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Abstract

Hamiltonian systems with linearly dependent constraints (irregular systems), are classi-
fied according to their behavior in the vicinity of the constraint surface. For these systems,
the standard Dirac procedure is not directly applicable. However, Dirac’s treatment can be
slightly modified to obtain, in some cases, a Hamiltonian description completely equivalent
to the Lagrangian one. A recipe to deal with the different cases is provided, along with a
few pedagogical examples.

1 Introduction

Dirac’s Hamiltonian analysis provides a systematic method for finding the gauge symmetries
present in a theory. The analysis identifies and classifies the constraints, which are local func-
tions of the phase space coordinates. Consistency requires that the constraints be preserved in
during the evolution (for the review of the Hamiltonian analysis see Ref.[1]–[4]). However, if the
constraints are not functionally independent, then Dirac’s procedure is not applicable. The test
of functional independence are the so-called regularity conditions, and those systems which fail
the test are said to be irregular.

Irregular systems are not necessarily intractable or exotic. A simple example is a relativistic
massless particle (pµpµ = 0), which is irregular at the origin of momentum space (pµ = 0). This
point in phase space is exceptional, as it is unclear whether this would be an observable state
for a photon, say. On the other hand, we know the configuration pµ = 0 to be a very important
one: the ground state. There are other physical circumstances in which regularity is violated,
and not only for isolated states but on large portions of the region in phase space where the
system evolves. Chern-Simons theories in 2n + 1 spacetime dimensions are examples where, for
some initial configurations, regularity can fail at all times and one is forced to live with this
problem.

Here we discuss the possible ways in which the constraints can fail the test of functional
independence, and how the Hamiltonian treatment of Dirac must be modified in each case.
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2 Regularity Conditions

If we call zi ≡ (q, p) (i = 1, . . . , 2n) the coordinates in the phase space Γ, the constraints
φr(z) ≈ 0 (r = 1, ...R) define the constraint surface Σ given by

Σ = {z̄ ∈ Γ | φr(z̄) = 0 (r = 1, . . . , R) (R ≤ 2n)} . (1)

Regularity Conditions (RCs): The constraints φr ≈ 0 are regular if and only if their
small variations δφr, evaluated on Σ, are R linearly independent functions of δzi.

To first order in δzi, the variation of the constraints are δφr = Jr
i δzi, where Jr

i ≡ ∂φr

∂zi

∣∣∣
Σ
.

Consequently, the RCs can also be defined as [2]:

The set of constraints φr ≈ 0 is regular if and only if the Jacobian Jr
i ≡ ∂φr

∂zi

∣∣∣
Σ

has maximal
rank: <(J) = R.

A simple classical mechanical example of functionally dependent constraints occurs in a 2-
dimensional phase space with coordinates (q, p) and constraints φ1 ≡ q ≈ 0 and φ2 ≡ pq ≈ 0.

In this case, J =

[
1 p
0 q

]
Σ

and <
[

∂(φ1,φ2)
∂(q,p)

]
q=0

= 1. A system of just one constraint can also

fail the test of regularity. Consider the constraint φ = q2 ≈ 0 in a 2-dimensional phase space.

In this case, J =

[
2q
0

]
q2=0

= 0 and < (J) = 0. The same problem occurs with the constraint

q7 ≈ 0, which has a zero of seventh order at the constraint surface, or with any other constraint
which is not linear in zi − z̄i.

3 Classification of Irregular Constraints

Irregular constraints can be classified according to their approximate behavior near the surface
Σ.

A. Linear constraints. The Jacobian has constant, non-maximal rank throughout Σ, and

φr ≡ Jr
i

(
zi − z̄i

)
≈ 0, <(J) = R′ < R. (2)

These are regular systems in disguise. Regularity fails simply because R − R′ constraints are
redundant and should be discarded. The regular system gives the correct description.

B. Multilinear constraints. In the vicinity of Σ, the constraints are of the form

φ ≡ 1
m!

Si1...im

(
zi1 − z̄i1

)
· · ·

(
zim − z̄im

)
≈ 0 (m ≤ 2n) , (3)

where the coefficients Si1...im vanish if any two indices are equal. Thus, φ has simple zeros on
surfaces of dimension 2n−1, and zeros of higher order occur at the intersections of these surfaces.
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The RCs fail at the points of intersection, where φ has multiple zeros. At those intersections, φ
can be replaced by the equivalent1 set of constraints,

ϕ1 ≡ zi1 − z̄i1 ≈ 0, · · · , ϕm ≡ zim − z̄im ≈ 0. (4)

At the intersections, the set
{
ϕ1, ..., ϕm

}
is regular and therefore this provides a recipe for

substituting the irregular multilinear constraint φ by a regular set of linear constraints. For
example, the constraint φ ≡ qp ≈ 0 is irregular at (0, 0) because it admits a linear approximation
everywhere except at this point. Replacement φ by the linear constraints {q ≈ 0, p ≈ 0} at (0, 0)
regularizes the system.

C. Higher order constraints. In the vicinity of Σ, the constraints do not possess a linear
approximation:

φ ≡ C (zs − z̄s)k ≈ 0 (k > 1) . (5)

The Jacobian vanishes everywhere on the constraint surface. Naively, it would seem possible to
choose zs − z̄s ≈ 0 as an equivalent regular constraint, but it turns out that this could change
the dynamics of original theory, as we show below.

These three classes are generic and, in general, there can be combinations of these three
types occurring simultaneously near a constraint surface. By selecting a sufficiently small neigh-
borhood of a point on Σ, one can always expect to be in one and only one of the three situations
just described.

In correspondence with the three generic cases in which regularity can fail, the nature of the
constraint surface Σ falls into one of three categories:

A. The RCs are satisfied on the whole constraint surface. These are regular systems, either
desguised or not.

B. The RCs fail on a submanifold of Σ: < (J) = R except on a submanifold Σ0 ⊂ Σ where
< (J) = R′ < R .

C. The RCs fail everywhere on Σ: J has constant lower than R rank on Σ.

The first case is treated in the standard texts and will not be further discussed here.
In the second case, the constraint surface can be decomposed into two non-empty submani-

folds, Σ0 and ΣR such that Σ = Σ0 ∪ΣR and Σ0 ∩ΣR is empty. Then, the rank of the Jacobian
jumps from < (J) = R on ΣR, to < (J) = R′ on Σ0. As mentioned above, in this case it is
possible to replace φ at Σ0 by a set of regular constraints

{
ϕ1 ≈ 0, · · · , ϕm ≈ 0

}
which regularize

the system at Σ0.
The important question is how to proceed in the third case. If the RCs fail everywhere on

Σ, the previous approach is not applicable, because there is no guarantee that the resulting
Hamiltonian dynamics will be equivalent to that of the original Lagrangian system.

This can be seen in the example of Lagrangian in a three-dimensional configuration space,

L (x, y, z) = ẋż + yz2. (6)
1Two sets of constraints are said to be equivalent if they define the same constraint surface Σ.
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The general solution of Euler-Lagrange equations describes a system with one degree of freedom
– a free particle, whose time evolution x̄ = p0 t + x0 is determined by two initial conditions p0

and x0. The remaining fields are ȳ(t), a Lagrange multiplier with indeterminate evolution, and
z̄(t), with trivial evolution, z̄(t) = 0.

The Hamiltonian approach gives just two (first class) constraints, py ≈ 0, z2 ≈ 0 (R = 2),
and one degree of freedom, as expected from the Lagrangian approach. However, this is only
superficially correct, because the Jacobian has rank 1, and not 2. This is because the constraint
function φ = z2 has no linear approximation at z = 0.

On the other hand, if we naively take z ≈ 0, which is regular and equivalent to z2 ≈ 0,
then the Hamiltonian analysis generates three first class constraints py ≈ 0, z ≈ 0, px ≈ 0,
which leave zero physical degrees of freedom. This result is not consistent with the Lagrangian
description where there is one degree of freedom.

As seen in the previous example, even if two constraints are equivalent in defining the same
constraint surface, they may yield different dynamics and should be treated more carefully.

Suppose φ ≈ 0 is a constraint of the form (5), which is equivalent to the regular constraint

χ ≡ φ1/k ≈ 0. (7)

The question is whether χ ≈ 0 gives also the correct dynamics. The answer to this question
depends on whether χ is a first or second class constraint. Namely, it makes a difference whether
the linear constraint χ can generate a transformation in phase space that leaves the Hamiltonian
action unchanged or not . As shown in [5], if the linearized constraint χ is second class, then
it is not only geometrically equivalent to φ in the sense that it defines the same Σ, but the
substitution also yields the same dynamical description as the Lagrangian approach. On the
other hand, if χ is first class, then the subtitution generates a system whose dynamics is different
from the one obtained from the Euler-Lagrange equations.

4 Conclusions

The recipe for treating the non-regular constraints is:

• Every linear or multi-linear set of constraints can be exchanged by an equivalent regular
set. It allows to carry out Dirac’s procedure in the standard way.

• A higher order constraint φ = C (zs − z̄s)k ≈ 0, can be exchanged by the equivalent linear
constraint χ = φ1/k ≈ 0. If χ is a second class constraint, the dynamics of the new system
is equivalent to the Lagrangian one. If χ is first class, the substitution yields a system
which is not dynamically equivalent to the Lagrangian one. In this latter case, one should
view the original Lagrangian as an incomplete, if not a totally inconsistent description for
a dynamical system.
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