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Abstract

We analyze a pion form factor formulation which fulfills the Analyticity

requirement within the Hidden Local Symmetry (HLS) Model. This implies

an s–dependent dressing of the ρ−γ VMD coupling and an account of several

coupled channels. The corresponding function Fπ(s) provides nice fits of the

pion form factor data from s = −0.25 to s = 1 GeV2. It is shown that

the coupling to KK has little effect, while ωπ0 improves significantly the fit

probability below the φ mass. No need for additional states like ρ(1450) shows

up in this invariant–mass range. All parameters, except for the subtraction

polynomial coefficients, are fixed from the rest of the HLS phenomenology.

The fits show consistency with the expected behaviour of Fπ(s) at s = 0 up

to O(s2) and with the phase shift data on δ1
1(s) from threshold to somewhat

above the φ mass. The ω sector is also examined in relation with recent data

from CMD–2.
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I. INTRODUCTION

In the physics of exclusive processes, the pion form factor Fπ(s) plays an important role.
It is indeed a fundamental tool in order to estimate precisely the hadronic contribution to
the muon anomalous magnetic moment (for recent works, see [1] and [2] where an exhaustive
list of references can be found). It is also an important information, as it allows to test the
predictions of Chiral perturbation theory (ChPT) which describes the behaviour of QCD
at low energies where non–perturbative effects dominate. Among very recent works on this
classical subject, let us quote Refs. [1,3,4].

Several descriptions of the pion form factor are proposed. For instance, Ref. [1] gives a
parametrization of the P−wave ππ phase shift δ1

1(s) derived from general analyticity prin-
ciples supplemented with some properties related with the existence of the ρ0(770) meson.
Watson theorem relates Fπ(s) with the ππ phase shift by proving that Arg[Fπ(s)] = δ1

1(s)
up to the first inelastic threshold. In principle, this is located at the four–pion threshold,
however experimental data [5], especially on P–wave inelasticity, show that δ1

1(s) can be
considered elastic with a nice precision up to the 0.95 GeV region. The free parameters of
the function defined by [1] are fitted on Aleph [6] and Opal [7] τ decay data on the two–pion
final state. The derived phase [1] is shown to predict impressively the phase of Ref. [8].
In this approach, the role of the ρ(770) meson is obvious ; what is less obvious is whether
additional states like the ρ(1450) play any role below

√
s = 1 GeV. Actually, while focussing

on estimating hadronic contributions to the muon anomalous magnetic moment, it is not a
real concern.

In the same spirit, Ref. [3] starts from phase shift data [5] measured up to
√

s ≃ 2 GeV,
assumes Watson theorem and fit the Aleph [6] and CLEOII [9] relevant data sets with :

Fπ(s) = exp

{

α1s +
1

2
α2s

2 +
s3

π

∫ Λ2

4m2
π

dz

z3

δ1
1(z)

z − s − iǫ

}

where Λ is some cut–off and α1 and α2 are free parameters.
The approach of Ref. [4] relies instead on the Resonance Chiral Theory developed in [10],

where vector mesons are explicitly introduced in the Lagrangian. Here the parameters to
be fitted are the masses and couplings associated with the usual vector meson nonet (those
containing the ρ(770)) and the one associated with the ρ(1450) meson. Focusing on the
ρ(770) nonet, this mass is fit as MV1

≃ 840 MeV, which does not prevent the Breit–Wigner
ρ(770) parameters derived from this fit [4] to be very close to expectations [11]. Here again,
the phase predicted from fits to |Fπ(s)|2 can be compared to data [5] and an effect attributed
to the ρ(1450) meson seems to affect somewhat the phase shift around s = 1 GeV2.

Beside these approaches, the most usual framework is VMD in which Fπ(s) is represented
as a sum of vector meson contributions ; traditionally, these are chosen as Gounaris–Sakurai
functions [12]. Focussing on e+e− annihilations, this is illustrated by the reference fit in [13]
to the data collected by the OLYA,CMD and DM1 Collaborations [13,14]. The data set
recently collected by CMD–2 [15] is also fitted in this way. In this last study, two prominent
conclusions show up : the ω → ππ branching fraction is found smaller than previously
measured [13] (1.33± 0.25 % instead of 2.21± 0.30 % ) and a contribution from the ρ(1450)
meson is needed in order to reach a good description of the data set (fully located below 1
GeV).
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Recently, it has been remarked [16] that the Hidden Local Symmetry (HLS) Model [17]
provides another consistent framework for data analysis and a new expression for Fπ(s) at
low energies. Indeed, besides the usual vector meson exchanges, this model predicts that
some departure from standard VMD could show up as a residual direct coupling γπ+π−.
The form factor written1 :

Fπ(s) = 1 − a

2
− fργgρππ

s − m2
ρ + imρΓρ(s)

− fωγe
iφgωππ

s − m2
ω + imωΓω(s)

(1)

has been used to fit the data then available [13,14]. This expression provided a nice fit [16]
for the whole energy range below s ≤ 1 GeV2 without introducing any additional vector
state like the ρ(1450) meson. For the HLS parameter a, the fit returned a = 2.36 ± 0.02 in
contrast with standard VMD where a = 2. Here also, the phase of Fπ(s) resulting from the
fit is a prediction for the δ1

1(s) ππ phase shift and compares well [16] with the phase shift
data of [18].

This model has been used, besides the usual Gounaris–Sakurai propagator, to fit the
CMD–2 data set and it has been found to provide as good results [15]. In this case, the fit
returned a = 2.336 ± 0.015 ± 0.007, in obvious correspondence with the previous estimate
derived from fit [16] to the former e+e− data sets [13,14]. As for the previous data sets, when
using the HLS model as expressed by Eq. (1), no effect below the φ mass was observed which
could be attributed to a ρ(1450) contribution in contrast with the standard (VMD) fit [15].

The aim of the present paper is to examine the pion form factor in the context of the
HLS Model, by taking into account both the non–anomalous [17] and anomalous [19] sectors.
This leads to consider carefully the Analyticity requirement and to examine the effect of the
channels coupled to ππ within the HLS Model. Loop effects cannot be avoided in problems
where the ρ meson plays a crucial role. These will be considered in the framework of the
one–loop order treatment proposed in [20]. Doing this way, one limits the possible couplings
by neglecting intermediate states with more than two particles which generate multiparticle
loops ; these are expected to produce small effects [4]. This is supported by the experimental
data of [5], which exhibit a ππ P–wave elasticity consistent with 1 up to about the φ mass.

In Section II, we derive the pion form factor Fπ(s) in accordance with Analyticity ; we
show how the ρ propagator has to be dressed and that the γ−ρ coupling becomes invariant–
mass dependent at the same order. In Section III, we examine the loop corrections and show
that choosing the subtraction polynomial coefficients as fit parameters is consistent. All this
is done in the body of the text referring only to the non–anomalous sector of the HLS Model ;
more information in order to deal with the anomalous sector are given in two Appendices.

In Section IV, we recall the results obtained elsewhere concerning the HLS phenomenol-
ogy, which are imposed as constraints when fitting the pion form factor. It should be noted
that our Fπ(s) has to be consistent with the ρ mass derived from the HLS–KSFR relation
(827 MeV). In Section V, we remind which kind of information can act as (external) probes
for our HLS modelling : the ππ phase shift δ1

1(s) and the (polynomial) behaviour of Fπ(s)
near s = 0. Our fit strategies and results on the pion form factor are the purpose of Section

1We use the so–called Orsay Phase formulation for the isospin breaking term. This is commented

on below.
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VI, while the short Section VII summarizes our fit results concerning the ω contribution,
especially Br(ω → ππ). Finally, Section VIII is devoted to conclusions.

II. THE PION FORM FACTOR IN THE HLS MODEL

Actually, what comes out of the non–anomalous sector of the HLS Model [17] at tree
level is Eq. (1) without the ρ width term and amputated from the ω contribution which
corresponds to some breaking of Isospin Symmetry. Omitting these terms, Eq. (1) obviously
meets the Analyticity requirement (actually, it defines a meromorphic function) but is of
little use in order to describe real data from threshold to the φ mass. Indeed, the ρ propagator
which actually occurs there is the bare propagator D0(s) = (s−m2

ρ)
−1 which exhibits a pole

on the physical region s ≥ 4m2
π.

The dressed propagator D(s) is given by the Schwinger–Dyson Equation, which writes :

D−1(s) = D−1
0 (s) − Πρρ(s) (2)

at one loop order (g2), where Πρρ is the ρ self–energy. Within the non–anomalous HLS
Model [17], contributions to the ρ self–energy come only from pion and kaon loops ; if one
considers also the anomalous sector of the HLS model, the (FKTUY) Lagrangian of Ref.
[19], additional V P loops have to be introduced, especially ωπ0 which threshold is lower in
mass than KK.

It is expected that the correct expression for the isospin 1 part of the pion form factor
is obtained by replacing the denominator in Eq. (1) by the dressed propagator D(s) just
defined. This can be derived by resumming formally an obvious infinite series of terms,
each containing bare propagators and loops (Referred to in [4] as Dyson–Schwinger Sum-
mation). This expression can also be obtained by adding an effective piece [20] to the HLS
Lagrangian of the form Πρρ(s)ρ

2/2, which turns out to modify the vector meson mass term by
a s−dependent piece. The (dressed) ρ propagator is derived from this effective Lagrangian
at tree level. The Lagrangian thus defined still fulfills the hermitian analyticity condition
[22] L(s) = L†(s∗) which is the natural generalization of hermiticity.

Based on the success of analytic one–loop models [21,4] at energies below 1 GeV, we
explore here the implications of extending this one–loop description to all loops permitted
by the basic HLS model in the interest of keeping a practical phenomenological model.

When breaking Isospin Symmetry within the HLS Model, charged and neutral kaons
carry different masses and this generates a ρ − ω mass–dependent transition term [23]. In
this case, the effective piece to be added to the Lagrangian becomes :

L =
1

2
{ Πρρ(s) ρ2 + Πωω(s) ω2 + 2Πωρ(s) ρω } (3)

which implies that ρ and ω mix together and that the modified Lagrangian should be di-
agonalized. It was shown in [23] that this gives rise to an ω contribution to the pion form
factor which approximates naturally in the form shown in Eq. (1), precisely. It was also
shown [23] that the proposed way of breaking Isospin Symmetry makes the ω contribution
vanishing at s = 0 and thus does not affect the Fπ(0) = 1 condition.

However, in order to stay consistent with using one–loop corrections, the effective piece
added to the Lagrangian should also contain loop contributions which couple the photon and
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vector mesons. For instance, the original ργ term [24] is changed2 to −e[fργ − Πργ(s)]ρ · A,
where a factor of e has been extracted from Πργ(s), which is thus of order g in couplings.

Therefore, the isospin 1 part of the pion form factor, taking into account one–loop cor-
rections, is :

Fπ(s) = 1 − a

2
− [fργ − Πργ(s)] gρππ

s − m2
ρ − Πρρ(s)

(4)

In the non-anomalous sector of the HLS Model, Πργ(s) contains only pion and kaon loops
as Πρρ(s). The anomalous (FKTUY) part of the Lagrangian, provides additional V P loops.
We discuss in the next Section the properties of these loop corrections.

The e+e− cross section contains an isospin breaking term associated with the ω meson but
also the corresponding one associated with φ → ππ. However, the corresponding published
data [25] are not available in a usable way for fit ; fortunately, this effect is concentrated in a
narrow region around the φ mass, and is invisible in the data to be considered. Nevetheless,
one could note that the Orsay phase of the φ meson as well as its branching ratio to ππ are
well accounted for within the HLS Model broken in an appropriate way [23].

Before closing this Section, let us remark that the ω contribution has practically no effect
somewhat outside the ω mass region. It is therefore sufficient to treat it as a fixed width
Breit–Wigner [16] with accepted values [11] for the ω mass and width and with a constant
phase factor (see Eq. (1)). Additionally, we neglect the effects of ω − φ mixing by setting
fωγ = fργ/3 = m2

ρ/3g. Taking into account the magnitude of this mixing angle [26,20] (≃ 3◦

from ideal mixing), this is certainly a safe assumption when fitting the pion form factor.

III. PROPERTIES OF THE ONE–LOOP CORRECTIONS

All loops contained in the functions Πρρ(s) and Πργ(s) are given by Dispersion Relations
and have been computed in closed form in [20]. They involve PP and V P loops in general.
Their detailed structures and the expression of their couplings depend on the usual HLS
parameters g and a, but also on symmetry breaking parameters. These have been fitted
several times under various conditions [26,20,23,27], always providing results consistent with
each other.

These loops should be subtracted minimally twice (PP ) or three times (V P ) from re-
quiring the corresponding Dispersion integrals [20] to be convergent. Therefore, in the full
HLS Model (non–anomalous and anomalous sectors), the subtraction polynomials must be
at least second degree in s and we can write :







Πργ(s) = Pγ(s) + Πργ(s)

Πρρ(s) = Pρ(s) + Πρρ(s)
(5)

2We recall that the universal vector coupling g is related to gρππ by gρππ = ag/2 which in the VMD

limit a = 2 restores gρππ = g. In the HLS model an (extended) KSFR relation holds m2
ρ = ag2f2

π

and we also have fργ = m2
ρ/g.

4



where the Π(s) are sums of subtracted loop functions given in [20], and the P (s) are poly-
nomials with real coefficients. We choose to work with second degree polynomials, and then
the coefficients to be fitted are defined by :







Pγ(s) = d0 + d1s + d2s
2

Pρ(s) = e0 + e1s + e2s
2

(6)

In this case, it is suitable to redefine the (PP ) Π(s) functions given in [20] in such a way
that they behave like O(s3) near the origin.

A relevant question is whether these polynomials P (s) are really independent of each
other or whether the independent polynomials are those associated with the pion and kaon
loops contained in the P (s)’s. In this case, it is appropriate to check that Pγ(s) and Pρ(s)
are not proportional.

Let us discuss here only the non–anomalous sector of the HLS model [17] ; information
given in the Appendices allow to examine the contributions of the anomalous (FKTUY)
sector [19] with analogous conclusions. Using the SU(3) breaking scheme proposed in [24],
the piece relevant for the pion form factor can be extracted from Eq. (A5) in [24] and can
be rewritten in terms of renormalized fields (Kren =

√
zKbare, πren = πbare) :

Lnew = · · ·+ iag

4z
ρ0

[

K−
↔

∂ K+ − K̄0
↔

∂ K0 + 2z π−
↔

∂ π+

]

+

ieA

[

(z − a/2 − a(ℓV − 1)/6)

z
K−

↔

∂ K+ − a(ℓV − 1)

6z
K̄0

↔

∂ K0 + (1 − a/2)π−
↔

∂ π+

] (7)

where z is the SU(3) breaking parameter 3 [28,24]. It should be fixed to z = [fK/fπ]
2 = 3/2 in

order to recover the correct value of the kaon form factor at s = 0. Consistent fits to radiative
decay widths of light mesons confirm this value independently [26]. ℓV is another breaking
parameter4 which has also been fitted [26] using ω/φ leptonic decays as ℓV = 1.376± 0.031.
Exact SU(3) symmetry corresponds to z = ℓV = 1.

Denoting ℓπ(s) and ℓK(s) the pion and kaon loops amputated from their couplings to ex-
ternal legs (we neglect the mass difference between K± and K0), we derive from Lagrangian
Eq. (7) :















Πρρ(s) = g2
ρππ[ℓπ(s) +

1

2z2
ℓK(s)]

Πργ(s) = gρππ[(1 − a

2
)ℓπ(s) +

1

2z2
(z − a

2
)ℓK(s)] .

(8)

Let us denote Qπ(s) and QK(s), the subtraction polynomials contained in ℓπ(s) and
ℓK(s). Then, these are related with Pρ(s) and Pγ(s) defined above by :

3z was also written 1 + cA in [24], referring to the original naming of [28], or ℓA in [26,20].

4We have ℓV = (1 + cV )2 in terms of the original breaking parameter of the LV term of HLS

Lagrangian [28,24].
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













Pρ(s) = g2
ρππ[Qπ(s) +

1

2z2
QK(s)]

Pγ(s) = gρππ[(1 − a

2
)Qπ(s) +

1

2z2
(z − a

2
)QK(s)] .

(9)

It is obvious that the single case where Pρ(s) and Pγ(s) are not independent of each
other is if z = 1 (no breaking of SU(3) symmetry) ; then ei = gρππdi. Therefore, it is quite
legitimate to treat Pρ(s) and Pγ(s) as independent when fitting experimental data.

It is usual and motivated to assume that the constant terms of the polynomials Qπ(s) and
QK(s) are zero in order to ensure masslessness of the photon, after dressing its propagator
(see Ref. [20] and references quoted herein) ; this turns out to fix d0 = e0 = 0 in Eqs. (6).
We shall keep this assumption throughout this paper 5.

Some additional remarks are of relevance before closing this Section. Within standard
VMD (a = 2), the ρ propagator is still dressed by loop effects as described above. However,
we could also expect that no one–loop dressing connects the intermediate photon with the
ρ meson and therefore Πργ would disappear from the form factor Eq. (4). The equations
just above show that this statement is not true, as :

lim
a→2

Πργ(s) =
g

2z2
(z − 1)ℓK(s) (10)

Therefore, an invariant–mass dependent dressing of the ρ − γ coupling occurs as conse-
quence of SU(3) symmetry breaking of the HLS model and this statement is valid for all
proposed breaking schemes [28,24,29] of the HLS Model6. Additionally, it implies that as-
suming VMD (a = 2), the HLS model looses its direct γπ+π− coupling, but SU(3) breaking

generates direct γK+K− and γK0K
0

couplings.
A specific character of the HLS model is that it contains a direct coupling of the photon

to pseudoscalar pairs and this generates a mass–dependent dressing of the γ − ρ transition.
However, this property is shared with another identified class of models named VMD1 in
[16] (for a review, see [30]). A first such model which illustrates that loop dressing of the
γ − ρ transition can accomodate pion form factor data is given in [21] ; quite recently, the
same idea was developed up to a more refined comparison with experimental data up to
the φ mass [32]. We note that it has been explicitly demonstrated that regular VMD and
VMD1 are equivalent [31], as one would expect from corresponding fit results [16].

5Assuming non–zero d0 and e0, would be practically equivalent to releasing any constraint on mρ

and fργ as clear from Eq. (4).

6It is interesting to note that the phase of Fπ(s) in Eq.(4) is given by only the denominator, up to

the first inelastic threshold. In the non–anomalous HLS Model this is KK and then an imaginary

part is generated by a term identical to the one written down in Eq.(10) above the φ mass. If one

adds the anomalous sector [19], things are somewhat different, as the lowest inelastic threshold

becomes ωπ0.
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IV. PHENOMENOLOGICAL CONSTRAINTS ON Fπ(S)

The HLS model [17] depends basically on only two parameters to be determined exper-
imentally. The universal vector coupling constant g and the parameter a which allows to
extend the model beyond the standard VMD assumption corresponding to a = 2. In princi-
ple, its Lagrangian gives predictions for all hadronic two–body decays of light pseudoscalar
and vector mesons. However, in order to describe experimental data, schemes providing the
HLS Model with symmetry breakings are unavoidable.

Only a few physics processes can be phenomenologically accounted for without significant
symmetry breaking effects, noticeably the pion form factor. Simply using a varying width
Breit–Wigner formula7 for the ρ propagator, the HLS Model can achieve a quite satisfactory
description of Fπ(s) from threshold to the φ mass [16,15]. This description compares well
with other approaches accounting for the Analyticity requirement [1,3,4,21,12,32] or not [16].
Actually, from a phenomenological point of view, the Analyticity assumption for Fπ(s) gets
its full importance only when predictions outside have to be derived from timelike region
data and fits : in the spacelike region or near the chiral point. It was indeed shown in [16]
that the behaviour of Fπ(s) near s = 4m2

π predicted from ChPT was well accounted for and
that its phase describes quite well the δ1

1(s) phase shift up to the φ mass.
Therefore, even if successfull with Fπ(s), establishing firmly the HLS Model as a con-

sistent framework for physics analysis needs further confirmation. To extend the range
of experimental data accessible to the HLS model, a consistent SU(3) Symmetry breaking
scheme was provided [28,24] and also a scheme for breaking of Nonet Symmetry [26]. Sup-
plementing the non–anomalous HLS Lagrangian [17] with its anomalous sector [19], it was
then possible to prove that all radiative and leptonic decays of light mesons were successfully
described within the HLS framework ; additionally, it was shown [27] that this framework
meets all expectations of Extended ChPT [33] concerning decay constants and the mixing
angle θ8. The value derived from our fits for θ0 = −0.05◦±0.99◦ did not match well with the
leading order ChPT estimate [33] θ0 ≃ −4◦, however, a recent next–to–leading order calcu-
lation [34] (θ0 = [−2.5◦, +0.5◦]) restores agreement with its phenomenologically extracted
value.

For thorough discussions on the phenomenological results derived from the broken HLS
Model, we refer the reader to [26,20,27,23]. Specific information concerning the pion form
factor are given in the Appendices. Here we focus on discussing the parameters entering
explicitly Eq. (4) and the coupling constants affecting the non–anomalous Lagrangian Eq.
(7) : a, g and z ; in the limit of unbroken Isospin Symmetry, the breaking parameter ℓV

drops out from the pion form factor expression.
Pion form factor fits [16,15] give two measurements consistent with each other which can

be averaged as a = 2.35 ± 0.01. From a global fit of all radiative and leptonic decays of
light meson [26], the best fit value is a = 2.51 ± 0.03. Variants of this model with a mass
dependent ω−φ mixing angle [20], or accounting for isospin breaking effects [23] give values
consistent with this one at never more than 2 σ.

There is a significant departure between the value of a derived from fits to the pion form

7This does not fulfill the requirement of Analyticity.
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factor and the value coming from fit to radiative and leptonic decays. As noted in [15],
below s = 1 GeV2, it could be hard to disentangle completely effects of departures from
strict VMD (a = 2) and effects of resonance tails (namely, the ρ(1450)). The global fit to
radiative and leptonic decays can be considered as safer from this point of view and then it
looks well founded to prefer using a = 2.51±0.03. This turns out to attribute the difference
with a = 2.35 to higher resonance effects not accounted for in the HLS fits in [16,15] and/or
to another phenomenon (mass dependent ρ − γ coupling).

All fits to the data considered [26,20,27,23] return g = 5.65 ± 0.02. Finally, fitting the
SU(3) breaking parameter z within this data set [26,23] always returned z = [fK/fπ]2 = 3/2,
as also expected from FK(0) = 1 [28,24].

If a consistent picture of the HLS phenomenology can be achieved, it implies that these
parameters can be fixed at the values corresponding to the best fit in radiative and leptonic
decays (values recalled just above). In this case, the only parameters relevant for the ρ meson
which can be allowed to vary are the (non–identically zero) coefficients of the subtraction
polynomials in Eq. (6). Indeed, the HLS Model satisfies a modified KSFR relation which
fixes the ρ mass, m2

ρ = ag2f 2
π and fργ = m2

ρ/g in terms of only a and g. As we have neglected
the ω−φ mixing mechanism, ω is approximated by its ideal component and then fωγ = fργ/3
is also fixed.

Therefore, it is a kind of global fit to radiative and leptonic meson decays and to the
pion form factor to fit Fπ(s) by fixing a, g and z. However, this means that the ρ mass is
fixed to mρ = 827 ± 4 MeV ; using the relation between gρππ and the width, the ρ width
would correspond to Γρ ≃ 135 MeV.

Both values are clearly far from matching expectations [11] and one may wonder how the
pion form factor could accomodate such ρ parameters. However, as noted in [20], finite width
effects (i.e, loop corrections) should perform the consistency. One aim of the present paper
is to check and show that all consequences on ρ parameters of the radiative and leptonic
decays are indeed accomodated by the pion form factor.

It is also important to point out a couple of subtleties. The ρ mass, as defined by the real
part of the propagator Mρ, is highly model dependent [35]. The complex pole, however, is a
true invariant, as has been shown for several models [31]. One should also note the difference
between Mρ and the “Higgs–Kibble” mass mHK (m2

ρ = m2
HK = ag2f 2

π) [31] resulting from
spontaneous symmetry breaking.

V. PROBES AND DATA SETS

Any fit performed with Eq. (4) actually returns an analytic function with some uncer-
tainty on the fit parameters. These fits always optimize the description of data sensitive to
only |Fπ(s)|.

A first probe, as for other studies (see [1] for instance), is to compare the phase predicted

by Arg[Fπ(s)] with the most reliable data on the δ1
1(s) phase shift [5,8] below ≃ √

s ≃ 1
GeV.

A second probe is to compare numerically the behaviour of this fitted Fπ(s) near s = 0
to external sources. These are mostly ChPT predictions [36,37] or approches relying on the
inverse amplitude methods [38,39,1,3].

Defining the low energy expansion of Fπ(s) by :

8



Fπ(s) = 1 + λ1s + λ2s
2 + λ3s

3 + · · · (11)

the works just quoted find parameter values as given in Table I ; the results of [38] are very
close to those displayed and do not quote estimated errors. We also display the results of
polynomial fits [2] to timelike data (

√
s ≤ 0.6 GeV), fixing the charge radius (< r2

π >= 6λ1)
to the value found by the NA7 Collaboration [40].

It is clear from Table I that, whatever the method, there is an overall consensus about the
value of λ1. Even if not as nice, the agreement for the value of λ2 looks quite reasonable. The
spread of central values for λ3 and their accuracies should be however noted. It indicates,
at least, some model dependence.

The data sets which basically enter our fits are the former [13] and recent [15] data on
e+e− → π+π− together and separately. For convenience, the τ data [6,7,9] are not considered
in the present paper. Additionally, we limit our fits to the region below s = 1 GeV2, for
reasons to be explained just below.

We also consider the spacelike form factor data of NA7 [40] and of the Fermilab experi-
ment [41] after some check of (fit) consistency with the timelike data. With these data, our
fit region extends from s ≃ −0.25 to s ≃ 1 GeV2.

Finally, we will compare the phase of Fπ(s) derived from fitting |Fπ(s)| to the phase shift
data of [5,8]. These last data sets will be used as probes and not included in the fitted data.

For the time being, we also do not attempt to extend our fit (and/or the HLS Model)
to higher s values (namely, above the φ mass), where effects of ρ(1450) and ρ(1700) have
certainly to be accounted for. Extending the HLS Model to such energies is an interesting
issue, however, it is not clear whether we would not be going beyond the validity range of
the HLS Model which is a low energy model.

VI. FITTING THE PION FORM FACTOR

In several preliminary studies, we tried examining the behaviour of our fit parameters
to the former [13] and recent [15] e+e− data. All fit parameters have been found quite
insensitive to any difference, except for the ω branching fraction to π+π− and the Orsay
phase ; this particular point will be examined in Section VII. Therefore, in this whole
Section, we consider together the data collected in [13] and [15].

The effect of considering the timelike data [13,15] in isolation and combined with spacelike
data [40,41] is more noticeable and amounts to about a 2σ deviation. Nevertheless, this effect
is limited and these data sets contribute to improving the behaviour of the pion form factor
in the spacelike region by avoiding to extrapolate without any information. Therefore, for
the work reported in this Section, we have prefered keeping them in the data set to fit,
reestimating the errors correspondingly.

A. Fit Strategies and Properties

We report in the following on various strategies used to fit the pion form factor. These
differ only by a progressive account of all permitted coupled channels. We stress once
again that the number of fitted data points is always the same and that the number of free
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parameters in the fit is not modified when accounting for more and more coupled channels.
We always have the 4 non–zero subtraction parameters defined in Eq. (6) which account for
the ρ contribution and 2 more parameters to account for the ω contribution (named φ and
gωππ in Eq. (1)).

Qualitatively, all fits give always large correlation (above the 95% level) coefficients
(e1, e2) and (d1, d2). However, the correlation coefficients between both sets is always in the
range of 10 to 40 %. The parameters defined in Eq. (11) are derived by expanding Eq. (4)
near s = 0 ; when computing errors on the λi, errors and correlations on fitting parameters
are taken into account.

On the other hand, the fit qualities associated with subsets of possible coupled channels
are displayed as last data column in Table II. They clearly show, that the fit quality
reached below the φ mass is always good. From examining the evolution of the minimum
χ2, one should note that adding KK gives no improvement or no degradation in the model
description. In contrast, one could remark the jump in probability when adding the ωπ0

channel ; indeed, it is a noticeable effect to reduce the minium χ2 from ≃ 184 to 174 without
any additional freedom in the model. This clearly comes from a better account of the pion
form factor between the ωπ0 threshold and the φ mass where data are affected by small
errors. Instead, the KK channels can noticeably affect only a very few data points ; their
very small effect might be due to the fact that the corresponding loops are numerically
negligible when computed very close to threshold.

One could also note that adding the higher V P coupled channels goes on slightly im-
proving the fit quality below the φ mass ; as stressed above, this does not correspond to
having more freedom in the model. In contrast with the ωπ0 channel, effects of these higher
threshold loops are modest and can be neglected8. One might note, however, that these
have more effects on data than the KK channels, as clear from Table II.

Finally, we have attempted fits by removing the function Πργ from Eq. (4), while keeping
all parameters fixed by HLS phenomenology at their values obtained from fit to radiative
and leptonic decays (a, g, . . . ). We never reached a reasonable result. In order to remove
this function one clearly needs to release (at least a part of) these constraints in order to
allow the fit to converge to a good description of the data9. This was not attempted as our
aim was to examine the full consequences of having the HLS Model and all known numerical
constraints coming from its phenomenology. We thus perform a kind of global fit of all
relevant decay modes and of the pion form factor together. This exercise, however, tends
to indicate that the dressing of the ρ − γ transition amplitude is a relevant concept and is
requested by the consistency of the pion form factor with the rest of the HLS phenomenology.

8Whether adding K∗K channels and higher threshold channels is appropriate, while neglecting

high mass meson contributions or multiparticle loops, can certainly be questioned.

9The fit quality and results in [4,21,32] clearly proves this statement.
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B. The Pion Form Factor in Spacelike and Timelike Regions

As stated above, whatever the subset of channels considered, the last data column in
Table II shows that the fit quality is optimum in both the spacelike and timelike s regions
considered. Accounting for the three coupled channels π+π−, ωπ0, KK (actually the neutral
and charged modes) seems the best motivated coupling scheme for the invariant–mass region
from threshold up to the φ mass. We thus illustrate with this our fit results ; visual differences
with other channel subsets are tiny.

The fit functions discussed in all this Subsection have been obtained from a global fit to
all existing timelike data [13–15] and to the spacelike data of [40,41] simultaneously.

In Fig. 1, we display the fitted form factor in the spacelike region and, superimposed,
are the data of [40,41]. As expected, the description is quite reasonable.

In Fig. 2, we show the fit in the timelike region superimposed with all existing data
[13–15] ; in Fig 3, we have displayed the same fitting curve with only the new data of [15].
Fig. 2 shows that the whole energy range is well described, including the region below 600
MeV (measured by CMD). Fig. 3 illustrates that the fitting curve derived from fitting all
timelike data altogether give also a very good description of the recent CMD–2 data set [15]
alone in its full range. It should be noted that, in this case, the fitting function corresponds
to Br(ω → π+π−) = 2.12 ± 0.23 % ; we comment more on this point in Section VII.

It should also be remarked that the fitting function being an analytic function of s, it is
the same function (given in Eq. (4) and supplemented with the last term from Eq. (1) to
account for the ω mass region) which fits the spacelike and timelike s regions simultaneously.

The noticeable peculiarity of CMD–2 data with respect to the previous data sets is that
their systematic errors are smaller than 1% [15]; from what is shown here, one could con-
clude that the previous data sets, considered altogether, behave globally with small effective
systematics. It could also be that the fitting function is analytically enough constrained to
be marginally sensitive to systematics.

From what is just discussed, we already know that the data description following from
our model is quite reasonable. As clear from Figs. 2 and 3, no need for a ρ(1450) contribution
shows up below 1 GeV. This is also illustrated by the fit quality already reached in all cases
(see the last data column in Table II).

As a final remark, one should note that the high value for mρ = 827 MeV is not incon-
sistent with the data, provided the model pion form factor is suitably parametrized. We
noted already that this mass value derived from HLS phenomenology [26] is very close to
the estimate of the vector nonet mass fitted in [4]. This proves, as noted in [20], that it is
the loop effects which are responsible of pushing the peak location of the ρ meson (or its
pole location) to the customary value attributed to its mass [11].

Now, we focus on comparing refined consequences of our model and fits with numerical
predictions concerning the behaviour of the pion form factor at threshold, and the phase of
our fitted Fπ(s).

11



C. Pion Form Factor Behaviour At Threshold

The results we got concerning the pion form factor behaviour at threshold are gathered
in Table II. They are displayed using the notations of Eq. (11). Each line corresponds to a
case where a subset of the coupled channels is considered and the size of the coupled channel
subset is increased. The second line breaks the obvious rule but is given in order to show
that coupling the KK has negligible numerical effects on Fπ(s) and does not improve or
degrade the description obtained using only the ππ channel.

A first remark which can be drawn is that λ1 (hence, the pion charge radius) is totally
insensitive to whatever we add to the ππ channel. For this parameter, our estimate :

λ1 = 1.896 ± [0.018]stat ± [0.03]syst. GeV−2 (12)

is in good agreement with all reported values : ChPT at two–loops result [37], phase method
result of [1], resonance ChPT result [4], or the inverse amplitude result of [39] (see Table I).
The systematic error is estimated by considering the variation of the central value of λ1 as
a function of the subset of coupled channels.

The second coefficient λ2 varies only little as function of the number of open channels.
However, there is a clear systematic effect : its value decreases slowly when new channels
are opened (except for KK commented on above). Interestingly, the values we get always
match nicely several entries in Table I. This column in Table II leads us to conclude :

λ2 = 3.85 ± [0.06]stat. ± [0.10]syst. GeV−4 (13)

where the systematic error is estimated as for λ1. This result matches well expectations
from Table I.

For the third coefficient λ3, the situation is much more embarassing10. One should note
that λ3 depends on the fit parameters (ei and di), and also on the third order term of the
loops. This third order term is fixed and given by the driving terms of all loops. The only
way to change it is to oversubtract the loops and introduce (free) e3s

3 and d3s
3 terms in

Eqs. (6) to be fitted and/or fixed. However, the fit quality already reached with fitting data
below

√
s = 1 GeV cannot justify to simply increase the model freedom. It thus seems that

a reliable estimate of λ3 depends on a reliable account of data somewhat above the φ mass
and on other sources of inelasticity generally neglected, like multiparticle loops.

Anyway, one should note first that the first two terms of the chiral expansion of Fπ(s)
are well defined and this is not changed (or spoiled) by adding more and more coupled
channels. Secondly, one can assess that the data bounded to

√
s ≤ 1 GeV alone look unable

to permit a real measurement of λ3, as its central value sharply depends on the inelasticity
accounted for in the region

√
s ≥ 1 GeV. This inelasticity was here represented by high

mass channels coupling to the ρ(770) meson, however it could have been anything else (like
higher ρ meson contributions). Stated otherwise, without a reasonably good knowledge of
(generally neglected) inelasticity effects, the pion form cannot provide a reliable estimate of
λ3.

10From Table I alone, the situation looks already confusing, even by leaving aside the result of

Ref. [2].
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D. The phase of Fπ(s) and Phase shift Data

As stated above several times, all numerical parameters of the analytic function Fπ(s)
– actually, only its isospin 1 part is relevant here– are derived from fits to data sensitive
only to |Fπ(s)|. Therefore Arg[F I=1

π (s)] is a prediction and can be compared with the most
precise experimental information on the phase shift δ1

1(s) [5,8].
In Fig. 4, we display this comparison using coupling to only ππ (Fig. (4 a)), then

coupling to both ππ and ωπ (Fig. (4 b) ; these do not differ from their partners with also
the KK channels opened. In Fig. (4 c), the open channels are all channels up to the 4
contributing K∗K final states; finally, in Fig. (4 d), all possible channels of the full HLS
model are considered (the previous subset plus ρη and ρη′).

In all cases, the insets show that the low energy region is perfectly predicted up to
mππ ≃ 800 MeV, whatever the subset of coupled channels considered.

Using coupling to only ππ (Fig. (4 a)), the agreement between our prediction and data
is perfect up to about 800 MeV and remains very good up to

√
s ≃ 1.3 GeV. Adding KK

does not modify sensitively this picture.
As soon as one opens the ωπ channel, the predicted phase starts to diverge almost

linearly from the experimental data of [5] from about mππ ≃ 1.2 GeV. Nevertheless, the
phase remains perfectly reproduced up to mππ ≃ 0.8 GeV. From about 900 MeV, the
predicted phase starts running 2 to 4 degrees above the data of [5] ; this effect is systematic
but consistent with the data. It is worth remarking that the first inelastic coupled channel
in the full HLS model is ωπ0 with threshold located at 917 MeV. Therefore, from Watson
theorem, one can indeed expect that the phase predicted by the pion form factor and the
δ1
1(s) phase shift should start diverging11 at mππ = 917 MeV.

Keeping in mind the words of caution already stated concerning the appropriateness
of considering too high threshold mass channels, it is nevertheless interesting to remark a
curious effect of the corresponding inelasticity : the quasi–linear rise of the phase above 1.2
GeV which follows from having introduced the coupling to ωπ0 is softened more and more,
when more (high mass) coupled channels are considered.

We remarked already that our fits to annihilation data below the φ mass do not exhibit
any failure which could be attributed to some neglected ρ(1450) contribution. On the other
hand, because we have no guide like the Watson theorem, nothing clear can be stated by
observing the higher energy behaviour of the predicted phase when accounting for V P loops.
However, the continuation of the annihilation cross section above the φ mass becomes too
large when V P loops are accounted for. Therefore, if fitting some mass region above the φ
meson, beside introducing the ρ(1450) and ρ(1700) mesons, one certainly needs to modify

11Actually, it is not that much the divergence between the phase of Fπ(s) and the δ1
1(s) phase shift

above 917 MeV which looks appealing. It is rather the agreement between them up to mππ ≃ 1.3

GeV when limiting the subset of coupled channels to ππ and KK which could look unphysical.

However, examining the elasticity of this wave [5] indicates that the (I = 1, l = 1) ππ wave is still

elastic at a ≃ 95 % level at this energy. Therefore, nothing conclusive can be derived from this

unexpected agreement at relatively large invariant–mass.
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the subtraction scheme by going to higher degree subtraction polynomials. This issue will
not be examined any further here.

VII. THE ω INFORMATION FROM FITS

We stated in the previous Section that there was no noticeable difference between the
former annihilation data sets considered together and the new data set, as far as the isospin 1
part of the pion form factor is concerned. However, this does not extend to the ω parameters
accessible from the pion form factor in the timelike region.

We have performed several fits and we report on using the set of all open channels. By
closing the high energy ones, one does not change the picture described now.

A fit to all former ππ timelike data [13,14] gives :

Br(ω → ππ) = 2.27 ± 0.35% , ϕ = 106.87◦ ± 7.16◦ (14)

with χ2/dof = 63.63/76 = 0.84 corresponding to a 84% probability. It is close to the
accepted value of 2.21 ± 0.30 %. On the other hand, the same fit to the new data set of
CMD–2 [15] provides :

Br(ω → ππ) = 2.01 ± 0.29% , ϕ = 103.88◦ ± 2.91◦ (15)

with χ2/dof = 32.20/37 = 0.87 corresponding to a 69% probability. This has to be compared
with the result recently published by CMD–2 Collaboration [15] which finds 1.33 ± 0.25
% from their fits. The central values of this result and ours are far apart (however, a
2σ deviation only) ; this might also illustrate some model dependence in extracting this
information12. We have nevertheless checked our extracted values by considering several
subsets of open channels with never more than ≃ 0.3 σ fluctuations.

VIII. CONCLUSION

This study leads us to several conclusions. First, an expression for the pion form factor
can be derived from the HLS Model which fulfills all expected analyticity requirements. In
this approach, the ρ−γ transition amplitude becomes invariant–mass dependent and several
two–body channels couple to ππ ; this arises as a natural feature of the full HLS Lagrangian.
Among these additional couplings, the ωπ0 channel plays an interesting role as it is lower in
mass than the KK channels, more commonly accounted for.

The derived description of timelike and spacelike experimental data is found consistent
with all the rest of the HLS phenomenology which was examined in detail elsewhere. This in-
cludes also the HLS–KSFR relation which defines a ρ mass of ≃ 827 MeV perfectly accepted

12It should be remarked that our fit of the data collected in [13] gives a result close to the published

fit of OLAY and CMD data (namely 2.30 ± 0.5 %). For this fit, [13] was taking into account the

coupling to ωπ0 channel in the way proposed by [42]. Fitting the former data in [13] as done now

with the new data gives instead 2.00 ± 0.34 % [15].
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by the pion form factor data. In the present modelling, the fit parameters are essentially
subtraction constants (for the ρ) and isospin symmetry violation parameters (for the ω).

Among the additional channels to be considered, a special role is devoted to the ωπ0

channel which affects fit qualities by a significant jump in probability. This reflects a better
account of the invariant–mass region from the ωπ0 threshold to the φ mass. In contrast,
the KK channels are found to provide no improvement and, even, no change at all in fit
qualities below the φ mass.

The model is fitted on data only sensitive to |Fπ(s)|. The phase of Fπ(s) is thus a
prediction which can be compared with the data on the δ1

1(s) phase shift. It is found to
match perfectly these from threshold to about the ρ mass. The agreement remains very
good up to ≃ 1 GeV and a little above independently of the channel subset considered. All
this matches well expectations from the Watson theorem. We detect no difficulty which
would lead to include a ρ(1450) contribution in order to improve the fit quality below the φ
mass.

The terms of order s and s2 of Fπ(s) at the chiral point are found highly stable, with little
or no sensitivity to the inelasticity accounted for. They are found in fairly well agreement
with all known accepted values. The term of order s3 is found instead to depend sharply on
the inelasticity accounted for ; one may question the possibility to extract this information
reliably using only experimental data below the φ mass.

The ω branching fraction to ππ is found smaller in the data set recently collected by the
CMD–2 Collaboration than in the former data sets (2.01±0.29 % instead of 2.27±0.35 %),
however not as much as previously claimed (1.33 ± 0.25 %).
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FIGURES

FIG. 1.

Spacelike data and fit. The data points are from Refs. [40] and [41]. The fitting
curve has been obtained by considering the ππ, KK and ωπ0 channels. All channels
subsets as defined in the body of the text (including ππ alone) give representations
hard to distinguish from the one shown.
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FIG. 2.

Timelike data and fit. The data points are all subsets from Refs. [13–15]. The
fitting curve has been obtained by considering the ππ, KK and ωπ0 channels. All
channels subsets as defined in the body of the text (including ππ alone) give repre-
sentations visually identical to the one shown here.
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FIG. 3.

Timelike data and fit. The data points are only from the recent data set collected
by the CMD–2 Collaboration [15]. The fitting curve is the same as in Fig. 2 and its
numerical coefficients have been determined by a global fit to all available timelike
data and to the spacelike data of [40,41].
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FIG. 4.

Comparison with the ππ phase shift data of [5] and [8]. The curve plotted is
Arg[Fπ(s)] with parameters fixed at values corresponding to the best fit of |Fπ(s)|
using all timelike data [13–15] and the spacelike data from [40,41]. In a, only the
π+π− channel is considered ; in b, the subset considered is π+π−, ωπ0 and both KK
channels. In c, the four K∗K channels have been added to the previous channel
subset ; in d, the previous subset is extended so as to include ρ0η and ρ0η′. The
agreement is perfect up to ≃ 800 MeV and good up to ≃ 1.2 GeV always.
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APPENDIX A: LOOP STRUCTURE OF Πρρ(S) AND Πργ(S)

All loops considered here should be understood amputated from their coupling constants
to external (γ and ρ) lines. As stated in the body of the text, multiparticle loops (not present
in the basic HLS Lagrangian) are not considered.

Within the non–anomalous HLS Lagrangian, the photon and the ρ meson couple both

to π+π−, K+K− and K0K
0

; this last coupling being generated by SU(3) breaking of the
LV HLS Lagrangian [17,24]. Neglecting the kaon mass splitting, this gives rise to two loop
functions, given in closed form in [20] and named ℓπ(s) and ℓK(s) in the body of the text.

Taking into account the anomalous (FKTUY) sector [19], other intermediate states have
to be considered ; first, we have ωπ0, ρ0η and ρ0η′, neglecting the ωφ mixing. This gives
rise to three additional V P loops, also given in [20], which will be denoted ℓω(s), ℓη(s) and

ℓη′(s). The couplings to K∗+K−, K∗−K+, K∗0K
0
, K

∗0
K0 give rise to the same amputated

loop denoted ℓK∗(s), neglecting mass splittings generated by isospin breaking.
They come within Πρρ(s) multiplied each by the square of their coupling constants to ρ ;

in Πργ(s), by the product of their coupling constants to ρ and to the photon.
Whatever the (sub)set of loops effectively taken into account, it should be stressed that

this does not modify the freedom of our model, as soon as one chooses to subtract these
functions three times ; to a large extent, these two information can be disconnected, as one
can choose externally the number of subtractions to be performed, and there is no reason
why the number of subtractions should be minimal.

Actually, increasing the subset of coupled channels turns out only to add definite func-
tions with given couplings determined numerically elsewhere by fits to radiative and leptonic
decays. These couplings will be listed below.

Taking into account the effects of ℓη(s), ℓη′(s) and ℓK∗(s) below the φ mass might be
discussed, while neglecting the tails of the ρ(1450) and ρ(1700) contributions or multiparticle
loop effects. However, considering besides the pion loop, the kaon loop with threshold at√

s ≃ 1 GeV, while neglecting the ωπ0 with threshold at
√

s = 0.917 GeV seems unjustified.
Therefore, we can cautiously consider that fit results with π+π−, KK and ωπ0 should be
more relevant than their analogues with only π+π− and KK.

APPENDIX B: COUPLING CONSTANTS

From the Lagrangian piece written in Eq. (7), we can derive :







































gρππ =
ag

2
, gγππ = (1 − a

2
)e

gρK+K− =
ag

4z
, gγK+K− = (z − a

2
− b)

e

z

g
ρK0K

0 = −ag

4z
, g

γK0K
0 = −be

z

(B1)

where b = a(ℓV − 1)/6. From our previous works [26,20,27], the symmetry breaking param-
eters are all fixed . We have first z = [fK/fπ]2 = 3/2 (with a remarkable precision) and
ℓV = 1.376± 0.031. We have also obtained in these fits a = 2.51± 0.03 and g = 5.65± 0.02.
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From the anomalous Lagrangian pieces V V P and V Pγ given in [26], setting :

Cω = − 3g2

8π2fπ

, Gω = − 3g

8π2fπ

(B2)

we get :

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√

ℓT

z

Cω

2
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√
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(2 − 1
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Gω

3
e
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√
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z

Cω

2
, gγK∗0K0 = −

√

ℓT
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(1 +

1

ℓT

)
Gω

3
e

(B3)

with [26,20] ℓT = 1.19± 0.06 being an additional breaking parameter which has been intro-
duced independently by [43].

Defining the physical η/η′ fields in terms of singlet and octet fields η0 and η8 has been
shown [27] to meet all requirements of Extended ChPT [33], including now [34] the extracted
value for θ0. One could also work in the strange/non–strange field basis [44], but the
correspondence can be done [45] and lead to substantially the same numerical results. Thus,
defining the pseudoscalar mixing angle by :







η

η′






=







cos θP − sin θP

sin θP cos θP













η8

η0






(B4)

and setting θP = θideal + δP , we have :

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gρ0ρ0η =
Cω

6

[√
2(1 − x) cos δP − (1 + 2x) sin δP

]

gρ0ρ0η′ =
Cω

6

[√
2(1 − x) sin δP + (1 + 2x) cos δP

]

gρ0γη =
Gω

3

[√
2(1 − x) cos δP − (1 + 2x) sin δP

]

gρ0γη′ =
Gω

3

[√
2(1 − x) sin δP + (1 + 2x) cos δP

]

(B5)

where [27] θP = −10.32◦±0.20◦. x is a parameter accounting for Nonet Symmetry breaking
(no breaking corresponding to x = 1). It was fitted as independent parameter [26] to
x = 0.917± 0.017 with a large correlation coefficient [27] (θP , x). In [27], it was shown that
the observed quasi–vanishing of θ0 implies that

θP =
√

2
(1 − z)

2 + z
x (B6)

is numerically well fulfilled, leading to a fit quality identical to those obtained in [26] where
this condition was not requested ; this however lessens significantly correlations among fit
parameters. This corresponds to x = 0.901 ± 0.018, which is the value choosen for the
present work.
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TABLES

λ1 λ2 λ3

GeV−2 GeV−4 GeV−6

ChPT [37] 1.88 ± 0.07 3.85 ± 0.60 3.0 ± 1.6

(without NA7) 1.88 ± 0.07 3.85 ± 0.60 4.1 ± 1.6

Ref. [39] 1.93 ± 0.06 3.90 ± 0.20 9.70 ± 0.70

Ref. [1] 1.86 ± 0.01 3.60 ± 0.03 −

Ref. [3] (τ) 1.83 ± 0.05 3.84 ± 0.03 −

Ref. [3] (e+e−) 1.92 ± 0.03 3.73 ± 0.02 −

Ref. [2] (τ) 1.89 ± 0.04 2.1 ± 1.7 15.2 ± 5.4

Ref. [2] (e+e−) 1.89 ± 0.04 6.8 ± 1.9 −0.7 ± 6.8

TABLE I.

Results on the behaviour of Fπ(s) near s = 0 from different models, approaches and data sets.

Parameters displayed are defined by Eq. (11). Entries containing the symbol − are not fitted/given.
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λ1 λ2 λ3 χ2/dof

GeV−2 GeV−4 GeV−6 (Prob)

π+π− 1.899 ± 0.016 3.957 ± 0.017 10.768 ± 0.051 183.6/178 = 1.03

− − − 36%

π+π− + KK 1.899 ± 0.016 3.958 ± 0.017 10.772 ± 0.050 184/178 = 1.03

36%

π+π− + ωπ0 1.899 ± 0.016 3.847 ± 0.056 12.837 ± 0.124 173.3/178

59%

π+π− + ωπ0 1.896 ± 0.018 3.848 ± 0.059 12.841 ± 0.120 173.6/178

+ KK 58%

π+π− + ωπ0 1.895 ± 0.015 3.802 ± 0.026 15.427 ± 0.111 170.6/178 = 0.96

+ KK + K∗K 64%

π+π− + ωπ0 1.894 ± 0.015 3.786 ± 0.015 23.41 ± 0.094 169.8/178 = 0.95

+ KK + K∗K 66%

+ ρη

π+π− + ωπ0 1.894 ± 0.014 3.778 ± 0.012 34.118 ± 0.046 169.4/178 = 0.95

+ KK + K∗K 67%

+ ρη + ρη′

TABLE II. Fit results with the HLS Model. Coefficients of the expansion of Fπ(s) near the

origin ; notations are those in Eq. (11). The first column indicates which are the coupled channels

considered in the Model function Eq. (4). The number of fitted data points is always 184, the

number of free parameters is always 6, including 2 parameters for the ω contribution. Errors given

are derived from the full error matrix computed by minuit for the fit parameters.

23



REFERENCES

[1] J. F. De Troconiz and F. J. Yndurain, “Precision determination of the pion form
factor and calculation of the muon g-2,” Phys. Rev. D 65 (2002) 093001 [arXiv:hep-
ph/0106025].

[2] M. Davier, S. Eidelman, A. Hocker and Z. Zhang, “Confronting spectral functions from
e+e− annihilation and tau decays: Consequences for the muon magnetic moment,”
arXiv:hep-ph/0208177.

[3] A. Pich and J. Portoles, “Vector form factor of the pion: A model-independent ap-
proach,” arXiv:hep-ph/0209224.

[4] J. J. Sanz-Cillero and A. Pich, “Rho meson properties in the chiral theory framework,”
arXiv:hep-ph/0208199.

[5] B. Hayms et al. Nucl. Phys. B64 (1973) 134; G. Grayer et al. Nucl. Phys. B75 (1974)
189; W. Ochs, Doctorat Thesis, Munich 1973.

[6] R. Barate et al. [ALEPH Collaboration], “Measurement of the spectral functions of
vector current hadronic tau decays,” Z. Phys. C 76 (1997) 15.

[7] K. Ackerstaff et al. [OPAL Collaboration], “Measurement of the strong coupling con-
stant alpha(s) and the vector and axial-vector spectral functions in hadronic tau decays,”
Eur. Phys. J. C 7 (1999) 571 [arXiv:hep-ex/9808019].

[8] S.D. Protopopescu et al. “Pi Pi Partial Wave Analysis From Reactions Pi+ P → Pi+
Pi- Delta++ And Pi+ P → K+ K- Delta++ At 7.1-Gev/C,” Phys. Rev. D7 (1973)
1279.

[9] S. Anderson et al. [CLEO Collaboration], Phys. Rev. D 61 (2000) 112002 [arXiv:hep-
ex/9910046].

[10] G. Ecker, J. Gasser, A. Pich and E. de Rafael, “The Role Of Resonances In Chiral
Perturbation Theory,” Nucl. Phys. B 321 (1989) 311.

[11] K. Hagiwara et al. [Particle Data Group Collaboration], “Review Of Particle Physics,”
Phys. Rev. D 66 (2002) 010001.

[12] G. Gounaris and J. Sakurai, “Finite Width Corrections To The Vector Meson Domi-
nance Prediction For Rho → E+ E-” Phys., Rev. Lett. 21 (1968) 244.

[13] L. M. Barkov et al., “Electromagnetic Pion Form-Factor In The Timelike Region,” Nucl.
Phys. B256 (1985) 365.

[14] A. Quenzer et al., “Pion Form-Factor From 480-Mev To 1100-Mev” Phys. Lett. B76

(1978) 512.
[15] R. R. Akhmetshin et al. [CMD-2 Collaboration], Phys. Lett. B 527 (2002) 161

[arXiv:hep-ex/0112031].
[16] M. Benayoun, S. Eidelman, K. Maltman, H. B. O’Connell, B. Shwartz and

A. G. Williams, “New results in rho0 meson physics,” Eur. Phys. J. C2 (1998) 269
[hep-ph/9707509].

[17] M. Bando, T. Kugo and K. Yamawaki, “Nonlinear Realization And Hidden Local Sym-
metries,” Phys. Rept. 164 (1988) 217.

[18] C. D. Froggatt and J. L. Petersen, “Phase Shift Analysis Of Pi+ Pi- Scattering Between
1.0-Gev And 1.8-Gev Based On Fixed Momentum Transfer Analyticity. 2,” Nucl. Phys.
B 129 (1977) 89.

[19] T. Fujiwara, T. Kugo, H. Terao, S. Uehara and K. Yamawaki, “Nonabelian Anomaly

24



And Vector Mesons As Dynamical Gauge Bosons Of Hidden Local Symmetries,” Prog.
Theor. Phys. 73 (1985) 926.

[20] M. Benayoun, L. DelBuono, Ph. Leruste and H. B. O’Connell, “An effective approach
to VMD at one loop order and the departures from ideal mixing for vector mesons,”
Eur. Phys. J. C 17 (2000) 303, nucl-th/0004005.

[21] F. Klingl, N. Kaiser and W. Weise, “Effective Lagrangian approach to vector mesons,
their structure & decays,” Z. Phys. A356 (1996) 193 [hep-ph/9607431].

[22] R.J. Eden, P.V. Landshoff, D.I. Olive J.C. Polkinhorne, ”The Analytic S–Matrix”,
Cambridge University Press, Cambridge UK (1966).

[23] M. Benayoun and H. B. O’Connell, “Isospin symmetry breaking within the HLS model:
A full (ρ, ω, Φ) mixing scheme,” Eur. Phys. J. C 22 (2001) 503 [arXiv:nucl-th/0107047].

[24] M. Benayoun and H. B. O’Connell, “SU(3) breaking and hidden local symmetry,” Phys.
Rev. D58 (1998) 074006 [hep-ph/9804391].

[25] M. N. Achasov et al., “Recent results from SND detector at VEPP-2M,” hep-
ex/0010077.

[26] M. Benayoun, L. DelBuono, S. Eidelman, V. N. Ivanchenko and H. B. O’Connell, “Ra-
diative decays, nonet symmetry and SU(3) breaking,” Phys. Rev. D59 (1999) 114027
[hep-ph/9902326].

[27] M. Benayoun, L. DelBuono and H. B. O’Connell, “VMD, the WZW Lagrangian and
ChPT: The third mixing angle,” Eur. Phys. J. C 17 (2000) 593 [arXiv:hep-ph/9905350].

[28] M. Bando, T. Kugo and K. Yamawaki, “On The Vector Mesons As Dynamical Gauge
Bosons Of Hidden Local Symmetries,” Nucl. Phys. B259 (1985) 493.

[29] A. Bramon, A. Grau and G. Pancheri, “Radiative vector meson decays in SU(3) broken
effective chiral Lagrangians,” Phys. Lett. B 344 (1995) 240.

[30] H. B. O’Connell, B. C. Pearce, A. W. Thomas and A. G. Williams, “Rho - omega
mixing, vector meson dominance and the pion form-factor,” Prog. Part. Nucl. Phys. 39,
201 (1997) [arXiv:hep-ph/9501251].

[31] M. Benayoun, H. B. O’Connell and A. G. Williams, “Vector meson dominance and the
rho meson,” Phys. Rev. D 59 (1999) 074020 [arXiv:hep-ph/9807537].

[32] D. Melikhov, O. Nachtmann and T. Paulus, “The pion form factor at timelike momen-
tum transfers in a dispersion approach,” arXiv:hep-ph/0209151.

[33] R. Kaiser and H. Leutwyler, “Pseudoscalar decay constants at large N(c),” arXiv:hep-
ph/9806336.

[34] J. L. Goity, A. M. Bernstein and B. R. Holstein, “The decay π0 → γγ to next to leading
order in chiral perturbation theory,” arXiv:hep-ph/0206007.

[35] S. Gardner and H. B. O’Connell, “ρ−ω mixing and the pion form factor in the time-like
region,” Phys. Rev. D 57, 2716 (1998) [Erratum-ibid. D 62, 019903 (2000)] [arXiv:hep-
ph/9707385].

[36] J. Gasser and H. Leutwyler, “Chiral Perturbation Theory To One Loop,” Annals Phys.
158 (1984) 142. J. Gasser and H. Leutwyler, “Chiral Perturbation Theory: Expansions
In The Mass Of The Strange Quark,” Nucl. Phys. B 250 (1985) 465.

[37] J. Bijnens, G. Colangelo and P. Talavera, “The vector and scalar form factors of the
pion to two loops,” JHEP 9805 (1998) 014 [arXiv:hep-ph/9805389].

[38] T. Hannah, “The inverse amplitude method and chiral perturbation theory to two
loops,” Phys. Rev. D 55 (1997) 5613 [arXiv:hep-ph/9701389].

25



[39] T. N. Truong, “When is it possible to use perturbation technique in field theory?,”
arXiv:hep-ph/0006302.

[40] S. R. Amendolia et al. [NA7 Collaboration], “A Measurement Of The Space - Like Pion
Electromagnetic Form-Factor,” Nucl. Phys. B 277 (1986) 168.

[41] E. B. Dally et al., “Elastic Scattering Measurement Of The Negative Pion Radius,”
Phys. Rev. Lett. 48 (1982) 375.

[42] B. Costa de Beauregard, T.N. Pham, B. Pire and T.N. Truong, “Inelastic Effect Of The
Omega Pi0 Channel On The Pion Form-Factor,” Phys. Lett. B67 (1977) 213.

[43] G. Morpurgo, “General Parametrization Of The V → P Gamma Meson Decays,” Phys.
Rev. D42 (1990) 1497.

[44] T. Feldmann, “Quark structure of pseudoscalar mesons,” Int. J. Mod. Phys. A 15 (2000)
159 [arXiv:hep-ph/9907491].

[45] T. Feldmann and P. Kroll, “Mixing of pseudoscalar mesons,” Phys. Scripta T99 (2002)
13 [arXiv:hep-ph/0201044].

26


