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1. Introduction 
The magnetic field of two third of the collared coils of the pre-series LHC dipoles has 

been measured at room temperature [1], and of 14 cryomagnets at 1.9 K in operational 
conditions [2]. At an early stage of the pre-series production, a strong evidence of an 
important out of tolerance of the systematic multipoles b3 and b5 was found [3]. Corrective 
actions have been taken by a reshaping of the inner layer copper wedges to obtain an 
improved layout of the conductors [1]. 25 collared coils with this second coil cross section 
have been measured, showing a relevant improvement of the b3 and b5 and some deterioration 
of b7. Indeed, these multipoles are still out of the field quality specifition given in [4]. 

In this paper we give an estimate of the multipolar content of the main LHC dipoles that 
are being produced (i.e., with the second cross-section) based on measurements. Previous 
estimates [5] were relying on simulations and on the experience of previous projects. 
Systematic and random parts are evaluated in an installation scenario based on the hypothesis 
of a complete mixing of the manufacturers along the machine. This estimate will be used by 
accelerator physicists to evaluate if additional corrective actions are needed to improve dipole 
field quality. 

 

2. Available data 
The number of collared coils and cryomagnets whose magnetic field is used in our 

analysis is shown in Table I. For the collared coil, a very poor statistic is available for the 
second cross-section produced by Firm 3. For cryomagnets, only a few data are available for 
Firms 2 and 3, and for cross-section 2.  

 
Table I: available magnetic measurements of collared coils and cryomagnets. 

3. Estimate of systematics 
• Straight part of the collared coil (measurements). The systematic components ccs

nc are 
defined as the average of the three averages relative to each manufacturer. In the case 
of the non-allowed multipoles, all the available data are used (60 collared coils). For 
the allowed multipoles (odd normal multipoles) we only consider data relative to the 
new cross-section (25 collared coils) and we reduce data to nominal shims. The 
contribution of dipole heads is not included in this estimate, since they are affected by 
the iron yoke, especially with regard to b2 and b4. We compute separate averages for 
each aperture: indeed, only in the case of b2 and b4 there is evidence of a systematic 
difference between the two apertures. This symmetry break is due to the two-in-one 
structure of the LHC dipole cross-section. 

Table II: best estimate for systematic ccs
nc in the collared coil straight part, new cross-section.  

 

b2 a2 b3 a3 b4 a4 b5 a5 b6 a6 b7 a7 b8 a8 b9 a9 b10 a10 b11 a11
Ap. 1 -0.51 -0.29 -1.40 -0.14 -0.09 -0.03 0.27 0.00 0.00 0.00 1.07 0.01 0.00 0.01 0.54 0.01 0.00 0.00 0.77 0.00
Ap. 2 0.78 0.06 -1.29 -0.10 0.07 0.01 0.39 -0.01 -0.02 0.01 1.08 0.01 0.00 0.01 0.54 0.01 0.00 0.00 0.77 0.00

Total Firm 1 Firm 2 Firm 3 Total Firm 1 Firm 2 Firm 3
X-section 1 35 13 11 11 13 10 1 2
X-section 2 25 15 7 3 1 1 0 0
Total 60 28 18 14 14 11 1 2

Collared coils Cryomagnets



 

 2

• Correlations from collared coil to injection or high field (measurements). The collared 
coil data are projected to high energy and injection using correlations of all measured 
cryomagnets, making the assumption that these correlations are independent of the 
cross-section type. We evaluate the difference highoff

nc , between measured values at high 
field high

nc  and the measured values of the collared coil straight part ccs
nc divided by the 

measured main field rescaling by a factor k=1.18 due to the iron yoke.  

         
k

ccc
ccs
nhigh

n
highoff

n −=,                

A similar formula holds for the injection case 

          
k

ccc
ccs
ninj

n
injoff

n −=,  

These correlations also include the contribution of dipole heads that is not included in 
the collared coil straight part ccs

nc . Owing to the fact that the statistics on cryomagnets 
from Firms 2 and 3 is very poor, a simple average is taken over all cryomagnets (see 
Table III). We therefore assume that correlations are not dependent on the 
manufacturer. This hypothesis will be verified when more data are available. 

 
Table III: differences injoff

nc ,  (or highoff
nc , ) between injection inj

nc  (or high field high
nc ) and collared coil 

straight part ccs
nc  divided by k. 

 
 

• Values at high energy and injection (expected). Values at high field highe
nc ,  and at 

injection inje
nc ,  (see Table IV) are computed from the collared coils data (Table II) 

divided by the measured main field rescaling k and adding the offsets of Table III. 
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Table IV: expected values at injection inje

nc ,  and at high field highe
nc , .  

 
• Beam screen (simulations). This contribution bs

nc is evaluated through simulations [6], 
since no measurement of the final beam screen is available. Measurements of the 
magnetic effect of a previous design of the beam screen showed good agreement with 
simulations [7]. 

 
Table V: beam screen contribution bs

nc  (simulations).  

 

Inj-cc/k b2 a2 b3 a3 b4 a4 b5 a5 b6 a6 b7 a7 b8 a8 b9 a9 b10 a10 b11 a11
Ap. 1 1.75 -0.13 -2.25 -0.14 0.07 0.00 0.72 0.03 -0.02 0.00 -0.34 0.03 -0.01 0.00 0.16 -0.02 0.00 0.00 0.02 -0.04
Ap. 2 -1.76 -0.42 -2.18 -0.15 -0.07 -0.04 0.71 0.03 0.02 -0.02 -0.33 0.03 0.01 0.00 0.16 -0.02 0.01 -0.01 0.02 -0.04
High-cc/k b2 a2 b3 a3 b4 a4 b5 a5 b6 a6 b7 a7 b8 a8 b9 a9 b10 a10 b11 a11
Ap. 1 0.14 -0.23 5.34 -0.17 0.28 -0.03 -0.54 0.04 -0.02 0.00 0.02 0.03 0.00 0.00 -0.08 -0.01 0.00 0.00 -0.01 -0.04
Ap. 2 -0.14 -0.36 5.39 -0.14 -0.28 0.00 -0.55 0.03 0.02 -0.01 0.03 0.03 0.01 0.00 -0.08 -0.01 0.01 -0.01 0.00 -0.04

Injection b2 a2 b3 a3 b4 a4 b5 a5 b6 a6 b7 a7 b8 a8 b9 a9 b10 a10 b11 a11
Ap. 1 1.31 -0.37 -3.44 -0.26 -0.01 -0.03 0.95 0.03 -0.02 -0.01 0.57 0.04 -0.01 0.01 0.62 -0.01 0.00 0.00 0.67 -0.04
Ap. 2 -1.10 -0.37 -3.27 -0.23 -0.01 -0.04 1.04 0.02 0.00 0.00 0.58 0.04 0.01 0.00 0.62 -0.01 0.01 -0.01 0.67 -0.04
High field b2 a2 b3 a3 b4 a4 b5 a5 b6 a6 b7 a7 b8 a8 b9 a9 b10 a10 b11 a11
Ap. 1 -0.29 -0.47 4.15 -0.29 0.20 -0.05 -0.31 0.04 -0.01 -0.01 0.93 0.03 0.00 0.01 0.38 0.00 0.00 0.00 0.64 -0.03
Ap. 2 0.52 -0.31 4.29 -0.22 -0.22 0.01 -0.22 0.03 0.00 0.00 0.94 0.04 0.01 0.01 0.38 0.00 0.01 -0.01 0.65 -0.04

b2 a2 b3 a3 b4 a4 b5 a5 b6 a6 b7 a7 b8 a8 b9 a9 b10 a10 b11 a11
0.00 0.00 -0.42 0.00 0.00 0.00 0.39 0.00 0.00 0.00 -0.24 0.00 0.00 0.00 0.15 0.00 0.00 0.00 -0.08 0.00
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• Effect of decay (expected): we measure the field harmonics changes during 1000 s at 
760 A (injection), with a precycle of 30 minutes at 11850A (high energy). The average 
of these values are rescaled to an infinitely long flat top (corresponding to a 10% 
increase with respect to the cycle used for measurements); this provides the expected 
values dec

nc of Table VI. This contribution reduces the absolute values of b3 and b5 at 
injection, and is negligible for the other multipoles. 

 
Table VI: measured decay dec

nc of multipoles.  

 
• Effect of ramp (expected): the average dec

nc  of the influence on field harmonics due to 
a ramp rate of 10 A/s at injection is given of Table VII. This small systematic effect 
(less than 0.1 units) is evaluated on the basis of measurements of different cycles, 
using a linear regression to the nominal value of the rate of 10 A/s. 

 
Table VII: measured effect of ramp ramp

nc on multipoles.  

 
• Values in operational conditions (expected). The sum of the beam screen (Table V) 

and of the expected values (Table IV) gives the expected systematic component at 
high field highop

nc ,  and at the beginning of the injection beginjop
nc ,, .  
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At the end of injection endinjop
nc ,, we have to add also the contribution of the decay 

(Tables IV+V+VI). 
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At the end of the ramp endrampop

nc ,, we have to add the contribution of the ramp (scaled to 
the ratio between injection and high energy 11850/760=λ ) to the estimate at high 

field highop
nc ,  (Tables IV+V+VII). Indeed, this rescaling reduces the systematic 

contribution of the ramp to less than 0.01 units. 
 

bs
n

ramp
n

ccs
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n
bs
n

ramp
n

highe
n

endrampop
n cc

k
cccccc +++=++= λ,,,,  

 

b2 a2 b3 a3 b4 a4 b5 a5 b6 a6 b7 a7 b8 a8 b9 a9 b10 a10 b11 a11
-0.03 0.00 1.73 0.03 -0.01 0.05 -0.29 0.00 0.00 0.00 0.04 -0.01 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.00

b2 a2 b3 a3 b4 a4 b5 a5 b6 a6 b7
0.01 0.05 -0.04 0.00 0.00 0.03 -0.02 0.00 0.00 0.01 0.00
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Table VIII: best estimate of the integral values at beginning of the injection beginjop
nc ,, , at the end of the 

injection endinjop
nc ,, , at the end of the ramp endrampop

nc ,,  and at high field highop
nc ,  (beam screen included).  

 
The best estimate is given by the average values between aperture 1 and 2 for all 

multipoles with the exception of b2 and b4, where two different values for each 
aperture should be used. 

 
• With respect to beam dynamics limits given in [4], we are out of specification for the 

following multipoles: 
o b3 at  high field (3.8 units against a maximum limit of 3.0 units) 
o b5 at injection (1.4 units against a maximum limit of 1.1 units) 
o b7 at injection (0.35 units against a maximum limit of 0.1 units) 

The others multipoles are within specifications. In particular, the corrective action 
carried out during the prototype phase on the ferromagnetic insert to optimise b2 and b4 
has been effective [8]. 

4. Estimate of randoms 
• Randoms in the collared coil (measured). In Table IX the standard deviation of 

multipoles measured in the straight part of all collared coils is given. This is a realistic 
estimate for the skew and even normal multipoles. We only exclude collared coil 
number 1001, which had a very high b3 due to non-nominal shims, and is installed in 
the string. For odd normal multipoles these estimates can be considered as an upper 
bound, since they reflect the additional variability due to the cross-section change and 
to the non-nominal shims. We recall that, as in the case of systematics, these values 
must be divided by the main field increase of 1.18 due to the iron yoke. 

Table IX: best estimate of the random ccs
nr in the collared coil straight part.  

 
The analysis of data separated according to different cross-sections and reduced to 
nominal shims gives lower randoms for b3 and b7 (see Table X). In particular, the 
second cross-section collared coils systematically feature a lower sigma. Therefore the 
estimate given in Table IX for odd normal multipoles is pessimistic and could be 
reviewed when more data at 1.9 K are available. 

 
Table X: best estimate of the odd normal random ccs

nr in the collared coil straight part separated according to 
different cross-sections and reduced to nominal shims. 

 

b3 b5 b7
1.80 0.43 0.18
1.12 0.42 0.10

Cross-section 1
Cross-section 2

b2 a2 b3 a3 b4 a4 b5 a5 b6 a6 b7 a7 b8 a8 b9 a9 b10 a10 b11 a11
0.69 1.33 2.77 0.38 0.11 0.28 0.57 0.11 0.04 0.08 0.29 0.04 0.01 0.03 0.14 0.03 0.00 0.00 0.02 0.05

Inj. beg. b2 a2 b3 a3 b4 a4 b5 a5 b6 a6 b7 a7 b8 a8 b9 a9 b10 a10 b11 a11
Ap. 1 1.31 -0.37 -3.86 -0.26 -0.01 -0.03 1.33 0.03 -0.02 -0.01 0.32 0.04 -0.01 0.01 0.77 -0.01 0.00 0.00 0.59 -0.04
Ap. 2 -1.10 -0.37 -3.69 -0.23 -0.01 -0.04 1.43 0.02 0.00 0.00 0.34 0.04 0.01 0.00 0.77 -0.01 0.01 -0.01 0.59 -0.04
Inj. end b2 a2 b3 a3 b4 a4 b5 a5 b6 a6 b7 a7 b8 a8 b9 a9 b10 a10 b11 a11
Ap. 1 1.28 -0.37 -2.13 -0.23 -0.02 0.02 1.04 0.04 -0.02 -0.01 0.36 0.03 -0.01 0.01 0.74 -0.01 0.00 0.00 0.59 -0.04
Ap. 2 -1.12 -0.37 -1.96 -0.19 -0.02 0.01 1.14 0.02 0.00 0.00 0.38 0.03 0.01 0.00 0.74 -0.01 0.01 -0.01 0.60 -0.04
End ramp b2 a2 b3 a3 b4 a4 b5 a5 b6 a6 b7 a7 b8 a8 b9 a9 b10 a10 b11 a11
Ap. 1 -0.29 -0.47 3.73 -0.29 0.20 -0.05 0.07 0.04 -0.01 -0.01 0.69 0.03 0.00 0.01 0.53 0.00 0.00 0.00 0.56 -0.03
Ap. 2 0.52 -0.31 3.87 -0.22 -0.22 0.01 0.17 0.03 0.00 0.00 0.70 0.04 0.01 0.01 0.53 0.00 0.01 -0.01 0.57 -0.04
High field b2 a2 b3 a3 b4 a4 b5 a5 b6 a6 b7 a7 b8 a8 b9 a9 b10 a10 b11 a11
Ap. 1 -0.29 -0.47 3.73 -0.29 0.20 -0.05 0.07 0.04 -0.01 -0.01 0.69 0.03 0.00 0.01 0.53 0.00 0.00 0.00 0.56 -0.03
Ap. 2 0.52 -0.31 3.87 -0.22 -0.22 0.01 0.17 0.03 0.00 0.00 0.70 0.04 0.01 0.01 0.53 0.00 0.01 -0.01 0.57 -0.04
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• Randoms due to correlations from collared coil to injection and high field (measured). 

We evaluate the standard deviation highoff
nr

, (and injoff
nr

, ) of the differences between the 
multipoles measured at high field high

nc  (and injection inj
nc ) and measured in the 

collared coil straight part ccs
nc rescaled by the main field increase k: 

)(,

k
ccr

ccs
nhigh

n
highoff

n −= σ                   )(,

k
ccr

ccs
ninj

n
injoff

n −= σ  

Comparison of these data with Table IX shows that the collared coil is the main source 
of multipole variability. In the estimate for even normal multipoles we excluded 
cryomagnet 1002 since it was assembled without shims between insert and iron yoke 
(the so called Chinese hat). 
 

Table XI: sigma highoff
nr

, , injoff
nr

, of differences between rescaled collared coil and injection or high field  

 
• Randoms of the decay (expected). Also in this case, we rescale values that are 

measured with a pre-cycle of 30 mintues of flat top to an infinite flat top by adding 
10%, as for the systematic. These expected values are much lower than the initial 
estimates based on measurements on 1-m long models [9]. 

 
 Table XII: sigma dec

nr of the decay, rescaled to a long flat top.  

 
• Randoms of the ramp (measured). These are the standard deviations of the measured 

effect of the ramp at 10A/s and at injection on field harmonics. Also in this case, the 
effect is small (0.2 units at most) and becomes negligible when is rescaled to high 
field. 

 
 Table XIII: sigma ramp

nr of the ramp effect.  

 
• Randoms in operational conditions (expected). The final estimate for the randoms in 

operational conditions is given in Table XII, summing in quadratures the rescaled 
sigma of the collared coil straight part ccs

nr to the correlations injoff
nr

,  and highoff
nr

, ; at the 
end of the injection and of the ramp we also have to add the decay dec

nr  and rescaled 
ramp ramp

nrλ  respectively. These formulas are valid in the hypothesis of a negligible 
cross-correlation between the different terms; data from the first 14 cryomagnets and 
related collared coils show that these correlations are small. Indeed, this quantity 
should be monitored during the production. 

 
 

( )2,
2

,, injoff
n

ccs
nbeginjop

n r
k

rr +







=  

b2 a2 b3 a3 b4 a4 b5 a5 b6 a6 b7
0.11 0.24 0.44 0.07 0.05 0.09 0.10 0.03 0.02 0.04 0.03

b2 a2 b3 a3 b4 a4 b5 a5 b6 a6 b7
0.06 0.19 0.18 0.02 0.02 0.07 0.04 0.01 0.01 0.02 0.02

b2 a2 b3 a3 b4 a4 b5 a5 b6 a6 b7 a7 b8 a8 b9 a9 b10 a10 b11 a11
High 0.37 0.25 0.22 0.08 0.04 0.04 0.12 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.03
Inj. 0.24 0.44 0.47 0.06 0.06 0.15 0.15 0.03 0.02 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02
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Table XIV: expected randoms in operational conditions.  

 
 

• With respect to beam dynamics limits given in [4], we have a higher random b3 (2.5 
units against 1.4 specified). In the case of b2, a2, b5 and b7, values are similar to what 
specified, whilst the a3, b4 and a4 are much lower than previous estimates. 

 

5. Conclusions 
We have given estimates of the expected field harmonic in the main LHC dipoles based 

on magnetic measurements of 60 collared coils and 14 cryodipoles, assuming an installation 
scenario where all the cold mass assemblers and cable manufacturers are mixed along the 
machine. Systematic values of b3, b5, and b7 are outside the specification given in [4] of 0.8, 
0.3 and 0.25 units respectively. The other systematic multipoles are within specifications. 
Random components are higher than expected for b3; this is mainly due to the change of 
cross-section that has been implemented to correct the odd normal multipoles. This estimate 
could be probably biased by the low statistics and could be reviewed in the future. The other 
random components either agree with previous estimates (b2, a2, b5 and b7) or are much lower 
(a3, b4 and a4). 
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