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Abstract

We present a few estimates of energy densities reached in heavy-
ion collisions at the CERN SPS. The estimates are based on data and
models of proton–nucleus and nucleus–nucleus interactions. In all of
these estimates the maximum energy density in central Pb+Pb in-
teractions is larger than the critical energy density εc ≈ 0.7GeV/fm3

following from lattice gauge theory computations. In estimates which
we consider as realistic the maximum energy density is about 2εc. In
this way our analysis gives some support to claims that deconfined
matter has been produced at the CERN SPS. Any definite statement
requires a deeper understanding of formation times of partons and
hadrons in nuclear collisions. We also compare our results with im-
plicit energy estimates contained in earlier models of anomalous J/ψ
suppression in nuclear collisions.
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1 Introduction

There exist plenty of models and Monte Carlo generators of proton–proton
(pp), proton–nucleus (pA) and nucleus–nucleus (AB) interactions. These
include models based on strings and their fragmentation, e.g. [1, 2, 3, 4], on
partonic cascades [5, 6], on hadronic cascades [7, 8], on combined parton and
hadron degrees of freedom [9], and on other pictures of the initial state of
the collision. After fixing a few parameters, these models are able to find a
reasonable agreement with data.

Another class of models for pA interactions is based on successive col-
lisions of the incident proton with those nucleons in A which are present
within a tube in A given by the trajectory of the proton in the nucleus
and by the non-diffractive cross-section for proton–nucleon interaction, e.g.
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. The model can be naturally
extended to AB interactions. There it is based on the Glauber picture of
colliding tubes of nucleons, see e.g. [11, 12, 13, 14, 15, 16, 17]. Models of
this type proceed at every step in accordance with the data available from
pp and pA interactions. A crucial input comes from data on the formation
time of hadrons and on the Drell–Yan process [21]. Such a method keeps the
parameters under control and gains some information about the space-time
evolution of the process.

One of the most important quantities of interest in heavy-ion collisions is
the highest energy density reached. This quantity is relevant to the possible
approach to the quark–gluon plasma. In this paper we estimate the energy
density reached at the CERN SPS by using a simple version of the Glauber-
type model with tube-on-tube interactions.

We shall compare our estimates with recent lattice gauge theory results
[22, 23]. The lattice results have brought a new and most interesting in-
formation on the type and parameters of the phase transition between the
quark-gluon plasma (QGP) and the hadron gas (HG). The phase transition
is most likely of a cross-over type, with critical temperature Tc ≈ 173 MeV
and the rather low critical energy density of εc = ε(Tc) ≈ 0.7 GeV/fm3.

The paper is organized as follows. In Section 2 we describe a simple
version of the Glauber-type model of AB interactions, which we use in our
calculations of rapidity distribution of the energy ∆E/∆y. We also present
our estimate of the volume occupied by the central rapidity region of ∆y ≈ 1
right after the tube-on-tube interaction is finished. The energy density is
then estimated as the ratio of ∆E/∆y and ∆V/∆y. More details of the
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Figure 1: Left: geometry of non-central nuclear collisions. Right: layout of
tube-on-tube interaction (plotted without Lorentz contraction).

model are explained in Section 3. In particular we discuss the formation
time of hadrons and its relationship to the space-time picture of subsequent
energy losses of incident nucleons in a tube-on-tube interaction. In Section 4
we present our results. Comments and concluding remarks are deferred to
the last section.

2 The model

For the sake of simplicity we shall take the nuclei as hard spheres with radii
RA = 1.2A1/3 fm and homogeneous number density ρ = 0.138 fm−3. In the
transverse plane, the impact parameter is denoted as ~b and a point in the
transverse plane of the nucleus A is specified by the transverse coordinate ~s.
The angle between~b and ~s is denoted as θ. The situation is sketched in Fig. 1.
In a Glauber model, the first part of the nuclear collision is described as a
sum of tube-on-tube interactions (Fig. 1). In our model we will be interested
in the energy density contained in such tubes just after the interaction.

The cross-section of both tubes is equal to the non-diffractive nucleon–
nucleon cross-section σ = 30 mb = 3 fm2. The lengths of the tubes 2LA and
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2LB are given by

2LA(s) = 2
√
R2

A − s2 , (1)

2LB(b, s, θ) = 2
√
R2

B − b2 − s2 + 2bs cos θ . (2)

The average numbers of nucleons in both tubes are

〈nA(s)〉 = 2LA(s)ρσ, 〈nB(b, s, θ)〉 = 2LB(b, s, θ)ρσ . (3)

For this type of models three ingredients have to be specified:

(i) The probability distribution of the number of nucleons within the col-
liding tubes PA(nA) and PB(nB).

(ii) For given nA, nB the nucleons in the tube in A can be numbered, start-
ing with the head of the tube as i = 1, 2, . . . , nA, and similarly in B
j = 1, 2, . . . , nB. It is assumed that every nucleon in the tube in A
collides with every nucleon in the tube in B. We have to specify the ra-
pidity distribution of all nucleons before and after every nucleon–nucleon
collision.

(iii) Finally, we have to specify the production of secondary particles and
compute their energy distribution in rapidity after every nucleon–nucleon
collisions. Consider the collision of the i-th nucleon in the tube in A,
with the j-th nucleon in the tube in B, which we refer to as an (i, j)
collision. Both nucleons have lost a part of their rapidity in interactions
prior to the (i, j) collision. If we denote the incoming rapidities in such
a collision by yi

A and yj
B, we need to specify dN(yi

A, y
j
B)/dy dp2

T or at
least the pT -integrated distribution dN(yi

A, y
j
B)/dy of secondaries pro-

duced in the (i, j) collision. From the rapidity spectrum one computes
the rapidity distribution of energy ∆E(ij)/∆y of the produced particles
within the interval −0.5 < y < 0.5.

After having specified the items (i)–(iii), the energy contained in all sec-
ondary particles produced from a collision of two tubes in the rapidity interval
−0.5 < y < 0.5 is obtained as

∆Esec

∆y
=

∞∑
nA,nB=0

PA(nA)PB(nB)

nA∑
i=1

nB∑
j=1

∆E(ij)

∆y
. (4)

3



In order to obtain the total energy within the given rapidity interval we have
to add the energy of incident nucleons in the two colliding tubes, which end
up in the rapidity interval −0.5 < y < 0.5 when the tube-on-tube collision
is finished. We denote this contribution by the index “st” from nucleon
stopping and obtain

∆Etot

∆y
=

∆Esec

∆y
+

∆Est

∆y
. (5)

This is the total energy resulting from a tube-on-tube collision. We will have
to divide it by the volume occupied by quanta which were produced from
these two tubes.

We shall now describe the three inputs (i)–(iii) in our model.

(i) Number distribution. The distribution of the number of nucleons in
both tubes is assumed to be Poissonian, with mean values µA = 〈nA(s)〉 =
2LA(s)ρσ and similarly for µB

PA(nA) =
(µA)nA exp(−µA)

nA!
, PB(nB) =

(µB)nB exp(−µB)

nB!
. (6)

(ii) Rapidity loss. In each nucleon–nucleon collision the rapidity loss of
both nucleons is ∆y. We will show results calculated for ∆y = 0.5 and
∆y = 0.7. In the CMS of nucleon–nucleon collisions at the CERN SPS, the
absolute value of the rapidity of incident nucleons is y = |y0

A| = |y0
B| ≈ 3. In

every collision it decreases by ∆y. When the rapidity of a nucleon becomes
less than ∆y, the nucleon does not participate in further collisions and its
energy contributes to ∆Est in Eq. (5). The term ∆Est/∆y is thus estimated
as

∆Est

∆y
=

∞∑
nA,nB=0

PA(nA)PB(nB) [nA,slow(nA, nB) + nB,slow(nA, nB)]× 1 GeV ,

(7)

where nA,slow and nB,slow are numbers of incident nucleons which end up in
the final state with −0.5 < y < 0.5.
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(iii) Particle production. We assume that the production of secondaries
is the same as it is in vacuum and use the parametrization due to Wong and
Lu [13] for the computation of the energy of secondary particles produced in
the (i, j) collision. In this model, the rapidity of charged particles produced
in a collision of nucleons with rapidities yi

A and yj
B is given as

dnij

dy
= A ((1− x+)(1− x−))a , (8)

where

x+ =
mπT

MN
exp(y − yi

A), x− =
mπT

MN
exp(yj

B − y), (9a)

a = 3.5 + 0.7 ln
√
sij , (9b)

mπT = (m2
π +B2

T )1/2 , (9c)

A = 0.75 + 0.38 ln
√
sij , (9d)

BT = 0.27 + 0.037 ln
√
sij . (9e)

In Eqs. (9), mπ is the pion mass and MN the nucleon mass. The average
transverse momentum of produced pions BT is taken in units of GeV/c and
the CMS energy of the (i, j) collision

√
sij in units of GeV. As discussed in

[13], the parameters in (9) were tuned by comparison with experimental data
[24, 25].

The energy of neutral secondary particles (mostly pions) in the final state
is taken into account by assuming that nπ0 = (nπ+ +nπ−)/2 and multiplying
the factor A in Eq. (9d) by 3/2. In order to go from particle distribution to
energy distribution we multiply the right-hand side of Eq. (8) by the mean
pion energy 〈Eπ〉 and obtain

∆Eij

∆y
= 1.5A ((1− x+)(1− x−))a 〈Eπ〉 . (10)

Here 〈Eπ〉 = (m2
π + B2

T + p2
L)1/2, with p2

L = 〈p2
T 〉/2 = B2

T/2 for pions in
the rapidity interval −0.5 < y < 0.5. The value of ∆Eij/∆y calculated by
Eq. (10) is then inserted into Eqs. (4) and (5).

Our interest here is in the energy density of quanta which form the sys-
tem when the tube-on-tube interactions are finished. These quanta include
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secondary particles produced according to Eq. (8) and slowed-down nucleons.
The energy density is given by

ε =
∆Etot/∆y

V (LA, LB,∆y)
, (11)

where V (LA, LB,∆y) is the volume occupied by the central rapidity unit
when the collision of the two tubes is finished. It is only the volume of parti-
cles involved in a single tube-on-tube process, not the total fireball volume.
We estimate it as

V (LA, LB,∆y) = (2LA/γ + 2LB/γ + 2v0t0)σ . (12)

Here, γ is the Lorentz contraction factor, for Pb+Pb collisions at the CERN
SPS γ ≈ 9. The third term 2v0t0 stands for the delay due to formation time.
We assume that the formation of particles effectively sets in after the two
colliding tubes have crossed each other. In our calculation we put v0 = 0.5
and varied the parameter t0.

3 Comments on the model

The Glauber model of pA and AB interactions has been studied by many
authors [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 26, 20, 21, 28, 29, 30]. Experi-
mental data have been reviewed by Busza and Ledoux [31]. As pointed out in
[31], one of the problems of this field is caused by insufficient accuracy of the
data. The situation can change soon, since the NA49 Collaboration at the
CERN SPS has recently obtained new data on pA interactions, which were
only briefly published so far [32, 33]. Note that these data are in the same
energy region where anomalous J/ψ suppression [34] occurs and increased
production of multistrange baryons [35] has been seen. For a more precise
formulation of the model one would need accurate data on nucleon stopping
in pA interactions, on the production of secondary particles in multiple col-
lisions of a proton in the nucleus, and on the formation time of secondary
particles.

We shall now discuss the assumptions made in our simple model as well
as the choice of parameters.

First we turn to our assumption about the rapidity loss in every nucleon–
nucleon collision. In pp collisions, the proton rapidity loss is as large as
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∆y ≈ 1 [24, 31] and this is assumed in many models [16, 17, 26, 13, 28, 30] in
which the data on pp interactions are directly extended to multiple collisions
in pA and AB interactions. In [18, 19] the rapidity loss is put equal to
∆y ≈ 0.5 and in some other models [10] the rapidity loss per collision is as
small as ∆y ≈ 0.3. Recent data of the NA49 Collaboration [33] support our
choice of ∆y = 0.5. In order to see the influence of a larger ∆y, we have also
made calculations with ∆y = 0.7 which is closer to the assumptions made in
most models.

A crucial assumption made in our model is the way in which the volume
V (LA, LB,∆y) is determined, see Eq. (12). We discuss this point in more
detail here.

An important contribution to the volume in Eq. (12) comes from the
formation time. We want to note that in a pA interaction the collision of the
incident proton with the tube in the nucleus is a very complicated process
which we are unable to describe in detail. A description of this process by
multiple collisions only gives the final state but does not make statements
about the real intermediate stages of the process itself. In early critical
comments on this type of description [36] it was already pointed out that a
simple classical explanation contradicts the data on Drell–Yan production in
pA and AB interactions. The argument goes along these lines: suppose that
in the first collision in the nucleus the proton loses some part of its momentum
and the parton structure functions immediately adapt to this change. In such
a situation the cross-section for the production of Drell–Yan pairs cannot be
proportional to Aα with α very close to 1. The same problem appears in the
case of Drell–Yan production in nuclear collisions, where the cross-section is
again proportional to (AB)α with α close to 1. This issue has been recently
discussed by Gale, Jeon and Kapusta [21]. They have introduced a coherence
time of the energy loss of the proton in pA interactions. This coherence time
gives the delay after which the proton energy is degraded to the value seen
in the final state. By analysing the data [37] on Drell–Yan pair production
in pA interactions, they concluded that the average proper coherence time
t0 = 0.4 ± 0.1 fm/c. They have also pointed out that this coherence time
is related to the formation time of secondary hadrons in pA interactions.
Indeed, when a secondary final-state hadron is able to interact with other
particles, its energy must be already felt as lost by the incident proton. This
estimate of the formation time may rather be considered as a lower limit,
since a part of the data in [37] can be explained by shadowing corrections
and by the energy loss of incident partons when traversing the nucleus [38].
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Possible effects of shadowing and energy loss corrections in the Drell-Yan
data from Fermilab were discussed for the first time in [39]. Recent analyses
can be found in [38].

Although the model of pA interactions uses hadronic degrees of freedom,
this does not imply their dominance in the intermediate stages of the process.
Since the model refers only to the final state, it is quite possible that the
dynamics of the intermediate stages is dominated by partonic degrees of
freedom. The relationship between intermediate and final stage is thus given
by some form of parton–hadron duality.

Let us come back to our estimate of the volume. In our scenario, the
process of tube-on-tube collision can be finished only after both tubes traverse
each other completely. The effective volume is further increased by the delay
needed for the formation of secondaries, which move with rapidities up to
y = ±0.5. The value of the formation time t0 is assumed to be of the order of
1 fm/c and is a free parameter. This estimate is based on works quoted in [27],
in particular on [40]. For experimental data, see [41]. The data underlying
these estimates are rather old and a new and more accurate information on
the value of the formation time is most desirable.

Before finishing this section, let us discuss some alternative estimates of
the volume. One could argue that most of the secondaries are produced in the
early nucleon–nucleon collisions and therefore the total lengths of the tubes
2LA and 2LB should be replaced by some effective lengths, say leffA ≈ LA and
leffB ≈ LB. Then

V half(LA, LB,∆y) = (LA/γ + LB/γ + 2v0t0)σ . (13)

On the other hand, the process is not finished when only the front halves
of the tubes cross each other, and the production of secondary particles is
disturbed by nucleons that come later.

A very popular Bjorken scenario [42] has been devised for asymptotic
energies. In this regime the nuclei are really contracted to pancakes of van-
ishing thickness. In the CMS of Pb+Pb interactions at the SPS the nuclei
are contracted to 2RPb/γ ≈ 1.58 fm and neglecting this length is not realistic.

Both these estimates would lead to smaller volumes than formula (12) and
hence to larger energy densities. In what follows, however, we only report on
results obtained with the estimate (12), which we consider as most realistic.
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Table 1: Largest length of tubes for some selected nuclei in units of fm.

A 12C 16O 32S 64Cu 115In 108Ag 184W 208Pb 238U
2Lmax

A 5.49 6.05 7.62 9.6 11.67 11.43 13.65 14.22 14.87

4 Results

We calculated the energy density as a function of the length of the tubes.
Before plotting our results it is useful to quote realistic values for the max-
imum length of tubes that fit into a few selected nuclei. These lengths are
given by 2Lmax

A = 2RA = 2.4A1/3 and are summarized in Table 1.
In all our calculations the following choice of parameters is made: σ =

30 mb, γ = 9, ρ = 0.137 fm−3, y0
A = 3, y0

B = −3.
In Fig. 2 we plot six curves corresponding to the critical energy density

ε = εc = 0.7 GeV/fm−3 as a function of 2LA, 2LB. They were obtained for
∆y = 0.5 and 0.7, and different values of the formation time parameter t0.

The influence of stronger nucleon stopping on the results is very weak:
there is only little modification in the curves as seen from Fig. 2. This
demonstrates that the major contribution to the energy density comes from
produced particles, i.e. the first term in Eq. (5). Quite naturally, longer
formation times lead to larger volumes and lower energy densities, and the
critical energy density is thus reached in collisions of longer tubes.

The results are very optimistic. According to Table 1, critical energy den-
sity is just reached in the centre of head-on S+S collisions and certainly in
S+Pb or S+U interactions, because the combination of longest tube lengths
for these pairs of nuclei falls into the region above the critical curve in Fig. 2.
One is tempted to claim the existence of the QGP. However, if we accept the
conjecture that anomalous J/ψ suppression is connected with plasma produc-
tion, our statement comes out too optimistic. Anomalous J/ψ suppression
was only observed for larger collision systems [34].

J/ψ suppression as a signature of QGP formation in nuclear collisions
has been proposed by Matsui and Satz [43] more than 15 years ago. The
anomalous J/ψ suppression has been discovered by the NA50 collaboration in
1996 [34]. About a year later phenomenological models of the QGP formation
and J/ψ suppression in nuclear collisions at the SPS have been proposed
by two groups: Blaizot, Ollitrault [44] (we will refer to this model as BO)
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Figure 2: Lines of constant energy density ε = εc = 0.7 GeV/fm3 calculated
for t0 = 0.5, 1.0, 1.5 fm/c. Nucleon stopping was set to ∆y = 0.5 (thick lines)
and ∆y = 0.7 (thin lines). Other parameters are given in the text. Energy
density is calculated by Eqs. (11) and (12).

and Kharzeev, Lourenço, Nardi and Satz (KLNS, [45]). As discussed in
Refs. [44, 45] and by Nogová et al. [46], the condition for QGP formation in
the BO model can be stated simply as

[BO] 2LA(s) + 2LB(b, s, θ) ≥ 23.5 fm . (14)

For the KLNS model the condition for the formation of QGP reads

[KLNS] 2LA × 2LB ≥ 5.87 fm× (2LA + 2LB) . (15)

In these equations, 2LA, 2LB are given in units of fm. The critical curves
for plasma formation according to these two models are shown in Fig. 3.
Note that for interactions of equal-length tubes they both lead to almost
the same results. Differences can only show up in non-central collisions and
interactions of different size nuclei.
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Figure 3: Curves in the 2LA, 2LB plane, which indicate the limits of anoma-
lous J/ψ suppression in the BO [44] and KLNS [45] models, given by Eqs. (14)
and (15), respectively. These curves are compared with constant energy den-
sity curves with ε = 1.7εc and ε = 1.9εc, which were calculated in our model
for ∆y = 0.5 and t0 = 1 fm/c.

We compare with these curves the results of our energy density estimate
with reasonable parameters values. The critical curves of BO and KLNS
models correspond to an energy density about 1.8 times above εc. We inter-
pret this result as a consequence of delayed thermalization and rapid expan-
sion in both the longitudinal and transverse [47] direction which leads to fast
cooling. In order to have a collectively behaving plasma that will be able to
screen the cc̄ interaction, particle production must lead to an energy density
higher than εc. Only in such a case can it remain in a deconfined state until
the collective behaviour is established.
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5 Comments and conclusions

Our estimates of energy densities in heavy-ion collisions in the CERN SPS
energy region have been based on the Glauber-type model of tube-on-tube
interactions. The tube-on-tube prescription of nuclear collisions was comple-
mented by the introduction of the formation time.

In spite of our rather conservative choice of model parameters, the energy
densities we obtained are higher than the critical value known from lattice
gauge theory. Thus our results support the claim that the threshold for
quark–gluon plasma formation has been reached at the CERN SPS [48].
This statement requires a few comments.

(i) The lattice results [22, 23] on the critical energy density still have rather
large error bars. According to [22] εc = (6± 2)× (173± 8) MeV4 which
leads to εc = 0.7 ± 0.35 GeV/fm3. In addition to statistical errors on
Tc, there are also systematic errors of a comparable size due to extrap-
olation to the chiral limit. The uncertainty due to statistical errors
is illustrated in Fig. 4 where we plot the band between the curves for
εc = 0.35 GeV/fm3 and ε = 1.05 GeV/fm3 corresponding to our results
for ∆y = 0.5 and t0 = 1 fm/c, together with the curves obtained in the
BO and KLNS models. The curve corresponding to εc = 1.05 GeV/fm3

(that means 1.5 times 0.7 GeV/fm3) starts to approach the BO and
KLNS models. In view of this uncertainty it becomes unclear whether
or not critical energy density is reached in S+S collisions, but central
collisions of In+In and heavier systems appear to be on the safe side.

(ii) We have tacitly assumed that the local energy density as calculated
above for a small size system can be compared with lattice results cor-
responding to an infinite system.

(iii) The model we are using is based on a phenomenological picture of pro-
duction of (mostly) soft hadrons. Although the model has been tested
by comparison with the data on hadron production, the true dynamics
of the process might be somewhat different. It is for instance possible
[49], that the first stage of the collision is dominated by production of
gluons with momenta of about 0.6–1.0 GeV/c in nucleon-nucleon in-
teractions and the system—depending on the energy density—either
hadronizes or approaches kinetic equilibrium. In the latter case the for-
mation time as used in Eqs. (11) and (12) should rather correspond
to the thermalization time. This can be roughly estimated as the time
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Figure 4: The band in 2LA, 2LB plane corresponding to εc = 0.7 ±
0.35 GeV/fm3, calculated for t0 = 1 fm/c and ∆y = 0.5.

(in the c.m.s. of colliding nucleons) required for the emission of a few
softer gluons by the harder ones originally produced. Since the emission
of a gluon with momentum of kTc takes about 1 fm/c, the approach to
equilibrium may take 2–3 fm/c. Larger formation time would shift our
results in Fig. 2 closer to the curves obtained in BO and KLNS models
from phenomenological analyses of data on anomalous J/ψ suppression.
This is seen in Fig. 5 where we present the energy density obtained in
our model for values of formation times of 2 and 3 fm/c. Also note that
lattice results correspond to the system in equilibrium and very little is
known about J/ψ suppression by partonic systems out of equilibrium.

(iv) The model used is based on the assumption of purely longitudinal dy-
namics of the nuclear collision—at least in that part of the collision
which leads to formed hadrons or the system of gluons close to kinetic
equilibrium. The data on HBT radii and on the transverse momentum
spectra in heavy-ion collisions at the CERN SPS indicate the presence
of a rapid onset of the transverse flow [47, 52]. Transverse expansion
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Figure 5: Curves of the critical energy density calculated for formation (equi-
libration) times t0 = 0, 1, 2, 3 fm/c, and ∆y = 0.5.

lowers the energy density (with respect to the one calculated in a purely
longitudinal dynamics) and this would move our curves closer to those
obtained in the BO and KLNS models. Unfortunately, without a more
detailed information about the time evolution of the transverse flow it
is difficult to estimate the effect.

(v) It has been shown by the Bielefeld group [50] and later confirmed by
Wong and co-workers [51] that (2S) and (1P) quarkonia may already
be dissolved below Tc. This affects the observed J/ψ suppression via
dissolution of (1P) quarkonia since about 40% of J/ψ’s in the final state
is due to radiative decays of χ’s. Hence, anomalous J/ψ suppression
starts at energy density lower than εc The discrepancy between the
lines corresponding to this lower energy density in our model and the
BO and/or KLNS models shown in Fig. 3 is yet higher than what is
presented in the Figure.

To summarize: we have computed energy densities reached in heavy-
ion collisions at the CERN SPS in a simple model based on the assump-
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tion of longitudinal dynamics in the stage preceding hadronization or kinetic
equilibration. For formation times of about 1 fm/c the energy density of
εc = 0.7 GeV/fm3 is reached in collisions of tubes which are shorter than as-
sumed in phenomenological models of Blaizot and Ollitrault and of Kharzeev,
Lourenço, Nardi and Satz. The discrepancy is most likely due to combina-
tion of the three following effects: larger formation or equilibration times
than usually assumed, true critical energy density larger than 0.7 GeV/fm3

and a possible rapid onset of transverse expansion.
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[27] J. Pǐsút, N. Pǐsútová, and P. Závada, Z. Phys. C 67 (1995) 467.

[28] R.C. Hwa, Phys. Rev. Lett. 52 (1984) 492; R.C. Hwa, and M.S. Zahir,
Phys. Rev. D 31 (1985) 499.

[29] L.P. Csernai, and J.I. Kapusta, Phys. Rev. D 29 (1984) 2664;
Phys. Rev. D 31 (1985) 2795.
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T. Sjöstrand and M. van Zijl, Phys. Rev. D 36 (1987) 303.

[50] S. Digal, P. Petreczky, and H. Satz, Phys. Lett. B 514 (2001) 57.

17



[51] C.-Y. Wong,et al., nucl-th/0112023.

[52] S. Pratt, Proc. of the QM2002 Conference, Nantes, France, 2002, to be
published in Nucl. Phys. A.

18


