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Abstract

We apply a universal normal Calabi-Yau algebra to the construction and classification of

compact complex n-dimensional spaces with SU(n) holonomy and their fibrations. This al-

gebraic approach includes natural extensions of reflexive weight vectors to higher dimensions

and a ‘dual’ construction based on the Diophantine decomposition of invariant monomials.

The latter provides recurrence formulae for the numbers of fibrations of Calabi-Yau spaces

in arbitrary dimensions, which we exhibit explicitly for some Weierstrass and K3 examples.
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1 The Algebraic Way to Unify Calabi-Yau Geometry

Geometrical ideas play ever-increasing rôles in the quest to unify all the fundamental in-

teractions. They were introduced by Einstein in the formulation of general relativity, and

extended to higher dimensions by Kaluza and Klein in order to include electromagnetism.

To explain the appearance of electromagnetism, it was enough to introduce just one extra

dimension with the topology of a circle, exploiting the geometrical equivalence between the

U(1) gauge group and the circle. In order to find a corresponding geometrical origin for the

full Yang-Mills symmetries of the Standard Model, namely SU(3)×SU(2)×U(1), one needs

to consider more complicated geometrical structures.

The modern approach to gauge symmetry is based on string theory, whose underlying

geometrical nature is still mysterious, but includes an enormous extension of general coor-

dinate invariance in ten or eleven dimensions. This is large enough to include the gauge

symmetries of the Standard Model in four dimensions, if one compactifies six surplus dimen-

sions on a suitable complex three-dimensional space, called a Calabi-Yau manifold [1]. In

the original compactifications of weakly-coupled ten-dimensional heterotic string theory, the

resulting four-dimensional gauge group would be some subgroup of E6.

This construction has since been extended to various non-perturbative constructions. It

has been realized that additional gauge-group factors may appear in suitable singular limits

of the Calabi-Yau manifold [2]. For example, one approach to non-perturbative string theory

is based on twelve-dimensional F theory, which may be compactified to four dimensions on

a complex four-dimensional space with SU(4) holonomy. We also note that many CY3 or

CY4 spaces can be obtained as Complete-Intersection Calabi-Yau (CICY) spaces, i.e, as

projections inside higher-dimensional CYn, motivating further studies of the latter also for

n > 4.

These geometrical ideas exemplify the physics interest of classifying systematically spaces

with holonomy groups in the series SU(n), SO(n) and Sp(n), as well as G2 and Spin(7).

Listings are available of special cases such as K3 spaces with SU(2) holonomy and CY3

spaces with SU(3) holonomy [3, 4], and there are also many results for other holonomy

groups [5, 6]. Ideally, one would like to classify these spaces in a systematic way, much



as Cartan provided an algebraic classification of Lie groups [7]. This is, of course, a very

ambitious programme, for which only partial results are available.

We have proposed an algebraic approach [8, 9] to the problem of classifying complex

CYn manifolds with SU(n) holonomy, which is based on their identifications with the loci

of zeroes of polynomials in suitable complex projective spaces, and their complete intersec-

tions. These complex projective spaces in different dimensions are characterized by ‘reflexive’

projective weight vectors ~k. Our approach has been based on the systematic extension of

lower-dimensional projective vectors to higher dimensions, and their combination via binary,

ternary, quaternary, etc., algebraic operations of increasing ‘arity’.

We have recently proposed [10] a supplement to this approach which is based on a ‘dual’

approach via the monomials x~µα = xµ1α
1 xµ2α

2 ...x
µ(n+1)α

n+1 in the quasihomogeneous coordinates

x1, ..., xn+1 that obey a ‘duality’ condition ~µα · ~k = [d]. Specifically, we showed how CYn

spaces could be obtained by the Diophantine decomposition of simple invariant monomials, a

technique that gives immediate insights into the fibrations of higher-dimensional Calabi-Yau

spaces involving lower-dimensional Calabi-Yau spaces.

In this Letter, we summarize briefly the essential aspects of this new Diophantine al-

gebraic approach to the systematic classification of Calabi-Yau spaces, demonstrating its

complementarity to our previous expansion technique. In particular, we present a number

of explicit results for the numbers of fibrations of Calabi-Yau spaces in arbitrary numbers of

complex dimensions. These results support our claim to have formulated a ‘Universal Calabi-

Yau Algebra’ [11] capable in principle of decoding the full Calabi-Yau genome. Moreover, as

we comment at the end, the techniques used here could in principle also be used to classify

the series of spaces with SO(n).

2 The Arity-Dimension Structure of Universal Calabi-

Yau Algebra

The starting point for our algebraic classification of Calabi-Yau spaces has been the construc-

tion of ‘reflexive’ weight vectors ~k, whose components specify complex quasihomogeneous

projective spaces CP n(k1, k2, ..., kn+1). These have (n + 1) quasihomogeneous coordinates



x1, ..., xn+1, which are subject to the following identification:

(x1, . . . , xn+1) ∼ (λk1 · x1, . . . , λ
kn+1 · xn+1). (1)

A general quasihomogeneous polynomial of degree [d] is a linear combination

℘ =
∑
~µα

c~µαx~µα (2)

of monomials x~µα = xµ1α
1 xµ2α

2 ...x
µ(n+1)α

n+1 with the condition:

~µα · ~k = [d]. (3)

A d-dimensional Calabi-Yau space Xd can be given by the locus of zeroes of a transversal

quasihomogeneous polynomial ℘ of degree deg(℘) = [d] : [d] =
∑n+1

j=1 kj in such a complex

projective space CP n(~k) ≡ CP n(k1, ..., kn+1) [3]:

X ≡ X(n−1)(k) ≡ {~x = (x1, ..., xn+1) ∈ CP n(k)|℘(~x) = 0}. (4)

This algebraic projective variety is irreducible if and only if its polynomial ℘ is irreducible.

A hypersurface will be smooth for almost all choices of polynomials. To obtain Calabi-

Yau d-folds, one should choose reflexive weight vectors (RWVs) related to reflexive Batyrev

polyhedra [12]. Other examples of compact Calabi-Yau manifolds can be obtained as the

complete intersections (CICY) of such quasihomogeneous polynomial constraints:

X
(n−r)
CICY = {~x = (x1, . . . xn+1) ∈ CP n |℘1(~x) = . . . = ℘r(~x) = 0}, (5)

where each polynomial ℘i is determined by some extended weight vector ~ki, i = 1, . . . , r,

where r is the arity

These RWVs that specify the polynomials ℘i may be classified using the natural exten-

sions of lower-dimensional vectors and their combinations via binary, ternary, etc., operations

ωr, as illustrated in Fig. 1. The Universal Calabi-Yau Algebra (UCYA) structure of reflex-

ive weight vectors (RWVs) in different dimensions depends on two integer parameters: the

dimension n of the RWVs, and the arity r of the combination operation ωr.

A useful technique for constructing Calabi-Yau spaces in any number of dimensions is to

visualize the various possible monomials (xµ1
1 xµ2

2 ...xµn+1
n )α as points mα = (µ1, ..., µn+1)α in
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Figure 1: The arity-dimension plane for complex manifolds with SU(n) holonomy, showing
the numbers of eldest vectors/chains obtained by normal extensions of RWVs, including
complete results for CY3 and lower-dimensional spaces, and partial results for CY4 and CY5

spaces.

the Zn+1 integer lattice of an n-dimensional polyhedron 1. This feature enabled us to intro-

duce a complementary algebraic approach to the construction of Calabi-Yau spaces, based

on the construction of suitable monomials ~µ obeying the ‘duality’ condition: ~k ·~µα = d. This

construction supplements the previous geometrical method related to Batyrev polyhedra,

and enables one to calculate the numbers of eldest vectors, and hence chains, in arbitrary

dimensions. We have verified explicitly that the eldest vectors found in the two different

ways agree in several instances for both CY3 and CY4 spaces [10], providing increased confi-

dence in our results. The study of the Calabi-Yau equations and the associated hypersurfaces

via the remarkable composite properties of invariant monomials (IMs) provides an algebraic

alternative to reflexive polyhedron techniques.

Central rôles are played in this approach by composite lower-dimensional structures

1Using this technique, Batyrev [12] demonstrated by explicit construction how to associate a mirror
polyhedron to each Calabi-Yau space. This approach also established in a very elegant way the corresponding
mirror duality among Calabi-Yau spaces, in which CICY spaces play an essential role.



within CY d-folds, which can be seen by the algebraically dual ways of expansions using

weight vectors ~k and IMs. By analogy with the Galois normal extension of fields, we term

the first way of expanding weight vectors a normal extension, and the dual decomposition

in terms of IMs we call the Diophantine expansion. These two expansion techniques are

consistently combined in our algebraic approach, whose composition rules exhibit explic-

itly the internal structure of the Calabi-Yau algebra. Our method is closely connected to

the well-known Cartan method for constructing Lie algebras, and reveals various structural

relationships between the sets of Calabi-Yau spaces of different dimensions. We interpret

our approach as revealing a ‘Universal Calabi-Yau Algebra’ [11] for the following reasons:

‘Universal’ because it may, in principle, be used to generate all Calabi-Yau manifolds of any

dimension with all possible substructures, and ‘Algebra’ because it is based on a sequence

of binary and higher n-ary operations on weight vectors and monomials.

This Universal Calabi-Yau Algebra (UCYA) acts upon the set of reflexive weight vectors

in all dimensions, An ≡ {RWV(n)}, and the corresponding set of invariant monomials,

{IM(n)}, which is ‘dual’ to An in the sense of (3). The IMs are the minimal set of monomials

determining the eldest vector and its chain, and thence the full list of weight vectors in the

corresponding chain. According to their degrees a = 2, 3, 4, ... we term them conics, cubics,

etc.. The structure of each sloping line in the dimension-arity plane is determined by the

corresponding set of IMs, e.g., the first Ar line is determined by the unit monomials En,

the second by conics and linear monomials, the third line by cubics and quartics, taking

into account also conics, etc.. The number of IMs is much less the full set of monomials

~mα : 1 ≤ α ≤ αmax that determine the Calabi-Yau equation. To construct them, we can

start from the unit IM in some dimension n and then, via a Diophantine expansion, generate

related conic IMs, cubic IMs, quartic IMs, etc.. This process may then be continued by

studying in turn the Diophantine expansions of conic IMs, of cubic IMs, etc..

We note in addition that the algebraic-geometry realization [3, 13] of Coxeter-Dynkin

diagrams provides a general characterization of the possible structures in singular limits

of Calabi-Yau hypersurfaces, which are associated with possible gauge groups. Thus, a

deeper understanding of the origins of gauge invariance provides an additional motivation

for studying string vacua via our unification of the complex geometry of d = 1 elliptic



curves, complex tori, K3 manifolds, CY3, CY4, etc. This point is illustrated in Figs. 1,

where the points on the the first three sloping lines, labelled Ar (red), Dr (green) and E

(blue), correspond to those d-folds that are characterized by the ‘maximal’ quotient A, D, E

singularities, respectively 2. This characterization of the types of singularities is directly

connected to the degrees of the associated monomials - linear, conics, cubics, quartics, etc.,

that appear along the corresponding sloping lines.

In summary: the UCYA provides a two-parameter classification of CYd spaces in terms

of arity r and dimension n, which is based on the following ingredients:

• Universal composition rules,

• Normal expansions and Diophantine decompositions,

• Mirror symmetry,

• Singularities and their links with Cartan-Lie algebras.

We have shown that this algebraic approach leads us to a natural formalism for a unified

description of complex geometry in all dimensions, including K3 spaces and Calabi-Yau

d-folds for any d [8, 10].

As an example of the extension procedure for RWVs, as applied to K3 manifolds, we

classified [8] the 95 different possible weight vectors ~k in 22 binary chains generated by

pairs of extended vectors, which included 90 of the total, and 4 ternary chains generated by

triplets of extended vectors, which yielded 91 weight vectors, of which 4 were not included

in the binary chains. The one remaining K3 weight vector was found in a quaternary

chain [8]. This algebraic construction provides a convenient way of generating all the K3

weight vectors, and arranging them in chains of related vectors whose overlaps yield further

indirect relationships.

2To be more precise, the D line includes also A-type singularities, and the E line includes also D-type
and A-type singularities.



3 The Classification and Enumeration of Fibrations

We now show how our technique for building higher-dimensional Calabi-Yau spaces system-

atically out of lower-dimensional ones enables us also to enumerate explicitly their fibrations.

As examples, we showed previously [8, 9, 10] how our construction reveals elliptic and K3

fibrations of CY3 manifold 3. We now present some further results derived via the new

description of CYd spaces based on the structures of the set of invariant monomials (IMs).

Recurrence relations for conic, cubic and quartic monomials give us the formulae for the

numbers of IMs and hence fibrations in arbitrary dimensions, leading us to a complete so-

lution for the fibrations of CYd spaces along the Dr- and Er-lines in Fig. 1. These results

confirm that, in the framework of the UCYA, the Calabi-Yau ‘genome’ can in principle be

solved completely. As we explain in more detail below, the IMs determine completely the

fibration structures of the 22 K3 chains mentioned earlier, as shown in Fig. 2:

{IM}4 7→
(
1 · {4}∆

)
+

(
2 · {10}∆

)

+
(
2 · {5}∆ + 1 · {5}2

)

+
(
4 · {9}∆ + 2 · {9}2

)

+
(
7 · {7}∆ + 1 · {7}2

)

+
(
1 · {6}2

)
+

(
1 · {8}2

)

7→ {22}, (6)

where we label planar sections through Batyrev polyhedra via the number of points they

contain and their geometric shapes: {N}∆,2, etc.. This expansion in terms of fibration struc-

tures for K3 spaces may be extended to more general CYd spaces, via recurrence relations.

Each of the terms {10, 4, ...}∆,2,... in the expansion has its own recurrence relation, of which

we give below several examples, namely those indicated in bold script above: 2 · {10}∆, etc.,

providing complete results in any number of dimensions for the numbers of CYd spaces with

3Our approach may also be used to obtain the projective weight vector structure of a mirror manifold,
starting from those of a given Calabi-Yau manifold.



these particular fibrations. A similar recurrence formula could in principle be derived for

any analogous fibration.

In the five-dimensional case corresponding to CY3 spaces, we have derived the types and

numbers of IMs which determine the structures of the full 259 (161 irreducible) chains, which

are similar to those for the K3 case above:

{IM}5 7→
(
9 · {4}∆ + 4 · {10}∆

)

+
(
16 · {5}∆ + 5 · {5}2 + 1 · {5}2′

)

+
(
11 · {9}∆ + 5 · {9}2 + 1 · {9}2′

)

+
(
28 · {7}∆ + 7 · {7}2 + 1 · {7}Quint

)

+
(
8 · {6}2 + 1 · {6}Quint

)

+
(
6 · {8}2 + 1 · {8}Quint

)

7→ {161} (7)

In the six-dimensional case corresponding to CY4 spaces, out of the 5,607 6-dimensional

4-vector chains, just 2,111 are independent. We find the following classification of their

fibrations:

{IM}6 7→
(
37 · {4}∆ + 7 · {10}∆

)

+
(
66 · {5}∆ + 27 · {5}2 + 6 · {5}2′

)

+
(
24 · {9}∆ + 11 · {9}2 + 5 · {9}2′

)

+
(
84 · {7}∆ + 28 · {7}2 + 5 · {7}Quint + 1 · {7}Sixt

)

+
(
36 · {6}2 + 5 · {6}Quint

)

+
(
21 · {8}2 + 5 · {8}Quint

)

7→ {2111}. (8)

Similar expressions can be derived for any desired dimension.
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Figure 2: Lattice illustrating recurrence relations for the numbers of conic, cubic and quartic
monomials.

Illustrating the derivation, we recall that the first Ar line in Fig. 1 is characterized by

the unit monomials En = (1, ..., ). The CYd spaces along the second Dr line with arity

r = (n − 1) have ‘almost trivial’ substructures, i.e., ‘circles’, whose reflexive polyhedra are

linear. These may be classified and enumerated by Diophantine expansions of the unit

monomials En = (1, ..., 1)n in terms of pairs of conics Ci(n) and Cj(n), which should satisfy

the following Diophantine property:

1

2
(Ci(n) + Cj(n)) = En, (9)

where the index n notes the dimension being considered. This Diophantine expansion yields

the following numbers of possible different types of conic monomials in any dimension n,

Nconics =
(n)(n− 1)

2
, (10)

as may easily be shown by induction. As we discuss later, the structures of the CYd spaces

on the next third Er line are correspondingly determined by Diophantine expansions in

terms of cubic and quartic IMs, either directly: (P1 + P2 + P3)/3 = En, or in two steps:

(Qj1 + Qj2)/2 = Cj where ~kext ·Qa = d and ~kextCj = d.



In order to enumerate the IMs and the corresponding chains of Calabi-Yau spaces, which

are given by suitable pairs (9) of conics, one solves the following Diophantine equations:

~ki,ext · C1(n) = ~ki,ext · En = d(~ki,ext). (11)

To give sense to these equations and, consequently, to evaluate the finite numbers of chains

and their eldest vectors in the case of arity r = (n−1), we first recall that, in the UCYA, the

points on this line in the arity-dimension plane are determined by n-dimensional extensions

of the two eldest vectors ~k1 = (1) and ~k2 = (1, 1). This means that the possible values

of d(~ki(ex)) in these equations are only 1 and 2, whereas the components of the extended

vectors can only be 0 or 1. Due our algebra, this second sloping line is determined also only

by extensions of the weight vectors (1) and (1,1), so their components can include only one

or two units. It is then simple to verify by induction the following recurrence formula for

the numbers of chains along the second diagonal line in the arity-dimension plane:

Nchains = k · (k + 1), if n = (2k + 1)

Nchains = k2, if n = (2k).

(12)

Thus, along the line r = (n− 1), the numbers of the eldest vectors and chains in dimensions

n = 2, 3, 4, ... are the following: 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90,

100, 110, 121, 132, 144, ....

Extending our previous approach to the third line in Fig. 1, the first step is to enumerate

the cubic and quartic monomials, from which we can find all the IMs along this Er line. The

appearance of cubic monomials is connected with the following new Diophantine condition

for the expansion of the unit monomials En of the Ar line:

En 7→ {P1, P2, P3|1
3
(P1 + P2 + P3) = En}. (13)

However, the set of appropriate cubic monomials is somewhat more restricted. Similarly,

the appearance of quartic monomials is connected with the possible Diophantine expansion

of the conic monomials Ci(n) of the second Dr line:

Ci(n) 7→ {P1, P2|1
2
(P1 + P2) = Ci(n)}. (14)



Again, there are some further restrictions on the list of possible quartic monomials, which

we do not discuss here.

As indicated in Fig. 2, there are recurrence formulae for the numbers of monomials

in any dimension, which are obvious for the leading (red and green) lines in the arity-

dimension plane. The resulting expressions for the numbers of cubic and quartic monomials

are, respectively:

Ncubics =
1

6
(n− 2)(n− 1)(n + 3)

Nquartics =
1

24
(n− 2)(n− 1)(n)(n + 5)

(15)

There are remarkable links between the numbers of conics, cubics and quartics. For example,

to obtain the number of quartics in dimension n, one should sum over all the cubics in

dimensions 3, 4, ..., n, i.e., N
(n)
Quart =

∑i=n
i=3N

(i)
Cub. Thus, as seen in Fig. 2, the number 105 of

quartic monomials in the septic Calabi-Yau case can be represented as follows: 2dim=3 +

7dim=4 + 16dim=5 + 30dim=6 + 50dim=7.

Based on Fig. 2, one can convince oneself that there also exist n-dimensional recurrence

formulae for the numbers of IMs along other diagonal lines in any dimension, as we have

found for the first two lines on the arity-dimension plot in Fig. 1. However, the situation

can become complicated, because, in the construction of the cubic and quartic IMs, one

must also take into account conic and conic + cubic monomials, respectively. In the case

of Calabi-Yau spaces with Weierstrass fibres, it is also important to know the list of sextic

monomials, which is given by the following recurrence formula:

Cn−3
n+2 =

(n + 2)!

(n− 3)!5!
, (16)

where n ≥ 3 is the dimension of the weight-vector space. Via these sextic monomials and

three- and four-fold Diophantine decompositions of the unit vector En, we then obtain the

following expression for the number of Weierstrass IMs, {3} and {4}:

NW (n) = N{7}∆(n) = Cn−3
n+3 =

(n + 3)!

(6!)(n− 3)!
, (17)

valid for all dimensions.



Similarly, one can find a recurrence relation for {IM} = {9}∆, which is constructed from

two quartic monomials, one conic and En. In this case the difference of the two quartic

monomials should be divisible by four. Taking into account all possible quartics, after some

effort, one can find the following formula for the number of these IMs:

N{9}∆(n) =
1

3
· (n− 2)(n2 − 4n + 6). (18)

This expression gives the following numbers: 1, 4, 11, 24, 45, 76, 119, 176, 249, ... for n =

3, 4, 5, 6, 7, 8, 9, 10, 11, .., respectively. We find analogously the recurrence relation

N{10}∆(n) = N{10}∆(n− 1) + n(3), (19)

where n(3) denotes the number of the ways of decomposing n into three positive integers.

This way of getting the recurrence formula for Calabi-Yau spaces with elliptic fibres

{10}∆ can be extended to the cases of CYd spaces with K3 fibres, such as those described

by ~k4 = (1, 1, 1, 1)[4] whose algebraic equation includes 35 monomials. The IM 4 for this K3

space contains the four quartic monomials P1, P2, P3, P4 obeying the Diophantine equation:

(P1+P2+P3+P4)/4 = E4. These monomials have in addition one very important condition:

Pi−Pj should be divisible by 4 for each choice of i, j = 1, 2, 3, 4, i 6= j. The types of different

n-dimensional IM4, describing the CYd : n = d + 2 ≥ 4 spaces with such {35}∆ fibres are

constructed only from the numbers 4 and 0, and possibly the unit. Similarly to the case

of the third Er sloping line, the recurrence formulae for these IMs is determined by the

expansions of positive integer numbers in terms of four positive integers. Indeed, for each

slope line there is a recurrence formula of the type

N...∆(n) = N...∆(n− 1) + n(p), (20)

where p is the number of the sloping line, and N...∆(nmin) = 2 : nmin ≥ 3. The numbers of

many other desired IMs can be established in a similar way.

We give finally the example of CYd spaces on the fourth (K3) line with an inter-

section manifold determined by ~k = (1, 1, 4, 6)[12], corresponding to such a fibre in the

mirror manifold. All these CYd spaces can be constructed by Diophantine expansions of

unit monomials En = (1, ..., 1) → {P1, P2, P3, P4|1/4(P1 + P2 + P3 + P4) = En}, where



n = d + 2. They can also be obtained by Diophantine expansions of conic monomials

C2 = (2, 2, ..., 2, 0) appearing along the second sloping line, together with C1 = (0, ..., 0, 2):

C2 → {P1, P2, P3|1/3(P1 + P2 + P3) = C2}. Finally, these CYd spaces can also be ob-

tained by Diophantine expansions of the cubic or quartic monomials of the third Er line:

(Cub) → {P1, P2|1/2(P1 +P2) = (Cub)}. The lists of such CYd can be determined in a simi-

lar way to the list of CYd spaces with Weierstrass fibres, with the difference that, instead of

sextic monomials, we consider IMs of twelfth degree in any fixed variable. The corresponding

formula for the number of CYd spaces with (1, 1, 4, 6)[12] intersections is:

N{39}∆(n) = Cn−4
n+3 =

(n + 3)!

(7!)(n− 4)!
, (21)

where n ≥ 5 and the index 39 corresponds to the total number of monomials in the inter-

section.

4 Conclusions and Prospects

In previous papers [8, 9, 10], we have described two aspects of a Universal Calabi-Yau Algebra

that enables one in principle to classify and enumerate Calabi-Yau spaces and their fibrations

in any number of dimensions. One aspect of this algebraic approach is the normal extension

of reflective weight vectors to higher dimensions [8, 9], and the other is the Diophantine

expansion of invariant monomials, which was first discussed in [10], and has been further

developed in this paper. As discussed here, this invariant-monomial approach enables one

to enumerate systematically the numbers of interesting fibrations of Calabi-Yau manifolds

in arbitrary dimensions. The same approach could be adapted to discuss in a similar way

manifolds with SO(n) holonomy, a topic extending beyond the scope of this paper.

We close by noting that the basic ideas of the Universal Calabi-Yau Algebra can be

accommodated within the general theory of operads [14]. We leave this and the relation of

our work to generalizations of algebraic concepts for a future discussion [15].
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