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1. Introduction

Recently there has been some reexamination of 2d superconformal field theory with bound-

aries [1, 2], elaborating the superconformal boundary conditions frequently used [3, 4] for

the study of D-branes [5]. The setting was non-linear σ-models with N = 1 or N = 2

worldsheet superconformal symmetry. The analysis was versed in the language of the tar-

get space: fields represent coordinates on the target space or sections of vector bundles over

it, and coupling constants encodes its geometric feature. This is appropriate for relating

the boundary conditions to the geometry of D-branes [4, 6].

The worldsheet origin of boundary suggests an orthogonal viewpoint. Boundary con-

ditions that have to be imposed reflect the modification made to the original theory to

consistently accommodate an abrupt end to the space on which it is defined. A fundamen-

tal and universal classification of boundary conditions ought to be made solely in worldsheet

language without being tied to a particular action formalism. Boundary conformal field

theory starts with a choice of boundary conditions imposed between the left and right

moving chiral fields. This is most precisely stated in the boundary state formalism. The

only constraint seemed to be consistency with the chiral algebra, so they are classified by

their outer automorphism group. Those differing by an inner automorphism are mapped

into each by symmetries generated by the chiral currents themselves. For a particular type

of actions such as non-linear σ-model, one can make contact with the target space point of

view by substituting the concrete realization of the chiral fields into the abstract boundary

conditions.
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However, the above procedure still does not contain a derivation of the boundary

condition itself as the necessary consequence of a boundary. If one doubts the need for

such an understanding, consider the following outer automorphism of the Virasoro algebra:1

Lm → −L−m (1.1)

There are two problems with using this automorphism to define a boundary condition,

such as
(

Lm + L̃m

)

| 〉) = 0 (1.2)

for a boundary state | 〉). First, algebraic consistency dictates that this automorphism must

also flip the sign of the central charge. This is not permissible because in a CFT the central

charge is unlike any other element of the Lie algebra — it is just a number, and it has

to be the same for the left and right movers. Another problem, which persists even when

the central charge vanishes, is that this boundary condition is not local. On a space-like

boundary parameterized by σ ∈ [0, 2π), It relates the left and right moving stress tensors by

T (σ) + T̃ (−σ) (1.3)

As we shall see in section 2, this does not follow from the presence of a boundary.

We can eliminate this problematic automorphism by considering only those leaving the

central charge invariant and further require that they have an appropriate local origin in

terms of the stress tensor. This makes clear that a derivation of boundary conditions from

worldsheet geometry would be desirable. Unfortunately, it is not clear how this could be

done for general chiral algebras. Unlike the Virasoro algebra, they seem to represent “in-

ternal” degree of freedom mostly independent of the geometry of the worldsheet. However,

as will be shown in the paper, boundary conditions for N = 1 and N = 2 superconformal

algebra (SCA) do have purely worldsheet interpretation, if one is willing to complement

the ordinary worldsheet (the even part) with an odd part parameterized by Grassmann

“coordinates.”

Central to this paper is therefore the use of superspace to describe the action of super-

conformal symmetries. Worldsheet superspace has long been used in string theory [7, 8],

often for writing down lagrangians with manifest rigid supersymmetry in terms of super-

fields [9, 10]. Due to the different motivation and purpose of the present work, 2d N = 1

and 2 superspace is developed ab initio in this paper without reference to any lagrangian

or fundamental field. As a consequence issues such as auxiliary fields and off-shell closure

is not relevant. Here the Grassmann coordinates are introduced solely as organizational

labels for the representations of the singular operator production expansion (sOPE) alge-

bra of the superconformal currents. How they transform under superconformal symmetry

is then inferred from the algebra, i.e. superspace emerges as a derived construct. This

1I would like to thank V. Kac for pointing out this as an automorphism. Note however that it is a Lie

algebra autmorphism and treats the central charge as a bona fide Lie algebra element. If one treats the

central charge as a number, as one always does in the context of conformal field theory, the Virasoro algebra

is not properly a Lie algebra and does not have this map as an automorphism, unless the central charge

vanishes.
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philosophy differs significantly from that underlying previous works that aimed to combine

superspace and superconformal symmetry, where the starting point had been the defini-

tion of a superdifferential. For N = 1 case, the resulting superspace agrees with [11]. For

N = 2 the present results look superficially different from [12]–[15]. Both the compact and

noncompact versions of N = 2 SCA make appearance here, classified and differentiated

by nonequivalent reality conditions of the superspace. This has not been noted before,

but after a field redefinition the compact case does agree with those earlier results on the

transformation properties of superconformal tensors.

The technical advantage of this superspace approach is that it allows a systematic and

geometric derivation for the boundary conditions. The analysis of pure conformal symmetry

can be applied to the superconformal symmetries after the appropriate adaptation. At its

most essential, a boundary occupies an one dimensional curve on the even part of the

superworldsheet. Those conformal symmetries that perturb it in the transverse direction

are broken [16]. If the boundary also occupies the whole odd part of the superworldsheet,

all supersymmetries are broken. The more interesting case is when the boundary has

finite codimension in the odd part as well. It shall be shown in this work that such

superboundary can be consistently defined and classified geometrically. They preserve half

of the worldsheet supersymmetries. The corresponding boundary conditions for the SCA

can also be inferred from geometry, modulo central terms. The latter can then be fixed

easily by algebraic arguments. For N = 0 and 1 the standard boundary conditions are

recovered. For N = 2 SCA, in addition to the well-known A and B types of boundary

conditions I also find two infinite classes of new ones. They appear for closed boundaries

(e.g. boundary state or one-loop diagram of open string) and have to do with the topology

of the superworldsheet.

Although this paper is concerned with boundary on the string worldsheet and more

generally 2d (super)conformal field theory, the idea of using superspace geometry to to

classify and derive boundary conditions can be applied to other cases. Boundaries and

spacetime defects in supergravity theory and the target space of superstring have recently

become an area of intensive research. It would be interesting to see whether the types of

analysis presented here would be applicable to them.

The paper is organized as follows. In section 1,the boundary condition of Virasoro

algebra is derived from the boundary geometry as a warm-up for the superconformal case.

In section 2 N = 1 superconformal symmetry is considered. In section 3 I proceed to

N = 2 superconformal symmetry and find novel boundary states arising from nontrivial

superworldsheet topology. In section 4 the novel boundary states are realized in a free

theory. While this paper is worldsheet oriented, these concrete solutions can be related to

and used for D-branes in N = 2 compactification [4] and N = 2 string theories [17, 18].

2. Boundary conditions for N = 0

What follows can be thought as an elaboration of the argument in section 1 of [16]. It is

intended as a warm up drill in which the essential steps needed later for the superconformal

cases are run through in a context with little subtlety.
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Worldsheet. The 2d worldsheet is parametrized by coordinates z and z̃. The field theory

has conformal symmetry, realized projectively on the Hilbert space of the theory because

of the conformal anomaly. Denote as usual T and T̃ the decoupled left and right moving

stress tensor. The Lie algebra of conformal symmetry can be inferred from their sOPE

(eq. A.1). The operators of the theory are classified into highest weight representations

of T, each of which is characterized by a conformal weight h and a chiral primary field V

satisfying the following sOPE:

T (z) · · · V (w) =
hV (w)

(z − w)2 +
∂V (w)

z − w . (2.1)

Infinitesimal conformal transformations are parameterized by two functions ε(z) ε̃(z̃) and

the corresponding charge is2

1

2πı

(
∮

dz ε(z)T (z) +

∮

dz̃ ε̃(z̃)T̃ (z̃)

)

. (2.2)

Therefore a chiral primary field V with conformal weight h with respect to T varies as

δV = ı(ε∂V + h∂εV ) . (2.3)

Recall that a tensor field V on a manifold, which may consist of several components, is

defined with respect to a group acting on that manifold. It transform generically under an

infinitesimal group element ε by

δεV = δεX
µ ∂

∂Xµ
V +Λ[∆]

ε V . (2.4)

Here δε alone represents the action of the group on the coordinate of the manifold and Λ∆
ε

represent action of the group on the tensor. ∆ denote properties that distinguish different

tensor fields. Hence a chiral primary field of weight h with respect to T is a tensor field

for conformal transformation with

δεz = ıε(z) , Λ[h]
ε = ıh∂ε(z) (2.5)

Therefore we recovers the spacetime action of a conformal transformation

δz = ıε , δz̃ = ıε̃ . (2.6)

Usually conformal transformation is simply defined as such. The procedure here of de-

riving it from the sOPE of between currents and tensor fields may seem circuitous, but

it guarantees the correct result once an sOPE algebra is given. It is well suited for the

superconformal cases where geometric intuition is elusive.

2The convention for contour integration is counterclockwise for z and clockwise for z̃.
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Compatible reparameterization. Given (eq. 2.6), one can ask what kind of coordinate

redefinition

z′ = f(z, z̃) , z̃′ = f ′(z, z̃) , (2.7)

leaves the form of the variation invariant, i.e.

δz′ = ε′(z) , δz′ = ε̃′(z̃) . (2.8)

for some ε′. This gives an automorphism of the sOPE algebra realizable as a reparameter-

ization of the worldsheet. They are important for the classification of boundary conditions

and, in conjunction with reality condition, superconformal field theories. The solution for

f is clearly that f should only depend on z, and f on z̃. Hence they are “almost” conformal

transformations themselves. To remove the qualifier “almost” we have to take into account

the reality condition.

Reality condition. Up to this point I have not really specified the signature of the

worldsheet metric. The previous equations are signature independent. The effect of the

latter shows up in the reality condition. If the worldsheet is euclidean, z and z̃ are complex

and related by

z∗ = z̃ . (2.9)

For a lorentzian worldsheet, z and z̃ are both real and unrelated. For studying field theory

in the operator formalism it is necessary that the worldsheet is lorentzian, and henceforth

in this note only this case will be considered.

Generally the reality condition on a lorentzian worldsheet is z∗ = g(z) Under reparam-

eterization z′ = f(z), g transforms as

g(z)→ g′(z′) = f∗ ◦ g ◦ f (−1)(z′) (2.10)

where f (−1) denote the inverse function of f . In the literature, one often uses the expo-

nentiated and Wick-rotated notation in which t is replaced by τ = ıt and the coordinate

z = exp(ıσL) = exp (τ + ıσ), with σ the compactified spatial direction of the worldsheet.

The cylindrical worldsheet is mapped into a two punctured complex plane compactified at

infinity. To avoid confusion I shall continue to use z̃ to denote the right moving coordinate

and the superscript ∗ to denote conjugation in the lorentzian sense with the appropriate

analytic continuation. The reality condition in this convention becomes

z∗ =
1

z
. (2.11)

Unless specified otherwise, I shall follow this convention in the rest of this work. This is

especially convenient for performing contour integration with the sOPE’s but introduces

some complication for the boundary and reality conditions.

Conformal transformation should of course respect the reality condition, which leads

to the reality conditions for ε and ε̃:

(ε(z))∗ = z−2ε(z) , (ε̃(z̃))∗ = z̃−2ε̃(z̃) . (2.12)
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The reparameterization consider earlier should also leave the reality condition invariant.

This leads to the reality condition on f . It still best to state it in terms of the unexpo-

nentiated, un-Wick-rotated coordinates: f(σL) and f̃(σR) are both real. In this paper,

reparameterizations compatible with infinitesimal (super)conformal transformations and

a chosen reality condition are called reparameterization automorphisms. They obviously

form a group. They are important for classifying boundary conditions. It is also clear that

transition functions between different patches of the (super)worldsheet must be elements of

this group. Note that in the present case they are just the usual conformal transformations.

They are generated by (eq. 2.2) subjected to the appropriate reality conditions on ε plus

the Hermiticity of T and T̃ . It means that they are in fact inner automorphisms. For the

superconformal cases this will no longer be true.

Boundary condition. Now consider a boundary on the lorentzian worldsheet. Locally

the boundary can be any one of three types: time-like, space-like, and null. The last type is

located at a fixed value of say z but have no restriction locally for z̃. It leads to intriguing

pathologies and is rarely used in the literature. Henceforth I shall require the boundary

to be nowhere null. Thus they are globally either time-like or space-like. Analytically this

can be seen as follows. A boundary condition that is nowhere null can be written as

z̃ = k(z) . (2.13)

Then a reparameterization automorphism acts on k by

k → k′ = f̃ ◦ k ◦ f (−1) . (2.14)

Equivalence classes of k with respect to this classifies the boundary condition. A time-like

boundary can always be brought to be the positive real axis.

z̃ = z ≥ 0 (2.15)

and space-like boundary to

zz̃ = 1 . (2.16)

The conformal transformations leaving these equation invariant are respectively

ε = ε̃ |z=z̄ (2.17)

and

z̄ε = −zε̃ ||z|=1 , (2.18)

What does this imply for the currents and charges in the theory that generates these

symmetries? Consider first an arbitrary symmetry of the worldsheet that leaves invariant

a boundary of the space on which the theory is defined.For a local quantum field the-

ory, features of the space on which it is defined is immune from quantum fluctuation, so

a boundary and the symmetries preserving it should manifest themselves up to quantum

anomalies. Furthermore, quantum anomaly can be computed locally in the bulk. Therefore
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a boundary preserving symmetry is realized in the theory if and only if the same symme-

try exist in the absence of the boundary, and with the same cocycle if the realization is

projective.

The manner in which it is realized depend on the type of the boundary. If the boundary

is space-like, it represents a state in the QFT,3 while if it is time-like, the boundary modifies

the theory itself. In the language of string theory, it is a boundary state in the close string

theory versus an open string theory in its own right. Suppose the symmetry is generated

by some charge Q constructed from some conserved current jµ as usual by Q =
∫

dD−1xJ0.

If the boundary is space-like and represented by some boundary state | 〉) , the latter should
be invariant under the charge:

Q | 〉) = 0 . (2.19)

If the boundary is time-like, the charge Q remains a constant of motion. It follows that

the boundary contribution to Q̇ vanishes:

∫

∂Σ
dA · J = 0 . (2.20)

This is a constraint on the open string theory stipulating that no net flux of Q charge leak

through the boundary.

Now apply this to conformal symmetries, where

jz = εT , jz̄ = ε̃T̃ . (2.21)

Substituting this with (eq. 2.17) in (eq. 2.2), one finds after factoring out the arbitrary ε

that

T − T̃ = 0
∣

∣

∣

σ=0
(2.22)

for the open string theory and

(T − z̃2

z2
T̃ ) | 〉) = 0 (2.23)

for the boundary state. Since

T =
∑

n∈Z
Lmz

−m−2, T̃ =
∑

n∈Z
L̃mz̃

−m−2 . (2.24)

the last equation means

(Lm − L̃−m) | 〉) = 0 . (2.25)

To be precise, the above procedure gives only the correct boundary condition modulo

central terms. It is easy to verify algebraically that that no correction is needed in this

case. In fact these are the usual boundary conditions for CFT.

Of course one can think of other boundary conditions. A priori, the only algebraic

constraint is that the relation between the left and right moving chiral fields are consis-

tent with their algebra, therefore boundary conditions are corresponds to automorphism

3It is not a state in the proper Hilbert space because it would generically have infinite norm, but this is

not a relevant issue here.
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of the symmetry algebra that preserves the central charge and appropriate Hermiticity

condition. For Virasoro algebra that just leaves the inner automorphisms, those generated

by Lm themselves and corresponding to conformal transformations. On the other hand,

the above analysis has shown that the boundary condition on the stress tensor, following

strictly the requirement of preserving the geometric boundary, is (eq. 2.22) or (eq. 2.25)

for time-like or space-like boundaries, after the boundary is brought to canonical forms by

a conformal transformation. Therefore the other possible boundary conditions just corre-

spond to boundaries that have not been brought to one of the two canonical forms. Had

there been an automorphisms that do not have some origin from geometry (e.g. a boundary

or a crosscap), their interpretation in boundary CFT would have been suspect.

When a bigger chiral algebra is known for a CFT, one should likewise consider bound-

ary conditions for them as well [19, 16]. However, these symmetries in general acts on

“internal” degrees of freedom rather than worldsheet. In the language of (eq. 2.4), they

only shows up in Λ
[∆]
ε . The method developed above relies on δεX

µ and thus cannot be used

to give a geometric derivation of their boundary conditions. However, for superconformal

symmetries this is possible by enlarging the notion of worldsheet, and for these cases the

systematic approach of this work displays its power. It is amusing to note that the very

notion of superspace will be derived ab initio from the sOPE algebra of the (super)currents

rather than conjured out of the void. Even here one may take the view that the worldsheet

coordinate z and z̃ was reconstructed from the Virasoro algebra.

3. Boundary conditions for N = 1

N = 1 superworldsheet. The N = 1 superconformal algebra is the simplest extension

to Virasoro algebra with an interpretation purely in terms of superworldsheet geometry.

Consider the left moving part. The N = 1 superconformal algebra (SCA) complements

T with a superpartner G and their sOPE’s is given in the appendix. From this one may

determine the multiplet structure of irreducible tensor fields and their sOPE’s with T and

G. There is just one kind, again characterized by a conformal weight h but now consists

of two components fields. They can be combined into a superfield as V = V ↓ + θV ↑ by

introducing a Grassmann variable θ. For the time being it is merely an nilpotent label.

V ↓ and V ↑ are both chiral primary fields of T with conformal weight h and h + 1/2

respectively. Their sOPE’s with G are

G(z) . . . V ↓(w) =
V ↑

z −w ,

G(z) . . . V ↑(w) =
2h∂V ↓

(z − w)2 +
∂V ↓

z − w . (3.1)

Infinitesimal N = 1 superconformal transformations are generated by

1

2πı

(
∮

dz ε(z)T (z) +

∮

dz a(z)G(z)

)

, (3.2)
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where a is the Grassmann valued parameters for supersymmetry. By contour integration

of the OPE (eq. 3.1), one finds that

δV = ı

[

ε∂ +
1

2
∂εθ∂θ + h∂ε

]

V + ı [−aθ∂ + a∂θ − 2h∂aθ]V . (3.3)

From this I deduce the action of the superconformal transformation on the superspace

coordinate:

δz = ı(ε− aθ) , δθ = ı

(

1

2
∂εθ + a

)

, (3.4)

and θ now emerges as a coordinate on a superworldsheet. One then does the same for the

right movers, introducing θ̃ in the process. The superworldsheet is therefore make up of

an even part parameterized by z and z̃ and an odd part parameterized by θ and θ̃. To be

precise, the latter is fibered over the former. The transition function are elements of the

reparameterization automorphism discussed below.

Compatible reparameterization. Consider the reparameterization

z′ = f(z), θ′ = f(z)θ (3.5)

that leaves (eq. 3.4) invariant. In fact I have already used it to eliminate z̄ dependence and

mixing with θ̃. Solving now for

δz′ = ε′ − a′θ′ , δθ′ =
1

2

∂ε′

∂f
+ a′ (3.6)

one obtains f =
√
∂f f̂ with

f̂ = ±1 (3.7)

Here the
√
∂f factor merely reflects that θ is really a conformal tensor of weight −1/2.

Reality condition. If the V ↓ is a real field, we expect the other components of the same

multiplet is also real in an irreducible multiplet. This necessitates a reality condition on θ.

It can only be of the form

θ∗ = g(z)θ (3.8)

which also has to be be invariant under (eq. 3.4). This leads to ε∗ = z−2ε as before and

also

a∗ = −ga . (3.9)

g has to satisfy g =
√−∂gĝ = ĝ/z with: ĝ = ±1. Reality conditions are equivalent if and

only if they are related by a compatible reparameterization (f, f) through

g→ f∗gf−1 . (3.10)

It is easy to see that f(z) = 1/z will flip the sign of ĝ. Hence there is only one type of

reality condition and one can set ĝ = 1.

It also follows that the full reparameterization automorphism group, (f, f) that leaves

(g,g) invariant, consists of conformal transformation plus conformal transformations com-

bined with flipping the sign of odd elements. The two correspond to the two choices of

– 9 –
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sign for f̂ . The ones with f̂ = −1 are disconnected from the identity and not generated

by T . This choice corresponds to an outer automorphism of the N = 1 SCA. A transition

function for the fiber of odd space over the even space has the same choice. The topological

classes they allow are the spin structures on the bosonic worldsheet. The analysis of the

N = 1 SCA for the right movers is exactly the same.

Boundary condition. Now let us add a boundary to the worldsheet superspace pa-

rameterized by z, θ and z̃, θ̃. The boundary must have a locus on the even part of the

worldsheet. Again, it can be brought into either positive real axis (eq. 2.15) or the unit

circle (eq. 2.16). Requiring these equations to be invariant under the superconformal

transformations (eq. 3.4) one finds what infinitesimal transformation leaves the boundary

invariant. To avoid repetition I will concentrate on the case of space-like boundary at

z̃z = 1. The other cases are entirely analogous and easily related to this one.

Substituting (eq. 3.4) and its right mover counterparts in (eq. 2.16), one finds the

conditions for the infinitesimal parameter on the boundary. In addition to (eq. 2.18), there

is also

z̃aθ = zãθ̃ . (3.11)

If this has to hold for arbitrary θ and θ̃, the only solution is a = ã = 0, i.e. this boundary

breaks all superconformal transformation. The only boundary condition is (eq. 2.25).

However, (eq. 3.11) can have nontrivial solutions for a if we consider a boundary which

does not span the whole odd part of the superworldsheet, but instead is localized along a

“superline” defined by

θ̃ = k(σ)θ . (3.12)

This is the most general conditions that can be imposed on the odd part of the superworld-

sheet. (Eq. 3.11) then has the solution

z̃a+ zkã = 0 . (3.13)

For consistency, one also has to require (eq. 3.12) to be invariant under such supersymmetric

transformation. A straightforward calculation leads to the constraint k = ıe−ıσk̂ with

k̂ = ±1 . (3.14)

Again the ıe−ıσ phase reflects the tensor nature of θ and θ̃. The more important in-

formation lies in k̂. At first sight, the two choices of signs seems equivalent. Under a

reparameterization automorphism (f, f) that leave fixed the bosonic boundary,

k→ f̃kf−1 . (3.15)

Hence one can flips the sign of k̂ by f = −1 with trivial f , f̃ and f̃ . However, doing so

would upset the boundary conditions else where. Consider a worldsheet with more than

one boundaries . It is not possible to flips the sign of k for one without affecting all the

other. This essentially has to do with the above mentioned fact that reparameterization

automorphisms with f = −1 is disconnected from identity. Therefore these two possibilities

for k correspond to two different types of boundaries.

– 10 –
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Corresponding to them, one has

e−σ/2a± ıe−σ/2ã = 0 , (3.16)

on the boundary, leading to the equation

Gm ± ıG̃−m | 〉) = 0 . (3.17)

This is the well-known boundary condition for the supercurrent used for D-branes in type-

II string theory. The above analysis shows that it corresponds to having a boundary in

superspace defined by

eıσ/2θ̃ = ±ıe−ıσ/2θ (3.18)

along with the more usual bosonic boundary. It also shows how limited the possibility is.

Any other space-like boundary one can define is related to this one by a superconformal

transformation. For an annulus worldsheet with two boundaries, the relative choice of signs

on each translates to the choice of NS or R type of twisted N = 1 algebra for open string

theory and the possibility of inserting a G-parity operator in the close string/boundary

state picture.

4. Boundary conditions for N = 2

Multiplet structure. Compared to N = 1 SCA, N = 2 SCA has two supercurrents G±

instead of one, and has an affine U(1) current J in addition. Their sOPE’s are given in the

appendix. From this and the Jacobi identity it is a straightforward but tedious exercise to

show that it has exactly three families of irreducible tensor multiplets. The more generic

family is characterized by two numbers, h, and λ and consists of four fields, which we

denote as V ↓, V −, V +, V ↑ respectively. We shall call it the long multiplet. Their sOPE’s

with the N = 2 supercurrents are

G+(z) · · · V ↓(w) =
V +(w)

z − w ,

G−(z) · · · V ↓(w) =
V −(w)

z − w ,

G+(z) · · · V +(w) = G−(z) · · · V −(w) = 0 ,

G+(z) · · · V −(w) =
h(1 + λ)V ↓(w)

(z − w)2 +
1
2(1 + λ)∂V ↓

z − w +
V ↑(w)

z − w ,

G−(z) · · · V +(w) =
h(1− λ)V ↓(w)

(z − w)2 +
1
2(1− λ)∂V ↓(w)

z −w − V ↑(w)

z − w ,

G+(z) · · · V ↑(w) = − (h+ 1/2)(1 + λ)V +(w)

(z − w)2 −
1
2(1 + λ)∂V +(w)

z − w ,

G−(z) · · · V ↑(w) = +
(h+ 1/2)(1 − λ)V −(w)

(z − w)2 +
1
2(1− λ)∂V −(w)

z − w ,

(4.1)
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V ↓, and V ± are primary with respect to both with (weight, charge) being (h, 2hλ), (h +

1/2, 2hλ ± 1) respectively.4 As for V ↑, it is primary5 with respect to T with conformal

weight h+ 1 but has the following OPE with J :

J(z) · · · V ↑(w) = h(1− λ2)V ↓(w)
(z − w)2 +

2hλV ↑(w)

z − w . (4.2)

Note that q = 2hλ is the U(1) charge of V ↓ and what is often called the charge of the whole

multiplet. When λ = ±1 the long multiplet becomes reducible into two shorter types of

multiplets. For our purpose the long multiplet is sufficient.

N = 2 superworldsheet. Without further ado let us turn a long multiplet into a super-

field

V = V ↓ + θ+V − + θ−V + + θ+θ−V ↑ (4.3)

by introducing two Grassmann variables θ±. Now consider an infinitesimal N = 2 super-

conformal transformation generated by

1

2πı

(
∮

dz ε(z)T (z) +

∮

dz ξ(z)J(z) +

∮

dz a+(z)G−(z) +

∮

dz a−(z)G+(z)

)

. (4.4)

Here ε and ξ are ordinary C valued while a± are Grassmann valued. By performing contour

integration with the above OPE’s, one find that

δV = ı

[

ε∂ +
1

2
∂ε(θ+∂θ+ + θ−∂θ−) + h∂ε

]

V +

+ı
[

ξ(−θ+∂θ+ + θ−∂θ−) + 2hλξ + h(1− λ2)∂ξθ+θ−
]

V +

+ı

[

−1

2
(1− λ)a+θ−∂ + a+∂θ+ + (1− λ)∂a+

(

1

2
θ+θ−∂θ+ + hθ+

)]

V +

+ı

[

−1

2
(1 + λ)a−θ+∂ + a−∂θ− − (1 + λ)∂a−

(

1

2
θ+θ−∂θ− + hθ−

)]

V . (4.5)

A novel aspect of N = 2 SCA is that the derivation part of the variation contain

dependence on λ. One can split it into two pieces as λ = γ+ λ̆ with some arbitrary number

γ, and treats it as an universal piece for any tensor types. It is clear that it should close

by itself in accordance with N = 2 algebra for arbitrary γ. Then the action of N = 2 SCA

on superspace is:

δz = ı

(

ε− 1

2
(a+θ− + a−θ+) +

γ

2
(a+θ− − a−θ+)

)

,

δθ± = ı

(

±ξθ± + a± ± 1

2
∂a±θ+θ− − 1

2
γ∂a±θ+θ−

)

. (4.6)

4Φ is primary with respect to a affine U(1) current J with charge q if its sOPE with J is

J(z) · · ·Φ(w) =
qΦ(w)

z − w
.

5 [14] also contained explicit transformation properties of tensor components. There the top component

is not primary with respect to T . It is related to the convention here by V ↑ + (λ/2)∂V ↓.
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We can write it more compactly by grouping θ± into a column vector θ and a± into a:

a =

(

a+

a−

)

, θ =

(

θ+

θ−

)

. (4.7)

Then (eq. 4.6) becomes

δz = ı

[

ε+
θ>

2
(σ1 + ıγσ2)a

]

,

δθ = ı

[

1

2
∂εθ − ξσ3θ + a+

1

2
θθ>(σ1 + ıγσ2)∂a

]

. (4.8)

The N = 2 superworldsheet has a bigger odd part, parameterized by θ± and θ̃±. It is

fibered over the even part. Note that so far γ is an arbitrary parameter labelling N = 2

superspace. Below it will be shown that different values of γ are in fact equivalent and can

be set to zero.

Compatible reparameterization. Along the same line as before, consider now repa-

rameterization of the superspace coordinate that is compatible with infinitesimal N = 2

superconformal transformations. Define

z′ = f(z) +
ω

2
θ>ıσ2θ , θ′ = f(z)θ , (4.9)

where f is a complex two-by-two matrix. This is the most general holomorphic reparame-

trization of superspace with “bosonic” parameters. Requiring

δz′ = ı

[

ε′ +
∂ε′

∂f

ω

2
θ>ıσ2θ +

θ′>

2
(σ1 + ıγ′σ2)a′

]

,

δθ′ = ı

[

1

2
∂ε′θ′ − ξ′σ3θ′ + a′ +

∂a′

∂f

ω

2
θ>ıσ2θ +

1

2
θ′θ′
>
(σ1 + ıγ′σ2)

∂a′

∂f

]

. (4.10)

leads to the following expression for the transformation of the parameters:

ε′ = ∂fε , a′ = fa , ξ′σ3 = ξf̂σ3f̂−1 − ∂ f̂ f̂−1ε (4.11)

where f̂ ≡ f/
√
∂f . There are a number of constraints on f̂ and ω, a minimal set of which

are

∂ω̂ = 0 , σ3 f̂σ3 = ±f̂ , f̂>(σ1 + ıγ′σ2)f̂ = (σ1 + ı(γ + ω̂)σ2) , (4.12)

where ω̂ = ω/∂f . Corresponding to the choice of sign in the last equation, there are two

families of solutions:

f̂ = eφσ
3

, γ′ = γ + ω̂ ; (4.13)

and

f̂ = σ1eφσ
3

, γ′ = −γ − ω̂ . (4.14)

Here φ is an arbitrary complex number. Using ω̂ we will set γ to 0 without loss of generality.

This choice fixes the ω parameter to 0 as well.
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Reality condition. To ensure the right number of degrees of freedom, one has to impose

θ∗ = gθ (4.15)

where g is a 2-by-2 matrix satisfying the consistency condition

g∗g = 1 . (4.16)

In addition, (eq. 4.15) has to be compatible with the conformal transformation (eq. 4.8).

This leads to

a∗ = −ga , ξ∗σ3 = −ξĝσ3ĝ−1 + ε∂β̂β̂−1 (4.17)

where ĝ = g/
√−∂g. ĝ satisfies the following consistency conditions:

ĝ∗ĝ = 1 , σ3ĝσ3 = ±ĝ , ĝ>σ1ĝ = σ1 . (4.18)

Corresponding to the choice of sign in the 2nd equation, there are two families of solutions

both parameterized by a real number p

ĝ = eıpσ
3

. (4.19)

and

ĝ = ±σ1epσ3 . (4.20)

The reality condition again transform under the reparameterization f as

g→ f∗gf−1 . (4.21)

It is easy to see that one can always set p to 0 (but see the caveat below) and fix the sign

in (eq. 4.20). The stabilizers are

f̂ = ±eφσ3 and σ1 ± eφσ3 (4.22)

for ĝ = I and

f̂ = eıφσ
3

and σ1eıφσ
3

(4.23)

for ĝ = ±σ1.
The meaning of the reparameterization automorphism is evident. f is a function of z

taking value in a group G. For g = 1 G is O(1, 1) while for ĝ = σ it is O(2). Ignore for now

the topology of the worldsheet, the group of reparameterization automorphisms has the

same number of components as G. O(1, 1) has four while O(2) has two. These components

correspond to the various solutions in (eq. 4.22) and (eq. 4.23) and in obvious ways. They

are the structure group of the Grassmann fibers.6

All things considered, there are two nonequivalent reality conditions. They correspond

to different N = 2 SCA’s. For ĝ = 1, the abelian group generated by J0 is noncompact —

this is known as the noncompact N = 2 SCA. It is easy to see that it cannot have unitary

highest weight representation. On the other hand, g = σ1 gives the conventional compact

N = 2 SCA with an U(1) symmetry. Most of the studies on N = 2 SCA and SCFT have

been on the compact version.

6The global aspect of the compact case has also been considered in [13].
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I should note here one caveat in the previous discussion. When, as in string theory,

the worldsheet is compact in its spatial direction σ, ĝ in (eq. 4.19) can have nontrivial

winding as it takes value in U(1). This can still be brought to the canonical form of ĝ = 1

by using f̂ with half as much winding. However when the winding number of ĝ is odd, the

necessary f̂ is antiperiodic around σ. Its effect is to make G± also anti-periodic. This gives

a twisted version of the N = 2 mode algebra with half integer modes for the supercurrents.

It is related to the Z2 center of O(1, 1).

Boundary. Now introduce a boundary to the N = 2 superworldsheet. Again concentrate

on the case of zz̄ = 1. Invariance of this expression under the N = 2 superconformal

transformation (eq. 4.6) leads to

z−1θ>σ1a+ z̃−1θ̃>σ1ã = 0 (4.24)

in addition to (eq. 2.18). If the boundary occupies the whole odd part of the superworld-

sheet, the only solution is a = ã = 0, i.e. all supersymmetries are broken. In the meantime

there is no constraint on the abelian symmetries generated by J and J̃ . One can also limit

the boundary to a subspace of the odd parts. If a condition is imposed among θ, the left

moving N = 2 SCA will be broken down to a N = 1 SCA. Similarly one can do the same

for the right movers. This returns us to boundary conditions of N = 1 SCA solved in the

last section. Here let us consider instead the condition

θ̃ = k(σ)θ (4.25)

which can preserve a diagonal part of the two N = 2 SCA’s.

Requiring this equation to be invariant under (eq. 4.6) leads to

ã = kε, ξ̃σ3 = ξk̂σ3k̂−1 + ız−1ε∂σk̂k̂
−1 (4.26)

where k̂ = −ı exp (ıσ)k. There are a number of constraints on k̂, a minimal set of which

are

k̂>σ1k̂ = σ1, σ3k̂σ3 = ±k̂ . (4.27)

Corresponding to the choice of sign in the last equation, there are two families of solutions

for k̂. It can either be exp (ασ3) or σ1 exp (ασ3) On top of that, the boundary has to be

compatible with the reality condition, which means

g̃k = k∗g . (4.28)

From this we infer that α is real (modıπ) and imaginary respectively for noncompact and

compact N = 2.

A reparameterization automorphism acts on the boundary conditions as

k→ f̃kf−1 , (4.29)

which can be used to bring k̂ to 1. However, as for the case of N = 1, this does not mean

there is only one type of boundary. Consider first the noncompact N = 2. The solutions

for k correspond to a map from the boundary to O(1, 1) and consists of four components:

k̂ = ±eφσ3 , or ± σ1eφσ3 . (4.30)
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To bring them to 1 one has to make use of the four components of the reparameteriza-

tion automorphism for noncompact N = 2. Consider a worldsheet with more than one

boundaries. It is not hard to see that k can be brought to 1 on all boundaries if and

only if on all of them it lies in the same class. Hence they really are four distinct types

of boundaries. For open string theory, the condition for the chiral fields can be deduced

from (eq. 4.25) and (eq. 4.26). The four possibilities are grouped into two types. The two

boundary conditions of type B are7

T = T̃ , J = J̃ , G+ = ±G̃+ , G− = ±G̃− (4.31)

and the two of type A are

T = T̃ , J = −J̃ , G+ = ±G̃− , G− = ±G̃+ . (4.32)

Correspondingly there are four type of boundary state. They are distinguished by their

set of annihilators. For type B they are

(Lm − L̃−m) , (Jm + J̃−m) ,
(

G+
m ± ıG̃+

−m

)

,
(

G−m ± ıG̃−−m
)

. (4.33)

and for type A they are

(Lm − L̃−m) , (Jm − J̃−m) ,
(

G+
m ± ıG̃−−m

)

,
(

G−m ± ıG̃+
−m

)

. (4.34)

For compact N = 2 SCA the situation is more subtle. The solutions for k̂ are

k̂ = exp(ıασ
3) or σ1 exp(ıασ

3) , (4.35)

It is a map from the boundary to O(2). When the boundary is not a loop, say the

time-like trajectory traced out by a propagating open string, there are two disjoint classes

corresponding to the two components of O(2), hence two type of boundaries. They are just

the type A and B above. Because a shift α→ α+ π changes the sign of all odd elements,

the subtypes within A or B are no longer distinct. Algebraically this is because the sign

changing map is an outer automorphism for the noncompact N = 2 but an inner one for

the compact N = 2. The two types are exactly what have been classified in [4].8

However, when the boundary is a loop, for example corresponding to a boundary state,

there are two infinite classes of solutions parameterized by an integer s. They corresponding

to a map from the boundary loop to the two components of O(2) with winding number s.

Therefore there are 2Z possible types of boundary states. While the boundary conditions

for zero winding are just those of type A (eq. 4.34) or B (eq. 4.33) (with the subtypes no

longer distinct), the infinite series corresponding nontrivial winding are not known before.

A B-type boundary states |Bs〉) with winding number s are annihilated by
(

Jn + J̃−n + s
c

3
δn,0

)

,
(

Ln − L̃−n − sJ̃−n − s2
c

6
δn,0

)

, and
(

G±n + ıG̃±−n±s

)

. (4.36)

7This nomenclature adheres to the convention in the literature [4].
8Related boundary conditions were observed in the context of topological σ-models in an example of the

A-type in [20] and considered for both types in [21].
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An A-type boundary states |As〉) with winding number s are annihilated by

(

Jn − J̃−n + s
c

3
δn,0

)

,
(

Ln − L̃−n + sJ̃−n − s2
c

6
δn,0

)

, and
(

G±n + ıG̃∓−n∓s

)

. (4.37)

Everything in these equations except the terms involving the central charge are directly

determined by substituting (eq. 4.25) and (eq. 4.26) in (eq. 4.4) and its right moving

counterpart with k̂ = exp (ısσσ3) for type B and k̂ = σ1 exp (ısσσ3) for type A. The result

is consistent with the N = 2 algebra without central extension. The central terms are

obtained by demanding consistency with the full algebra, in particular {G+
m, G

−
−m}.

Now that these states are found, it is natural to look for their algebraic interpreta-

tion. The original type A and B boundary conditions were classified [4] by the Z2 outer

automorphism of N = 2 SCA which inverts the sign of the U(1) current:

L→ L , J → −J , G± → G∓ . (4.38)

These two new series should also correspond to families of outer automorphism. In fact

there is a well-known family of transformations of N = 2 SCA parameterized by a real

number s. It is known as spectral flow and changes the boundary condition of G± by

exp (2πıs) [22]:

Jn → Jn + s
c

3
δn,0 ;

Ln → Ln + sJn + s2
c

6
δn,0 ;

G±n → G±n±s . (4.39)

It was obtained by the adjoint action of an affine-U(1) transformation with monodromy

exp (2πıs). The case of s = ±1/2 is important for understanding spacetime supersymmetry

in N = 2 compactifications of superstring. When s is integral, it does not change the

periodicity condition of G± so becomes an automorphism of the N = 2 SCA. It is in fact

an outer automorphism because the affine-U(1) transformation leading to it corresponds

to an element of the loop group of U(1) disconnected from the identity.9 It is easy to see

that the Bs series of boundary states are related to this automorphism. Now, by following

(eq. 4.39) with a conjugation automorphism, one obtains another outer automorphism:

G±n → G∓n∓s ;

Jn → −Jn − s
c

3
δn,0 ;

Ln → Ln + sJn + s2
c

6
δn,0 . (4.40)

which evidently corresponds to the As series of boundary states.

9Recently the related spectral flow in and nontrivial elements of the loop group of SL(2,R) has found

application in a different capacity [23].
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This view of the nontriviality of the boundary conditions fit nicely with the above

derivation of these boundary conditions from geometry of the superworldsheet. s is the

winding numbers of k in the loop group of O(2). If one insists on unwinding it by say f

without introduce winding at other boundary components, one has to introduce either a

Chern class for the U(1) bundle or, as a singular limit, the insertion of integral spectral

flow operators. It is also worth noting that just as mirror symmetry relates type A and B

boundary conditions, so it also relates As and B−s.

5. Free field realization

Here I give a free field realization of the two new infinite series of boundary states in

(eq. 4.36) and (eq. 4.37), in terms of d pairs of complex bosons and complex fermions with

a hermitean metric (Gij̄)∗ = Gīj ≡ Gjī:
[

αim, α
j̄
n

]

= mGij̄δm+n ,
{

ψim, ψ
j̄
n

}

= Gij̄δm+n , i, j̄ = 1 . . . d . (5.1)

and the same for the right movers. It is sufficient to consider the sector with half integral

moding for all the fermions. The compact N = 2 SCA is realized as (with normal ordering)

G+
n =

∑

p+q=n

ψipα
ī
q , G−n =

∑

p+q=n

ψīpα
i
q ,

Jn =
∑

p+q=n

ψipψ
ī
q , Ln =

∑

p+q=n

αipα
ī
q +

q − p
2

ψipψ
ī
q . (5.2)

It is easy to verify that (eq. 4.36) is satisfied provided that | 〉)Bs is annihilated by10

(

αim +Ri
jα̃

j
−m

)

,
(

αīm +Rī
j̄α̃

j̄
−m

)

,
(

ψim + ıRi
jψ̃

j
−m+s

)

,
(

ψīm + ıRī
j̄ψ̃

j̄
−m−s

)

, (5.3)

where (Ri
j)
∗ = Rī

j̄ is unitary. Their kernel is 2
|s| dimensional. For s ≥ 0, one solution can

be constructed from the SL(2,R)× SL(2,R) vacuum |∅〉〉 as

|B−s〉)0 = exp

[

−
∑

m>0

1

m

(

Rij̄a
i
−mã

j̄
−m +Rīja

j̄
−mã

i
−m

)

]

×

× exp

[

−
∑

m>0

ı
(

Rij̄ψ
i
−mψ̃

j̄
−m−s +Rījψ

ī
−m−sψ̃

j
−m

)

]

×

×
s
∏

k>0

(

ψīk−s + ıRī
j̄ψ̃

j̄
−k

)

|∅〉〉 . (5.4)

Here Rīj = GīiRi
j, and Rij̄ = GīiRī

j̄. A complete set of basis can be formed by |Bs〉)0 and

applying products of (ψ īk−s − ıRī
j̄ψ̃

j̄
−k) on it for 0 < k < s.

10In the language of D-branes, the R matrix here for type B and later for type A encodes the geometric

and gauge field configurations of a D-branes, as defined in [4]. It also has to satisfy certain consistency

condition (unitary or anti-unitarity)as discussed ibid.
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For s ≤ 0 one solution is

|Bs〉)0 = exp

[

−
∑

m>0

1

m

(

Rij̄a
i
−mã

j̄
−m +Rīja

j̄
−mã

i
−m

)

]

×

× exp

[

−ı
∑

m>0

(

Rij̄ψ
i
−m+sψ̃

j̄
−m +Rījψ

ī
−mψ̃

j
−m+s

)

]

×

×
−s
∏

k>0

(

ψi−k + ıRi
jψ̃

j
k+s

)

|∅〉〉 . (5.5)

Applying (ψi−k − ıRi
jψ̃

j
k+s) on it for 0 < k < −s and one can span the whole solution

spaces.

|As〉) can be obtained similarly. The solitons lies in the common kernel of

(

αim +Ri
j̄α̃

j̄
−m

)

,
(

αīm +Rī
jα̃

j
−m

)

,
(

ψim + ıRi
j̄ψ̃

j̄
−m−s

)

,
(

ψīm + ıRī
jψ̃

j
−m+s

)

, (5.6)

which is again 2|s| dimensional. Here (Ri
j̄)
∗ = Rī

j is anti-unitary.
11 For s ≥ 0 one solution

is

|As〉)0 = exp

[

−
∑

m>0

1

m

(

Rija
i
−mã

j
−m +Rīj̄a

j̄
−mã

ī
−m

)

]

×

× exp

[

−
∑

m>0

ı(Rijψ
i
−m−sψ̃

j
−m +Rīj̄ψ

ī
−mψ̃

j̄
−m−s)

]

×

×
s
∏

k>0

(

ψi−k + ıRi
j̄ψ̃

j̄
k−s

)

|∅〉〉 . (5.7)

Applying products of (ψi−k − ıRi
j̄ψ̃

j̄
k−s) on |As〉)0, for 0 < k < s to get a basis spanning

the whole kernel.

For s ≤ 0 one has

|As〉)0 = exp

[

−
∑

m>0

1

m

(

Rija
i
−mã

j
−m +Rīj̄a

j̄
−mã

ī
−m

)

]

×

× exp

[

−
∑

m>0

ı
(

Rijψ
i
−mψ̃

j
−m+s +Rīj̄ψ

ī
−m+sψ̃

j̄
−m

)

]

×

×
−s
∏

k>0

(

ψīk+s + ıRī
jψ̃

j
−k

)

|∅〉〉 . (5.8)

Applying (ψ īk+s − ıRī
jψ̃

j
−k) on |As〉)0 for 0 < k < −s to span the whole solution space.

11By that I mean Ri
īGij̄R

j̄
j = Gjī.
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It would be interesting to study these new types of boundary states in the context of

general N = 2 superconformal field theories. Another natural extension of the analysis in

this paper would be to the cases of N = 3 and N = 4 SCA’s.

I would like to thank V. Kac for illuminating replies to my question about outer

automorphisms, L. Alvarez-Gaume, I. Brunner, M.B. Halpern, C. Helfgott, and Y. Oz for

discussions.

A. Summary of N = 0, 1, 2 SCA OPE’s

The Lie algebra of the mode operators of two chiral field φ and ψ are determined by the

singular part of their operator product expansion (sOPE), which is denoted in this paper

by φ(z) . . . φ(w).

N = 0.

T (z) · · · T (w) = c/2

(z − w)4 +
T (w)

(z − w)2 +
T (w)

z − w . (A.1)

N = 1. G is primary with conformal weight 3/2. Its sOPE with itself is

G(z) · · ·G(w) =
2c/3

(z − w)3 +
2T (w)

z − w . (A.2)

N = 2. G± and J are primary with conformal weight 3/2 and 1. The rest of their sOPE’s

are

G+(z) · · ·G+(w) = G−(z) · · ·G−(w) = 0 ,

G+(z) · · ·G−(w) =
c/3

(z − w)3 +
J(w)

(z − w)2 +
∂J(w)/2

z − w +
T (w)

z − w ,

J(z) · · ·G±(w) = ±G
±(w)

z − w ,

J(z) · · · J(w) =
c/3

(z − w)2 . (A.3)

References

[1] C. Albertsson, U. Lindström and M. Zabzine, N = 1 supersymmetric sigma model with

boundaries. I, Commun. Math. Phys. 233 (2003) 403 [hep-th/0111161].

[2] U. Lindström and M. Zabzine, N = 2 boundary conditions for non-linear sigma models and

Landau-Ginzburg models, J. High Energy Phys. 02 (2003) 006 [hep-th/0209098].

[3] C.G. Callan Jr., C. Lovelace, C.R. Nappi and S.A. Yost, Loop corrections to conformal

invariance for type 1 superstrings, Phys. Lett. B 206 (1988) 41.

[4] H. Ooguri, Y. Oz and Z. Yin, D-branes on Calabi-Yau spaces and their mirrors, Nucl. Phys.

B 477 (1996) 407 [hep-th/9606112].

[5] J. Polchinski, Lectures on D-branes, hep-th/9611050.

[6] C. Albertsson, U. Lindström and M. Zabzine, N = 1 supersymmetric sigma model with

boundaries. II, hep-th/0202069.

– 20 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C233%2C403
http://xxx.lanl.gov/abs/hep-th/0111161
http://jhep.sissa.it/stdsearch?paper=02%282003%29006
http://xxx.lanl.gov/abs/hep-th/0209098
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB206%2C41
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB477%2C407
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB477%2C407
http://xxx.lanl.gov/abs/hep-th/9606112
http://xxx.lanl.gov/abs/hep-th/9611050
http://xxx.lanl.gov/abs/hep-th/0202069


J
H
E
P
0
5
(
2
0
0
3
)
0
7
3

[7] D. Fairlie and D. Martin, New lights on the Neveu-Schwarz model, Nuovo Cim. 18A (1973)

373.

[8] C. Montonen, Multiloop amplitudes in additive dual resonance models, Nuovo Cim. 19A

(1974) 69.

[9] P.S. Howe, Superspace and the spinning string, Phys. Lett. B 70 (1977) 453.

[10] E.J. Martinec, Superspace geometry of fermionic strings, Phys. Rev. D 28 (1983) 2604.

[11] D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and

string theory, Nucl. Phys. B 271 (1986) 93.

[12] P. Di Vecchia, J.L. Petersen and H.B. Zheng, N = 2 extended superconformal theories in

two-dimensions, Phys. Lett. B 162 (1985) 327.

[13] J.D. Cohn, N=2 superriemann surfaces, Nucl. Phys. B 284 (1987) 349.

[14] E.B. Kiritsis, The structure of N = 2 superconformally invariant ’minimal’ theories: operator

algebra and correlation functions, Phys. Rev. D 36 (1987) 3048.

[15] K. Schoutens, O(n) extended superconformal field theory in superspace, Nucl. Phys. B 295

(1988) 634.

[16] J.L. Cardy, Boundary conditions, fusion rules and the verlinde formula, Nucl. Phys. B 324

(1989) 581.

[17] Y.-K.E. Cheung, Y. Oz and Z. Yin, Families of N = 2 strings, hep-th/0211147.

[18] Z. Yin, to appear.

[19] N. Ishibashi, The boundary and crosscap states in conformal field theories, Mod. Phys. Lett.

A 4 (1989) 251.
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