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1. Introduction

The study of the decay properties of massive string states, and, in particular, the attempt

to determine their lifetime, was initiated long ago, with various kinds of results [1]–[11]

sometimes finding a long lifetime (see e.g. [1, 6]). The main difficulty is represented by the

high degeneracy of the decay products, even for the splitting into two bodies, which can

be viewed as the first step of the decay process.

Here we present a simple classical computation, which is applicable for large quantum

numbers, describing the splitting into two pieces of a very massive closed string in the

state of maximal, and thus very large, angular momentum (a study of classical splitting of

a different circular pulsating string is in [12]). This computation will prescribe a definite

relation between the masses of the decay products and will also give information about

their angular momentum. Moreover, the semiclassical argument indicates that the lifetime

for the splitting of such highly excited states will grow proportional to its mass.

We will also compare the results of this semiclassical picture with the detailed quantum

computation that we recently performed on the decay of a massive state with maximal

angular momentum in closed superstring theory [11]. The quantum computation was

based on evaluating the imaginary part of the one-loop self-energy of that state. The

self-energy is expressed as an integral of a certain combination of theta functions, and we

developed a very efficient algorithm to derive the contribution of the intermediate states

of definite mass, which included the sum over their degeneracies.

The comparison will show a surprisingly good agreement between the semiclasssical

and quantum calculation, despite the fact they involve completely different computations.

A striking result is that very massive states of maximal angular momentum can be

long lived, the lifetime being proportional to their mass (suggestions in this direction in the

bosonic closed string theory appeared already in [6], where numerical evidence of a lifetime

growing like M for levels up to N = 70 was reported). While the quantum computation
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was performed so far in ten flat uncompactified dimensions, the semiclassical computation

appears to be independent of possible compactifications. Thus, long-lived very massive

string states could be present in the description of spacetime based on string theory.

2. Splitting of a rotating string

The rotating closed string solution is given by:

X = L cos(2σ) cos(2τ) , Y = L cos(2σ) sin(2τ) , X 0 = 2Lτ , (2.1)

where σ ∈ [0, π). This represents a spinning folded closed string with maximum angular
momentum. The coefficient 2L in X0 is fixed by the constraint Ẋ · Ẋ +X ′ ·X ′ = 0 (the
other constraint Ẋ ·X ′ = 0 is also satisfied). The string has energy and angular momentum
given by

E =M =
L

α′
, J =

L2

2α′
, (2.2)

so that one has the usual Regge relation α′M2 = 2J .

The closed string (2.1) contains two segments, the “upper” segment described by 0 <

σ < π/2 and the “lower” segment described by π/2 < σ < π. The full length of the string

is 4L. We assume that at τ = 0 the string splits into two pieces of lengths 4LI and 4LII,

Xµ(σ)→ {Xµ
I (σ), X

µ
II(σ)} , with LI + LII = L. The initial conditions for the strings I and

II are given by the string (2.1) at τ = 0. The splitting occurs at σ = aπ/2 for the upper

segment, with a defined as

cos aπ ≡ −LI − LII
L

, 0 < a < 1 . (2.3)

For the lower segment, the splitting is at σ = π − aπ/2. Thus the initial conditions are:

Xµ
I (σ, 0) = Xµ(σ, 0) , Ẋµ

I (σ, 0) = Ẋµ(σ, 0) , (2.4)

for 0 < σ < aπ/2 (upper segment) and for π > σ > π − aπ/2 (lower segment), while for

the string II we have

Xµ
II(σ, 0) = Xµ(σ, 0) , Ẋµ

II(σ, 0) = Ẋµ(σ, 0) , (2.5)

for aπ/2 < σ < π/2 (upper segment) and for π/2 < σ < π − aπ/2 (lower segment). These

boundary conditions uniquely determine the solution describing the two closed string final

states.

We shall determine the solution describing the two outgoing solutions in two different

ways:

a) By explicitly finding the Fourier modes. This will show, in particular, that the

outgoing strings are in a highly excited state which is not of maximum angular

momentum.
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b) By a direct matching with the original solution and imposing the new periodicity.

By construction, the resulting solutions coincide with the explicit calculation of a),

and thus this method provides a simple closed analytic formula for the resummation

of the Fourier expansion. This form of the solution also exhibits the nature of the

motion of the outgoing strings I and II.

2.1 Fourier analysis

Let us consider the string I. To find the explicit solution, we start with the general solution

to the string equations for the closed string. The condition (2.4) can be equivalently

imposed in the interval −aπ/2 > σ > aπ/2, since the original solution is periodic in σ

with period π. The most general closed string solution satisfying the periodicity condition

Xµ
I (σ + πa) = Xµ

I (σ) is given by

XI(σ, τ) = x0I + 2α
′pxI

τ

a
+ i
∑

n6=0

(

xne
−2in

a
(τ−σ) + x̃ne

−2in
a
(τ+σ)

)

, (2.6)

YI(σ, τ) = y0I + 2α
′pyI

τ

a
+ i
∑

n6=0

(

yne
−2in

a
(τ−σ) + ỹne

−2in
a
(τ+σ)

)

. (2.7)

Note that the constraints

Ẋ ·X ′ = 0 , Ẋ · Ẋ +X ′ ·X ′ = 0 ,

are satisfied automatically once we impose the initial conditions. Indeed, they are satisfied

at τ = 0, because there the solutions Xµ
I , Xµ

II and their first derivatives coincide with the

original solution Xµ, which already satisfies the constraints. Since they are a constant of

motion, then they are satisfied for all τ (using the fact that T++ = T++(σ
+) , T−− =

T−−(σ
−), one sees that the condition T++ = T−− = 0 at τ = 0 implies that they vanish

for any τ).

Let us first determine the conserved quantum numbers, energy, linear momentum and

angular momentum of each string. Since they are conserved quantities, they can be found at

τ = 0, where the solution is given by eq. (2.4) and (2.5). The energy and linear momentum

components are given by

EI =
2

2πα′

∫ πa/2

0
dσ Ẋ0I =

La

α′
,

pxI = 0 ,

pyI =
2

2πα′

∫ πa/2

0
dσ ẎI =

4L

2πα′

∫ πa/2

0
dσ cos(2σ) =

L sin(πa)

πα′
. (2.8)

There is an extra factor of two in the above expressions, which takes into account that

there are two segments of string giving the same contribution. The angular momentum is

JI =
2

2πα′

∫ πa/2

0
(XIẎI − ẊIYI) =

L2a

2α′

(

1 +
sin(2πa)

2πa

)

. (2.9)
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This has an orbital component lI and spin component SI. Since pxI = 0, the orbital

component is just lI = x0Ip
y
I , where x0I is the center of mass coordinate of the string I,

x0I =
2

πa

∫ πa/2

0
dσ XI =

L sin(πa)

πa
=

α′

a
pyI . (2.10)

Therefore JI = lI + SI with

lI =
L2a

α′
sin2(πa)

(πa)2
, SI =

L2a

2α′

(

1− 2 sin
2(πa)

(πa)2
+
sin(2πa)

2πa

)

. (2.11)

The mass of the string I is thus given by

M2
I = E2I − p2I =

L2

α′2

(

a2 − sin
2(πa)

π2

)

. (2.12)

Let us now determine the oscillator modes. From the conditions ẊI(σ, 0) = Ẋ(σ, 0) =

0, YI(σ, 0) = Y (σ, 0) = 0, it follows that

xn = x̃−n , yn = −ỹ−n . (2.13)

To find xn, yn, we multiply the two remaining boundary conditions XI(σ, 0) = X(σ, 0),

ẎI(σ, 0) = Ẏ (σ, 0) = 0 by e−2i
n
a
σ and perform the integral over σ from −aπ/2 to aπ/2 ,

using the expansions (2.6), (2.7) and the solution (2.1). We find

XI =
L sin(πa)

πa

(

1 + 2
∞
∑

n=1

(−1)n
1− n2/a2

cos

(

2nτ

a

)

cos

(

2nσ

a

)

)

, (2.14)

YI =
L sin(πa)

πa

(

2τ + 2a

∞
∑

n=1

(−1)n
n(1− n2/a2)

sin

(

2nτ

a

)

cos

(

2nσ

a

)

)

, (2.15)

where −πa/2 < σ < πa/2 (note that the factor (−1)n can be removed byshifting σ so that

0 < σ < πa). Finally, we have X0
I = 2Lτ .

Let us now consider the string II. The solution is readily found by noting that the

Fourier analysis become the same in terms of a′ = 1− a and σ′ = σ − π
2 . We have to take

into account that the shift in σ produces a change of sign in the solution (2.1). We get

XII = −
L sin(πa)

π(1− a)

(

1 + 2

∞
∑

n=1

(−1)n
1− n2/(1− a)2

cos

(

2nτ

(1− a)

)

cos

(

2nσ

(1− a)

)

)

(2.16)

YII = −
L sin(πa)

π(1− a)

(

2τ + 2(1− a)
∞
∑

n=1

(−1)n
n(1− n2/(1 − a)2)

sin

(

2nτ

(1− a)

)

cos

(

2nσ

(1− a)

)

)

(2.17)

with −π(1− a)/2 < σ < π(1− a)/2, and X 0
II = 2Lτ .
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The conserved quantities for the string II are

EII =
L(1− a)

α′
, pyII = −

L sin(πa)

πα′
, (2.18)

JII = lII + SII , lII =
L2(1− a)

α′
sin2(πa)

(π(1− a))2
, (2.19)

SII =
L2(1− a)

2α′

(

1− 2 sin2(πa)

(π(1− a))2
− sin(2πa)

2π(1 − a)

)

, (2.20)

M2
II = E2II − p2II =

L2

α′2

(

(1− a)2 − sin
2(πa)

π2

)

. (2.21)

One easily checks that energy, linear momentum and angular momentum are conserved

in the process of splitting,

EI +EII =
L

α′
= E , pyI + pyII = 0 , JI + JII =

L2

2α′
= J . (2.22)

We stress that the outgoing strings represent excited string states which do not have

maximum angular momentum.

For completeness, we also give the results in the case of open strings. The solutions

are simply obtained by the formal substitution 2σ → σ, 2τ → τ in eqs. (2.1), (2.14)–(2.17),

with the new σ defined in the intervals 0 < σ < πa and 0 < σ < π(1 − a), respectively.

The expressions for EI , pyI , JI , lI , SI are the same as above with an extra factor 1/2, and

similarly for the string II.

2.2 Closed formulas for the outgoing string solutions

We can describe the classical closed-string dynamics by means of left and right motion, in

terms of the coordinates σ± = σ ± τ :

Xµ(σ, τ) = Xµ
+(σ

+) +Xµ
−(σ

−) . (2.23)

The constraint is ηµν∂±X
µ
±∂±X

ν
± = 0.

The initial string (2.1) is described by:

X±(σ
±) =

L

2
cos(2σ±) , Y±(σ

±) = ±L

2
sin(2σ±) , X0±(σ

±) = ±Lσ± . (2.24)

As before, σ ∈ [0, π).
At τ = 0 the string splits into two pieces: Xµ

±(σ
±)→ {Xµ

I±(σ
±), Xµ

II±(σ
±)}. The two

pieces are folded like the initial string and the splitting occurs at σ = aπ/2 in the upper

segment and at σ = π − aπ/2 in the lower segment, with 0 < a < 1. The two resulting

strings are determined as in the previous subsection by requiring continuity of the string

coordinates and their first derivatives in τ at τ = 0, and by requiring periodicity in σ: X µ
I

with period ∆σ = aπ and Xµ
II with period ∆σ = (1− a)π.

In the interval of σ corresponding to string I (see eq. (2.4) ), the initial conditions

at τ = 0 imply that ∂σX(σ, 0) = X ′+(σ) + X ′−(σ) = X ′I+(σ) + X ′I−(σ) and ∂τX(σ, 0) =
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Figure 1: The curve MI = MI(MII) defined by eqs. (3.1) and (3.2). It is superposed with the

similar curve obtained in [11] from the direct quantum one-loop calculation.

X ′+(σ) − X ′−(σ) = X ′I+(σ) − X ′I−(σ), which in turn imply that XI+(σ) = X+(σ) and

XI−(σ) = X−(σ) in this interval, and outside of the interval they are defined by the new

periodic boundary condition σ → σ+aπ. This determines XI(σ, τ) = XI+(σ
+)+XI−(σ

−)

in closed form. Similarly for the coordinate Y , and for the string II.

The resulting expressions for YI,II are the sum of two terms. One term corresponds to

the momentum carried by the string: ±L 2 sin(aπ)π τ . The other term is periodic in σ and its

derivative in σ has zero average.

It is convenient to rescale the world-sheet parameters of the resulting strings σ± → aσ±

for the string I, and σ± → (1 − a)σ± for the string II, in such a way that the period is

∆σ = π for both.

We get for the string I:

X0I±(σ
±) = ±Laσ± ,

XI±(σ
±) =

L

2
CI(σ

±) , YI±(σ
±) = ±L

2

[

2 sin(aπ)

π
σ± + SI(σ

±)

]

(2.25)

where

CI(σ) = cos(2aσ) , SI(σ) = sin(2aσ) −
2 sin(aπ)

π
σ

for 0 ≤ σ <
π

2
,

CI(σ) = cos(2aσ − a2π) , SI(σ) = sin(2aσ − a2π)− 2 sin(aπ)
π

(σ − π)

for
π

2
≤ σ < π . (2.26)
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Figure 2: Plot of the classical (dashed line) and quantum (solid line) value for (1 − l0/J) (l0 =

orbital angular momentum) as a function of the parameter a (which defines the breaking point of

the string).

Similarly for the string II we get:

X0II±(σ
±) = ±L(1− a)σ± ,

XII±(σ
±) =

L

2
CII(σ

±) ,

YII±(σ
±) = ±L

2

[

−2 sin(aπ)
π

σ± + SII(σ
±)

]

, (2.27)

where

CII(σ) = cos(2(1 − a)σ + aπ) ,

SII(σ) = sin(2(1 − a)σ + aπ) +
2 sin(aπ)

π
σ

for 0 ≤ σ < π . (2.28)

These definitions are extended to any σ by declaring that

CI,II(σ + π) = CI,II(σ) , SI,II(σ + π) = SI,II(σ) .

They solutions are equivalent to the solutions given by the Fourier expansion in the previous

section.

The derivative in σ of both XI, YI and XII, YII has a discontinuity at σ± = π/2 and

σ± = 0 respectively. This discontinuity will appear as an angular bending in the (folded)

shape of the strings I and II. Since σ± = σ ± τ , this angular bending will move along the

string, as a function of τ . We will return to this point in the last section.
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Figure 3: Sequences of pictures of the closed string after the splitting for a = 0.4.

3. Comparison with the superstring quantum calculation

The decay process described above by semiclassical splitting predicts that masses will be

related by the following formulas:

MI = MI(a) =
L

α′

√

a2 − sin
2(πa)

π2
, (3.1)

MII = MII(a) =
L

α′

√

(1− a)2 − sin
2(πa)

π2
. (3.2)

These relations define a function MI =MI(MII).

In ref. [11], the full quantum calculation of the decay was done in the ten dimensional

type II superstring theory. The decay rate is obtained by extracting the imaginary part of

the genus one self-energy of the massive particle: Γ = Im∆M2

2M .

This calculation is complicated: it combines expansions of theta functions and re-

summations, saddle-point evaluation of some integrals. Nevertheless, it is an exact genus

one result in the large M limit, since the only approximation involved are saddle-point

approximations, which become exact as α′M2 À 1.
Here we explain briefly the idea of the method and the result. We compute the contri-

bution to Im(∆M 2) of the decay channel corresponding to the states with masses M1,M2:

let us call d2Im(∆M2)
dM2

1
dM2

2

that contribution per unit dM 2
1 dM

2
2 . The one-loop self-energy, de-

rived first in [9], is represented as an integral of some combination of theta functions, the
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Figure 4: Sequences of pictures of the closed string after the splitting for a = 0.15. One can see the

slow translational motion of the large string, which is a small deformation of the original rotating

string solution, with a bending angle 0.85π. The small string moves very fast and the bending angle

is acute, equal to 0.15π.

integration being over the torus complex modulus and over a complex (vertex position)

coordinate on the torus surface. The integration is formally divergent, and it is computed

by a standard analytic continuation.

A key point is to write the integrand as a sum of holomorphically factorized quantities.

The selection of a particular decay channel corresponds to a particular term in the Taylor

expansion of the holomorphic factors, as it is recognized by comparison with field theory

Feynman diagrams. Cauchy contour integrals and saddle point techniques are used for

getting the holomorphic expansion, similarly to the well known procedure for computing

the entropy of a state in string theory. In this way we obtained:

d2Im(∆M 2)

dM2
1 dM

2
2

∼ g2s M−3 exp

[

2M2S0

(

M1

M
,
M2

M

)]

, (3.3)

with S0 ≤ 0 (given in [11, figure 1]).
Therefore in the large mass limit the dominant decay channel corresponds to values

of M1,2 for which S0 = 0, i.e. the masses of the decay products are correlated, modulo

processes which are exponentially suppressed. This effect may come as a surprise, since

one might have expected a sizable string vertex coupling three string states of arbitrary

masses M, M1, M2.
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Figure 5: Surface swept by the strings during the splitting process (lateral view).

Figure 1 shows the relation MI = Mquantum
I (MII), corresponding to S0 = 0, found

numerically in [11] (and shown there in figure 3). In the same figure, we have superposed

the analytic function MI =MI(MII) defined by (3.1) and (3.2). We see that they coincide,

the analytic semiclassical curve fully matches the curve of [11] obtained by a one-loop

calculation.

This precise match is also surprising. Although one expects that for a large mass

the initial highly excited quantum string state is well described by a classical solution,

it is not a priori obvious that the precise relation between masses should be implied by

a classical spontaneous splitting process. Moreover, the decay products are not states of

maximum angular momentum and it is not obvious that a semiclassical description would

be applicable for them. The accurate coincidence of the two curves in figure 1 also confirms

the results of [11].

Further, in the calculation of [11], it is also possible to isolate the contribution of a given

orbital angular momentum l0. In fact, by comparison with the field theory expressions for

one-loop Feynman diagrams, one learns that the sum over the possible l0 contributions

corresponds to the sum over the holomorphically factorized terms (in [11, eq. (5.4)], a

term with given l0 has l0 = 2N − (m1 +m2)− 2 = fixed, N = J/2).

However, l0 is not a quantum number of the final states, and in fact the quantum

computation of Im(∆M 2) is expressed as the modulus square of a sum over amplitudes

which are alternating in sign. Therefore, the classical value of l0 does not correspond to a

– 10 –
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Figure 6: Surface swept by the strings during the splitting process (view from the top, larger time

interval).

well defined mean value. In order to compare the quantum computation with the classical

configuration of outgoing states M1,M2 with given l0, we have taken as quantum value of

l0 the one for which the amplitude is maximal in absolute value. That maximal amplitude

corresponds to a value of l0 which depends on M1,M2. We take the relevant values for

M1,2 to be those along the curve of figure 1, and then compare this result to lI(a) + lII(a)

computed semiclassically (see eqs. (2.11) and (2.19)). This comparison is shown in figure 2.

We see that the two curves are quite close. We think that the small discrepancy is due

to the fact that there is not a well defined quantum value of l0. It is still remarkable that the

semiclassical and quantum calculation give so close results, with the correct normalization

which comes automatically without any tuning.

4. Decay rate and description of the motion

For quantum states with large occupation numbers admitting a semiclassical description,

one expects for the lifetime an expression of the form

T = Γ−1 = const. 1
g2s
T0 exp

[

−2L
2

α′
SMax0

]

. (4.1)

This is precisely the form of the result (3.3) that arises from the explicit quantum calcu-

lation. We have seen that in general S0 ≤ 0 and that the maximum of S0 corresponds
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Figure 7: Surface swept by the strings during the splitting process (lateral view, even larger time

interval).

to the classical solution for which SMax0 = 0. The total contribution to Γ is obtained by

performing the integral over dM 2
1 , dM2

2 of (3.3) [11]. Only a small neighborhood around

the curve of figure 1 contributes, since other regions are suppressed exponentially. Using

the semiclassical form (3.3) of S0 and expanding in the vicinity of the curve, one is left

with a gaussian integral in the orthogonal direction of the curve which produces an addi-

tional factor of 1/
√
N . This gives (4.1) with T0 ∼= L, which is the natural time scale of the

classical string. Thus the lifetime of a massive string with maximum angular momentum

is given by

T = Γ−1 = const. α′

g2s
M . (4.2)

This is the result reported in [11], which now we see that it has a natural semiclassical form.

Thus, surprisingly, one finds that a string with maximum angular momentum becomes more

stable the more massive it is.

Having the exact solutions for the outgoing strings I and II, it is interesting to describe

the main features of their motion. Figures 3 and 4 are plots of a sequence of pictures of

the string I and II after the splitting, for different breaking points: a = 0.4, a = 0.15
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respectively. We see that the outgoing closed string remain folded, exhibiting a rotating

motion. The figures 3 and 4 were made using the Fourier series formulas of section 2.1.

One can check that the same plot is obtained using the formulas of section 2.2. Figures 5,

6 and 7 are a plot of the world-sheet for the breaking point at a = 0.4.

The most salient feature that can be observed from the figure is that the breaking

of the strings creates an angular bending, or kink, which then travels back and forth all

along each string. Remarkably, each string is straight except at the bending point. One

might wonder whether this feature is generic, at least for the breaking of an open string:

the kink is produced by the jump of the first derivative at the splitting point; it is locally

created, thus its occurrence should not depend on whether the string has maximum angular

momentum (i.e. whether it is straight or curved).

Another important feature is that the angles of the bendings of the strings I and II

sum up 180o, and they are given by

θI = aπ , θII = (1− a)π . (4.3)

Note that they are in relation with the energies of the strings. When a = 1/2 both angles

are π/2.

The formulas (4.3) can be proved by using the solutions of section 2.2. Consider the

string I at a given instant τ . The derivative dYI

dXI
has the same discontinuity in both upper

and lower segments of the closed string. In one segment the discontinuity originates from

the discontinuity in ∂σXI+ at σ1 =
π
2 − τ . In the other segment, it originates from the

discontinuity of ∂σXI− at σ2 =
π
2 + τ .

For a < 1/2, the bending angle θI of the string I is an acute angle. It can be computed

in particular at σ1, where it is given by

θI = arctan
dYI
dXI

∣

∣

∣

∣

σ1−ε

− arctan dYI
dXI

∣

∣

∣

∣

σ1+ε

. (4.4)

Using the explicit form of the solutions, we obtain

dYI
dXI

∣

∣

∣

∣

σ1−ε

=
∂σY

∂σX

∣

∣

∣

∣

σ1−ε

= tan(2aτ) ,

dYI
dXI

∣

∣

∣

∣

σ1+ε

= tan(2aτ − aπ) . (4.5)

Thus

θI = 2aτ − (2aτ − aπ) = aπ . (4.6)

Similarly, one finds θII as in (4.3).
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