo as well. With dark matter particles that are interactive, a thermal distribu-
tion over velocities would eventually be established. However, in conventional cold dark matter models,
particles are non-interacting, except gravitationally. Binary gravitational interactions are negligible for
elementary particles, and the resulting phase-space distributions are not unique, even for stationary equi-
librium states, and even if flat rotational curves are reproduced.

1. The simplest self-gravitating stationary solution which gives flat rotational curves corresponds
to an ‘isothermal sphere’ with Maxwellian distribution of particles over velocities:© K2©Q , ©Ã L #¶© K Q2L ¢ �§ª Ñ ¯ ª ÑÜ � (65)

A solution of the equation of hydrostatic equilibrium can be approximated by the density profilem K Q2L # m �K � S ; 1 L ,¬«�­������ ; � Q · Q ¾i� (66)

It should be stressed that the distribution Eq. (65), in contrast to a distribution in real thermal equilibrium,
depends on particle velocities, not on their energies. Such distributions may arise in time-dependent
gravitational potential as a result of collisionless relaxation.

2. There exist several density profiles which are empirical fits to numerical simulations, e.g., the
Navarro, Frenk and White (NFW) profile [38] and the Moore et al. profile [39]m K Q2L # m �; K � S ; L 1 ® dr¯%, (67)m K Q2L # m �; � ¯ 1 K � S ; � ¯ 1 L á j�j����±°>²n³�´ � (68)

3. In the cold dark matter model, the distribution of particles in the phase space during the initial
linear stage prior to structure formation corresponds to a thin hypersurface, µÇ# Â·¶

(or line in the
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Fig. 14: Left panel: one of the detected microlensing effects, see Ref. [44]. Right panel: schematic view of
gravitational lensing by point mass.

Hubble diagram). Since during collisionless evolution the phase-space density conserves, at the non-
linear stage the distribution will still be a thin hypersurface. It can be deformed in a complicated way and
wrapped around, but it cannot tear apart, intersect its own folds, puff up or dissolve. The corresponding
phase-space distribution for the case of spherical symmetry is shown in Fig. 13, left panel. With time, the
non-linear structure grows, and the infall of new particles continues. This manifests itself as a growth of
turnaround radius (which is a surface where Ã # � ; the turnaround radius of our Galaxy is at 1 Mpc, see
Ref. [41]) and as an increasing number of folds inside turnaround. The energy spectrum of dark matter
particles at a fixed position will be discrete, see Fig. 13, left panel, where several velocity peaks are
indicated at the intersections of the vertical dashed line,

Q #C� jHV���g , with phase-space sheets. The overall
shape of the spectrum also changes compared to an isothermal distribution. This may be important for
direct dark matter searches.

The infall model reproduces flat rotational curves, see Fig. 13, right panel. There is one interesting
difference, though; rotational curves of the infall model have several small ripples in the region where
the curve is flat. These ripples appear near the surfaces where Ã # � . In principle, they may be detectable
[42, 43] and then it will give a clear, unique signature of the presence of dark matter in the galactic halo,
(as opposed to models which try to explain apparent violation of Kepler’s law by modification of gravity).

The existence of such a folded structure is a topological statement. However, in the inner halo
the number of folds is very large, and limited resolution makes the distribution indistinguishable from,
say, isothermal. It is not clear at which distances the description of halo in terms of the infall becomes
appropriate. But for a sufficiently isolated galaxy, in regions closer to the outer rim of the halo, where the
number of folds is still small, signatures of the infall should exist, and they do exist in our Galaxy [41].

Baryonic Halo Dark Matter? No. Already CMBR alone tells us that there should be non-baryonic
dark matter, see Table 1. BBN and CMB agree on

æ � # � � � � , however, the contribution of stars amounts
only to

æ �Øö � ��� # � � ��� � . There should be dark baryons hiding somewhere. Can it be that the whole, or
at least some part, of the halo dark matter is comprised of dark baryons in the form of non-luminous
objects? Candidates are Jupiter-like planets, brown dwarfs (which are undersized stars, too light to ignite
thermonuclear reactions), or already dead stars (white dwarfs, neutron stars, or even black holes). This
class of objects got the acronym MACHO, from MAssive Compact Halo Objects. Special techniques
based on gravitational lensing were developed for MACHO searches. These searches were successful,
but by now it is clear that MACHOs cannot comprise the whole of dark matter, as their fraction of DM
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Halo Binaries
Microlensing

Fig. 15: 95% confidence limits on the MACHO fraction of the standard local halo density. Green and blue lines
- results of EROS [45] and MACHO [46] microlensing collaborations. Red line - constraint from the absence of
distortion of distribution of binary stars in angular separation [47]. Note that the microlensing exclusion curve
extends outside of the plotted range and up to ¸�¹ºk�Oz»	¼�¸¾½ , see Ref. [45].

halo is restricted to be \ � � � . Since MACHOs are the only type of dark matter which has been detected,
let us consider the issue in some more detail.

Consider the light deflection by a point mass º . If the impact parameter ¿ is much larger than the
Schwarzschild radius of the lens, ¿ÁÀ &H@�º , then general relativity predicts that the deflection angle of
a light ray, / , is /½# �¿@�º¿ � (69)

This is twice the value obtained in Newtonian gravity. If the lens happens to be on the line which connects
the observer and a source, the image appears as a ring with the radius (Einstein ring radius)Q 1# #¶��@"º � E 
 E 1E 
 S E 1 , (70)

see Fig. 14, right panel. If the deflector is displaced from the line of sight by the distance
Q
, then instead

of the ring, an odd number of images will appear. If the images cannot be observed separately, because
the resolution power of the telescope is not sufficient, then the only effect will be an apparent brightening
of the source, an effect known as gravitational microlensing. The amplification factor isÂ # & S�Ã 1Ã ^ � S�Ã 1 , (71)

where Ã # Q · Q # . If the lens is moving, the distance
Q

will be changing with time, and the image of the
background star will brighten during the closest approach to the line of sight. If the galactic halo is filled
with MACHOs, this may happen occasionally for some of the background stars. The typical duration of
the light curve is the time it takes a MACHO to cross an Einstein radius, ó G ¨ Q # · Ã , where Ã¸¨ ���¹�)�
is typical velocity in the halo. If the deflector mass is � ºÄ� , the average microlensing time will be 3
months, for ���¹�)1 º�� it is 9 days, for ���¡�� ºh� it is 1 day, and for ���¹�)� º�� it is 2 hours.

An optical depth for microlensing of the galactic halo is approximately � ¨ ��� �)� . Thus, if one
looks simultaneously at several million stars during an extended period of time, one has a good chance
of seeing at least a few of them brightened by a dark halo object. The first microlensing events were
reported in 1993. Nowadays, there are more than fifty registered events. One of them is shown in
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Fig. 16: X-ray (left panel) and optical (middle panel) images of the Abell 2029 cluster of galaxies. Right panel:
ratio of total enclosed cluster mass to light in A2029, from Ref. [49].

Fig. 14. However, derived optical depth is not sufficient to account for all dark matter in the Galaxy halo.
95% confidence limits on the MACHO fraction of the standard local halo density is shown in Fig. 15.

Since MACHOs cannot account for the mass of the dark halo, non-baryonic dark matter should be
present out there.

6.1.2 Dark matter in clusters of galaxies

In 1933, F. Zwicky [48] deduced the existence of dark matter in the Coma cluster of galaxies. Nowadays,
there are several ways to estimate masses of clusters, based on the kinetic motion of member galaxies, on
X-ray data, and on gravitational lensing. These methods are different and independent. In the dynamical
method, it is assumed that clusters are in virial equilibrium, and the virialized mass is easily computed
from the velocity dispersion. In X-ray imaging of hot intracluster gas, mass estimates are obtained
assuming hydrostatic equilibrium. Mass estimates based on lensing are free of any such assumptions.
All methods give results which are consistent with each other, and tell us that the mass of the luminous
matter in clusters is much smaller than the total mass.

Kinetic mass estimates. Those are based on the virial theorem, Å z � �Ðö7Æ S &£Å zDÇ �_� Æ # � . Here Å z�Ç �_� Æ #È Å�� Ã¿1 Æ ·-& is the averaged kinetic energy of a gravitationally bound object (e.g. cluster of
È

galaxies)
and Å z � �Ðö�Æ # ;�È 1 Å�� 1 Æ ·-&£Å Q Æ is its averaged potential energy. Measuring the velocity dispersion of
galaxies in the clusters and its geometrical size gives an estimate of the total mass, º � È Å�� Æ .º ¨ &£Å Q Æ Å Ã 1 Æ@ � (72)

The result can be expressed as mass-to-light ratio, º¶·W� , using the Solar value of this parameter. For the
Coma cluster, which consists of about 1000 galaxies, Zwicky [48] foundº � ¨ � ���Xã º ��y� � (73)

Modern techniques end up with very much the same answer. ºC·W� ratios measured in Solar units in
central regions of galaxies range from a few to 10 in spirals and large ellipticals. If clusters are large
enough systems for their º¶·W� to be representative of the entire Universe, one finds [50]æD� � � �'& ; � �'�³� (74)

27

ASTROPARTICLE PHYSICS

279



Background  Galaxy

Distorted  Image
(Partial  Einstein  Ring)

Foreground Cluster of Galaxies

Observer

Fig. 17: Left panel: an image of the cluster Abell 2218 taken with the Hubble space telescope (see Ref. [52]).
Spectacular arcs resulting from strong lensing of background galaxies are clearly seen.

Mass estimates based on X-rays. Mass is also traced in clusters of galaxies by hot gas which is visible
in X-rays. Assume hot gas is in thermal equilibrium in a gravitational well created by a cluster. Then its
density distribution m	É K QHL and pressure GrÉ K QHL satisfy�mzÉ K Q2L E GrÉ K Q2LEHQ # ; @�º K Ê Q2LQ 1 � (75)

Observationally, the gas density follows from the X-ray luminosity. Gas temperature can be measured
from the shape of the X-ray spectrum. By measuring the temperature profile of a gas, one can reconstruct
the gas pressure GHÉ K Q2L . In this way, the radial run of mass can be deduced.

For example, detailed modelling [49] of Abell 2029, which is shown in Fig. 16, leads to the conclu-
sion that the cluster is dark matter dominated all the way into its core. After subtracting the contributions
of stars and hot gas in the mass budget, the density profile of dark matter can be reconstructed. It agrees
with the NFW dark matter profile, Eq. (68), m � � ·?; K � S ; 1 L , where ; � Q · QWË and

QWË #à�D� � kpc. The
agreement is remarkably good on all scales measured, 3–260 kpc. Baryons contribute Ì ì � � ��� to the
total mass of the cluster. Assuming universal baryon mass fraction and

æ�ì
from big bang nucleosynthe-

sis, this also gives
æ+î � æiî ·ÍÌ ì � � �'&�§ for the total mass budget in the Universe, in agreement with

other current estimates.

The same methods can be employed for studies of dark matter in large elliptical galaxies. In
Ref. [51] the mass profile of the elliptical galaxy NGC 4636, based on the temperature of hot interstellar
gas, was obtained for distances from 0.7 to 35 kpc. It was found that the total mass increases as radius to
the power 1.2 over this range in radii, attaining a mass-to-light ratio of 40 solar masses per solar visual
luminosity at 35 kpc. As much as 80% of the mass within the optical half-light radius is non-luminous
in this galaxy.

Gravitational lensing. Gravitational lensing allows direct mass measurement without any assumptions
about the dynamical state of the cluster. The method relies on the measurement of the distortions that
lensing induces in the images of background galaxies. As photons travel from a background galaxy
to the observer, their trajectories are bent by mass distributions, see Fig. 17, right panel. Consider the
deflection by a point mass º . For impact parameter ¿ which is much larger than the Schwarzschild
radius of the lens, ¿ÎÀ &H@"º , the deflection angle / is given by Eq. (69). If the gravitational field is
weak, the deflection angle of an ensemble of point masses will be the vectorial sum of the deflections
due to individual lenses.

A reconstruction of lens geometry provides a map of the mass distribution in the deflector. For a
review of the method see, for example, Ref [53]. The images of extended sources are deformed by the
gravitational field. In some cases, the distortion is strong enough to be recognized as arcs produced by
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Fig. 18: The constraints on cosmological parameters obtained from the study of the lensing configuration in the
Abell 2218 cluster of galaxies [35].

galaxy clusters serving as a lens, see Fig. 17, left panel. For the cluster A 2218, shown in this figure,
Squires et al. [54] compared the mass profiles derived from weak lensing data and the X-ray emission.
The reconstructed mass map qualitatively agrees with the optical and X-ray light distributions. A mass-
to-light ratio of ºC·W�¦# K ��� � ² � � L ã in solar units was found. Within the error bars the radial mass
profile agrees with the mass distribution obtained from the X-ray analysis, with a slight indication that at
large radii the lensing mass is larger than the mass inferred from X-rays. The gas to total mass ratio was
found to be ºhÏ�� � ·�º ö��Ðö # K � � � � ² � � � & L ãb�)� ¯ 1 .

Interestingly, the analysis of multiple images of several sources with known (and significantly
different) redshift produced by a cluster lens is sensitive to the value of the geometrical cosmological
parameters of the Universe. Study [35] of the lensing configuration in the cluster Abell 2218 gives� \ æD� \ � �'� � assuming a flat Universe, and � \ æ�� \ � �'��� and É \ ; � �'��� assuming a flat
Universe with dark energy, see Fig. 18. These constraints are consistent with the current constraints
derived with CMB anisotropies or supernovae studies, however, this method is a completely independent
test, providing nearly orthogonal constraints in the K æ±� , æ4ï L plane.

6.2 Structure formation and DM
By now the structure in the Universe (galaxies and clusters) is already formed, the perturbations in matterÎ m¹·:m ¨ � � . However, the initial perturbations were small

Î m¡·:m ¨Ç��� �)ë . Perturbations do not grow in
the radiation dominated epoch, they can start growing only during matter domination

Î m¹·:m ¨ I # � · � .
Moreover, baryonic plasma is tightly coupled to radiation, therefore perturbations in baryonic matter
start to grow only after recombination. For the same reason, initial perturbations in baryons at the time
of recombination equal to fluctuations in CMBR. If baryons were to constitute the only matter content,
then perturbations in matter at the present time would be equal toÎ mm ô ö�� õ ��Ð # � ����ø Î mm ô ����ø ¨%��� �)1 , (76)

where � ����ø � ������� is the redshift of recombination. This is one of the strongest and simplest arguments in
favour of non-baryonic dark matter. Structure has had time to develop only because perturbations in non-
baryonic dark matter have started their growth prior to recombination. Baryonic matter then ‘catches up’
simply by falling into already existing gravitational wells. If one aims to explain things by modification
of gravity, one has to explain not only the flat rotational curves in galaxies and the presence of dark
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Fig. 19: Left panel: The constraints on axion parameters. Red blocks—various cosmological and astrophysi-
cal constraints; yellow blocks—exclusion regions obtained in dedicated dark matter search experiments; green
blocks—the allowed regions in two cosmological scenarios. Right panel: Solid curve—the exclusion limits on
the coherent WIMP-nucleon scalar cross-section obtained by CDMS collaboration in the direct dark matter search
experiment; the parameter space above the curve is excluded at the 90% C.L. These limits are inconsistent with
the DAMA 3 4 signal region [73] (closed dashed contour) if it is due to scalar coherent WIMP interactions. Also
shown are limits from CDMS at SUF (dotted line). The typical predictions of supersymmetric models are shown
in yellow. Adapted from Ref. [74].

matter in galaxy clusters, but also to provide the accelerated growth of structure from recombination till
the present, in a consistent way.

6.3 Non-baryonic dark matter candidates
There is no lack of dark matter candidates in particle physics models. Some of them appear naturally, and
were motivated by some other reasoning, not related to the dark matter problem. They are the leading
candidates and are listed below.

– Axion (mass � ¨ ���¹�)ë eV). Appeared [55, 56] as a by-product of a suggested solution of the
strong CP problem via a global Ñ K � ) Peccei–Quinn symmetry [57]. The axion picks up a small
mass in a way similar to the pion when chiral symmetry is broken. The parameters of these two
particles are related, in particular � ´ ¨ � ¼ Ì ¼ ·ÍÌ ´ , where Ì ´ , is the axion decay constant, and
determines also the strength of the axion coupling to other particles. There are tight astrophysical
and cosmological bounds on Ì ´ which leave only a narrow window, ��� 
 � å8��5ÓÒ Ì ´ Ò%��� 
�1 å8��5 ,
see Fig. 19, the left panel. For a review of axion physics and searches see, e.g., Refs. [58, 59].

– Neutrino ( � ¨à� � � eV). The only dark matter candidate which is known to exist. For this reason
we discuss the neutrino in some more detail below. For a review of neutrino cosmology see,
for example, Ref. [60], and for the neutrino astrophysics see Ref. [61]. While the neutrino is
cosmologically important, it cannot resolve the dark matter problem.

– Mirror matter ( º ¨ � GeV). Does not belong to the list of the most popular candidates, but is
attractive as an example of a model [62–64] where the approximate equality of baryonic and non-
baryonic contributions in the energy balance of the Universe is attempted to be explained naturally,
and not as a result of fine-tuning of model parameters.
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– WIMP ( � ¨~����� GeV). The most popular candidate, a natural outcome of supersymmetry. The
lightest supersymmetric particle (or LSP) is naturally stable and would have interesting cosmo-
logical abundance. Known also under the names neutralino (dark matter has to be colour and
electrically neutral) and WIMP (from Weakly Interacting Massive Particle). For recent reviews
see, for example, Refs. [65, 66]. The current status of direct and indirect WIMP searches is re-
viewed in Ref. [67]. The new limits obtained by the CDMS Collaboration and not reflected in
cited reviews are shown in Fig. 19 (right panel).

– WIMPZILLA ( � ¨ ���¹
�� GeV). The newcomer, was initially motivated as a solution of the
Greizen–Zatsepin–Kuzmin puzzle of ultra-high-energy cosmic rays [68, 69]. Its popularity was
boosted by the observation that cosmologically interesting abundance is created naturally, just as
a sole consequence of expansion of the Universe [70, 71].

Non-baryonic dark matter model building and searches make an extensive subject on their own. There
are many dedicated excellent reviews, I cannot list them all, see, for example, an earlier one [72] and the
latest [65–67] ones. For this reason, and because of space limitations, I will not describe non-baryonic
dark matter in all its variety, instead I’ll spend some time on simple and universal relations.

Cosmological density of neutrino. Here we calculate the abundance of particles which were once in
thermal equilibrium with the rest of cosmological plasma. Let us first consider the case of the neutrino.

Comparing the weak interaction rate, Ô ¨ B ë ·�º  Õ , to the expansion rate,
Â ¨ B 1 ·�º ¥ 0 , one

finds that neutrinos are in thermal equilibrium at temperatures BÖÀ � MeV and decouple from the rest
of plasma at lower temperatures. (One can do this in full detail, see Ref. [60].) Therefore, Standard
Model neutrinos, which have small masses, decouple when they are still relativistic. The number density
of neutrino at this time is given by Eq. (14). Below this temperature, neutrinos are no longer in thermal
equilibrium with the rest of the plasma, and their temperature simply decreases as B � � · I . However,
the cosmological background of photons is heated up by the ¢ £ ¢ � annihilations. Let us find a relation
between B 9 and B3* , which will also give the relation between © 9 and ©+* .

The annihilation reaction rate is much faster than the expansion of the universe, therefore this
process is adiabatic, and entropy in comoving volume is conserved, =�� B � #Ï� jHV���g , see Eq.(11). Before
annihilation = � # = * S = ûNê K � ·-� L #>& S �<ê K � ·-� L # ��� ·-& . After annihilation = � # = * #>& . Since before
annihilation B 9 # B3* , we find B 9 # K �¿· ��� L 
 ¯ � B%* , and for one neutrino flavour we have© 9 # ���� ©+*³� (77)

Here we used Eq. (14) and = * # = 9 #Ï& , since right-handed neutrinos do not contribute (are not excited)
even if the neutrino has a small Dirac mass, see Ref. [60]. As a consequence of ¢�£P¢ � annihilation, the
neutrino temperature is lower. With B"*ä#>&�� � &�� K we find B 9 # � �'§D� � K and © 9 # ��� �µ� ß �)� .

At temperatures larger than neutrinos mass, B 9 À � 9 , in the Standard Model, assuming no
chemical potential, we find æ 9 #Ï� À �� Á À ���� Á  ¯ � æ * � � �'$�� æ * , (78)

where the factor of � corresponds to the number of neutrino flavours. This result allows us to find the
epoch of equal matter and radiation densities� S � �[Z # æ��æ * S æ 9 �>��& ��� � (79)
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Assume that by now neutrinos became non-relativistic, i.e. their masses are larger than the present
temperature. In this case, neutrino energy density is given by m 9 #�× � � 9 � © 9 � . Since it has to be smaller
than

æ î m ¾ , we have the constraint [75]� � � 9 � \ §D� æ4î ã 1 ��5 # � & ��5 � (80)

For dark matter particles to boost the structure formation, their typical velocities squared at the time
of recombination should be smaller than the depth of typical gravitational wells, Ãb1 � �����)ë . In other
words, dark matter should be cold. This is not the case for particles as light as those which satisfy the
bound Eq. (80). Neutrinos can make up dark matter, but it will be hot dark matter.

Neutrino mass is pinned down. Free streaming of relativistic neutrinos suppresses the growth of fluc-
tuations until

�
becomes nonrelativistic at � ¨ � � ·-�:B � ¨ ������� K � � · ��5 L . This effect of free-

streaming is not seen in the data and therefore only small corrections due to light neutrinos are allowed
in the standard CDM picture. Combined CMBR and LSS analysis yields the constraint [9]æ 9 ã 1 # × � � �§����'� ��5 \ � � ��� � $ , (81)

which translates into the upper bound� � � � \ � � � ��5 K §���� hFØ L � (82)

On the other hand, atmospheric neutrino oscillations provide a lower bound on the heaviest neutrino
mass, since � Î � 1� ö�� ¨ � � � � ��5 . Combining these two limits� � � � ��5 Ê �ÚÙ � �[� �_���Øö Ê � �'&D� ��5 (83)

we see that the heaviest neutrino mass is now known to within an order of magnitude [76].

Can neutrinos make up a galaxy halo? By �½¨ � the neutrino quanta satisfying the mass bound
Eq. (83) became sufficiently non-relativistic to make their way into the gravitational wells. The question
arises, can neutrinos at least make up the dark haloes and be responsible for flat rotational curves? The
answer to this question is: No. To prove it, let us assume that neutrinos do build up a dark matter halo
with a flat rotational curve m � è # º 1Û B Ã¿1�Ø�ÐöQ 1 � (84)

We can express the energy density m � è # m 9 through the integral of phase space density over the
momenta m 9 # � 9K &-? L �¬« E � R © K R , QHL � (85)

But for fermions, the phase-space density, © K R , QHL # © K z L , should obey the Pauli exclusion principle,© K z L \ � . Combining Eqs. (84) and (85), we find �  �Ã��í¨ º 1Û B Ã¿1 · Q 1 , or

� 9 �Ï� & ����5 À ������Þ¹ßà� ��
Ã �Ø�Ðö Á 
 ¯  À �iÞ¿a �Q ¾ Á 
 ¯ 1 � (86)

For dwarf galaxies this constraint (the Tremaine–Gunn limit [77]) reads � 9 � � ��� eV, and we arrive at
a contradiction with Eq. (80), which becomes even stronger when compared with Eq. (83).
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Cosmological density of other thermal relics. Assume now that some weakly interacting particle has
a mass larger than � MeV and decouples when it is non-relativistic. The equilibrium number density will
be Boltzmann-suppressed in this case by the exponent �21¹a K ; �/·ÄB L . The weak interaction cross-section
implies - ¨ � 1 ·�º  Õ , if � � º Õ . Repeating calculations for abundances, one finds that in this caseæiî ã)1 � � K �xå8��5 ·:� L 1 , i.e. a correct cosmological abundance of dark matter would be achieved for�Ü�>� GeV.

On the other hand, if � À º Õ , the annihilation cross-section becomes - ¨ � ·:� 1 and one
finds

æ î ã)1 � K �/· �ÞÝü��5 L 1 , i.e. the correct cosmological abundance of dark matter is achieved for�Ü�>� ��� GeV. Using field-theoretical unitarity and the observed density of the Universe, it can be shown
that a stable elementary particle which was once in thermal equilibrium cannot have a mass greater than
340 TeV [78].

Cosmological density of non-thermal relics. The mass of non-thermal relics can be much larger thanß K ��� 1 L TeV without violating the unitarity bound; it can also be much smaller than than
ß K � L GeV and

dark matter still will be cold, as required by observations.

1. Axions. Very light scalar particles, like axions, are created in a state of coherent oscillations.
This can be viewed also as a Bose condensate. To illustrate the general idea, let us consider a scalar field
with potential

{ K YbL #Ï� 1 Y 1 ·-& . The equations of motion for the Fourier modes with a momentum
R

in
an expanding Universe are vY%V S � Â uY%V S K R 1 S � 1 L�Y%V # � � (87)

Since the term
� Â

can be understood as friction, the amplitude of those modes for which § Â 1 ÀK R 1 S � 1 L (almost) does not change with time. The oscillations of modes with a given
R

commence
when

Â
becomes sufficiently small, § Â 1 � K R 1 S � 1 L . Oscillating modes behave like particles, and

their amplitude decreases with expansion. Since modes with the largest
R

start oscillations first, they
will have the smallest amplitude and the field becomes homogeneous on a current horizon scale. Modes
with all

R
will already be oscillating when � Â �Ç� , and will behave like cold dark matter after that.

Note that the field will be homogeneous on the horizon scale at this time, but may be inhomogeneous
on larger scales. This may lead to formation of dense clumps, ‘axion mini-clusters’ [79, 80] of the massº ¨ ������
�1 º � [81]. Note also that in the case of axions, one has to take into account the dependence
of � on temperature B . Solving � Â K B L #¶� K B L one finds

æ ��à �_��� ¨%� when Ì ´ ¨%��� 
�1 å8��5 [82, 83].

2. Superheavy dark matter. Non-conformal quantum fields cannot be kept in a vacuum in an
expanding Universe. This can be understood on the example of a scalar field, Eq. (87). In conformal
time, Eq. (24), and for the rescaled field, Ã V � Y�V I

, the mode equations take the form of an oscillator
equation vÃ V S ù 1V Ã V # �x, (88)

with time-dependent frequency ù 1V # R 1 S I 1 � 1 ; vII K � ; $W¿ L � (89)

The constant ¿ describes the coupling to the scalar curvature, the corresponding term in the Lagrangian
is ¿ 6 Y . The case of ¿ý# � corresponds to minimal coupling [Eq. (87) was written for this case], while¿ # � ·-$ is the case of conformal coupling. Equations for massless, conformally coupled quanta are
reduced to the equation of motion in Minkowski space–time. Particle creation does not occur in this
case. For massive particles, conformal invariance is broken and particles are created regardless of the
value of ¿ . Let us consider the case of ¿µ# � ·-$ (the general situation is considered in Ref. [84]). It is the
particle mass which couples the system to the background expansion and serves as the source of particle
creation in this case. Therefore, we expect that the number of created particles in a comoving volume is� � � and the effect is strongest for the heaviest particles. In fact, stable particles with � � ���)3 GeV
would overclose the Universe in the standard ‘pre-inflationary’ Friedmann model [71]. Inflation cuts the
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particle production and
æ�á ! ¨Å� if � � ����
�� GeV and the reheating temperature is B ¨Å���¿3 GeV,

which is the value of reheating temperature compatible with supergravity models [70, 71, 84].

7 BASICS OF INFLATION

In frameworks of ‘classical’ cosmology and assuming no fine-tuning, one concludes that a typical uni-
verse should have had Planckian size, live Planckian time and contain just a few particles. This con-
clusion is based on the observation that Fridmann equations contain a single dimension-full parameterº ¥ 0 ¨ ��� 
�3 GeV, while dimensionless parameters naturally are expected to be of order unity. Yet, the
observable Universe contains ���¿3 � particles in it and had survived ���¿��ë Planckian times. Where does
it all came from? In other words, why is the Universe so big, flat (

æ � � � ) and old (
G �Ç��� 
 � years),

homogeneous and isotropic (
Î Bí·ÄB ¨����¡�)ë ), why does it contain so much entropy (

} �Ë����3 � ) and does
not contain unwanted relics like magnetic monopoles? These puzzles of classical cosmology were solved
with the invention of Inflation [85]– [89]. All these questions are related to the initial conditions and one
can simply postulate them. The beauty of Inflation is that it prepares these unnatural initial conditions of
the Big Bang, while the pre-existing state (which can be arbitrary to a large extent) is forgotten. Inflation-
ary theory came with unplanned bonuses. Not only does the Universe become clean and homogeneous
during inflation, but also the tiny perturbations necessary for the genesis of galaxies are created with the
correct magnitude and spectrum. Below we consider the basics of inflationary cosmology.

7.1 Big Bang puzzles and inflationary solutions
Horizon problem and the solution. The size of a causally connected region (horizon) scales in pro-
portion to time,

6 ! �¶G . On the other hand, the physical size of a given patch grows in proportion to the
scale factor,

6 ¥ � I K G�Lâ�¶G * . The exponent � depends upon the equation of state, � # � ·-& for radiation
and � #Ï&H·-� for matter dominated expansion. In any case, for the ‘classical’ Friedmann Universe, � \ �
and the horizon expands faster than the volume. Take the largest visible patch today. It follows that in
the past its physical size should have been larger than the size of the horizon at the time (since they are
equal today) and therefore this patch should have contained many casually disconnected regions. For
example, as we have found in Section 3, the angular size of the horizon at the moment of last scattering
is �à& : , see Eq. (55), which tells us that we observe ���¿ causally disconnected regions at the surface of
last scattering. The question arises, Why is the Universe so homogeneous at large scales?

This problem can be solved if during some period of time the volume expands faster than the
horizon. During such a period, the whole visible Universe can be inflated from one (‘small’) causally
connected region. Clearly, this happens if � �Ç� , which means

vI �Í� . Either of these two conditions
can be used as a definition of an inflationary regime. Using the Friedmann equation (6) we find that
the inflationary stage is realized when n \ ; m¡·-� . In particular, if n # ; m the energy density remains
constant during expansion in accord with the first law of thermodynamics, Eq. (7), and the physical
volume expands exponentially after a few Hubble expansion times,

I K G�L # �ÄÛXÝ , see Eq. (5).

Curvature problem and the solution. The Friedmann equation (5) can be re-written asR # I 1 À �-?A@� m ;0Â 1 Á># I 1 Â 1 K æ ; � L # uI 1 K æ ; � L #C� jHV���g � (90)

Here we immediately see the problem: during matter or radiation dominated stages,

uI 1 decreases (in
general, this happens for any expansion stage with

vI \ � ), therefore
æ

is driven away from unity.
To observe

æ ¨ � today, the observer has to live in a universe with extreme initial fine-tuning, say
at the epoch of nucleosynthesis, when the temperature was B ¨ � MeV, one finds ô æ K G>â á L ; � ô \������
�ë , and even stronger tuning is required at earlier epochs. A possible solution is obvious: accelerated
expansion

vI � � increases

uI
and therefore drives

æ K G�L to unity. A robust, crucial and testable prediction
of inflationary cosmology is a flat Universe,

æ # � .
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The problem of entropy. As we know already, the energy of a vacuum, n¸# ; m , stays constant despite
the expansion. In this way, room for matter full of energy could have been created. The vacuum energy
is converted into particles and radiation at some later stage and, in particular, the observed huge entropy
is created. Potentially, this mechanism works for any inflationary scenario, since the product m I � is
guaranteed to grow whenever

vI �Ï� . However, the important question is whether a graceful exit out of
the inflationary stage and successful reheating is possible. In practice, this issue has killed a number of
inflationary models. Remarkably, the original model by A. Guth [86] had been ruled out precisely on
these grounds [90].

Inflation has to continue for a sufficiently long time for the problems of horizon, curvature, and
entropy to be solved. All these give roughly the same condition on the number of required ‘e-foldings’
of inflation [86] and we consider here a (simplified) derivation based on entropy. A precise condition
can be found, for example, in Ref. [91]. Multiplying the current temperature in the Universe by its
visible size we find B I òN� ¨~��� � � , where

òP�
is the comoving size of the present horizon. The productB I is conserved (up to the change in the number of relativistic degrees of freedom, which we neglect

here) since the Universe expansion is adiabatic after the end of inflation, see Eq. (11). Let Beã denote the
reheating temperature and �Pä � I�å · I � the number of inflationary ‘e-foldings’, where

I%å
is the value

of the scale factor at the end of inflation and
I � at its beginning, respectively. We also want at least the

whole visible universe to be inflated out of a single causally connected patch, which gives
I � òP� ¨ Â ��
� ,

where
Â � is the value of the Hubble parameter during inflation. All this gives the condition1B ãÂ � � ä ¨ � ��� � � � (91)

In popular models of inflation the ratio B ã · Â � is within a couple orders of magnitude from unity, and we
find

È ¨ � $�� .
7.2 Models of inflation
Consider B 7:9 for a scalar field æ B 7D9 #�ç 7 æÁç 9 æ ; = 7D9Jè (92)

with the Lagrangian : è #éç 7 æÁç 7 æ ; { K æ L � (93)

In a state when all derivatives of æ are zero, the stress-energy tensor of a scalar field simplifies to B 97 #{ K æ L¹Î 97 . This corresponds to a vacuum state. Indeed, comparing with Eq. (4), we find
{ #�m/# ; n .

There are two basic ways to arrange æ·� const and hence to imitate the vacuum-like state.

1. Consider the potential
{ K YbL , which has a local minimum with a non-zero energy density sep-

arated from the true ground state by a potential barrier [86]. A universe which happened to be trapped
in the meta-stable minimum will stay there for a while (since such a state can decay only via subbarrier
tunnelling) and expansion of the universe will diminish all field gradients. Then the Universe enters a
vacuum state. This model is ruled out since the inhomogeneities created during the phase transition that
terminates the inflationary phase are too large [90]. However, the model is good for purposes of illustra-
tion. The frequently asked question is: How can it be that the energy density stays constant despite the
expansion? In the model with local potential minimum the energy cannot decrease (classically) below
the local minimum value, and therefore it has to stay constant despite the expansion.

1Strictly speaking in this relation ê�ë is not the real temperature in a state of thermal equilibrium, but ê�ëíìÚî Õ�ï�ðë , where îPë
is the energy density at the moment when the expansion becomes dominated by relativistic particles.
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2. A. Linde was the first to realize that things work in the simplest possible setup [89]. Consider
the potential { K YbL # �& � 1ñ Y 1 � (94)

The equation of field motion in an expanding Universe is
vY S � Â uY S � 1ñ Y # � � If

Â ÀÅ� , the ‘friction’
is too big and the field (almost) does not move. Therefore time derivatives in B 7:9 can be neglected, and
inflation starts (in a sufficiently homogeneous patch of the Universe). A Hubble parameter in this case
is determined by the potential energy,

Â �%� Y ·-º ¥ 0 , and we see that inflation starts if the initial field
value happens to satisfy

Y � º ¥ 0 . During inflationary stage the field slowly rolls down the potential
hill. This motion is very important in the theory of structure creation; inflation ends when

Y ¨ º ¥ 0 . At
this time, field oscillations start around the potential minimum and later decay into radiation. In this way
matter was likely created in our Universe.

7.3 Unified theory of creation
During inflation, and by its end, the Universe was in a vacuum-like state. We have to understand how
this ‘vacuum’ was turned into the matter we observe around us, and how primordial fluctuations that
gave rise to galaxies were created. Fortunately, these problems can be formalized in a nice and unified
way. Basically, everything reduces to a problem of particle creation in a time-dependent classical back-
ground. On top of every ‘vacuum’ there are fluctuations of all quantum fields which are present in a
given model. This bath of virtual quanta is indestructible, and even inflation cannot get rid of it. Being
small, fluctuations of any field obey an oscillator equationvÃ V S ÿ R 1 S � 1�[ò K ñ L � Ã V # �i, (95)

here Ã V are amplitudes of fluctuating fields in Fourier space. Effective mass becomes time-dependent
through the coupling to time-dependent background. Because � �(ò is time-dependent, it is not possible
to keep fluctuations in a vacuum. If one arranges to put oscillators with momentum

R
into the vacuum

at one time, they will not be in vacuum at a later time because positive and negative frequency solutions
mix, see below. Several remarks are in order.

– Equation (95) is valid for all particle species.
– The equation looks that simple in a conformal reference frame

E¿F 1 # I K ñ L 1 K E ñ 1 ; E ; 1 L . (Every-
where in this chapter a ‘dot’ means derivative with respect to ñ .)

– Of particular interest are ripples of space-time itself: curvature fluctuations (scalar fluctuations of
the metric) and gravity waves (tensor fluctuations of the metric).

– The effective mass � �(ò can be non-zero even for massless fields. Gravitational waves give the
simplest example [92], with � 1�[ò # ;ävI · I . The effective mass for curvature fluctuations has a
similar structure � 1�(ò # ;�v� · � , but with

I
being replaced by � � I uY · Â , see Refs. [93]– [96].

– For conformally coupled, but massive scalar, � �(ò #¶� � I K ñ L .
Note that creation was only possible because nature is not conformally invariant. Otherwise, � �(ò is
time-independent and a vacuum remains a vacuum forever. There are two important instances of a time-
varying classical background in cosmology:

– Expansion of space-time,
I K ñ L .

– Motion of the inflaton field,
Y K ñ L .

Both can be operational at any epoch of creation:

– During inflation (superhorizon size perturbations).
– While the inflaton oscillates (reheating).
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During inflation superhorizon-sized perturbations of the metric are created, which give seeds for
Large Scale Structure (LSS) formation and eventually lead to the formation of galaxies, and therefore of
the Solar system and all the rest which we can see around us. During reheating, matter itself is created.
Overall, there are four different situations (two sources times two epochs). If coupling to the inflaton is
not essential, the corresponding process will be called ‘pure gravitational creation’ in what follows.

There are several primary observables which can be calculated out of Ã V and further used for
calculation of quantities of interest. Most useful are:

– The particle occupation numbers, © V . Integration over
E � R gives the particle number density.

– The power spectrum of field fluctuations, G V � Ã �V Ã V . Integration over
E � R gives the field variance.

Depending on physical situation, only one or the other may have sense. The particle number in a comov-
ing volume is useful because it

– is adiabatic-invariant on sub-horizon scales (or when � � Â );
– allows one to calculate abundances of various relics, e.g. dark matter.

But it has no meaning at super-horizon scales when � \ Â . The power spectrum and/or field variance
is useful because it

– does not evolve on super-horizon scales if � \ Â ;
– allows one to calculate density perturbations generated during inflation;
– is crucial for dynamics of phase transitions;
– helps to calculate back-reaction in a simple way (Hartree approximation).

But G V evolves on sub-horizon scales and when � � Â .

Let me start with a discussion of metric perturbations.

Gravitational creation of metric perturbations. As an important and simple example, let us consider
quantum fluctuations of a real scalar field, which we denote as æ . It is appropriate to rescale the field
values by the scale factor, æ � Y · I K ñ L . This brings the equations of motion for the field

Y
into a simple

form of Eq. (95). As usual, we decompose
Y

over creation and annihilation operators 6�ó and 62ôóY K X�, ñ L # « E � RK &-? L � ¯ 1öõ Ã V K ñ L 6�ó � � ó?÷ S�Ã �V K ñ L 6 ôó � � � ó?÷�ø � (96)

The mode functions Ã V satisfy Eq. (95). In what follows we will assume that æ is the inflaton field of
the ‘chaotic’ inflationary model, Eq. (94). During inflation

Â À � and
Â �Í� jHV)��g . So, to start with,

we can assume that æ is a massless field on the constant deSitter background. (The massive case can be
treated similarly, but analytical expressions are somewhat more complicated and do not change the result
in a significant way. Corrections due to change of

Â
can also be taken into account, and we do that later

for the purpose of comparison with observations.) With a constant Hubble parameter during inflation the
solution of Friedmann equations in conformal time isI K ñ L # ; �Â ñ (97)

and the equation for mode functions of a massless, conformally coupled to gravity K ¿�# � L , scalar field
takes the form vÃ V S R 1 Ã V ; &ñ 1tÃ V # � � (98)

Solutions which start as vacuum fluctuations in the past ( ñúù ;�û
) are given by

Ã V # �Pü � V 
^ & R À � ² TR ñ Á � (99)
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Indeed, at ñÓù ;�û
the second term in the parentheses can be neglected and we have the familiar

mode functions of the Minkowski space–time. The wavelength of a given mode becomes equal to the
horizon size (or ‘crosses’ the horizon) when

R ñ¸# � . Inflation proceeds with ñýù � , so the modes with
progressively larger

R
cross the horizon. After horizon crossing, when

R ñx� � , the asymptotics of mode
functions are Ã V # ² T^ & R � ¯ 1 ñ , j�� æ V # Ã VI K ñ L #�þ T Â^ & R � ¯ 1 � (100)

The field variance is given by Å � ô Y 1HK ; L ô � Æ # « E � RK &-? L � ô æ V ô 1 , (101)

and we find in the asymptotic (the careful reader will recognize that this is already a regularized expres-
sion with zero-point fluctuations being subtracted)

Å[æ 1 Æ # Â 1K &-? L 1¬« E RR � (102)

Defining the power spectrum of the field fluctuations as a power per decade, Å[æ 1 Æ��Óÿ G�� K R LâE eWV R , we
find G�� K R L # Â 1K &-? L 1 � (103)

Curvature perturbations. According to Eq. (3), the three-dimensional curvature of space sections of
constant time is inversely proportional to the scale factor squared,

Z ��[ 6 � I �)1 . Therefore, the perturba-
tion of spatial curvature is proportional to

Î I · I , and this ratio can be evaluated as

ª � Î II # Â ÎÄG # Â Î æ uæ � (104)

This allows one to relate the power spectrum of curvature perturbations to the power spectrum of field
fluctuations G�� K R L # Â 1uæ 1 G � K R L , (105)

and we find for the power spectrum of curvature perturbations

G�� K R L # ��H? 1 Â  uæ 1 � (106)

This very important relation describes the inflationary creation of primordial perturbations, and can be
confronted with observations. The usefulness of curvature perturbations for this procedure can be appre-
ciated in the following way:

1. Consider the perturbed metric, Eq. (46). The product
I K � ; R L for the long-wavelength perturba-

tions can be viewed as a perturbed scale factor, i.e.
Î I · I # ; R . Comparing this relation with Eq. (104)

and Eq. (50), we find for the temperature fluctuations that are of superhorizon size at the surface of last
scattering Î BB # &� ª V � (107)

2. On superhorizon scales the curvature perturbations do not evolve.2 This fact allows one to relate
directly the observed power spectrum of temperature fluctuations to the power spectrum of curvature
fluctuations generated during inflation.

2I should warn you that this is quite a generic statement and holds in situations usually considered. Thus, it is forgotten
sometimes that this is not a universally true statement. To avoid possible confusion when encountering specific complicated
models, the reader should keep this fact in mind.
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Tensor perturbations. Mode functions of gravity waves (after rescaling by º ¥ 0 · ^ ��&-? ) obey the same
equation as mode functions of a massless minimally coupled scalar [92]. Using the result of Eq. (103)
we immediately find [97] G ° K R L #>& ��&-?º 1¥ 0 G � K R L # � $? Â 1º 1¥ 0 , (108)

where the factor of 2 accounts for two graviton polarizations.

Slow-roll approximation. During inflation, the field æ rolls down the potential hill very slowly. A
reasonable approximation to the dynamics is obtained by neglecting

væ in the field equation
væ S � Â uæ S{ � # � . This procedure is called the slow-roll approximationuæ � ; { �� Â � (109)

Field derivatives can also be neglected in the energy density of the inflaton field, mt� {
Â 1 # �-?��º 1¥ 0 { � (110)

This gives for curvature perturbations

ª V � G�� K R L 
 ¯ 1 # Â 1&-? uæ # � Âº 1¥ 0 {{ � � (111)

Normalizing to CMBR. As an example, let us consider the simplest model
{ # 
1 � 1 æ 1 . We have{{ � # æ & , f�V�l Â # � �H?� �Þæº ¥ 0 � (112)

This gives for the curvature fluctuations

ª V # � � $-?� �Óæ 1º �¥ 0 � (113)

Using the relation between curvature and temperature fluctuations, Eq. (107), and normalizing
Î B"·ÄB to

the measured value at largest 5 , which is
Î B�·ÄB ¨%���)�)ë (see Fig. 5), we find the restriction on the value

of the inflaton mass in this model: �Ü� Î BB º ¥ 0� � � ��� 
�� å8��5 � (114)

Here I have used the fact that in this model the observable scales cross the horizon when æN�Cº ¥ 0 .
Slow-roll parameters. The number of e-foldings (

I # �ÄÛâÝ � �Pä ) of inflationary expansion from the
time when æ½#�æ � to the end can be found asÈ K æ � L # « Ý��Ý � Â K G�LÔE2G # « Â uæ E æ½# �-?º 1¥ 0 « � �

� 

{{ � E æ � (115)

In particular, in the model Eq. (94) we find that the largest observable scale crossed the horizon (
È ¨ $�� )

when æ � �>���'��º ¥ 0 . All cosmological scales which fit within the observable universe encompass a smalló Y interval within º ¥ 0 \ æ \ æ � . And the inflaton potential should be sufficiently flat over this range ofó Y for inflation to proceed. This means that observables essentially depend on the first few derivatives
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of
{

(in addition the the potential
{ K Y � L itself). From the first two derivatives one can construct the

following dimensionless combinations

� � º 1¥ 0� $-? À { �{ Á 1 , (116)ñ � º 1¥ 0�-? { � �{ , (117)

which are often called the slow-roll parameters.

The power spectra of curvature, Eq. (105), and of tensor perturbations, Eq. (108), in slow-roll
parameters can be rewritten as

G�� K R L # �? � Â 1º 1¥ 0 , G ° K R L # � $? Â 1º 1¥ 0 � (118)

Comparing these two expressions we find G ° K R LG�� K R L # � $ � � (119)

Primordial spectrum. In general, the spectra can be approximated as power law functions in
R

:

G�� K R L #9G�� K R �ÄL À RR � Á �	� ��
 , (120)

G ° K R L #9G ° K R � L À RR � Á ��
 � (121)

To the first approximation,
Â

in Eq. (118) is constant. Therefore, in this approximation, power spectra
do not depend on

R
and © ¤ # � , © ° # � . This case is called the Harrison–Zel’dovich spectrum [98, 99]

of primordial perturbations. However, in reality,
Â

is changing, and in Eq (118) for every
R

one should
take the value of

Â
at the moment when the relevant mode crosses the horizon. In slow-roll parameters

one then finds (see, for example, Ref. [100] for a nice overview)© ¤ # � S &Dñ ; $ � , © ° # ; & � � (122)

We can re-write Eq. (123) as a relation between the slope of tensor perturbations and the ratio of power
in tensor to curvature modes G ° K R LG�� K R L # ; �D© ° � (123)

This is called the consistency relation that (simple) inflationary models should obey.

Different models of inflation have different values of slow-roll parameters ñ and � , and therefore
can be represented in the ( ñ , � ) parameter plane. Using the relations in Eq. (122) we see that this plane
can be mapped into K © ¤ , © ° L , or using also Eq. (123) into the K © ¤ , Q2L parameter plane, where

Q
is the

ratio of power in tensor to scalar (curvature) perturbations. In this way, different inflationary models can
be linked to observations and constraints can be obtained.

The most recent constraints in the K © Ë , Q2L plane, utilizing WMAP and SDSS data, are presented
in the left panel of Fig. 20. The shaded dark red region is ruled out by WMAP alone. The shaded light
red region is ruled out when adding SDSS information. The two dotted lines delimit the three classes of
inflationary models known as the small-field, large-field and hybrid models. Some single-field models
of inflation make highly specific predictions in this plane, as indicated. From top to bottom, the figure
shows the predictions for

{ K YbL	��Y � (line segment; ruled out by CMB alone),
{ K YbLx��Y  (star; on

verge of exclusion) and
{ K YbLâ�>Y 1 (line segment; the inflation model Eq. (94); still allowed).

40

I. TKACHEV

292



100

10

10 100 1000

1

0.1

0.01

l (multipole)

∆ T
(µ

K
)

reionization

gravitational
waves

gravitational
lensing

ΘE

EE

BB

Fig. 20: Left panel: 95% constraints on inflationary models in the ����
 ��� � plane. From Ref. [10]. Right panel:
Forecast for the planned ESA Planck mission.

Testing inflation. All predictions of inflationary cosmology which could be tested so far, have been
confirmed. In particular, the Universe is spatially flat (within experimental errors),

æ # � � � & ² � � � & , see
Table 1. The primordial perturbations are of superhorizon size and adiabatic. The spectral index is close
to the Harrison–Zeldovich case, see Fig. 20, left panel. A crucial test of inflationary models would be
the detection of gravity waves and verification of the consistency relation. These signatures of typical
inflationary models are within reach of future CMBR experiments, see Fig. 20, right panel.

8 ULTRA-HIGH-ENERGY COSMIC RAYS

In the early years, cosmic-ray studies were ahead of accelerator research, starting from the discovery
of positrons, through muons, to that of pions and strange particles. Today we are facing the situation
that the puzzling saga of cosmic rays of the highest energies may again unfold in the discovery of new
physics, now beyond the Standard Model; or it may bring to life an ‘extreme’ astrophysics.

Immediately after the discovery of the relict Cosmic Microwave Background Radiation (CMBR),
Greisen, Zatsepin and Kuzmin [101,102] realized that the highest-energy protons should catastrophically
lose energy in photo-production of pions on this universal background. This process limits the distance
to the farthest sources of observed rays to be roughly 100 Mpc and should lead to the cut-off in the
energy spectrum. However, the number of events with energies beyond the expected cut-off as measured
by different installations is growing with time [103]– [109], while no nearby sources where identified.
The findings of Greisen, Zatsepin and Kuzmin (GZK) are based on solid fundamental physics which
involve precisely measured cross-sections in a GeV energy range (in the centre-of-mass reference frame).
Therefore, if the data are correct—and it is believed they are basically correct3—one should either invoke
new physics, or accept unconventional and uncomfortable very ‘extreme’ astrophysics. This is the reason
for the excitement and growing interest in ultra-high-energy cosmic-ray research; for recent reviews see
Refs. [110]– [113].

Methods of detection. At energies below ���)
� eV, the flux of cosmic rays is sufficiently high that
direct measurements using high-altitude balloons or satellite experiments are possible. Above ��� 
�ë eV,
the flux is only one particle per square metre per year, which excludes direct observations on the orbit.

3While a disagreement in measured fluxes has recently emerged, there is no reason to doubt the reality of super-GZK events.
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At ����1 � eV the number is down to one particle per square kilometre per century. Here the problem for
direct measurements would be not only a vanishingly small flux, but the enormously high energy itself.
(Remember that calorimeters at modern colliders weigh hundreds of thousands of tonnes.) Fortunately,
the major part of our UHECR detectors is already built for us by Nature and is put, rotating, into orbit: the
Earth’s atmosphere makes a perfect calorimeter. The atmosphere is just thick enough so that showers of
secondary particles produced by incoming cosmic rays of the highest energies, in collisions with nuclei
of air, reach their maximum intensity just above the Earth’s surface. Particles in a shower propagate
with the velocity of light, forming a thin disk perpendicular to the direction of the incident particle. At��� 
�3 eV the footprint of the shower on the ground is several kilometres across.

The shower can be registered either by placing an array of particle detectors on the Earth’s surface,
or by measuring the Cherenkov light produced by particles in the atmosphere, or by tracking the fluo-
rescence light emitted when shower particles excite nitrogen molecules in the air. Particle detectors in a
ground array can be spaced hundreds of metres apart and are operational around the clock. Fluorescence
light telescopes see the cosmic-ray track just like a fly’s eye would see the meteorite, but only moving
with the speed of light. These detectors are operational only on clear moonless nights, but are able to
measure the longitudinal shower profile and its maximum depth directly.

With either technique, the energy and incident direction of primary particle can be measured
shower by shower. Chemical composition also can be inferred, but only in a statistical sense, after
averaging over many showers.

1. Arrival direction. The timing of a signal in different detectors is used to determine the direc-
tion of a shower (ground-array technique). Direction is measured with an accuracy of about &%: . The
measurement is straightforward and does not involve any uncertainties. Inferred information is reliable.
Fluorescence light telescopes observe the whole shower track, and in stereo mode the precision of angle
determination is � �'� : .

2. Energy. The energy estimate, on the other hand, is not that straightforward. In fluorescent
light detectors, the energy of the primary particle is derived from the observed light intensity, therefore
incorrect modelling and/or insufficiently frequent monitoring of atmosphere transparency can be a source
of errors. For the ground-array detectors, the energy estimate relies on a Monte Carlo model of shower
development and is related to the shower density profile. Nevertheless, the currently favoured model,
QGSJET [114], describes data well from TeV up to highest energies and it is believed that the overall
error (statistical plus systematic) in energy determination does not exceed 30%.

The best would be to employ both the ground array and fluorescent light techniques simultane-
ously. This should reduce systematic errors, and this is the design of the forthcoming Pierre Auger
project.

3. Chemical composition. Chemical composition can be inferred from the details of shower
development. For example, showers initiated by heavy nuclei start earlier in the atmosphere and have
fewer fluctuations compared to proton showers. Fluorescence detectors observe shower development
directly. Using ground-array detectors, the shower depth can be extracted by measuring, for example,
the ratio of electrons to muons. At lowest energies, the chemical composition of cosmic rays reflects
primary and secondary element abundances; for a recent review see Ref. [115]; at highest energies,z � � �(����
�3 eV, the conclusion is that less than 50% of primary cosmic rays can be photonic at 95%
confidence level [116].

8.1 Propagation of ultra-high-energy cosmic rays
In this subsection, we consider the influence of different cosmological backgrounds on the propagation
of highest-energy cosmic rays.
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Fig. 21: Full sky map of deflection angles for UHECRs with energy ~��ík�O���� eV after travelling 100 Mpc in an extra-
galactic magnetic field. The coordinate system is galactic, with the galactic anti-centres in the middle of the map.
Positions of identified clusters are marked using the locations of the corresponding halos in the simulation. The
map is obtained in a magneto-hydrodynamical simulation of cosmic structure formation that correctly reproduces
the positions and masses of known galaxy clusters in the Local Universe. From Ref. [117].

Magnetic fields. Magnetic fields play an important role in the processes of cosmic-ray acceleration
and propagation, their trajectories being bent by the action of the Lorentz force©E ÃEHG # � ¢z ÿ ©Ã � ©� � � (124)

For a qualitative discussion, it is often sufficient to compare a gyro-radius of the trajectory of a relativistic
particle 6 É # z

� ¢ � (125)

to other relevant length scales of the problem. For example, a magnetic ‘trap’ can not confine a cosmic
ray if the gyro-radius exceeds the trap size. The deflection angle ó T , after traversing the distance �
in a homogeneous magnetic field, is proportional to �!· 6�� . In a chaotic magnetic field, the deflection
angle will grow as

^ � . Let us estimate a typical deflection angle, �i· 6 É , of a charged UHE particle after
traversing Galactic or extra-galactic magnetic fields.

1. In the Galactic magnetic field, for particles coming across the Galactic disc, we haveó T� �>&��'� : ����1 � ��5z ���S å �� �'� Þ�a � , (126)

where �HS å is the magnitude of the regular magnetic field and � �'� Þ�a � is the width of the disc. We see
that protons with

z �Ï���¹
�, eV escape our Galactic disc easily. Protons of smaller energy are trapped and
can escape the Galaxy only by diffusion and ‘leaking’ from the boundary. Cosmic rays with

z �¦��� 
�,
eV should be extra-galactic, if protons. Even if cosmic rays would be all iron nuclei, at

z � &äê ����
�3
eV cosmic rays should be extra-galactic, otherwise strong anisotropy in the direction of the Galactic disc
would have been observed.
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2. Extra-galactic magnetic fields have not yet been measured, except for the central regions of
galaxy clusters [118]. However, there is an upper bound on their strength from the (absence of) Faraday
rotation of polarized extra-galactic sources [119, 120]. This translates to the upper bound on deflections
in extra-galactic magnetic fieldsó T� \ &��'� : ��� 1 � eVz ���� �)3 G

K ��� L 
 ¯ 1��� Mpc
, (127)

where � is the coherence length of the extra-galactic magnetic fields; � is believed to be smaller than
1 Mpc. However, extragalactic fields are strongly inhomogeneous, with amplitude changing by orders of
magnitude from clusters to filaments, and from filaments to voids. Deflections in some directions, which
do not cross clusters and strong filaments, may be small, otherwise deflections can be very large. This
situation cannot realistically be described by a mean field.

Only recently have attempts been made to simulate UHECR propagation in a realistically struc-
tured universe [117, 121]. Results from Ref. [117] are shown in Fig. 21. Additional motivation for this
simulation was to obtain, in constraint simulations of the Local Structure, a realistic map of expected de-
flections, which would reflect the positions of known clusters. Such a map can be used in the analysis of
cosmic-ray arrival directions. Resulting deflections do not exceed the resolution of UHECR experiments
over most of the sky. About an order of magnitude stronger deflections were obtained in Ref. [121].
There are two possible reasons for disagreement. First, simulations of Ref. [121] were unconstrained
and therefore do not reflect our concrete local neighbourhood. Second, variable resolution of Ref. [117]
was better in cluster regions, which is a possible reason for the larger obtained dynamical range between
fields in clusters and filaments. Since in both simulations the magnetic fields are normalized to typical
values in the core of rich clusters, their values in the filaments will be very different, with larger fields
outside clusters in Ref. [121]. Work aimed at resolving these differences is in progress. For now, I adopt
the results of Ref. [117] and conclude that arrival directions of UHECR should point back to the sources.
Charged particle astronomy of UHECR is, in principle, possible.

Interactions with cosmic-radiation backgrounds. Ultra-high energy cosmic rays cannot propagate
elastically in cosmic backgrounds. They have enough energy to produce secondary particles even in
collisions with CMBR (important for proton primaries) or radio photons (important for UHECR photons)
or infrared radiation (important for propagation of nuclei). Most important is the reaction of pion photo-
production for protons (or neutrons) propagating in relic cosmic microwave background left over from
the Hot Big Bang. For the threshold energy of this reaction we find, in the laboratory frame,z ö Ù K n S � ù È S ? L # K ��� S � ¼ L 1 ; � 1�& z * K � ; � jH� T¿L � (128)

Note that in the derivation of this relations, standard Lorentz kinematic and standard dispersion relations
between particle energy and momentum,

z 1 # R 1 S � 1 , are assumed. If any of these are violated, the
threshold condition in a laboratory frame may look different. For the black-body distribution of CMBR
photons with temperature BC#>&�� � K we findz ö Ù �>� �J��� 
�3 ��5 � (129)

This reaction has a large cross-section, being the largest at the ó resonance. At half-width of the reso-
nance - ¨ � ��� S �]�>� �0��� �)1�, � ß 1 � (130)

Density of CMB radiation is © ¨ B �+¨ � ��� cm �)� . This corresponds to the mean free path:�"! # K.- © L ��
 �>� �0��� 1Ð � ß �>&�� � á a � � (131)
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Fig. 22: Energy of protons as a function of the distance propagated in CMBR for three initial values of energy at
the source, k�O?pcp � k�OPp#�%$'&�(�k�O?p�) eV respectively.

In each collision � 20% of energy is lost (which is the mass of a pion). Successive collisions rob protons
of energy, which decreases exponentially. The distance over which energy decreases by one e-fold is
called the attenuation length. At the threshold, Eq. (129), the attenuation length is large, �+*N� ����� Mpc
(being determined by other processes, see below.) With increasing energy, it rapidly decreases and at
energies above the ó resonance for typical CMBR photons,

z ¨ � ��ê ����1 � ��5 , the attenuation length is� * � ��� Mpc. It follows that the energy of protons drops below ��� 1 � ��5 after it travels the distance of
order ����� Mpc almost independently of initial energy, see Fig. (22). We conclude that

[A1] Protons detected with
z �Ï��� 1 � ��5 should have an origin within

6 \ 6�, -/. � ����� á a � .
We will call the corresponding volume a GZK sphere (or GZK distance).

The reaction n S � ù�n S ¢ £ ¢ � is sub-dominant. While it has a smaller threshold (by a factor of&D� û ·:� ¼ ¨ �����)1 ), it also has a smaller cross-section. But, it becomes important at sub-GZK energies.
The attenuation length for this reaction is ��� � Mpc—a noticeable and important effect.

UHE photons lose energy in the � S � ù ¢�£P¢ � reaction. The threshold for the reaction with
CMBR photons is smaller by a factor of &D� 1û ·:� ¼ ��� ¨ ��� �)ë compared to the GZK cutoff energy.
The cross-section decreases fast with energy, - # -�0 � û · F 1 , where

^ F
is the CM energy and -�0 ������)1�1 � ßx1 is the Thomson cross-section. Therefore, the attenuation length has a minimum at the pair-

production threshold. For CMBR photons, this occurs at
z ��&	ê ��� 
� ��5 and � * � ���JÞ�a � . The

attenuation length increases with energy, reaching a GZK distance roughly at
z � ����1 � eV. Photons

with even larger energies are able to penetrate even larger distances—and this is important for many
models—but in this energy range, the main contribution comes from poorly known radio-background,
which brings some uncertainty in the attenuation length of the highest energy photons.

Heavy nuclei lose energy in photo-dissociation. Here, the main contribution comes from the infra-
red background which is also poorly known. But again, at

z � ���¹1 � eV the attenuation length is
comparable to the GZK distance [122].

The cutoff. It is easy to understand why a sharp cutoff in the spectrum of protons should appear. This
happens because the attenuation length decreases rapidly with increasing energy. Assume a power law
injection spectrum for UHECR, 1 �_� K z L	� z �32 , and let © K Q2L be the density of sources. Fluxes from
individual sources decrease as

Q �)1 , which is compensated by volume integration,
Q 1 EHQ . Therefore, the
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total flux registered at energy
z

should grow in proportion to the upper limit of volume integration

1 K z L�� « 4 Z #A[� © K Q2LÔEHQ¶� 6 K z L , (132)

if the distribution of sources, © K Q2L , does not depend on
Q
. Here,

6 K z³L corresponds to the attenuation
length, i.e. the distance from which cosmic rays with energy

z
can reach us. The attenuation length of

protons with
z \ � �J���¹
�3 eV equals ���H� Mpc, while the attenuation length at

z � �"ê ���¿1 � eV is only��� Mpc. We conclude that

[A2] The drop in flux by 2 orders of magnitude at GZK energy is expected if the distribution of sources
is homogeneous.

A word of caution is needed here. Transition in
6 K z L from the sub-GZK to the super-GZK regime is

not instantaneous. Therefore, a particular value of the drop depends upon the shape of the injection
spectrum, i.e. on the value of / , see, for example, Refs. [123]– [125].

8.2 Generation of UHECR
The origin of cosmic rays and/or their acceleration mechanisms has been a subject of debate for several
decades. Particles can be accelerated either by astrophysical shock waves, or by electric fields. In either
case, one can estimate the maximum energy; with optimistic assumptions, the final estimate is the same
for both mechanisms. In practice, the maximum energy is expected to be much lower.

1. Shock acceleration. Particles are accelerated stochastically while bouncing between shocks.
Acceleration can continue only if particles remain confined within an accelerating region, in other words
until gyro-radius, Eq. (125), is smaller than the size of the region. This givesz � ��à<# � ¢ � � � (133)

2. Acceleration by an electric field. The latter can be created by a rapidly rotating magnetized
neutron star or black hole. If motion is relativistic, the generated electric field is of the same order as the
magnetic field, and the difference in electric potentials is ¨ K � � � L . This, again, reproduces Eq. (133)
for the maximum energy.

Known astrophysical sources with K � � � L big enough to give
z � ��à ¨%����1 � eV are neutron stars,

active galactic nuclei (AGNs) and colliding galaxies.

The central engine of an AGN is believed to be a super-massive black hole powered by matter
accretion. AGNs have two jets (one of the jets may be invisible because of the Doppler effect) of rela-
tivistic particles streaming in opposite directions. Interaction with the intergalactic medium terminates
this motion and the radio lobes and hot spots are formed at the ends of jets, see Fig. 23. The acceleration
of UHECR primaries may occur either near the black hole horizon (direct acceleration), or in hot spots
of jets and radio lobes (shock acceleration). A host of different AGNs is now classified in one unified
scheme, for a review see Ref. [126]. Depending upon the angle between the jet axis and the line of sight,
we observe different types of AGN. A typical radio galaxy, showing two strong opposite jets, is observed
at angles approximately perpendicular to the jet axis. An AGN is classified as a quasar if the angle is
smaller than � � : . If we look along the jet axis (angle \ ��� : ), i.e. directly into the barrel of the gun, we
observe a blazar.

It should be noted that not all radio galaxies are the same. There are Fanaroff–Riley (FR) type
I and type II galaxies (radio-loud AGNs), and Seyfert galaxies (radio-quiet AGNs). Both types of FR
galaxies may be the sites of UHECR acceleration, but the hot spots in FR type II galaxies are considered
to be the most promising [128]. It is believed that when observed along the jet axis, FR type II galaxies
make a parent population of Highly Polarized Quasars (HPQ—subclass of blazars), while FR type I
galaxies make a parent population of BL Lacertae objects (BL Lacs—another subclass of blazars).

46

I. TKACHEV

298



Fig. 23: Chandra telescope X-ray image of the nucleus, jet, and hot spot of Pictor A. From Ref. [127].

As an example, the X-ray image of the powerful FR type II radio galaxy Pictor A taken by the
Chandra X-ray Observatory is shown in Fig. 23. Radio observations of jets have a long history. Recently,
Chandra started to obtain high resolution X-ray maps of AGNs which, surprisingly, revealed very long
collimated X-ray jets. For example, the distance from the nucleus to the hot spot in Pictor A is at least
240 kpc. It is hard to explain such long jets as pure leptonic, and it is possible that the population of
relativistic electrons responsible for the X-ray emission is a result of photo-pion production by UHE
protons [127].

Now, for any acceleration mechanism and independent of the actual acceleration site (i.e. be
it either the AGN’s black hole or any of the hot spots), the momentum of highest energy particles is
expected to point in the direction of the jet [129]. In other words, if AGNs are sources of UHECR,
arrival directions of high-energy cosmic rays may point back to a (subclass) of a blazar family. Such
correlations were indeed observed [129]– [132] with BL Lacertae objects.

8.3 UHECR spectrum
The largest statistic of UHECR events has been accumulated for over 12 years of operation by the
AGASA air shower array of surface particle detectors. The spectrum measured by AGASA is shown
in Fig. 24, left panel. The dotted curve represents the theoretical expectation for a homogeneous distri-
bution of sources and proton primaries. This theoretical curve exhibits the GZK cut-off at

z � ���w1 � eV.
Remarkably, AGASA has detected 11 events with higher energy and the data show no hint for cutoff.

It is hard to argue against the reality of these findings. AGASA exposure is under control,
and the only issue is the energy determination. AGASA events have an accuracy of ² &���� in event-
reconstruction resolution and � ��� in systematic errors around ���¡1 � eV [108]. Added in quadrature this
gives r.m.s. error of energy determination to be ² � � � . More importantly, the probability of an upward
fluctuation to 1.5 times the true energy is 2.8%. There are too many super-GZK events, and with this res-
olution a spectrum with GZK cutoff cannot be transformed into an excess of post-GZK events assuming
spillover [112].

Recently, the HiRes group has reported results obtained with a telescope which measures atmo-
spheric fluorescence light. The energy spectrum is shown in Fig. 24 by triangles, right panel. The
spectrum is consistent with the GZK cutoff, and there are two events detected with

z � ��� 1 � eV. Sys-
tematic error in energy measurement was estimated to be 21%, systematic error in the aperture is not yet
clear. HiRes employs a relatively new technique, with the following issues usually cited for improve-

47

ASTROPARTICLE PHYSICS

299



����

����

����

����

����

����

����

�� �� �� �� �� ��
ORJ10((���H9�

OR
J 1

0
�-

(

� ��
P

��
� V

��
� V
U��

� H
9�

�

6
10

3

2

3
10

10 10
19 20

10

10

10

23

24

25

26

J(
E

) E
   

[m
   

 s
ec

   
 s

r  
  e

V
   

]
3

−2
−1

−1
2

Energy [eV]

AGASA

C

Uniform sources

201019101810
17101610

1510

2310

2410

2510

2610

Hi Res

AGASA

Yakutsk
Akeno

Energy [eV]

Fig. 24: Left panel: The energy spectrum of cosmic rays with a zenith angle up to ~Wx	5 as measured by AGASA
[108]. Numbers near data points reflect the number of events in the respective energy bins. Right panel: A
compilation of data from different experiments: Akeno (filled squares), AGASA (open squares), HiRes-I and
HiRes-II (open and filled triangles), two Yakutsk sub-arrays of Cherenkov detectors (open and filled circles). From
Ref. [133].

ment: atmospheric attenuation corrections should be based on nightly measurements and not averages,
better energy calibration and aperture calculation are called for, see, for example, Ref. [112].

The Yakutsk group uses a hybrid detection method, combining a ground array of particle detectors
with telescopes that measure Cherenkov light produced by a shower in the atmosphere. A recently
reported [133] spectrum, derived from air Cherenkov light measurements, is shown in the right panel
of Fig. 24 by circles. At the low-energy end it agrees well with the Akeno spectrum, and at the high-
energy end it is consistent, within errors, with the AGASA spectrum. Yakutsk and AGASA disagree
significantly with HiRes at

z ¨ ���¡
�, eV where statistical errors are negligible, which points to some
systematics. AGASA and HiRes can be reconciled at

z \ ��� 1 � by, for example, a
; � ��� and S � ���

respective shift of energy [134]. The discrepancy between two experiments at
z �Ï����1 � after the shift is

only & - . However, even after these shifts, there are still nine events with
z �Ï����1 � in the combined data

set.

8.4 The puzzle
These measurements are regarded as a threefold puzzle, because contrary to assertions [A1] and [A2]
[P1] no candidate sources are found within the GZK distance in the directions of

z �Ï���)1 � eV events;
[P2] the AGASA spectrum does not exhibit the GZK cutoff.
And finally we have the third puzzling question:

[P3] Which physical processes are capable of producing events with these enormous energies?

Conjectures. With the assumption that all three pieces of the puzzle, [P1]–[P3], are correct, the situa-
tion becomes desperate. There were no solutions suggested which would not invoke new physics beyond
the Standard Model, or very speculative astrophysics. In addition, all models require fine tuning, and
many do not really solve all three problems. It is not possible to consider here all the suggested solu-
tions. Ignoring for now problem [P2], the situation with [P1] and [P3] does not become easier, but we
can now restrict ourselves to the discussion of astrophysical solutions only.
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Ignoring in addition [P3], the simplest suggestion is to assume very large extragalactic magnetic
fields, which would randomize UHECR trajectories. However, the results of Ref. [117] do not support
such a conjecture. As we have mentioned already, a consensus regarding EGMF fields has not yet been
reached and in Ref. [121], much stronger extragalactic magnetic fields were advocated. Nevertheless,
even in this case, the conclusion was that the condition of global isotropy of UHECR arrival directions
requires the ‘local’ value of the magnetic field to be rather weak,

� ¨ \ � � � S å , which, in turn, leads to
a large number of UHECR sources in the GZK volume, © ¨ � ����� ; for similar limits on the number of
sources see also Refs. [135]– [138]. These weak EGMFs of Refs. [117, 121] rule out the possibility of a
single powerful radio-galaxy, which happened to be nearby [139], or a gamma-ray burst scenario [140],
as potential sources of UHECR.

Another suggested astrophysical scenario was a ‘dead quasars’ model [141]. This model assumes
that quasars, powerful in the past, retain the possibility to accelerate to the highest energies even after
the accretion of matter is exhausted and a quasar ceases to be visible electromagnetically. However, the
process of acceleration to the highest energies in compact sources is inevitably accompanied by a strong
TeV emission [142]. Recent results obtained by several TeV telescopes, in particular, non-observation
of strong TeV sources, rule out the ‘dead quasar’ model [143]. In addition, in Ref. [144] it was found
that known quasar remnants are typically distributed too anisotropically to explain the isotropic ultra-
high-energy cosmic-ray flux except in the unrealistic case where extragalactic magnetic fields of � � � S G
extend over many Mpc.

A possibility that ultra-high-energy events are due to iron nuclei accelerated from young, strongly
magnetized neutron stars in relativistic MHD winds has also been suggested [145]. However, with
realistic parameters of Galactic magnetic field, even iron nuclei do not propagate diffusively within the
Galaxy, which disfavours this model [146].

Any observational clue? Many quite different models were suggested for the resolution of the GZK
puzzle. The majority of suggested models, which we have no space to consider here, employ a new
physics of one sort or another. (The reader may consult UHECR reviews cited at the beginning of this
section, but I believe that a review which would cover all the suggested possibilities does not exist.)
Instead, let us consider the question of whether or not there is already a clue in the data as to which
model may be correct. Hints, and, in principle, critical signatures are given by:

– Spectral shape. We do not yet have enough data at the highest energies to constrain models.
Spectra below ���H1 � eV point to the AGN model of UHECR origin, with protons being primaries
[147, 148].

– Chemical composition. Again, there is not enough data at the highest energies. An analysis of
Haverah Park data at lower energies shows that above ��� 
�3 eV, less than 30% of the primary
cosmic rays can be photons or iron nuclei at the 95% confidence level [149]. In other words, at
least 70% should be protons.

– Large-scale anisotropy. Gives strong signatures. Not observed, which is a hint by itself. We have
considered some implications already, and may add that the non-observation of anisotropy towards
the Galactic centre has a potential of ruling out the model of UHECR origin based on decays of
super-heavy dark matter [150]– [153].

– Small-scale clustering. This is an observed [154], reliable feature. (Errors in angle determination
are definitely small.) It is already statistically significant. Therefore, below I shall concentrate on
this signature.

Small-scale clustering. It was observed by different installations that arrival directions of UHECR are
too close to each other and this happens too often [155]– [157]. In particular, the AGASA collaboration
has observed six doublets and one triplet of cosmic rays with

z � � �
����
�3 within &��'� : . The chance
probability of observing just a triplet under an isotropic distribution is only 0.9% [154]. The statistical
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significance of these clusters in the AGASA data set was considered by several authors. In Ref. [157],
an analysis based on the calculation of an angular autocorrelation function was employed, and the prob-
ability GÍ#Ï� �J���¹�� of chance clustering was obtained. This includes the penalty for the choice of the
energy cut, while the angular bin was chosen to be fixed at &��'�	: , which is a value previously accepted
by AGASA, being consistent with the angular resolution. In Ref. [158], this analysis was repeated and
confirmed. In addition, two more conservative estimates were made. In the first, the penalty factor for
the adjustment of the angular bin size was added. This returns G�#>� �½�����)� . This is a valid procedure,
but it misses prior information about the angular resolution of the installation. In the second estimate,
the bin size was kept fixed, but the whole data set was divided in halves. The ‘original data set’ [155]
was used to justify the bin size of &��'� : , while clusters in it were removed for the subsequent evaluation of
statistical significance. This procedure returned G�#�� �J��� �)1 . Again, this too is a valid approach, and
can be safely used with future large data sets. However, I’d like to stress that it is not an evaluation of the
statistical significance of six doublets and one triplet. It is no wonder that a smaller data set has reduced
statistical significance. Finally, in Ref. [159] it was found that the AGASA data set manifests a G ¨%��� �)�
chance probability of clustering above background using independent statistics of Å � jH� T Æ76 �98 � 
 �98;: . I find
this value, G ¨%��� �)� , to be a fair estimate of the current significance of clustering in the AGASA data.

Note the following: if clusters are real and due to sources, the number of events in ‘physical’
clusters should have a Poisson distribution. Therefore, with the current low statistics, it is expected
that roughly half of installations should observe significant clustering, while another half should not see
it [157]. There is no clustering in the current HiRes data [159, 160]. However, with the current statistics
there is no contradiction yet [159, 161].

The study of small-scale clustering is very important. If clusters are real and not a statistical
fluctuation, then UHECR should point back to sources and UHECR astronomy is possible. Real sources
should be behind the clusters and the correlation studies make sense. Pursuing this strategy, one should be
restricted to astrophysical sources with physical conditions potentially suitable for particle acceleration
to the highest energies. Active galactic nuclei (AGN) constitute a particularly attractive class of potential
sources. As we have already discussed, if AGNs are sources, those which have jets directed along the
line of sight, or blazars, should correlate with observed UHECR events. It is intriguing that statistically
significant correlations of UHECR with BL Lacertae objects were found [129].

9 CONCLUSIONS

Cosmology and astrophysics give us firm evidence that the Standard Model of particle physics is limited.
The Standard Model fails to explain baryogenesis, does not contain non-baryonic dark matter, and has
no room for massive neutrinos. We now know that dark energy also exists, but we do not know why it
exists. There seem to be too many coincidences between numerical values of cosmological parameters
that describe the matter and energy budget. Contributions of baryonic matter, non-baryonic matter, and
dark energy are almost equal at the present epoch, while they have seemingly unrelated origin and could
differ by many orders of magnitude. Cosmology just became a precision science and is already full of
surprises; we can expect even more exciting discoveries in the near future.
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