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1. Introduction

The low energy effective action of string theories is of particular importance, since it cap-

tures the interactions of the light string excitations. Its derivation has a long history and

has been continuously refined. The main idea is to integrate out the heavy string modes

and to derive an effective action of only the light modes below the mass scale of the heavy

excitations.

Generically, this low energy effective action features a set of moduli scalar fields whose

vacuum expectation values are not determined since they correspond to flat directions

of the effective potential. In compactifications of the ten-dimensional string theories on

compact Ricci-flat manifolds, Y , some of the moduli have a geometrical meaning in that

they correspond to deformations of the metric on Y that preserve the Ricci-flatness. These

deformations can be viewed as coordinates of the moduli space, M, of Y . Unfortunately,

all couplings in the low energy effective theory depend on these undetermined vacuum

expectation values and therefore phenomenological predictions are difficult to extract. One

expects that non-perturbative effects generate a potential for the moduli fields and thus

dynamically lift this vacuum degeneracy.
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It has become clear for some time that interesting physics is ‘hidden’ at special points

in the moduli space where some couplings in the effective action become singular. From

a mathematical point of view, these singularities often arise at points (or subspaces) of

the moduli space where the compactification manifold Y develops a singularity. From a

physical point of view, the singularities generically are due to heavy fields that become

massless at the locus of the singularity. Integrating these fields out of the effective theory

is thus not legitimate in this region of the moduli space, and this inconsistency manifests

itself as a singularity in some of the effective couplings.

In general, a consistent, i.e. non-singular, effective action cannot be derived over the

entire moduli space, since, as described above, some of the fields are only light at particular

points (or subspaces) of the moduli space. Their mass, M , is a nontrivial function of the

moduli, and thus M varies over the moduli space. However, locally near a given singularity

where some of the fields are light and M approaches zero, one can choose to not integrate

out these light fields and derive a non-singular effective action in the vicinity of M = 0,

i.e. near the region of the former singularity. Differently put — and that is the way we will

proceed in this paper — one can start from the singular action and locally ‘integrate the

light modes back in’.1

The purpose of this paper is to perform this ‘integrating in’ procedure in some detail

in a model where the singular effective action is known exactly. More specifically, we

consider the heterotic string compactified on K3 × T 2, which leads to an effective theory

with N = 2 supersymmetry in four space-time dimensions (d = 4). This class of string

backgrounds is believed to be dual to type IIA string theory compactified on K3 fibered

Calabi-Yau threefolds [2]–[7]. As a consequence, some of the couplings of the low energy

effective theory are known exactly.

The low energy N = 2 supergravity theory contains, apart from the gravitational mul-

tiplet, a set of nV vector multiplets and nH hypermultiplets. Both multiplets contain scalar

fields which can be viewed as the coordinates of the moduli space M. As a consequence

of N = 2 supersymmetry, this moduli space factorizes: M = MV ×MH , where MV is

spanned by the scalars in the vector multiplets, and MH is spanned by the scalars in the

hypermultiplets. Due to this factorization, one can discuss each component separately,

and in this paper we will only focus on MV . MV is constrained to be a special Kähler

manifold [8, 9], that is, MV is endowed with a Kähler metric which can be expressed in

terms of a holomorphic prepotential F (see appendix A).

For a certain class of compactifications, F is known exactly, and here we focus on

a very specific model known as the STU -model. It corresponds to a compactification

of the heterotic string on a K3 × T 2 manifold with instanton numbers (14, 10). This

model is non-perturbatively dual to the IIA string compactified on the Calabi-Yau threefold

Y1,1,2,8,12(24), which is an elliptic fibration over the second Hirzebruch surface IF2 [10]–

[12]. The generic low energy effective theory contains nV = 3 vector multiplets (whose

complex scalar fields we denote by S, T, U) and nH = 244 neutral hypermultiplets. The

hypermultiplets play no role in the following and will be consistently ignored. The gauge

1The term ‘integrating in’ was coined in [1] in a slightly different context.
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group at a generic point in the moduli space is G = U(1)4, where the additional gauge

boson is the N = 2 graviphoton. At the subspace T = U , G is enlarged to G = U(1)3 ×
SU(2), at T = U = 1 it is further enhanced to G = U(1)2 × SU(2)2, and at T = U =

ρ ≡ eiπ/6 one finally has G = U(1)2 × SU(3). In other words, at these special points

additional gauge bosons (or rather N = 2 vector multiplets) become massless and enhance

the everywhere existing abelian to a non-abelian gauge symmetry. From the point of view

of the heterotic string, this is the usual perturbative gauge symmetry enhancement due to

additional massless Kaluza-Klein and winding modes for particular values of the moduli of

the two-torus. This symmetry enhancement does not survive non-perturbative quantum

corrections [13, 4], and we will therefore restrict our considerations to the perturbative

heterotic string only.2

The one-loop prepotential F (1) is singular at T = U , which signals the existence of

the additional light states. As we show in this paper, it is possible to derive an effective

action valid near T = U which is non-singular and which contains the W ± gauge bosons

of the SU(2). Following the approach of [15], we will not do this via a microscopic string

theory calculation, but rather by using symmetry arguments to reconstruct the non-singular

theory from the well-known [16]–[18] singular effective action, in which the W ± bosons are

integrated out.

Our motivation for this work is to study compactifications of string theory and M-

theory in situations where the effective action becomes singular due to the presence of ad-

ditional light modes. Such extra states might be either of perturbative or non-perturbative

origin. In this paper, we consider the heterotic perturbative mechanism of SU(2) enhance-

ment, as explained above. The natural next step will be to consider conifold singularities

in compactifications of type II string theory on Calabi-Yau threefolds [19]. In this case the

additional states are non-perturbative and descend from D-branes wrapped on a vanishing

cycle. Since heterotic string compactifications on K3 × T 2 are dual to type II compacti-

fications on Calabi-Yau threefolds, we expect that the results of this paper will be useful

for the study of conifolds.

There are further, even more interesting cases one might wish to consider. One line of

developement will be the study of extremal transitions, where one has, in contrast to coni-

fold transitions, an unbroken non-abelian gauge symmetry at the transition point [20, 21].

Another interesting extension is to add background flux, which can resolve the singular-

ity [22] and create a hierarchically small scale [23, 24]. Besides Calabi-Yau compactifica-

tions one should also try to study N = 1 supersymmetric G2-compactifications of M-theory

along similar lines. Here the understanding of singular manifolds is mandatory, as smooth

G2-compactification do not lead to non-abelian gauge groups or chiral fermions [25]. We

hope to return to these issues in later publications.

2From the point of view of the type IIA string, the SU(2) gauge symmetry enhancement is, at the

classical level, due to a shrunken two-cycle of the Calabi Yau three-fold, with the wrapped D2 brane

giving rise to the W± bosons. Unlike its M-theory analogue [14, 11, 15], this geometrical singularity (and

hence the symmetry enhancement) does not survive quantum corrections. These quantum corrections can

be calculated in the dual IIB picture using mirror symmetry. The mirror threefold develops a conifold

singularity and one gets massless hypermultiplets with magnetic or dyonic charge, which come from D3

branes wrapping the vanishing three-cycle [19].
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This paper is organized as follows. In section 2, we briefly recall the results for the

perturbative prepotential in the STU -model. In section 3, we then derive the tree level

action for the effective theory near T = U with the W ± gauge bosons (and their super-

partners) included. We explicitly compute the potential and the masses of the N = 2

W± supermultiplets. In section 4 we determine the one-loop corrections to this effective

action near T = U . Based on general arguments, we first show (section 4.1) that the

minimum of the quantum corrected potential does not change and the masses only receive

multiplicative corrections which are entirely due to corrections of the Kähler potential.

In analogy with N = 1 supergravity, it is possible to define a ‘holomorphic mass’ which

remains uncorrected. In section 4.2, we determine the loop-corrected prepotential by using

the known result of the STU -model. We ‘undo’ the integrating out procedure of the W ±

gauge bosons by subtracting their threshold corrections to the SU(2) gauge couplings. This

way we derive a non-singular quantum corrected prepotential for the SU(2) gauge theory.

In section 5 we check that this prepotential transforms appropriately under the expected

residual quantum duality symmetry SL(2,Z) and that it does have the proper singulari-

ties at points in the moduli space where further gauge enhancement occurs. This is an

independent check on our procedure. Finally, in section 6, we decompactify the theory

to five space-time dimensions and establish the consistency with the results of [15]. Some

technical details are relegated to three appendices. In appendix A, we supply the necessary

facts of N = 2 supergravity. In appendix B, we assemble some useful formulae about the

polylog series, while in appendix C we review properties of modular forms.

2. Preliminaries: review of the STU-model

Let us first recall a few facts about the STU -model [16]–[18] and [4, 7, 26, 6]. At the string

tree level it is characterized by the prepotential3

F (0) = −STU = −S(T 2
+ − T 2

−) , (2.1)

where T± ≡ 1
2(T ± U).

The quantum correction of the vector multiplet couplings can be parameterized by

corrections to this prepotential. They only appear at 1-loop (generating a correction F (1))

and non-perturbatively (generating a contribution F (NP )). Therefore, the quantum cor-

rected N = 2 prepotential obeys the expansion F = F (0) + F (1) + F (NP ). F (1) is known

from a heterotic computation [16]–[18], while F (NP ) is known from the duality to IIA on

the Calabi-Yau threefold Y1,1,2,8,12(24) [4, 18]. As we restrict ourselves to the perturbative

heterotic string, only the one-loop correction F (1) is of interest. For the rest of this paper

we neglect the non-perturbative correction F (NP ) and, by abuse of notation, simply write

F = F (0) +F (1) . (2.2)

We already displayed F (0) in (2.1). For Re T > Re U , F (1) is given by [18]

F (1) = − 1

12π
U3 − 1

(2π)4
Li3

(

e−2π(T−U)
)

− 1

(2π)4

∞
∑

k,l=0

c1(kl)Li3

(

e−2π(kT+lU)
)

, (2.3)

3For a review of N = 2 supergravity see appendix A.
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where the third polylog Li3 is defined in appendix B, and the coefficients c1(kl) can be

found in [18]. As was pointed out in [27, 16, 18], F (1) is only determined up to a quadratic

polynomial in the variables 1, iT, iU, TU with purely imaginary coefficients. Adding any

such polynomial simply amounts to a shift in theta angles; we will come back to this

ambiguity in section 4.2.

F (1) is largely determined by its quantum symmetries. The STU -model has the per-

turbative quantum symmetry SO(2, 2;Z), which includes the exchange σ : T ↔ U as well

as the duality group SL(2,Z)T × SL(2,Z)U . Here, SL(2,Z)T acts on T,U as

T → aT − ib

icT + d
, U → U , ad− bc = 1 , a, b, c, d,∈ Z , (2.4)

whereas the action of SL(2,Z)U is obtained by exchanging T with U . As a consequence

of this symmetry, the third derivative ∂3TF (1) is a modular form of weight (+4,−2), while
∂3UF (1) is a modular form of weight (−2,+4) under SL(2,Z)T × SL(2,Z)U . They are given

by [16, 17]

∂3TF (1) =
+1

2π

E4(iT )E4(iU)E6(iU)η−24(iU)

j(iT ) − j(iU)
,

∂3UF (1) =
−1
2π

E4(iU)E4(iT )E6(iT )η
−24(iT )

j(iT ) − j(iU)
, (2.5)

where the modular forms E4, E6, η, j are defined in appendix C.

As we discuss more explicitly in sections 4 and 5, F (1) is singular at T = U due to

gauge symmetry enhancement:

T = U : U(1)×U(1) → U(1)× SU(2) ,

T = U = 1 : U(1)×U(1) → SU(2) × SU(2) ,

T = U = ρ : U(1)×U(1) → SU(3) . (2.6)

At these points additional massless vector multiplets appear which should not have been

integrated out of the effective action and which are the origin of the singular couplings (2.5).

3. The tree level effective action

Our goal in this paper is to derive a non-singular effective action that gives an accurate

description of the theory near the surface T = U , where the SU(2) gauge symmetry en-

hancement occurs. In this section, we restrict ourselves to the tree level approximation of

this effective theory. This sets our notation and prepares the discussion of the one-loop

corrections.

Let us begin with our notation regarding the spectrum. Near the surface T = U ,

the set of light fields in the low energy effective action has to be enlarged to also include

the W± bosons (along with their superpartners). The effective action is thus an N = 2

supergravity theory with 3 + 2 = 5 vector multiplets in which SU(2) is realized as a Yang-

Mills-type gauge symmetry. Three of these five vector multiplets have to transform in the

– 5 –
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adjoint representation of SU(2), and we use Ca, a = 1, 2, 3, to denote the complex scalar

fields of this triplet. We choose to identify C 1 and C2 with the scalar superpartners of the

W± bosons:

W± = C1 ± iC2 . (3.1)

The scalar field C3 then has to be identified with T− = 1
2(T−U), whose vacuum expectation

value triggers the symmetry breaking SU(2) −→ U(1) via a supersymmetric Higgs effect.

In addition to the triplet Ca, there are two SU(2) singlet vector multiplets, and at tree

level the scalars of these singlet multiplets can be chosen to coincide with the moduli S and

T+.
4 The scalar fields (Ca, S, T+) are ‘special’ coordinates of a symplectic section (X I , FJ )

(I, J = 0, 1, . . . , 5), which in our conventions (see appendix A for details) means that

Xj

X0
= tj = (iCa, iS, iT+) , j = 1, . . . , 5 . (3.2)

In the following, we use the subscript ‘in’ to label all actions, prepotentials, etc.,

where the two W± bosons have been ‘integrated in’. More explicitly, Sin denotes the full

perturbative effective action near T = U with the W ± bosons included, while Fin refers to

the underlying prepotential. The corresponding tree level quantities are denoted by S
(0)
in

and F (0)
in , respectively.

The prepotential F (0)
in is a holomorphic function of the variables (Ca, S, T+). Its defin-

ing property is that the corresponding action, S
(0)
in [Ca, S, T+], should reproduce the action

S(0)[S, T+, T−] encoded in the prepotential F (0) = −S(T 2
+−T 2

−) of eq. (2.1), when C
1,2 (and

their superpartners) are integrated out. At tree level, no threshold effects can occur, and

integrating out these two multiplets simply means to set them equal to zero in the action

S
(0)
in [Ca, S, T+] or, equivalently, in the prepotential F (0)

in (Ca, S, T+).
5 As the ‘in-theory’ is

to be SU(2) invariant, the triplet Ca can only appear via its SU(2) invariant combination

CaCa, and integrating out C1,2 at tree level is thus tantamount to making the replacement

(CaCa) −→ (T−)
2 (3.3)

everywhere in F (0)
in (Ca, S, T+). Conversely, F (0)

in (Ca, S, T+) can simply be obtained from

F (0)(S, T+, T−) = −S(T 2
+ − T 2

−) by the inverse substitution

(T−)
2 −→ (CaCa) . (3.4)

We therefore arrive at

F (0)
in = −S[T 2

+ − CaCa] (3.5)

as the tree level prepotential with the two W± bosons included.

4In general, the two singlets have to be invariant under the Weyl twist C3 → −C3, which is the only

remnant of the SU(2) symmetry after C1 and C2 have been integrated out. According to the identification

C3 = T−, the Weyl twist is equivalent the exchange symmetry σ : T ↔ U . At string tree level, both S and

T+ are σ-invariant and can therefore be identified with the two SU(2) singlets, as we did above.
5The consistency of this truncation is guaranteed because C1,2 form a doublet of an obvious SO(2) ⊂

SU(2).
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As a consequence of N = 2 supersymmetry, S
(0)
in [Ca, S, T+] is completely determined

by (3.5) and can in principle be worked out in all detail using the relations reviewed in

appendix A. For the rest of this section, let us content ourselves with a short discussion of

some of the quantities that play a role in the integrating out process.

Consider first the Kähler potential, K, of the scalar manifold, MV . Using (A.2), one

obtains for K

K = − log(S + S̄)− log Y , Y ≡ (T+ + T̄+)
2 − (Ca + C̄a)(Ca + C̄a) . (3.6)

This is the Kähler potential of the symmetric spaceMV = SU(1,1)
U(1) ×

SO(2,4)
SO(2)×SO(4) with isom-

etry group ISO(MV ) = SU(1, 1)×SO(2, 4). The form (3.6) corresponds to a parametriza-

tion in which only the subgroup SO(1, 1) × SO(1, 3) is a manifest symmtry of the Kähler

potential.6 The Yang-Mills-type gauge group of the theory is to be identified with the

SU(2) subgroup of the SO(1, 3) factor. On the homogeneous coordinates, X I , this SU(2)

acts as

δXa = ΛbεbcaX
c

δX0 = δX4 = δX5 = 0 , (3.7)

where we have identified the structure constants f cab = εabc. On the scalar manifold, MV ,

the corresponding SU(2) isometries are generated by Killing vectors (kab , k
+
b , k

S
b ):

δCa = Λbkab

δT+ = Λbk+b

δS = ΛbkSb . (3.8)

From the relation (3.2), one reads off7

kba = εabcC
c, k+a = kSa = 0 . (3.9)

The Killing vectors enter the covariant derivatives of the scalar fields (see (A.5)), as well

as the scalar potential,

V = 2 eK(XIkı̄I)gı̄j (X̄
JkjJ ) . (3.10)

Obviously, V is positive semi-definite, and zero if and only if

(X̄JkjJ ) = 0 . (3.11)

In view of (3.9), this means that the vacua of the theory correspond to field configura-

tions with

[C,C†] = 0 , where C ≡ Caσa . (3.12)

Thus, any vacuum can be brought to the form 〈C1〉 = 〈C2〉 = 0 by means of an SU(2)

transformation. As the gaugino variations are proportional to the quantity (X̄JkjJ) [8, 9],

all these vacua also preserve the N = 2 supersymmetry (and also exhaust all N = 2

supersymmetric Minkowski vacua).

6The SO(1, 1) factor acts as S → λ2S, (Ca, T+)→ (λ−1Ca, λ−1T+).
7Using eqs. (A.7) and (A.8), one arrives at the same result.
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Remembering C3 = T−, we have therefore, at tree level, simply rediscovered that,

modulo SU(2) transformations, (T−, S, T+) indeed parametrize the flat directions of the

scalar potential and that all of the corresponding vacua are N = 2 supersymmetric.

Let us close this section with a short discussion of the tree-level masses of the W ±

bosons and their scalar superpartners in these vacua. The mass of any scalar field arises

from non-vanishing second derivatives of the scalar potential. Combining (3.6), (3.9)

and (3.10), the tree-level scalar potential is

V = eK
4

Y
[(C̄aCa)2 − (C̄aC̄a)(CbCb)]

=
4

(S + S̄)Y 2
[(C̄aCa)2 − (C̄aC̄a)(CbCb)]

=
1

2(S + S̄)Y 2
tr([C,C†]2) . (3.13)

At 〈C1〉 = 〈C2〉 = 0, the only non-vanishing second derivatives of this potential are

∂1∂1V |〈C1〉=〈C2〉=0 = −eK 8

Y
(C̄3)2

∂1∂1̄V |〈C1〉=〈C2〉=0 = eK
8

Y
|C3|2

∂1̄∂1̄V |〈C1〉=〈C2〉=0 = −eK 8

Y
(C3)2 (3.14)

and similarly for the derivatives with respect to C 2 and C̄2.

In order to diagonalize these mass matrices, one decomposes C 1 and C2 into the real

fields parallel and perpendicular to 〈C3〉 :

C1(x) = a1(x)〈C3〉+ ib1(x)〈C3〉
C2(x) = a2(x)〈C3〉+ ib2(x)〈C3〉 . (3.15)

One then finds

∂2V

∂b1∂b1

∣

∣

∣

〈C1〉=〈C2〉=0
=

∂2V

∂b2∂b2

∣

∣

∣

〈C1〉=〈C2〉=0
= 32

eK

Y
|C3|4 (3.16)

with all other derivatives vanishing. Taking into account

g1j̄ |〈C1〉=〈C2〉=0 = δ1j
2

Y
,

g2j̄ |〈C1〉=〈C2〉=0 = δ2j
2

Y
, (3.17)

the kinetic terms of C1 and C2 simplify to

Lkin = − 2

Y
∂µC

1∂µC̄1 − 2

Y
∂µC

2∂µC̄2

= − 2

Y
|C3|2(∂µa1∂µa1 + ∂µb

1∂µb1 + ∂µa
2∂µa2 + ∂µb

2∂µb2) , (3.18)

– 8 –
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and we see that only b1,2 obtain a mass, but not a1,2 or any other scalar field. The mass

of the corresponding canonically normalized scalar fields is given by

M2 = 8eK |C3|2 = 8eK |T−|2 . (3.19)

This mass formula agrees with the one obtained from string theory, which reads [28]:

M2 =
4

α′
|T − U |2

(T + T )(U + U)
=

16

α′
|T−|2
Y

. (3.20)

To see the agreement, one has to reinstall the gravitational coupling κ, which we have set to

unity throughout, to convert string units into gravitational units using [29] g2α′κ = 4 and

to express the heterotic string coupling g through the vev of the dilaton, 1/g2 = 〈S + S〉/2.
In analogy with N = 1 theories, we define a holomorphic mass, m, through the relation

M2 = 8eK |m(T )|2, which for the case at hand implies8

m = T− . (3.21)

As the vacua with 〈C1〉 = 〈C2〉 = 0 preserve the full N = 2 supersymmetry, one

should observe a supersymmetric Higgs effect in which the vector fields A1,2
µ (i.e., the W±

bosons) absorb the massless components a1,2 and acquire the same mass as their scalar

superpartners b1,2 (3.19). And indeed, the mass term for the vector fields arises from the

square of the covariant derivative

DµC
a = ∂µC

a − kabA
b
µ (3.22)

which leads to the mass matrix

M2
ab = 2g2gcd̄k

c
ak̄

d̄
b , (3.23)

where g2 = −2〈ImN11〉−1 = −2〈ImN22〉−1 ensures the correct canonical normalization.

For 〈C1〉 = 〈C2〉 = 0, one has

g−2 = −〈ImN11〉
2

= −〈ImN22〉
2

=
〈S + S̄〉

2
(3.24)

so that one indeed obtains the same mass matrices as above:

M2
ab = 8eK diag(|C3|2, |C3|2, 0) = 8eK |T−|2 diag(1, 1, 0) (3.25)

mab = T− diag(1, 1, 0) . (3.26)

As m depends holomorphically on the moduli, it should not receive loop corrections. We

will verify this in section 4.1.

8The mass parameters of an N = 1 superpotential are necessarily holomorphic and a similar feature

holds for masses generated via a supersymmetric Higgs effect [30]. Such holomorphic mass parameters are

of importance due to their non-renormalization properties. In N = 2 theories one can analogously define a

holomorphic mass, and, as we will see in section 4.1, this mass is not renormalized.
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4. The one-loop corrections

In this section we go beyond the tree level approximation and determine the one-loop

corrections to the effective action S
(0)
in described in the previous section. Our result will

be an action Sin that describes the full low energy dynamics of the perturbative heterotic

string near T = U . This action again involves the coupling of five vector multiplets to

N = 2 supergravity and exhibits an SU(2) gauge symmetry. Several properties of this

action follow already from its gauge invariance and can be inferred without a detailed

knowledge of all the couplings. We list these general properties in section 4.1 before we

construct the complete theory with all the detailed couplings in section 4.2.

4.1 Some general properties of Sin

Just as in the tree level case, three of the five vector fields transform in the adjoint rep-

resentation of SU(2), while the remaining two have to be SU(2) inert. The scalars of the

triplet are again denoted by Ca (a = 1, 2, 3), with C1,2 corresponding to the W± bosons

and C3 = T−. In the tree level approximation, we could choose S and T+ as the scalar

fields of the two singlet multiplets, because both are classically invariant under the Weyl

twist σ : T ↔ U , which is the only remnant of the SU(2) gauge symmetry once the C 1,2 are

integrated out. At one loop, this is still true for T+, however, S now becomes a multivalued

function on the moduli space and transforms non-trivially under the perturbative duality

group SO(2, 2;Z) [16]. More precisely, using [16, eq. (4.27)], one finds

σ : S −→ S − 1

2π
T− . (4.1)

Thus, S can no longer serve as one of the SU(2) singlets. Fortunately, it is easy to construct

a σ-invariant linear combination out of {S, T+, T−}:9

Ŝ := S − 1

4π
T− . (4.2)

The two singlet scalars are therefore chosen to be (Ŝ, T+) .

We assume that (Ca, Ŝ, T+) are special coordinates of a symplectic section for which

a holomorphic prepotential — denoted by Fin(C
a, Ŝ, T+) — exists.10 The relation to the

notation of appendix A is given by

Xj

X0
= tj = (iCa, iŜ, iT+) , j = 1, . . . , 5 . (4.3)

9The most general σ-invariant linear combination would be Ŝ + aT+ with a arbitrary. Ŝ is singled out

by the property Ŝ
∣

∣

∣

T−=0
= S

∣

∣

∣

T−=0
, a property that simplifies some of the equations in section 5. Note that

neither Ŝ nor Ŝ+aT+ is the ‘invariant dilaton’ Sinv described in [16]. The invariant dilaton Sinv is a highly

non-linear function of the moduli that is invariant under the full duality group SO(2, 2;Z). Ŝ, by contrast,

is only invariant under the Weyl twist σ. It is the part of S inv that is linear in the moduli. As such, Ŝ is

a proper ‘special coordinate’, i.e., a scalar field of an N = 2 vector multiplet, a property not shared by the

full invariant dilaton Sinv.
10This assumption is supported by the tree level approximation discussed in the previous section and the

self-consistency of our one-loop result (sections 4 and 5). Using the tree level approximation, however, one

can also show that the rank two gauge groups at T = U = 1 and T = U = ρ (which are beyond the scope

of the present paper) cannot be manifestly realized in a symplectic basis with a prepotential.
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Thus far, the only difference to the tree level case is that the singlet t4 is to be

identified with iŜ instead of iS. It is therefore not surprising that many of the gen-

eral conclusions we drew in section 3 go through for the one-loop corrected theory as

well. In particular, the SU(2) transformation properties of the X I remain formally the

same,

δXa = ΛbεbcaX
c

δX0 = δX4 = δX5 = 0 , (4.4)

which, together with the analogue of eqs. (3.8), implies that the Killing vectors do not get

renormalized:

kba = εabcC
c , k+a = kŜa = 0 . (4.5)

Similarly, one can repeat large parts of the analysis of the scalar potential,

V = 2 eK(XIkı̄I)gı̄j (X̄
JkjJ ) . (4.6)

Because of the manifestly positive semidefinite form, the vacua are again given by 〈X̄JkjJ〉 =
0, which, in the light of (4.5), again implies that any Minkowski vacuum can be brought

to the form 〈C1〉 = 〈C2〉 = 0 by means of an SU(2) rotation. These vacua are also the

supersymmetric ones, and we see that the one-loop corrections might change the shape of

the scalar poptential, but not its ground states.

So far, everything we “derived” in this section was completely independent of the pre-

potential Fin and solely based on the assumed SU(2) gauge invariance and the underlying

N = 2 supersymmetry. The SU(2) symmetry, however, also restricts the possible form

of the prepotential, which in turn allows us to make further statements about the theory

without the detailed knowledge of the prepotential.

More precisely, the SU(2) gauge symmetry of the theory requires that Fin(C
a, Ŝ, T+)

be SU(2) invariant. Consequently, the triplet Ca can only appear via the SU(2) invariant

combination (CaCa) (or powers thereof). Hence, the prepotential has to be of the general

form

Fin(C
a, Ŝ, T+) =

∞
∑

n=0

Hn(Ŝ, T+)(C
aCa)n , (4.7)

where Hn(Ŝ, T+) denotes a set of as yet undetermined functions of the singlets Ŝ and T+.

Determining these functions will be the content of sections 4.2, 5 and 6, but a number of

statements already follow from the general form (4.7). As an example, let us again consider

the masses of the scalar fields.

First note that in a vacuum with 〈C1〉 = 〈C2〉 = 0, the metric components g1j̄ and g2j̄
simplify to

g1j̄ = δ1je
K [(Fin)11 + (F̄in)11] ,

g2j̄ = δ2je
K [(Fin)11 + (F̄in)11] , (4.8)
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where 〈(Fin)11〉 = 〈(Fin)22〉 has been used. A closer inspection of (4.6) then reveals that

the only non-vanishing second derivatives of V are

∂1∂1V
∣

∣

∣

〈C1〉=〈C2〉=0
= −4eKg2̄2(C̄3)2 ,

∂1∂1̄V
∣

∣

∣

〈C1〉=〈C2〉=0
= 4eKg2̄2|C3|2 ,

∂1̄∂1̄V
∣

∣

∣

〈C1〉=〈C2〉=0
= −4eKg2̄2(C3)2 (4.9)

and analogously for the derivatives with respect to C 2, C̄2 (remembering 〈g2̄2〉 = 〈g1̄1〉).
These mass matrices are again diagonalized by a decomposition as in (3.15). In terms of

the corresponding fields a1,2 and b1,2, the only non-vanishing derivatives are then

∂2V

∂b1∂b1

∣

∣

∣

〈C1〉=〈C2〉=0
=

∂2V

∂b2∂b2

∣

∣

∣

〈C1〉=〈C2〉=0
= 16eKg2̄2|C3|4 . (4.10)

Taking into account the corresponding kinetic terms,

Lkin = −g11̄∂µC1∂µC̄1 − g22̄∂µC
2∂µC̄2

=
1

2
(2g1̄1|C3|2)(∂µa1∂µa1 + ∂µb

1∂µb1 + ∂µa
2∂µa2 + ∂µb

2∂µb2) , (4.11)

one obtains for the masses of the corresponding canonically normalized scalar fields

M2 = 8eK |C3|2 = 8eK |T−|2 . (4.12)

This has the same form as in the tree level approximation, but the non-holomorphic Kähler

potential K now contains quantum corrections. The holomorphic mass, m, however, is the

same as it was at tree level,

m = T− , (4.13)

as anticipated in section 3.

As the vacua with 〈C1〉 = 〈C2〉 = 0 are N = 2 supersymmetric, we expect the

vector fields A1,2
µ (i.e., the W± bosons) to acquire the same mass (4.12) as their scalar

superpartners by absorbing the massless fields a1,2 in a supersymmetric Higgs effect. This

is again easy to verify: Just as in the tree level case, the mass term for the vector fields

arises from the square of the covariant derivative

DµC
a = ∂µC

a − kabA
b
µ (4.14)

which leads to the mass term

−g22̄|C3|2(A1
µ)

2 − g11̄|C3|2(A2
µ)

2 . (4.15)

The corresponding kinetic terms are (see eq. (A.1))

1

4

(F̄11 + F11)

4
F 1
µνF

µν1 +
1

4

(F̄22 + F22)

4
F 2
µνF

µν2 (4.16)

so that, remembering (4.8), one indeed obtains the same mass matrices as above

M2
ab = 8eK diag(|C3|2, |C3|2, 0) = 8eK |T−|2 diag(1, 1, 0) (4.17)

mab = T− diag(1, 1, 0) . (4.18)
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4.2 Determining Fin

We are now ready to determine the complete perturbative prepotential Fin(C
a, Ŝ, T+)

that encodes the non-singular effective action Sin[C
a, Ŝ, T+]. The defining property of

Sin[C
a, Ŝ, T+] is that integrating out C1 and C2 and going over to the variables (S, T+, T−)

should reproduce the singular action S[S, T+, T−] based on the perturbative prepotential

F(S, T+, T−) = F (0) + F (1) given in section 2.

As we are now going beyond tree level, integrating out C 1 and C2 is no longer equiv-

alent to simply setting these fields equal to zero. Instead, one now also has to take into

account threshold effects that arise from Feynman diagrams in which C 1 and C2 (or their

superpartners) run in loops.

In practice this means that F(S, T+, T−) is obtained from Fin(C
a, Ŝ, T+) in a two-

step process (see also [15]): First one sets C1 = C2 = 0 in Fin. This will then yield an

auxiliary prepotential F truncated
in ≡ Fin|C1=C2=0 which only depends on (C3, Ŝ, T+) (or,

alternatively, on (S, T+, T−)). If there were no threshold effects, this would already be the

prepotential F in which the W± bosons have been integrated out. If threshold effects do

exist, however, F truncated
in and F will differ by an additional term δF which subsumes all

effective interactions that are generated by diagrams with C 1 and C2 running in loops, i.e.,

one has

F = F truncated
in + δF . (4.19)

In our case, the threshold corrections introduce a logarithmic dependence on the holo-

morphic mass of the W± gauge bosons into the (wilsonian) gauge couplings gW [31, 30, 16]

δg−2W = − b

16π2
log |m|2 , (4.20)

where b is the one-loop coefficient of the β-function. The definition of the wilsonian gauge

coupling is exactly as in N = 1 supergravity where gW is determined by a holomorphic

function [30]. In N = 2 supergravity g−2W is determined by the matrix of second derivatives

of F [16] and for the case at hand we find11

δg−2W =
1

4
(∂2−δF + ∂̄2−δF̄ ) =

1

4π2
log |m|2 , (4.21)

where we used bSU(2) = −4. Note that the definition of m includes the choice of a (field-

independent) cut-off scale which in supergravity has to be proportional to the Planck

mass. This in turn implies that the right hand side of (4.21) is defined only up an arbitrary

additive constant. Using (4.13) this implies

δF =
1

2π2
T 2
− log T− +A2T

2
− +A1(T+)T− +A0(T+) , (4.22)

where A2 is the arbitrary constant while A1(T+), A0(T+) are a priori undetermined func-

tions of T+. The prepotentials with and without the W± bosons are thus related by

F = F truncated
in +

1

2π2
T 2
− log T− +A2T

2
− +A1(T+)T− +A0(T+) . (4.23)

11Note that the non-holomorphic piece in the definition (A.4) of NIJ does not contribute to the harmonic

wilsonian gauge couplings.
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As we see, integrating out W± introduces a logarithmic singularity into F while Fin

has to be non-singular. Thus we can now go backwards and compute F truncated
in by first

subtracting the logarithmic divergence δF from F , which is given by (2.3) and (2.1). F in is

then obtained from F truncated
in by replacing every T 2

− by CaCa. For this to be possible, T−
should appear in F truncated

in only in terms of even powers (cf. (4.7)). We will see whether

this is indeed the case.

The first step is therefore to expand F near T = U in order to isolate the logarithmic

singularity. The last term in (2.3) is manifestly non-singular in this limit while the second

term can be expanded using (B.13). In the region ReT− > 0 one finds

F = −S(T 2
+ − T 2

−)−
1

12π
(T+ − T−)

3 − 1

(2π)4
ζ(3) +

1

24π
T− −

3

4π2
T 2
− −

1

3π
T 3
− +O(T 4

−) +

+
1

2π2
T 2
− log(4πT−)−

1

(2π)4

∞
∑

k,l=0

c1(kl)Li3

(

e−2π[(k+l)T++(k−l)T−]
)

. (4.24)

In appendix B (eqs. (B.13), (B.14)) we show that the terms denoted by O(T 4
−) involve

at most even powers (T−)
2n with n ≥ 2 The last term in (4.24) is analytic near T− = 0

and manifestly invariant under T− → −T−. Viewed as a power series in T−, it therefore

also contains only even powers of T−. Furthermore, the only non-analytic piece is the

logarithmic term
1

2π2
T 2
− log(4πT−) . (4.25)

Remembering (4.23), we see that in F truncated
in this term is precisely canceled by the one-

loop threshold correction δF . Thus, as desired, F truncated
in is analytic near T− = 0 and

reads

F truncated
in = −S(T 2

+ − T 2
−)−

1

12π
(T+ − T−)

3 − 1

(2π)4
ζ(3) +

1

24π
T− −

1

3π
T 3
− +

+O(T 4
−)−

1

(2π)4

∞
∑

k,l=0

c1(kl)Li3

(

e−2π[(k+l)T++(k−l)T−]
)

−

−
[

A2 +
3

4π2
− 1

2π2
log(4π)

]

T 2
− −A1(T+)T− −A0(T+) . (4.26)

As mentioned above, the full prepotential Fin is now obtained from F truncated
in by reversing

the truncation of the W± bosons. At tree level, this was done by simply promoting every

T 2
− to the SU(2) invariant combination CaCa. However, a closer inspection of (4.26) reveals

that this is not possible here, because there are cubic powers of T− which cannot cancel

against any other term (there are also linear terms in T−, but we will discuss them later).

The source of this problem is of course that we are still working with the variables

(S, T+, T−) that were suitable for the tree level approximation. As explained in section 4.1,

the loop corrected version instead requires working with the quantities (Ŝ, T+, T−) in terms

of which the Weyl twist σ becomes diagonal. Only in terms of the variables (Ŝ, T+, T−)

should one expect the prepotential F truncated
in to be even in T−. And indeed, inserting (4.2)
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into (4.26), one obtains

F truncated
in = −Ŝ(T 2

+ − T 2
−)−

1

3π
T 3
+ +

1

4π
T+(T

2
+ − T 2

−)−
1

(2π)4
ζ(3) +

1

24π
T− +O(T 4

−)−

− 1

(2π)4

∞
∑

k,l=0

c1(kl)Li3

(

e−2π[(k+l)T++(k−l)T−]
)

−

−
[

A2 +
3

4π2
− 1

2π2
log(4π)

]

T 2
− −A1(T+)T− −A0(T+) . (4.27)

We see that the disturbing cubic terms in T− have indeed disappeared.

Let us now turn to the terms quadratic in T−. As we discussed above, the constant

A2 is undetermined by the subtraction procedure, and so one is free to choose A2 =

− 3
4π2 + 1

2π2 log(4π) in order to simplify eq. (4.27).

The linear term
1

24π
T− , (4.28)

on the other hand, only leads to a constant shift in one of the numerous theta angles.

Such a term can always be neglected, because it is part of the ambiguity [27, 16, 18] in

the prepotential F we have mentioned below eq. (2.3). The same is true for the real part

of a possible constant term in A1(T+) as well as for a possible linear term in A1(T+) with

imaginary coefficient. All other terms in A1(T+), however, have to vanish from the outset

in order for T− to appear only with even powers. Modulo irrelevant changes in theta angles,

we have thus derived

A1(T+) ≡ 0 . (4.29)

The full prepotential Fin is then obtained by simply replacing every T 2
− in (4.27) by CaCa.

It remains to determine the unknown function A0(T+). In principle, this could be done

in a similar way as in our discussion following eq. (4.19) by considering the couplings F++,

F+0 and F00. As the two multiplets we integrate out are not charged with respect to the

corresponding vector fields A+
µ and A0

µ, the gauge couplings of the latter should not feel

the shift δF and remain unchanged in the integrating out process. This would suggest

A0(T+) ≡ 0. In the following two sections, we will see that this expectation is supported

by a completely independent line of argument. As we will show, A0(T+) is already strongly

constrained by the quantum symmetry and the proper large radius limit.

5. Quantum symmetries of Fin

At T− = 0 the original SL(2,Z)T × SL(2,Z)U quantum symmetry reduces to the diagonal

SL(2,Z)+ acting on T+ and T− as

T+ →
aT+ − ib

icT+ + d
, T− → T− . (5.1)

This symmetry should be respected by Fin, which we explicitly check in this section. In

addition, this consistency check will confirm that A2 is a constant and further constrain

A0(T+) in eq. (4.27).
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The generic form of Fin is given in (4.7), which, near T− = 0, can be approximated by

the first two terms

Fin(Ŝ, T+, C
a) = H0(Ŝ, T+) +H1(Ŝ, T+)C

aCa +O(C4) . (5.2)

Since we have already determined the tree level contribution to these functions in (3.5),

we can parameterize H0 and H1 more conveniently by

H0(Ŝ, T+) = −ŜT 2
+ + h(T+) , H1(Ŝ, T+) = Ŝ + f(T+) , (5.3)

where h can be viewed as the loop corrections to the Kähler potential of T+ (also known as

the four-dimensional Green-Schwarz term [16, 17]), while f(T+) is the one-loop correction

to the SU(2) gauge coupling. As we will show, appropriate derivatives of h and f transform

as modular forms which can be computed from (2.5).

Let us first focus on h(T+). For this coupling there is a closely related computation we

can make use of. In ref. [32] the two-parameter ST -model was investigated. Its prepotential

including one-loop corrections is given by F = −ST 2+h(T ) with an SL(2,Z) acting on T .

Using arguments outlined in [16], it was shown in [32] that ∂5
Th(T ) has to be a modular form

of weight +6. The exact same arguments can be used here to conclude that ∂5
+h(T+) has to

be a modular form of weight +6. Furthermore, in the ST -model the second derivative ∂ 2
Th

has a logarithmic singularity at T = 1 which arises from the fact that additional massless

states appear at T = 1 which lead to a gauge symmetry enhancement. However, in our case

the second derivative ∂2+h(T+) has a logarithmic singularity both at T+ = 1 and T+ = ρ,

since charged states become massless at both points. The coefficient of the singularity is

set by the β-function of the gauge group opening up. More precisely, one has

∂2+h(T+) = +
bSU(2)

4π2
log(T+ − 1) +

bSU(3)

4π2
log(T+ − ρ) + finite . (5.4)

Using bSU(2) = −4 and bSU(3) = −6 this implies

∂5+h(T+) = −
2

π2
1

(T+ − 1)3
− 3

π2
1

(T+ − ρ)3
+ finite . (5.5)

In order to check the above singularity structure and the modular properties, we

will now compute ∂5+h by relating it to the modular forms (2.5). Truncating out C 1, C2

from (5.2) gives

F truncated
in (Ŝ, T+, T−) = −Ŝ(T 2

+ − T 2
−) + h(T+) + f(T+) T

2
− +O(T 4

−) . (5.6)

Hence,

h(T+) = F truncated
in |T−=Ŝ=0

= (F − δF)|T−=S=0

= (F (1) − δF)|T−=0 , (5.7)

– 16 –



J
H
E
P
0
2
(
2
0
0
3
)
0
5
3

where we have used (4.19) and (4.2) in the second and F (0)|S=0 = 0 in the third line. Using

the explicit form (4.22) of δF , we then obtain

∂5+h = ∂5+F (1)|T−=0 − ∂5+A0(T+) . (5.8)

In order to compute ∂5+F (1)|T−=0 it is convenient to define

I± = (∂3T ± ∂3U )F (1) , (5.9)

where the third derivatives of F (1) are given in (2.5). Expanding I± near T− = 0 one has

I+ = a0(T+) + a2(T+)T
2
− +O(T 4

−)

I− = a−1T
−1
− + a1(T+)T− +O(T 3

−) , (5.10)

where12

a−1 =
1

4π2
,

a0 = − 1

4π
E2 −

1

4π

E2
4

E6
,

a1 =
23

216
E4 +

1

8
E2

2 +
1

4

E2E
2
4

E6
− 4

27

E2
6

E2
4

, (5.11)

a2 = −19π

432
E2E4 +

23π

216
E6 −

19π

432
E3
2 −

19π

144

E2
2E

2
4

E6
+

π

144

E3
4

E6
+

4π

27

E2
6E2

E2
4

− π

24

E4
4E2

E2
6

.

Expressing ∂5+F (1)|T−=0 in terms of derivatives of I±, we obtain after some straightforward

algebra

∂5+F (1)|T−=0 =
(

4∂2+I+ +
3

2
∂2−I+ −

9

2
∂−∂+I−

)∣

∣

∣

T−=0

= 4∂2+a0 −
9

2
∂+a1 + 3a2

= −2π
(E6

4

E3
6

− 23

18

E3
4

E6
+

8

18

E3
6

E3
4

− 1

6
E6

)

, (5.12)

where the last equation used repeatedly the derivatives of modular forms given in ap-

pendix C. As expected ∂5+F (1) is indeed a modular form of weight +6. It also is closely

related to the corresponding quantity for the ST -model computed in [32] but differs in the

structure of the singularities to which we turn to now.

In (5.5) we determined the singularities of ∂5+h which differs from ∂5+F (1)|T−=0 by the

so far unknown ∂5+A0(T+) (c.f. (5.8)). However, as we are going to see shortly ∂5+F (1)|T−=0

has precisely the right singularity structure and modular properties to be exactly equal

to ∂5+h so that ∂5+A0(T+) has to vanish identically. First of all, it is easy to see that

∂5+F (1)|T−=0 does have a triple pole at T+ = 1 and T+ = ρ. Using (C.5) and expanding

E6(iT+) = iE′6(T+ − 1) + · · ·
E4(iT+) = iE′4(T+ − ρ) + · · · (5.13)

12This and some of the following calculations have been performed using Maple.
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we infer that near T+ = 1 the leading singularity is

∂5+F (1)|T−=0 → −2πi E6
4(i)

E′36 (i)(T+ − 1)3
= − 2

π2
1

(T+ − 1)3
(5.14)

which is indeed consistent with (5.5). Similarly, at T+ = ρ the leading singularity is

∂5+F (1)|T−=0 → −8πi

9

E3
6(ρ)

E′34 (ρ)(T+ − ρ)3
= − 3

π2
1

(T+ − ρ)3
, (5.15)

again consistent with (5.5). Finally, from the dual type IIA vacua we know that for large

T+ the prepotential is at most a cubic polynomial and hence

lim
T+→∞

∂5+h = 0 . (5.16)

Using (C.4) we indeed check

lim
T+→∞

∂5+F (1)|T−=0 = 2π

(

1− 23

18
+

8

18
− 1

6

)

= 0 . (5.17)

We thus conclude

∂5+h = ∂5+F (1)|T−=0 =⇒ ∂5+A0(T+) ≡ 0 (5.18)

so that A0(T+) can be at most a quartic polynomial in T+.

In a similar fashion we can compute f(T+). Using (5.6), (4.19), (4.2) and F (0)|S=0 = 0,

one first derives

f(T+) =
1

2
[∂2−F truncated

in ]T−=Ŝ=0

=
1

2
[∂2−(F − δF)]T−=S=0

=
1

2
[∂2−(F (1) − δF)]T−=0 , (5.19)

so that

∂+f =
1

2
∂+∂

2
−F (1)|T−=0 . (5.20)

Furthermore, using (5.9), (5.7) and (5.20), one easily verifies

a0 ≡ I+

∣

∣

∣

T−=0
=

1

4

[

∂3+F (1) + 3∂+∂
2
−F (1)

]

T−=0

=
1

4

[

∂3+h+ ∂3+A0

]

+
3

2
∂+f . (5.21)

Differentiating twice yields (remembering ∂5+A0 = 0)

∂3+f =
2

3
∂2+a0 −

1

6
∂5+h . (5.22)

From (5.11) and (5.12) and repeated use of (C.14) we compute

∂3+f = − π

108
E3
2 +

π

4
E2E4 −

2π

9
E6 −

π

36

E2
2E

2
4

E6
− π

6

E4
4E2

E2
6

+
π

36

E3
4

E6
+

4π

27

E3
6

E3
4

. (5.23)
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As we see, this expression is not a modular form and singular both at T+ = 1 and at T+ = ρ.

However, as was stressed in ref. [16] at one-loop the dilaton S transforms under modular

transformations. Nevertheless, it is possible to define a modular invariant, non-singular

dilaton Sinv via [16]

Sinv = S − 1

2
∂T∂UF (1) − 1

8π2
log[j(iT )− j(iU)] . (5.24)

To see the modular properties of f we need to separate f into the part which is redefined

into Sinv and the left over piece f cov defined by

Ŝ + f = Sinv + f cov . (5.25)

Using the same strategy as before, we find

∂3+S
inv

∣

∣

∣

T−=0
= −1

8
∂5+h+

1

4
∂3+f −

1

8π2
∂3+ log[∂+j] . (5.26)

Taking the third derivative of (5.25) evaluated at T− = 0 and inserting into (5.26) we

arrive at

∂3+f
cov =

3

4
∂3+f +

1

8
∂5+h+

1

8π2
∂3+ log[∂+j] . (5.27)

Using (5.12) and (5.23) this finally gives

∂3+f
cov =

1

4π2
∂3+ logE4(T+) . (5.28)

We see that for f cov the result considerably simplified compared to (5.23) and both the

modular properties and the singularity structure qualitatively changed. The right hand

side of (5.28) is singular only at T+ = ρ corresponding to the enhancement U(1)×SU(2)→
SU(3) as expected. At T+ = 1 on the other hand the enhancement is U(1) × SU(2) →
SU(2) × SU(2) and no charged states contribute to the SU(2) gauge couplings which is

already present at T = U . Thus f cov has to be finite at T+ = 1 which is indeed satisfied

by the logE4-term.

Let us close this section by checking the modular properties of f cov. From (5.2) we

infer that f(T+) plays the role of the one-loop corrections to the SU(2) gauge coupling. In

N = 2 supergravity the gauge couplings obey [16]

g−2 = Re(Ŝ + f) +
b

16π2
K(S, T+, C

a = 0) , (5.29)

where K(S, T+, C
a = 0) is the tree level Kähler potential obtained from (3.6)

K = − log(S + S̄)− 2 log(T+ + T̄+) . (5.30)

K transforms under (5.1) according to

K → K + 2 log |icT+ + d|2 . (5.31)
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Since the physical gauge couplings g have to be modular invariant the combination Ŝ+f =

Sinv + f cov has to compensate the transformation (5.30). Since S inv is modular invariant

by construction, the transformation law of f cov is fixed to be

f cov → f cov − b

4π2
log(icT+ + d) = f cov +

1

π2
log(icT+ + d) , (5.32)

where the last equation used bSU(2) = −4. Thus we conclude

f cov =
1

4π2
logE4(T+) (5.33)

which is consistent with both (5.28) and (5.30) and fixed only up to an arbitrary constant,

which can be identified with the ambiguous constant A2 in (4.22).

6. The large radius limit

In this section, we perform the large radius limit of the theory and show the consistency of

our results with the results obtained in ref. [15]13 for d = 5. In this limit, one circle of the T 2

is decompactified, and one obtains heterotic string theory on K3×S 1 [14]. The low energy

limit of this theory is five-dimensional, N = 2 supergravity coupled to nV − 1 vector mul-

tiplets and nH hypermultiplets, where nV , nH count four-dimensional supermultiplets. As

before, the hypermultiplets can be consistently ignored. The couplings of five-dimensional

vector multiplets to N = 2 supergravity are encoded in a cubic prepotential [35]. The

vector multiplet moduli T i are real, rather than complex, and the moduli space is a cubic

hypersurface,

V(T i) =
1

6
CijkT

iT jT k !
= 1 , (6.1)

where V(T i) is the five-dimensional prepotential, the Cijk denote a set of constants, and

i = 1, . . . , nV . The underlying structure is often referred to as ‘very special geometry’ [36].

Dimensional reduction of the five-dimensional supergravity theory defined by (6.1) over

a circle of radius R gives four-dimensional N = 2 supergravity with nV vector multiplets

and a ‘very special’ (i.e., purely cubic) four-dimensional prepotential:

F(ti) =
1

6
Cijkt

itjtk . (6.2)

Here, the ti are complex scalars whose real parts are related to the five-dimensional

scalars by

Reti = RT i . (6.3)

The imaginary parts of the ti arise from the internal components of the corresponding

gauge fields. This means that in a meaningful decompactification limit the imaginary

parts cannot have a vev, and the ti have to be restricted to real values. In the rest of this

section, this will always be assumed, i.e., from now on ti stands for Re ti, and inequalities

13In fact, the results of [15] were the motivation for the present analysis.
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such as S > T > U , should be read as Re S > Re T > Re U , etc. With ti restricted to

real values, (6.1) and (6.3) imply

F(ti) =
1

6
Cijkt

itjtk = R3 . (6.4)

Whereas a five-dimensional prepotential must be purely cubic, a four-dimensional pre-

potential is, in general, allowed to be an arbitrary holomorphic function of the ti (possibly

with singularities on special loci). Therefore (6.2) and (6.4) only represent the pure super-

gravity contribution that can be (and typically is) subject to further stringy corrections:

F(ti) =
1

6
Cijkt

itjtk + · · · = R3 + · · · . (6.5)

If, however, such a four-dimensional prepotential can be obtained by dimensional reduction

from five dimensions, then these corrections must vanish in the decompactification limit

R→∞:

lim
R→∞

R−3F(ti) = V(T i) . (6.6)

In order to make contact with [15], we need to switch to a slightly different param-

eterization of the prepotential. This corresponds, in the notation of [6], to going from

‘heterotic’ to ‘type IIA’ conventions:

S → 4πS , F → −4πF . (6.7)

In this convention, the prepotential without the W ± bosons (eqs. (2.1), (2.3)) takes the

form

F> = STU +
1

3
U3 +

2

(2π)3
Li3

(

e−2π(T−U)
)

+
2

(2π)3

∞
∑

k,l=0

c1(kl)Li3

(

e−2π(kT+lU)
)

. (6.8)

We indicated by our notation that this expression is valid in the Weyl chamber14 S >

T > U . In order to perform the decompactification limit inside this Weyl chamber we set

S = Rs, etc. and take R→∞, while keeping s > t > u fixed. Using (B.15), we find

lim
R→∞

R−3F(S, T, U) = V(s, t, u) = stu+
1

3
u3 , (6.9)

which is precisely the same prepotential as one obtains directly in five-dimensional heterotic

string theory [14].

The five-dimensional scalars s, t, u are subject to the hypersurface constraint (6.1).

One can express them in terms of two unconstrained scalars. The natural choice for these

scalars are the five-dimensional heterotic dilaton φ, or, equivalently, the five-dimensional

14As explained in [18] the BPS states form an infinite dimensional Lie algebra and one can generalize the

notion of a Weyl chamber, which is familiar from simple Lie algebras. In particular, T > U and T < U

define the two Weyl chambers of an SU(2) subalgebra. The corresponding group is the gauge group which

is un-Higgsed at T = U .
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heterotic string coupling g(5) =
√

2π/φ and the radius r of the remaining circle. The

relation between the contrained scalars s, t, u and the uncontrained scalars φ, r is [14]:

s =
φ

2π
−

√
2π

3
√
φr3

, t =

√
2πr√
φ

, u =

√
2π√
φr

. (6.10)

The regime s > t > u > 0 thus corresponds to 1 < r/
√
α′ < (2φ)3/2 [14], i.e., the radius of

the circle is larger than the self-dual radius
√
α′ and the heterotic string is weakly coupled.

Let us now take a different decompactification limit, where the hierarchy between the

moduli T,U is reversed: S > U > T . The four-dimensional prepotential in this region

is found by analytical continuation of (6.8) using the connection formula (B.8) for the

polylogarithm:

F< = STU +
1

3
U3 +

1

3
(T − U)3 − i

2
(T − U)2 − 1

6
(T − U) +

+
2

(2π)3
Li3

(

e−2π(U−T )
)

+
2

(2π)3

∞
∑

k,l=0

c1(kl)Li3

(

e−2π(kT+lU)
)

. (6.11)

Note that (6.8) and (6.11) differ by polynomial terms that come from the analytical contin-

uation of Li3
(

e−2π(T−U)
)

. The additional cubic term will survive in the decompactification

limit although the polylogarithm itself goes to zero. Thus one of the polylogarithmic terms

leaves a subtle shadow in the decompactification limit. Note that it is precisely this term

which is responsible for the fact that the prepotentials in the two Weyl chambers are not

just related by exchanging T and U . Just as the non-trivial monodromy around T = U , this

is caused by the threshold corrections corresponding to the two charged vector multiplets

which become massless on this line.

The last term in (6.11), which contains an infinite number of further polylogarithmic

terms, is manifestly invariant under the exchange of T and U and does not contribute

to the monodromy of the prepotential around T = U . It contains the contributions of

the infinitely many other BPS states of the heterotic string. This term is non-universal,

in the sense that it depends on details of the BPS spectrum. For example, it will be

different for the closely related model with instanton numbers (13, 11). In contrast, the

first polylogarithmic term is universal in the sense that it is fully determined by the fact

that we have SU(2) enhancement on the line T = U .

We can now take the decompactification limit S > U > T →∞ and obtain

V< = stu+
1

3
u3 +

1

3
(t− u)3 = stu+

1

3
t3 + (tu2 − t2u) , (6.12)

valid for s > u > t. Comparing (6.9) and (6.12) we see that the two prepotentials differ

by the term 1
3(t − u)3. This difference vanishes at t = u, so the prepotential itself is

a continuous function at t = u. The resulting couplings in the lagrangian, however, are

discontinuous, because they depend on derivatives of the prepotential. These discontinuities

in the couplings are the analogues of the logarithmic branch cuts present in four dimensions.

Using five-dimensional field theory, one can show that the difference 1
3(t − u)3 of the

two prepotentials precisely corresponds to the threshold corrections of two charged vector
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multiplets [11, 37, 15]. This shows that at t = u the U(1) gauge group corresponding

to the scalar t − u is enhanced to SU(2). This result was in fact first found in [14] by

using perturbative heterotic string theory for the compactification on K3 × S 1. In terms

of five-dimensional heterotic variables, the second Weyl chamber s > u > t corresponds to

a small radius r <
√
α′ of the circle, and one recognizes the the SU(2) enhancement as the

usual SU(2) gauge symmetry enhancement at the self-dual radius r =
√
α′ of the circle.

Using the field redefinition s→ s+u−t, the prepotential (6.12) takes the form stu+ 1
3 t

3

given in [14]. The fact that this form actually involves a field redefinition is crucial for the

study of space-time geometries where the scalars evolve dynamically from t > u to t < u.

Indeed, a naive use of V> = stu + 1
3u

3 for t > u and V< = stu + 1
3 t

3 for t < u, with the

same s in both Weyl chambers, leads to artificial space-time singularities, which are absent

when the correct continuation (6.12) is used [38, 39].

Let us now consider a third decompactification limit, where we keep T− = 1
2 (T − U)

small, so that we stay in the vicinity of the enhancement locus. In this case, we should keep

the charged vector multiplets and work with the prepotential Fin or, for simplicity, with

the truncated version F truncated
in (4.26). In the conventions used in this section, F truncated

in

takes the following form:15

F truncated
in = S(T 2

+ − T 2
−) +

1

3
(T+ − T−)

3 +
2

(2π)3
ζ(3)− 1

6
T− +

4

3
T 3
− +

+O(T 4
−) +

2

(2π)3

∞
∑

k,l=0

c1(kl)Li3

(

e−2π[(k+l)T++(k−l)T−]
)

+

+4π

(

[A2 +
3

4π2
− 1

2π2
log(4π)]T 2

− +A0(T+)

)

. (6.13)

We will now show that one gets a consistent decompactification limit if one first takes

T− to zero and then takes S, T+ to infinity. In order to keep track of the behaviour of

the prepotential away from the special locus t− = 0, we use that the five-dimensional

prepotential is purely cubic and perform the limit at the level of the third derivatives:

lim
R→∞

lim
T−→0

∂3F truncated
in

∂ti∂tj∂tk
=

∂3Vtruncated
in

∂T i∂T j∂TK
, (6.14)

where ti = S, T+, T− and T i = s, t+, t−.

We illustrate this by computing the term cubic in t−. This term is particularly impor-

tant because it encodes the five-dimensional threshold corrections. From (6.13) we find:

lim
R→∞

lim
T−→0

∂3F
∂T−∂T−∂T−

= 6 ·
(

−1

3
+

4

3

)

= 6 . (6.15)

This implies

Vtruncated
in = t3− + · · · , (6.16)

where we used (B.2) and (B.5) to show that the contribution of the polylogarithms vanishes

in the limit.

15At this point, we have already used A1(T+) ≡ 0.
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Looking at the other third derivatives and ignoring the term A0(T+) for the moment,

we find

Vtruncated
in = s(t2+ − t2−) +

1

3
(t+ − t−)

3 +
4

3
t3− . (6.17)

To compare (6.17) with (6.9) and (6.12) we switch to the variables s, t, u:

Vtruncated
in = stu+

1

3
u3 +

1

6
(t− u)3 =

1

2
(V> + V<) . (6.18)

This is precisely the truncated five-dimensional prepotential derived in [15]. Just as in

the four-dimensional case (section 4.2), a manifestly gauge invariant form is obtained by

introducing ŝ = s − t−, which is the five-dimensional limit of the Weyl-invariant dilaton

Ŝ = S − T−(4.2):

Vtruncated
in = ŝ(t2+ − t2−) +

1

3
t3+ + t+t

2
− . (6.19)

In this basis all fields transform covariantly under the Weyl twist: ŝ and t+ are invariant,

and t− is mapped to −t−. As t− only enters through the invariant t2−, the ‘untruncated’

prepotential is again obtained via a substitution of the form t2− → (c21 + c22 + c23), where ci
transform in the adjoint representation of SU(2) [15].

We have thus shown that our decompactification limit of F truncated
in is consistent with

the purely five-dimensional result (6.18) obtained in [15] provided that the function A0(T+)

does not contribute to this limit, i.e., provided that limR→∞ ∂3+A0(T+) = 0. From section 5,

we already know that A0(T+) can be at most a quartic polynomial in T+. The five-

dimensional decompactification limit now tells us that A0(T+) can, in fact, be at most a

quadratic polynomial: A0(T+) = c0 + c1T+ + c2T
2
+. As mentioned earlier, these remaining

terms are expected to vanish as well, because they would give rise to changes in the gauge

couplings of the spectator vector fields A+
µ and A0

µ when the W± multiplets are integrated

out.

7. Conclusions

In this paper, we have shown, in an explicit example, how to determine a non-singular

effective action near a singular subspace of the moduli space of a string compactification.

The key feature of this effective action is that it includes modes that are massive at a generic

point in the moduli space but become massless at the singularity. Starting from a singular

effective action where such modes have been integrated out, we carefully integrated them

back in and in this way derived an effective action valid in the vicinity of the singularity,

or, in other words, in a region of the moduli space where these modes are still light.

Using a combination of field-theoretical reasoning (the general structures of N = 2 Yang-

Mills-supergravity actions and of threshold corrections) together with some (in fact, little)

knowledge of the underlying microscopical string physics (only the type of the additional

massless states was needed) and symmetry arguments (the residual T-duality at a fixed

point) turned out to be sufficient to determine the effective theory up to a few irrelevant

integration constants.
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It was clear from the outset that such a non-singular effective action should exist, but

we find it interesting and useful to carry out this derivation explicitly and determine a

complete and consistent description of the low energy physics near the singularity. Our

calculations have exhibited many features which we expect to be generic. In particular, we

have seen that although the prepotential is a very complicated function, which involves an

infinite number of polylogarithmic functions, integrating in the charged vector multiplets

basically amounts to adding a term of the form δF ' T 2
− log T−. This term is fixed by

pure field theory arguments, and is complelely determined by the knowledge that two

charged vector multiplets become massless at T− = 0. As we have seen, the resulting

theory nevertheless has the correct global properties on the moduli space, i.e., it has the

correct singularities at the points T+ = 1, ρ of higher gauge symmetry enhancement and

exhibits the residual modular symmetry SL(2,Z)+. Modular symmetries are related to the

presence of infinitely many massive string states. What our results thus demonstrate is

that the field theory reasoning employed here is able to capture such stringy properties.

Also note that it is not completely obvious that (2.3) does not contain odd powers of T−
apart from the first and the third. Since the infinitely many massive modes do not interfere

with the integrating in procedure we expect that the methods developed in this paper can

be applied to other cases as well.

For example, it would be interesting to extend our results to conifold points and coni-

fold transitions in type II string compactifications on Calabi-Yau threefolds. This cor-

responds to situations where hypermultiplets become massless, and we must distinguish

between statements about the vector multiplet sector and about the hypermultiplet sector.

The vector multiplet sector is still determined by its prepotential, but now the singular-

ities and monodromies of the generic prepotential are not due to SU(2) gauge symmetry

enhancement, but to massless monopoles and dyons. Integrating in these hypermultiplets

must remove the non-trivial monodromies of the prepotential around the conifold locus.

Given the monodromies, one should be able to integrate in the hypermultiplets in the same

way as the vector multiplets considered in this paper. Note that although the SU(2) gauge

symmetry is never restored, it nevertheless leaves its imprint in the monopole and dyon

monodromies, as explained in [26].

It is much harder to say anything concrete about the hypermultiplet sector, due to our

lack of knowledge about generic quaternionic manifolds. Whereas we can start in the vector

multiplet sector from a known prepotential, the metric on the hypermultiplet moduli space

is not known for the STU -model. Therefore, any extension of our knowledge on this sector

of the theory is extremely valuable. One interesting question is the structure of the metric

and of the scalar potential in the effective theory where the monopole hypermultiplets have

been integrated in. The particular structure of the scalar potential corresponds to a non-

generic gauging of the supergravity lagrangian (since one still has many flat directions) and

requires the hypermultiplet manifold to have specific isometries. It should be interesting

to investigate this in detail.

Another direction is the investigation of higher rank non-abelian gauge groups in the

perturbative heterotic string. This will require a generalization of the present formalism,

since, at least in our example, these higher gauge symmetry enhancements cannot be de-
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scribed in a basis for the symplectic section where a prepotential exists. A reformulation

purely in terms of sections should also be useful for studying non-abelian gauge symme-

try enhancement in type II Calabi-Yau compactifications [20, 21]. Persuing this line of

developement, we expect to get a better understanding of the relation between gauged

supergravity, the geometry of Calabi-Yau manifolds and M-theory.

A. N = 2 gauged supergravity in d = 4

In this appendix we collect some facts about gauged N = 2 supergravity in d = 4 [33,

8, 34, 9]. A generic spectrum contains the gravitational multiplet which contains the

graviton gµν , µ, ν = 0, . . . , 3 and the graviphoton A0
µ as bosonic components. In addition

there can be nV vector multiplets which feature nV vector bosons Ai
µ and nV complex

scalars ti, i = 1, . . . , nV as bosonic components. Finally there are nH hypermultiplets

which contain 4nH real scalars qu, u = 1, . . . , 4nH . The bosonic part of the effective action

reads [9]16

S =

∫

1

2
R−gīDµt

iDµt̄j−huv∂µqu∂µqv+
1

8
ImNIJF

I
µνF

Jµν+
1

4
ReNIJF

I∧F J−V , (A.1)

where R is the Einstein term and huv is the metric on a quaternionic manifold, MH ,

spanned by the scalars qu in the hypermultiplets. As this part of the action is of no

importance for this paper we do not discuss them any further and instead refer the reader

to the literature [9]. The metric gī is the metric on a special Kähler manifold, MV ,

spanned by the scalars ti. Being special Kähler, gī can be derived from a Kähler potential

via gī = ∂i∂̄̄K, where K is not an arbitrary real function but determined in terms of a

holomorphic prepotential F according to

K = − log
[

iX̄I(t̄)FI(X)− iXI(t)F̄I(X̄)
]

. (A.2)

The XI , I = 0, . . . , nV are (nV + 1) holomorphic functions of the ti. FI abbreviates the

derivative, i.e. FI ≡ ∂F (X)/∂XI and F (X) is a homogeneous function of X I of degree 2,

i.e. XIFI = 2F . Using this homogeneity property one can go to special coordinates defined

by X0 = 1, X i = ti. In this parameterization the Kähler potential can be written as

K = − log
[

2(F + F̄)− (ti + t̄i)(Fi + F̄i)
]

, (A.3)

where F = i(X0)−2F (X).

F I
µν are the field strength of the gauge bosons. The gauge coupling functions N are

defined in terms of the prepotential according to

NIJ = F̄IJ + 2i
ImFIKImFJLX

KXL

ImFLKXKXL
. (A.4)

The covariant derivatives are given by

Dµt
i = ∂µt

i − kiIA
I
µ , (A.5)

16Our normalizations coincide with those of [16].
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where kiI(t) are Killing vectors which generate isometries on MV
17

δti = ΛIkiI(t) . (A.6)

As a consequence of the Killing equation and the Kähler geometry of MV , the k
i
I(t) are

constrained to be holomorphic, i.e. ∂̄kiI(t) = 0 and furthermore can be solved in terms of

Killing prepotentials PI
kiI(t) = gij̄∂j̄PI . (A.7)

The PI in turn are determined by

PI = eK(FJf
J
IKX̄

K + F̄Jf
J
IKX

K) , (A.8)

where the fJIK are the structure constants of the symmetry group. Finally, the potential

is expressed in terms of the Killing vectors and reads

V = 2 eKXIX̄Jgı̄j k
ı̄
Ik

j
J . (A.9)

B. Polylogology

In this appendix we assemble facts and useful formulae for polylogarithmic functions, as

they can be found, for example, in refs. [40, 18, 41].

For 0 < z < 1, the k-th polylog is defined by the series expansion

Lik(z) =

∞
∑

n=1

zn

nk
. (B.1)

It can be continued to a multivalued function on the complex plane. Polylogarithmic

functions with different values of k are related by the equation

z
d

dz
Lik(z) = Lik−1(z) . (B.2)

Whereas the first polylog is related to the logarithm,

Li1(z) = − log(1− z) , (B.3)

the polylogs with k ≤ 0 are algebraic functions:

Li0(z) =
z

1− z
, Lik(z) =

(

z
d

dz

)−k z

1− z
for k ≤ −1 . (B.4)

From (B.2) one can derive integral representations for the higher polylogs, k ≥ 1, but

we will not need them. But in order to describe the behaviour of the prepotential in

the decompactification limit and on the enhancement locus we need the following special

values:18

Lik(0) = 0 , (∀k ∈ Z) and Lik(1) = ζ(k) , for k > 1 . (B.5)

17Of course it is also possible to gauge isometries on the quaternionic manifold MH but since this does

not occur in the present models we do not discuss this situation here.
18Li−k(z) has a k-th order pole at z = 1 for k > 0, whereas Li0(z) diverges logarithmically for z → 1.
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The connection formula [40] relates the values at z and 1/z:

Lik(z) + (−1)kLik(
1

z
) = − (2πi)k

k!
Bk

(

log(z)

2πi

)

, for k > 0 , (B.6)

where Bk(·) are the Bernoulli polynomials.19 For Li3 one finds

Li3(z)− Li3(
1

z
) = −1

6
log3(z)− iπ

2
log2(z) +

π2

3
log(z) . (B.7)

For our purposes it is more natural to work with the variable x, where z = ex. In the main

part of the paper, x is a modulus or a linear combination of moduli, and x = 0 ⇔ z = 1

corresponds to gauge symmetry enhancement, while x → ∞ ⇔ 1/z → 0 corresponds to

the decompactification limit. In terms of the variable x, formula (B.7) becomes [18]

Li3(e
x) = Li3(e

−x) +
π2

3
x− iπ

2
x2 − 1

6
x3 . (B.8)

The function Li3(e
−x) has a logarithmic branch point at x = 0. Since this limit is

relevant for the study of gauge symmetry enhancement, it is useful to have an expansion

of the form

Li3(e
−x) ' p(x) + q(x) log(x) for x→ 0 , (B.9)

where p(x) and q(x) are power series,

p(x) =
∞
∑

j=0

pjx
j and q(x) =

∞
∑

j=0

qjx
j . (B.10)

This expansion can be analytically continued to an expansion for Li3(e
x), using log(−x) =

log(x) + iπ. Plugging this into the connection formula (B.8) and comparing term by term

one finds:

q0 = q1 = 0 , q2 = −1

2
, q3 = q4 = q5 = · · · = 0 (B.11)

and

p1 = −π
2

6
, p3 =

1

12
, p5 = p7 = p9 = · · · = 0 . (B.12)

The coefficients p2i, i = 0, 1, 2, . . . can be obtained using (B.1). p0 is fixed by Li3(1) = ζ(3)

while the other coefficients can be found by comparing derivatives of (B.1) with (B.9). In

particular, the second derivative fixes p2 =
3
4 . Combining all our results we have [41, 18].20

Li3(e
−x) ' p(x)− 1

2
x2 log(x) , (B.13)

where

p(x) = ζ(3)− π2

6
x+

3

4
x2 +

1

12
x3 +O(x2n) , n = 2, 3, 4, . . . . (B.14)

19There is an analogous equation for k ≤ 0, where the right hand side is zero.
20Our formula specifies some terms which were not displayed in [41, 18] Ref. [41] suggests the existence

of terms of the form O(x3) log(x), but as we have seen these are absent. Our formula is consistent with eq.

(8.5) of [18] after the change of variables x = − log(1 − y). We thank G. Cardoso for discussions on this

issue.
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Note that the higher terms in p(x) are even powers of x. The odd powers, except the linear

and the cubic term, are ruled out by the connection formula. This is important for our

discussion of gauge symmetry.

To analyze the decompactification limit we need the first formula of (B.5), or, being

more precise about the asymptotics,

Li3(e
−x) ' e−x , for x→∞ . (B.15)

C. Modular forms

The modular group is defined by the following transformation:21

T → aT − ib

icT + d
, ad− bc = 1 , a, b, c, d ∈ Z . (C.1)

On the fundamental domain of this transformation there are two fixed points at T = 1 and

T = ρ ≡ eiπ/6.

A modular form Ek(iT ) of weight k is defined to be holomorphic and to obey the

transformation law

Ek(iT )→ (icT + d)kEk(iT ) . (C.2)

One can show that there are no modular forms of weight 0 and 2, while at weight 4 and 6

one has the Eisenstein functions

E4(q) ≡ 1 + 240

∞
∑

n=1

n3qn

1− qn
= 1 + 240q + 2160q2 . . . ,

E6(q) ≡ 1− 504
∞
∑

n=1

n5qn

1− qn
= 1− 504q − 16632q2 . . . , (C.3)

where q ≡ e−2πT . From their definition one immediately infers that they have been nor-

malized such that

lim
T→∞

E4 = 1 = lim
T→∞

E6 . (C.4)

Furthermore, both function have no pole on the fundamental domain and E4 has exactly

one simple zero at T = ρ, while E6 has one simple zero at T = 1

E4(i) 6= 0 , E4(iρ) = 0 , E6(i) = 0 , E6(iρ) 6= 0 . (C.5)

One can construct modular forms of arbitrary even weight from products of these two

Eisenstein functions.

A modular form which vanishes at T =∞ is called a cusp form. There is no cusp form

of weight r < 12 and for r = 12 there is the unique cusp form η24 where

η(q) ≡ q1/24
∞
∏

n=1

(1− qn) , η24 =
E3
4 −E2

6

1728
(C.6)

is the Dedekind η-function. (η does not vanish at ρ or i.)

21It is common to choose a different convention for T where real and imaginary part are exchanged. More

precisely, for τ = iT one has τ → aτ+b
cτ+d

.
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One can also construct modular invariant functions but such a function necessarily has

a pole somewhere on the fundamental domain. The j-function defined by

j(q) ≡ E3
4

η24
=

E2
6

η24
+ 1728

E3
4

E3
4 −E2

6

= q−1 + 744 + 196884q + · · · (C.7)

has a simple pole at T =∞ and a triple zero at T = ρ.

Finally, the Eisenstein series E2 is defined by

E2(iT ) = 1− 24
∞
∑

n=1

nqn

1− qn
. (C.8)

E2(iT ) is holomorphic, but not quite a modular form:

E2 → (icT + d)2E2(iT ) +
6c

πi
(icT + d) . (C.9)

The derivative of a modular form is in general not a modular form. But using the

transformation properties of E2 one defines the modular covariant derivative

Df(iT ) := f ′(iT )− k
πi

6
E2(iT )f(iT ) , (C.10)

where the prime denotes differentiation with the respect to the argument, i.e. f ′(iT ) ≡
−i∂T f(iT ). The covariant derivative maps modular forms of degree k to modular forms of

degree k + 2. Its action on normalized Eisenstein series is

DEk(iT ) = −k
πi

6
Ek+2(iT ) (C.11)

for k = 4, 6, . . .. This can be used to express derivatives of Eisenstein series in terms of the

Eisenstein series themselves. For E ′2 we also have a relation:

E′2 −
πi

6
E2E2 = −πi

6
E4 . (C.12)

Also note that all higher Eisenstein series Ek, with k = 8, 10, 12, . . . are homogenous

polynomials in E4, E6 (the ring of modular forms is generated by E4, E6). For example:

E8 = E2
4 , E10 = E4E6 . (C.13)

In the text we need the following derivatives:

E′4 =
2πi

3
(E4E2 −E6) ,

E′6 = iπ(E6E2 −E8) = iπ(E6E2 −E2
4) ,

j′ = −2πi j E6

E4
= −2πiE2

4E6η
−24 . (C.14)

The logarithmic derivative of η−24 is proportional to E2:

(η−24)′ = −2πiη−24E2 . (C.15)

As we just saw the derivative of a modular form is not a modular form, since it does

not satisfy eq. (C.2) in general. An exception is the derivative ∂nTF1−n which transforms

according to

∂nTF1−n → (icT + d)(n+1)∂nTF1−n (C.16)

and thus is a modular form of weight n+ 1.
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Addendum

After completion of this paper, we became aware of related work in refs. [42, 43], where

similar phenomena in N = 1 supersymmetric non-linear sigma models are analyzed. We

thank Jan-Willem van Holten for drawing our attention to these references.
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