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Abstract

The optical transparency of perfluorocarbons used as Cherenkov media is of prime im-
portance to many Ring Imaging Cherenkov detectors. We will in this paper show that the
main photon absorbers in these fluids are hydrocarbons with double or triple bonds. We
will moreover discuss a process which can eliminate these pollutants and restore the intrinsic
excellent optical transparency of these fluids in the VUV range.

1 Introduction

Perfluorocarbon gases are widely used as Cherenkov media as they span a wide range of refrac-
tive indices, they are chemically inert and they have the cut-off wavelength below 80 nm for
room temperature gases. The pure gases are also fully transparent well below 160 nm. This,
together with the reasonable small chromatic aberration, makes them particularly valuable as
Cherenkov radiators in detector systems which use VUV sensitive photon converters like TMAE
(Tetrakis(dimethylamino)ethylene C10H24N4) [1], TEA (Triethyl amine C6H15N) [2] and CsI [3].
Some properties of the first n-fluorocarbons are given in table 1.

Sellmeier
Boiling point A λ0

Fluorocarbon ◦C ×10−6 nm Reference
CF4 Tetrafluoromethane -128.06 0.1164 61.81 [4]
C2F6 Perfluoroethane -78.2 0.1746 66.75 [5]
C3F8 Perfluoropropane -36.7 0.2305 67.90 [6]
C4F10 Perfluoro-n-butane -1.9 0.2375 73.63 [7]
C5F12 n-Perfluoropentane 29.2 0.1986 86.57 [7]
C6F14 Perfluoro-n-Hexane 56 56.8 66.54 [8]

Table 1: Some properties of fluorocarbons. A and λ0 refer to the Sellmeier parameterisation of the
refractive index as (n− 1) = A/

[
λ−2

0 − λ−2
]
. A is given for the gas at NTP.

Perfluorocarbons, as fluorocarbons, are equivalent to hydrocarbons where the hydrogen
atoms are replaced by fluorine atoms. Alkyl halides are classified as primary, secondary, or
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tertiary according to the degree of substitution at the carbon to which the halogen is attached.
In a primary alkyl halide, the carbon that bears the halogen is directly bonded to one other
carbon, in a secondary alkyl halide to two, and in a tertiary alkyl halide to three.

Different preparation methods are used to obtain fluorine containing organic substances. We
will list some of them here:

• Direct fluorination of hydrocarbons in the presence of Cu or Ag.

• Indirect fluorination using metal fluorides like CoF3, CeF4 or MnF3, as fluorinating agents.

• Halogen exchange reaction like C2H5Br
F2Hg−→ C2H5F

• Addition of multiple bonds as in the reaction
HC≡CH+HF −→ H2C=CHF+HF −→ H3C−CHF2

• Pyrolitic reactions as in 2CHF2Cl 700 ◦C−→ F2C=CF2+2HCl

• Electrolytic methods are also used.

The reactions involving F2 molecules are strongly violent and exothermic, as compared to
Cl2. For instance:

R3C−H + X2 →R3C−X + HX ∆H(X=F) = - 103 kcal ∆H(X=Cl) = - 23 kcal
R2C=CR2 + X2 →R2CX−XCR2 ∆H(X=F) = - 107 kcal ∆H(X=Cl) = - 33 kcal

These reactions are controlled by the dilution of reactants using inert gases or in presence of
copper or silver sieves. In this case the probable fluorinating agent is AgF2 which appears in
the reaction medium [9].
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Figure 1: Transparency of two samples, [a] and [b], of C4F10 for a 15 cm long absorption length at
NTP.

Even though the pure perfluorocarbon molecule is fully transparent in the far UV range, the
raw gas as received is not always usable as a Cherenkov radiator medium. An example of this
is shown in figure 1. It has also proven very costly both in resources and in material, to obtain
and to maintain the required transparency of the fluid [10]. It has therefore become imperative
to search for the possible contaminants and to establish a method to eliminate them. If at all
possible, this process ought to be easy, straightforward and should require low overhead.

We will in this paper discuss different admixtures which will strongly enhance the photon
absorption in these fluids together with their specific absorption signatures in the VUV range.
We will in section 5 review the most common and efficient methods to isolate and eliminate these
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impurities. Section 6 is devoted to the work of establishing a correlation between these known
absorption bands and the absorption signatures measured in perfluorocarbon gas. Once this
connection has been well established, we will demonstrate an efficient method to isolate these
molecules from the perfluorocarbons and thereby fully restoring the transparency of the fluid.
Section 2 gives an overview of the instruments which have been used to qualify the transparency
of the fluorocarbons in the VUV range.

2 Experimental procedure
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Figure 2: Sketches of the working principle of the measuring systems.

Our most recent data on gas transparency is taken with the set-up sketched in figure 2 (a).
A ∼ 2 m long light absorption chamber is built around a deuterium lamp with a Seya-Namioka
monochromator [11]. Two photo multipliers 1 with wavelength shifters 2 are used for light de-
tection. The monochromatic light beam enters the gas tube where it is focused by a lens onto
photo multiplier #1. The light beam is split by the beam splitter between the lower, the refer-
ence, photo multiplier #2 and the upper one. The difference in light path length between the
two photo multipliers is 185.7 cm. The windows, as well as the lens and the beam splitter, are
made of calcium fluoride. The system can thereby measure in the wavelength range from ∼ 154
to 500 nm. The spread is estimated to be 0.7 nm and the overall absolute calibration error to
±0.25 nm. The anode currents from the photo multipliers are read via pA meters [13]. Reference
spectra are taken with argon. The data acquisition and the running of the data taking is fully
automatic 3.

A similar system was used previously and it is sketched in figure 2 (b). It used the same
monochromator system, but used variably length cells for the measurement of the transparency
of the fluids [11]. The windows and the beam splitters were made from fused silica quartz which
limited the lower wavelength to ∼ 163 nm. The maximum light attenuation length was 15 cm.

A third system is sketched in figure 2 (c). It is based on the CERN reflectometer [12], which
has been modified to allow for light transmission measurement down to 155 nm. The UV-
monochromator selects the wavelength of the light emitted by the deuterium lamp. Each single
measurement is performed in the wavelength region between 160 and 230 nm. Uniform focusing

1Thorn EMI, type 9884 B
21 µm paraterphenyl and 25 nm MgF2
3LabView system by National Instruments
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of the beam is achieved with a position adjustable calcium fluoride lens. A beam splitter allows
for normalisation measurements, by directing part of the beam to photo multiplier PM1. The
lamp, the monochromator and the light path to PM1 are housed in the monochromator chamber
which is kept transparent by a constant argon flow. The measuring cell, 5.1 cm long, closed
along the light path by two calcium fluoride windows, is mounted on a gear rod in the vacuum
chamber. It is separated from the monochromator chamber by a calcium fluoride window. The
photo multiplier PM2 is measuring the intensity of light downstream of the measuring cell. As
the cell is movable, three different measurements are possible. The background is quantified
by absorbing the light beam on a black coated metallic plate, the reference measurement is
performed filling the cell with nitrogen and the actual measurement when the cell is filled with
liquid C4F10. The measured values are corrected for the light transmission losses at the surface
between media of different refractive index.

3 Atmospheric gases as UV photon absorbers

We will in this and in the following section give a brief description of common molecules that
will absorb photons in the wavelength range below 200 nm. We will give a short discussion of the
main absorption bands and furthermore express the effect of the pollutants on the transparency
by simple mathematical models.

Atmospheric gases are the most common photon absorbers in the wavelength range below
200 nm. This is primarily due to leaks or diffusion between the Cherenkov radiator structure
and the surrounding air. It is also due to the fairly high solubility of certain vapours in per-
fluorocarbons. An example is given in table 2.

Water ppm 11
Oxygen ml gas/100 ml 65
Carbon dioxide ml gas/100 ml 248
Helium ml gas/100 ml 11
Argon ml gas/100 ml 65
Nitrogen ml gas/100 ml 43
Ethane ml gas/100 ml 282

Table 2: Solubility of some common substances in liquid C6F14 [14].

The absorption coefficient for water, figure 3, is fairly well described down to 125 nm by
a superposition of three gaussian distributions. The mean and the sigma of these curves are
given as (128.0,5.75), (162.7,7.28) and (172.9,4.49) in units of nm. The absorption here is
almost entirely due to the continuum with a maximum at about 165.5 nm. There is moreover
some indication of some very weak bands. Below 140 nm, a number of diffuse bands are found
superimposed on the second continuum. The interval between these bands is about 800 cm−1.
Photon absorption by water does therefore not play any significant role in a practical Cherenkov
detector above ∼ 186 nm. Further discussion can be found in reference [15].

The absorption coefficient for oxygen through the Schumann-Runge band down to 140 nm
is similarly described by one gaussian distribution where the mean and the sigma is given as
(142.9,11.6) in units of nm. The photon absorption cross section of the underlying continuum
of the Schumann-Runge band in the wavelength range from 175 to 242 nm is dominated by the
photo dissociation of O2. The upper limit is given by dissociation limit of the O(3P)+O(3P)
ground state, X3Σ−

g , and the lower limit by the dissociation of the lower state of O(3P)+O(1D),
B3Σ−

u . The continuum gradually increases towards smaller wavelength and almost levels off at
around 198 nm. It then increases rapidly to a value of 7.1× 10−22 cm2 at 181.4 nm. This is still
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Figure 3: Photon absorption coefficient [15] for oxygen, water and carbon dioxide as function of
wavelength.

a small number and the photon absorption in O2 above 180 nm can therefore be neglected for all
practical gas Cherenkov detectors. Further discussion of photon absorption in O2 can be found
in [15], [16] and [17] and references therein. The absorption coefficient is plotted in figure 3. As
can be seen from the discussion in [15], O3 has a strong continuum with a maximum at 255 nm.
O3 is however not a likely pollutant for Cherenkov radiators.

CO2 has a photon absorption coefficient which can be well described down to 220 nm by
a sum of two gaussian. The mean and the sigma of these two distributions are given in nm
by (131.9,4.75) and (145.8,9.43). The absorption coefficient is plotted in figure 3. The bands
overlaying the continuum above 140 nm are mainly irregular and diffuse. Below 140 nm they
appear to be more regular and intense. The absorption continuum arises probably from the
relatively steep repulsive curve for the dissociation products CO(1Σ)+O(3P ). The overall photon
absorption coefficient down to 120 nm is generally not very strong and can be considered as
insignificant above 170 nm. More information can be found in references [15] and [16].

4 Hydrocarbons as UV photon absorbers

Measurements of the ultraviolet absorption spectra of hydrocarbons have been done since the
early days of spectroscopy. These bands presented the first conclusive examples of an electronic
transition forbidden by the symmetry selection rules and an application of the vibronic selection
rules. The interest of photon absorption and dissociation of hydrocarbons have increased again
during the last years as a result of the search for organic polymer formation and thereby haze
particles, in planetary atmospheres.

Hydrocarbons are classified depending on the bonds between the carbon atoms. Alkanes,
alkenes, alkynes and aromatics have respectively single bonds, a double bond, a triple bond or
three pairs of conjugated double bonds between the atoms. The photon absorption coefficient
for some alkanes are plotted in figure 4 (a).

It can be seen from figure 4 (a) that methane, ethane, propane and n-butane have all very
similar photon absorption curves and that the turn-on of the absorption can be approximated
to λturn−on = 181 − 226

2+N where N is the number of bonds and λ is in nm. It can furthermore
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Figure 4: Photon absorption coefficient for (a) alkanes and (b) for alkenes. (a) is for atmospheric
pressure and 25 ◦C. The decatic molar absorption coefficient, ε, is defined by A=-log10T=ε×b×c, where
b is the path length in cm and c is the molar concentration in mol/litre. The right-hand axis of (b)
gives the absorption coefficient in units of /cm/bar for c=0.044 mol/l. Data replotted from reference [18]
and [19].

be observed that as the number of bonds increases, wide bands will overlay the absorption
continuum.

This picture changes dramatically when going to molecules with double bonds. The decatic
molar absorption coefficient 4, ε, for some hydrocarbons with a single double bond is plotted in
figure 4 (b). ε is defined by A=-log10T=ε×b×c, where b is the path length in cm and c is the
molar concentration in mol/litre. We observe that ε for all these alkenes, apart from ethylene,
can be approximated down passed 170 nm with a single gaussian with a mean and a sigma given
as (175,7) in units of nm. The λturn−on is in the range of 210 nm. Ethylene is different. We
observe here very strong and periodic bands overlying the continuum. λturn−on for ethylene is
in the range of 200 nm.

The picture is further confused when going from simple olefins to diolefins, hydrocarbon
molecules with two double bonds between the carbon atoms. The maximum of the absorption
band shifts regularly towards the visible with increased number of conjugated double bonds.
The molar absorption coefficient is very high with ε ∼ 104 l/mol/cm. This corresponds to the
promotion of an electron from the π system to an antibonding π∗ orbital. It is of course not
excluded that these more complex structures are responsible for the loss of transparency in
perfluorocarbons in the VUV range. It is however futile to search for them without a clear
signature in the absorption spectra.

The simplest molecule in the acetylenic series, or alkynes, is acetylene, C2H2, and the first
of the aromatic hydrocarbons is benzene, C6H6. Benzene shows a broad absorption band in
the near UV with a maximum at around 256 nm. This is in principle a forbidden transition,
1B2u ← 1A1g. It is weak as it is allowed via the interactions with molecular skeleton vibrations.
The second forbidden band in benzene is at about 200 nm for the transition 1B1u ← 1A1g.
The intense allowed transition, 1E2u ← 1A1g, is at about 180 nm. The absorption spectrum
is plotted in figure 5 (a). Our measurement is well described by previously published data
in [20], [21] and [22] apart from in the small wavelength range between 163 to 175 nm. We will
use our measurement throughout this paper.

4Formerly molar extinction coefficient
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Figure 5: (a) is the photon absorption coefficient for C6H6. + is our measurement and the solid line is
data replotted from reference [20], [21] and [22]. (b) is the photon absorption coefficient for C2H2. × is
our measurement. The line is data from [23].

Acetylene has a broad absorption spectrum, figure 5 (b), with a maximum at around 170 nm.
Overlying this continuum are distinct bands. This absorption system is dominated by a long
progression in the trans-bending mode and a combination of C−C stretching. For each of the
stronger bands, a progression in the lower state trans-bending mode can be observed in the high
resolution data from [23] together with sub-bands. It can furthermore be shown that the singlet
state is perturbed by Fermi interactions and that some couplings exist with an isoenergetic
triplet state. All this leads to the fairly complicated absorption spectra in figure 5 (b). Our
measurement is in perfect agreement with data given in [23] apart from the loss of statistical
significance in our data above 200 nm. We will use our data below 188 nm and the data from [23]
above this wavelength.

5 Adsorbers

Adsorbents are the most commonly used material to clean gases or liquids. More recently thin
film capillary membranes [25] have been used for separation and isolation. This work is mainly
governed by the interest to separate H2 from CH4, CO and N2 gases.

Adsorption is the process of retaining the molecules on the surface of a solid body. Synthetic
zeolits or metal alumino silicates [24] have a network of pores which are strictly defined as 3, 4,
5 or 10 Å. Other adsorbents like silica gel and activated alumina, have a wide pore distribution.
In activated carbon particle, pores of different sizes are found. Pores can be distinguished into
micropores with a radius below 2 nm, mesopores with radius in the range of 2-50 nm and
macropores where the radius is larger than 50 nm. Micro- and mesopores give the carbon its
adsorptive capacity. They are formed during the process of activation. Granular activated
carbons have also macropores. These allow a rapid access to the meso- and micropores, where
the actual adsorption takes place.

The choice of an adsorbent is defined by the kinetic diameter 5 of the molecule to be retained
5The kinetic or collision diameter is the intermolecular distance of closest approach for two molecules colliding

with zero initial kinetic energy. For spherical and nonpolar molecules the potential energy of interaction, φ(r),
is well described by the Lennard-Jones potential φ(r) = 4ε

[
(σ

r
)12 − (σ

r
)6

]
. σ and ε are constants which are

characteristic to the molecule and are determined from second virial coefficients. In assessing the apparent
pore size of molecular sieve zeolites, the critical dimensions for spherical molecules are given when φ(r) = ε, or
rmin = 6

√
2σ. For diatomic molecules, rmin is based upon the van der Waals length and represents the molecule

in all orientations. For long molecules, like hydrocarbons, the diameter is the minimum cross-sectional diameter.
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Figure 6: Kinetic diameter for some molecules [24].

together with characteristics like the dipole moment and the polarizability of the molecule. The
adsorption rate is also a function of the temperature and the pressure. Figure 6 gives the kinetic
diameter of some common molecules. Water is easily adsorbed in molecular sieves of 3 or 4 Å
to a level well below a ppm. Oxygen is most commonly removed by either a flushing of the fluid
by an inert gas like N2 or Ar, or by using a catalyst like Cu or Cr. Highly dispersed copper on a
zeolite support will have a high specific surface of some 102 − 103 m2/g. This is a good catalyst
which is commonly used in industry. It is also an efficient oxygen remover at room temperature
through the reaction 4Cu + O2 → 2Cu2O. In this case the copper acts as an ordinary reactant
towards the oxygen. The reaction is exothermic and therefore overheated local zones might be
formed. If potentially reactive or non-inert nucleon species are present, this oxygen remover will
act as a catalyst [26] as in the reaction

H F
| | −HF

R − C − C − F −→ R − C = C − F
| | t◦ | |
F F Cu/zeolite F F

The presence of these double bonds, even in small concentration, will strongly decrease the
optical transmission of the fluorocarbon matrix as a consequence of their high molar absorption
coefficient.

Molecular sieves are mainly used for a targeted adsorption whereas activated carbon has
proven particularly effective to remove aromatics as well as aliphatics from a fluid.

6 Discussion

From the discussion in section 3 together with figure 1, it is clear that the main pollutants from
air will not alone describe the loss of transparency above 180 nm. Likewise it has been shown that
it is possible to remove the main photon absorption components from the perfluorocarbon fluids
by massively cleaning it with molecular sieves together with activated carbon or by catalysts.

Table 3 shows the relative concentration of detected molecules in a VUV transparent, good,
and a non-transparent, bad, fluid. The data is taken with a NMR probe. It is difficult to draw
any conclusion from the apparent differences between the composition of a good and a bad
perfluorocarbon fluid as shown in table 3, as the VUV transmission properties for some of these
molecules are badly known. There are clearly present not fully fluorinated molecules of the type
n-C4F10−iHi on a level of 0.26 %. These molecules are normally fully transparent in the VUV.
The role of sulphur in some of these molecules is unknown.
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NMR Relative Wt. % Concentration
CF3CF2CF2CF3 CF3CF2CF2CF3

Component Structure † Good Bad
CF3CF2CF2CF3 93.6 93.4
(CF3)3CF 5.46 5.87
CF3CF2CF2CF2CF2CF3 0.28 not detected
(CF3)2CFCF2CF2CF3 0.080 not detected
(CF3)3-N 0.054 0.080
CF3-CF2-O-CF2-CF3 0.036 0.036
CF3CF2CF(CF3)CF2CF3 0.024 not detected
(CF3)2CFCF(CF3)2 0.011 not detected
(CF3)3CCF2CF3 0.0080 not detected
CF3CF2CFHCF3 not detected 0.14
CF3CF2CH2CF3 not detected 0.092
(CF3)2-N-CF2H not detected 0.036
CF3CF2CF2CF2H not detected 0.025
FCH2SF4F not detected 0.0076
H3CSF4F not detected 0.0065
F3CSF4F not detected 0.0037
c-C4F8 not detected 0.0030
CH3CF2CF2CF3 not detected 0.0022

Table 3: Overall 1H/19F-NMR Cross Integration Quantitative Compositional Results. † Trace amounts
of other unassigned protonated and fluorinated components are also detected in the spectra. Data
from [27].

Figure 7 (a) shows the mass spectra for a raw C4F10 gas. Figure 7 (b) shows the relative
abundance of elements between the raw and a clean gas. The clean gas was transparent in
the VUV whereas the raw gas had much the same behaviour as sample [b] which is shown in
figure 1. The sensitivity of the measurement is estimated to be about 10−4. All the major
lines in C4F10 are well described with a possible admixture of CiF2i+2 on about a percent level.
The combination of the lines 28, 29 and 32 are attributed to CiH2i+2 with a possible trace
contamination of CFH and CiHj. There are clear lines appearing in the raw gas that are not
reproduced in the clean one. These are lines like 51, 72, 82, 96, 113, 114 up to 203. We have been
unable to attribute these lines to any likely molecule or combinations of probable molecules.

Further investigations have been done by IR spectrometer analysis [26]. These measurements
established the presence of C−H bonds within the raw fluorocarbon fluid. It should be noted
that only the impurities which showed a specific IR absorption around 3000 cm−1 would give rise
to an optical transmission loss after being processed with dispersed Cu or Cr. Pure hydrocarbons
are not affected by contact with these oxygen absorbers. It was furthermore shown that the loss
of transparency was due to the not fully fluorinated fluorocarbons.

Based on the observation of not fully fluorinated molecules, we have investigated the pos-
sibility that the loss of transparency is due to trace amounts of hydrocarbons dissolved in the
fluid. Figure 8 (a) shows a measurement of a partially cleaned C4F10 gas together with a possible
fit to the data. The gas had been cleaned by a catalyst 6.

The general trend of the data is well described down to 165 nm by an admixture of C2H2 at
130 ppm, C2H4 at 11 ppm, other alkenes at 0.3 ppm and C6H6 at 0.3 ppm. The uncertainty on
these parameters is about 10 %. Water and oxygen content in the sample is set to 0 ppm. The

6Oxisorb, Messer Griesheim AG. http://www.spezialgase.de
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Figure 7: (a) Abundance of elements as function on m/z for a raw C4F10 gas. The integral is set equal
1. (b) is the relative abundance of elements as function on m/z for a raw and a clean C4F10 gas defined
by the ratio [Abundanceraw−Abundanceclean]/[Abundanceraw+Abundanceclean].

molar concentration for all the hydrocarbons has been set to cC6H6
=0.044 mol/litre. There has

been no attempt to fit the data below 165 nm as our knowledge of the absorption spectra for
the alkenes below this wavelength is very limited.
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Figure 8: (a) Transparency of a sample of C4F10 for a 20 cm long absorption length at 2.3 bar absolute.
The solid line is a possible fit with C2H2 at 130 ppm, C2H4 at 11 ppm, other alkenes at 0.3 ppm and
C6H6 at 0.3 ppm. (b) Transparency of a sample of C4F10 for a 500 cm long absorption length at NTP.
The solid line is a possible fit with C2H2 at 75 ppm, C2H4 at .025 ppm, other alkenes at 0 ppm and C6H6

at 0.05 ppm. Oxygen and water is set to the measured value of 2 ppm. Rayleigh scattering is also added
for the 5 meter scattering length.

The absorption spectrum for benzene was shown in figure 5 (a). The finding of a possible
admixture of benzene to the gas is very promising as this molecule has a number of well defined
absorption lines in the wavelength range from 240 to 270 nm. There is a progression of absorption
lines with a spacing of 160 cm−1 which can be interpreted as n − n transition of the E+

u C
vibration [21]. To investigate this possibility, raw C4F10 gas was passed through activated
carbon until the carbon was fully saturated. The carbon filter was then heated to 90 ◦C and
argon was flowed through it. The resulting gas was then analysed by a monochromator. The
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result is plotted in figure 9 (a). A reasonable good fit to the data is obtained with a sinusoidal
with a period of 160 ± 5 cm−1. It should be noted that the resolution of the monochromator
is about 0.7 nm. The uncertainty on the absolute wavelength calibration is about ±0.25 nm.
Figure 9 (b) shows the fluorescence of benzene in this wavelength range.
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Figure 9: (a) is the photon absorption in a gas from saturated carbon. The solid line is a fit with a
period of 160 cm−1. (b) shows the fluorescence in this wavelength range. Data replotted from [21].

We have furthermore tested C4F10 gas which had been partially cleaned only by molecular
sieves 10 Å and activated carbon. The results are plotted in figure 8 (b). The solid line is a fit
with C2H2 at 75 ppm, C2H4 at 0.025 ppm, other alkenes is set to 0 ppm and C6H6 at 0.05 ppm.
The uncertainty on these parameters is estimated to be about 10 %. Oxygen and water are
included with their measured value of 2 ppm. Rayleigh scattering is also added for the 5 meter
scattering length.

The differences between the fit parameters in figure 8 (a) and (b) are striking. The amount of
benzene has gone down by a factor of 6 between sample [a] and [b] and is thereby nearly absent
in sample [b], acetylene is reduced by a factor of 2 and the class of alkenes have more or less
disappeared. This is very reasonable considering that aromatic hydrocarbons like benzene are
efficiently adsorbed by the carbon. Inspecting figure 6 we observe that acetylene and ethylene
has a diameter below 4 Å and most of the other alkenes have a diameter between 4 and 5 Å.
C4F10 has a diameter of 5.6 Å. It will rapidly saturate the 10 Å sieve and the adsorption of
these hydrocarbons will be very ineffective. It is furthermore not unlikely that some alkenes
have been formed in sample [a] by the use of catalyst.

We have concluded from these results it is most probable that the loss of transparency is due
to an admixture of hydrocarbons with double bonds. The most efficient way to clean the C4F10

fluid should then be to apply molecular sieves 5 Å and activated carbon on the fluid. A large
scale test of some 500 kg of raw C4F10 fluid has been done and the result is shown in figure 10.
An excellent fit to the data is obtained by adding 35 ppm of n-C4H10 to the fit parameters which
includes the Rayleigh scattering and the measured water and oxygen content in gas sample.

Clearly the amount of hydrocarbons which is acceptable in the fluids is a function of the
absorption length of the detector system and of the cut-off wavelength of the photon detector.
In the current test we have stopped the cleaning process since the effect of the admixture of
n-C4H10 is masked by the light transmission property of the quartz window on the photon
detectors. Material losses by using molecular sieves of size ≤5Å will in general be small. CF4

might pose a problem as it has a kinetic diameter of 4.7 Å. Activated carbon should be used to
trap the highly absorbing aromatics as long as they influence the transparency of the fluid.
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Figure 10: Transparency of C4F10 for an absorption length of 186 cm at NTP. The solid line is Rayleigh
scattering only. The dotted line shows the effect of adding 35 ppm of n-C4H10 and the water and oxygen
content which was measured to be 1 ppm.

7 Conclusion

We have argued that the loss of optical transparency in perfluorocarbons in the VUV range is
due to an admixture of hydrocarbons. This admixture is most probably due to the production
method of the fluorocarbons. Molecular sieves of 5 Å are very effective in removing most of these
pollutants with only insignificant losses of raw material. Aromatic hydrocarbons like C6H6 can
be isolated effectively with activated carbon. This will inevitably lead to a loss of fluorocarbons.
In order to reduce the losses to a minimum, it is therefore preferable to monitor the need to use
activated carbon.

We have furthermore shown that the use of dispersed Cu or Cr can greatly endanger the
optical transparency of fluorocarbons if not fully fluorinated fluorocarbons are present in the
fluid.
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