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Abstract

Using a very minimal set of theoretical assumptions we derive a lower limit on the LSP mass
in the MSSM. We only require that the LSP be the lightest neutralino, that it be responsible
for the observed relic density and that the MSSM spectrum respect the LEP2 limits. We
explicitly do not require any further knowledge about the MSSM spectrum or the mechanism
of supersymmetry breaking. Under these assumptions we determine a firm lower limit on the
neutralino LSP mass of18 GeV. We estimate the effect of improved limits on the cold dark
matter relic density as well as the effects of improved LEP2-type limits from a first stage of
TESLA on the allowed range of neutralino LSP masses.

I. INTRODUCTION

One of the most puzzling experimental observations in astrophysics has for a long time been the dom-
inance of the invisible cold dark matter in the universe. Experiments measuring the cosmic microwave
background [1], high red-shift supernovae [2], galactic clusters and galactic rotation curves [3] have found
that the matter density of the universe isΩM ' 0.3–0.4. In contrast, constraints from big-bang nucleosyn-
thesis indicate that the baryonic matter density must be well below this number [4]. Last but but not least,
the observed density of luminous matter is very small,ΩL < 0.01 [5]. Therefore, the vast majority of the
mass in the universe is dark. In addition, cosmic microwave background studies and large scale structure
formation requires that the majority of the dark matter be cold (non-relativistic) [1,6].

Starting from a completely different set of experiments and looking at collider-oriented high energy
physics, the challenge for the next generation of experiments is to understand how electroweak symmetry
is broken and masses are generated. Electroweak precision studies [7] clearly point into the direction of
spontaneous electroweak symmetry breaking — a mechanism which creates masses for fermions and gauge
bosons but which also automatically yields a scalar Higgs boson. Furthermore, precision experiments prefer
a light Higgs boson with a mass below∼ 250 GeV. Unfortunately, the mass of a light Higgs boson in the
Standard Model is not stable in perturbation theory, but this mass hierarchy problem can be naturally solved
by adding supersymmetry to the gauge symmetries on which the Standard Model is based. We emphasize
that supersymmetry does not accidentally cancel the divergences in the Higgs boson mass nor does it have
a complicated array of mechanisms to get rid of them. The hierarchy problem is solved by the most basic
idea of a supersymmetry between fermionic and bosonic fields [8].
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The most general supersymmetric Lagrangean, however, induces flavor-changing neutral interactions
which are experimentally very well constrained [9]. The simplest way to avoid these constraints is an exact
or approximateR symmetry which translates into the conservation of a supersymmetric spectrum quantum
number [10]. Although being inspired by flavor physics constraints, thisR symmetry has a huge impact
on astrophysics: it leads to the existence of a stable lightest supersymmetric particle (LSP). One possible
experimental signature of LSPs with masses of the order of the weak scale could be the measured amount of
cold dark matter. Which MSSM particle the LSP is depends on the model parameters. Again there might be
other theories with a discrete symmetry which for that very reason lead to cold dark matter [11]. However,
in the MSSM the existence of the LSP is not at all ad-hoc but the natural consequence of flavor physics
constraints.

II. SUPERSYMMETRIC DARK MATTER

If supersymmetry is to provide us with a suitable dark matter candidate, we can say some things about
the nature of the LSP. First, it must be colorless and neutral to avoid observation [12]. Although it may
be possible for a colored or charged particle to form bound states with Standard Model particles, searches
for exotic isotopes have ruled out exotic charged bound states over a large mass range [13]. Neutral exotic
bound states, consisting of squarks or gluons and Standard Model particles, could possibly evade this type
of detection, but would also need to be very heavy or be carefully designed to evade collider searches. On
the other hand these collider searches usually assume that these strongly interacting superpartners decay to
a weakly interacting LSP [14,15].

A second class of constraints on a SUSY dark matter candidate comes from the limits placed by direct
elastic scattering experiments. Sneutrinos with relatively large elastic scattering cross sections can be probed
by these experiments. By now, all of sneutrino LSP parameter space has been ruled out by direct and indirect
searches [16].

This leaves the lightest neutralino as the neutral and colorless SUSY dark matter candidate [17]. Gener-
ally, it has a small enough elastic scattering cross section to be missed by experimental searches. Moreover,
the mass and annihilation cross section for a neutralino LSP lie naturally in a region which yields a thermal
dark matter relic density in agreement with observation. In these LSP annihilation processes light superpart-
ners, such as scalar tau leptons, play an important role ast channel propagators. We calculate the neutralino
LSP relic density using the full cross section, including all resonances and thresholds, and solving the Boltz-
mann equation numerically [18,19]. The issue of neutralino co-annihilation with other light superpartners
will be discussed in detail later in this letter.

III. THEORETICAL ASSUMPTIONS

Of all supersymmetric parameters, the mass difference between the LSP and heavier MSSM states has
a particularly crucial impact on collider searches at hadron colliders as well as at TESLA. The question we
attempt to answer in this paper is straightforward: how light can the LSP be assuming nothing about the
unknown SUSY breaking mechanism?

A huge number of constraints on the MSSM spectrum have been accumulated over the last years. Using
these constraints, observables like the light Higgs boson mass, the LEP limits on chargino and slepton
masses, the squark and gluino mass limits from the Tevatron and flavor physics constraints like theb →
sγ rate can be translated into limits on the LSP mass. However, all of these links rely on theoretical
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assumptions, usually on the assumption of unified Majorana fermion or scalar masses at some GUT scale,
as it is suggested by the gauge coupling unification [20,21]. A very instructive discussion of these issues can
be found, for example, in Ref. [22]. More recently, some effort has been put into the effect which breaking
the weak gaugino mass and the gluino mass unification can have on the detection of supersymmetric dark
matter [23]. Speculative relations between MSSM parameters can for example stem from the attempt to
link features of an unknown underlying string theory to the current experimental results [24]. Top-down
approaches to the MSSM spectrum can only be a first step to understand the interplay between different
assumptions and observables. For example the effect of non-universal Higgs masses should be and has
been explored in detail [25]. A preliminary scan over the supersymmetric parameter space including non-
universal gaugino masses can be found in Ref. [26], and a more complete analysis seems to produce similar
results to the ones we will show in this letter [28]. In general less model-dependent analyses become
increasingly promising the more hard data becomes available [22].

In the setup of our analysiswe try to minimize the effects of MSSM model building. Instead we start
from a completely general non-unified MSSM spectrum only assumingR parity, since withoutR parity the
LSP as a cold dark matter candidate ceases to exist. The LSP we assume to be the lightest neutralinoχ̃0

1. On
top of that we only assume a very minimal set of general LEP2 limits for charginos, sleptons and sneutrinos,
and the measured relic density0.05 < Ωχh2 < 0.3. We note, however, that the assumption of a general
LEP2 mass limit implicitly assumes anSU(2) relation between the mass of the left handed slepton and
the sneutrino in each generation. We do not consider the possible effects of complex soft supersymmetry
breaking terms [27].

IV. EXPERIMENTAL LIMITS

The present density of dark matter has been measured to beΩCDMh2 = 0.12± 0.04 [29]. This result is
the combination of data from measurements of the cosmic microwave background, type Ia supernova red-
shifts, 2dFGRS and SDSS galaxy red-shifts and data from the Hubble Space Telescope. In order to provide
a suitable dark matter candidate, a set of SUSY parameters must yield an LSP with a relic density similar
to these observations. We will, however, consider models in which somewhat larger or smaller densities
(0.05 < ΩCDMh2 < 0.30) are produced, acknowledging the possibility that one or more of the pieces of the
contributing cosmological evidence is not fully understood theoretically [30].

Since in this letter we want to determine an as general as possible limit on the neutralino LSP mass, we
limit ourselves to a few experimental results which have turned out to be particularly hard to circumvent.
The single most limiting collider result is probably the LEP2 search for supersymmetric particles such
as charginos and sleptons [31,32]. It would be far beyond the scope of this letter to discuss in detail all
LEP2 limits. Instead we require all scalar leptons and charginos to be heavier than103 GeV. For particles
which decay to leptons and the neutralino LSP this is a direct experimental bound, while for sneutrinos in
most cases it requires a very basicSU(2) symmetry between the supersymmetry breaking masses of the
left handed slepton and the sneutrino of one lepton flavor. The effect of slightly reduced mass limits (for
example from background effects at LEP which might push the mass limits below the kinematic boundary)
will be discussed later and the numerical impact can easily be determined. Specific properties of the MSSM
spectrum are claimed to have significant effects on the mass limits and we discuss them in greater detail in
Section VI. Generally, the LEP2 limits become even harder to circumvent for a very light neutralino LSP
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which is what we require in the following analysis1.
Since the question how light the LSP can actually be does not directly depend on the squark and gluino

masses, we decouple these particles and avoid their, in principle, very powerful mass limits [14,15]. This
choice of heavy squark masses also means that stop–neutralino co-annihilation can be neglected in our
analysis [33]. We also decouple the charged Higgs boson and essentially avoid theb → sγ constraints
(which we still check for all our parameter points) [34,35]. Generally, these additional parameters will not
have a major direct impact on the minimum LSP mass in a general non-unified MSSM. However it has
been shown that the impact through further theoretical assumptions on the MSSM spectrum can be very
significant, in particular once the mass spectrum includes mass degeneracies.

For light neutralinos, in particular, the limit on the invisibleZ decay width can become important.
We require thatZ decays to neutralino LSPs contribute less than one standard deviation to the measured
neutrino contribution, which agrees with the Standard Model prediction,i.e.ΓZ→χχ < 4.2 MeV. This
invisible width limit has a major impact on another additional LEP2 search channel: the single photon
production. The Standard Model background process ise+e− → Z(∗) → νν with an additional photon
radiated off the initial state. The total cross section for the production ofZγ at LEP2 is less than31 pb
for a minimum1 GeV transverse momentum cut on the photon. The supersymmetric signal process is the
production of two lightest neutralinos and an additional photon, which can be radiated off the incoming
electrons or thet channel selectron. For light Higgsinos, the dominating process is againZγ production,
but with a decay of theZ to neutralinos. Hence the upper limit on the invisibleZ decay width translates into
a suppression factor,S/B < 8.10−3, which does not allow for a significant signal at LEP2. Any additional
initial state radiation tends to lead to a far forward photon and we have checked that it will not increase this
approximate result by more than a factor of two. The situation is different for light gauginos, in which case
the dominating diagram is photon radiation off thet channel selectron. We checked typical parameter points
from our analysis assuming that the selectron be heavier than103 GeV and we find cross sections below
0.13 pb. This translates intoS/B < 0.02 or S/

√
B < 0.9 before cuts and for irreducible backgrounds only.

We therefore conclude that the single photon channel does not pose any obvious limits on the parameter
points we find in our analysis. The bottom line that there are no experimental limits on the neutraqlino
LSP mass without any additional constraints is in agreement with a more complete analysis presented in the
context of teh KARMEN time anomaly [36].

As described in Section II and as we will also see in our analysis later, the limit on the neutralino LSP
mass does only mildly depend on the selectron mass value. In contrast a large selectron mass alone could
lead to a decoupling of the single photon signature. We emphasize that in our analysis we do not decouple
the selectrons to respect the current experimental limits on single photon production. All our parameter
points even with a low selectron mass automatically obey the LEP2 limits.
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Figure 1. The MSSM data points with the neutralino LSP mass on one axis. The other axis’ in the four panels
show the lightest slepton mass, the bino mass parameterM1, the Higgsino mass parameterµ and the contribution of
the decayZ → χ̃0

1χ̃
0
1 to the invisibleZ decay width. The color coding corresponds to the light chargino mass with

only the black points respectingmχ̃+
1

> 103 GeV. The dashed lines are the assumed experimental limits. Note that
in contrast to the black points, not all of the green (grey) points with too small chargino masses are included in the
frames. Moreover the black points might hide green (grey) points below them.

V. SUPERSYMMETRIC PARAMETER SPACE

To probe the supersymmetric parameter space, we use a Monte Carlo scan assuming that squarks,
gluinos and heavy Higgs bosons are decoupled with masses of1 TeV. We scan over the relevant neu-
tralino mass parametersM2 = 50 to 500 GeV, |µ| = 50 to 500 GeV andM1 = 10 to 40 GeV. Moreover
we scan over a slepton mass parameter from100 GeV to 250 GeV. As we will argue later in this section
the most relevant parameter is the lightest slepton mass,i.e. the mass of the lighter staũτ1. We do scan over
tanβ but we do not find any dependence of the neutralino LSP mass ontan β after imposing all other con-
straints. Its impact on the light stau mass is washed out by the simultaneous scan overµ. Negative values
of M1 which are often ignored and which, for example, decouple neutralino mediated decays of sleptons or
squarks [37], have no impact on our analysis. A second run was conducted with similar parameter ranges,
but allowingM1 as large as60 GeV and the common slepton mass parameter as large as400 GeV. This
second set is used in Fig. 3. Last but not least, for all plots we add∼ 100 data points with slepton and
chargino masses right at the LEP2 limits and very low neutralino LSP masses to model the envelope around

1The reach of the scalar tau search at LEP should for example improve in a light LSP regime: for the decay
τ̃1τ̃

∗
1 → τ τ̄ + E| two light LSPs make it easier to distinguish the2χ̃0

14ν missing transverse momentum from the
4ν background. If we compare the signal to the chargino searchesχ̃+

1 χ̃−1 → ``′ + E| we see that they are identical.
The only complication would be the acceptance for low values ofE| which the light LSP will help to avoid.
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the lowest allowed neutralino LSP masses. We emphasize that in all plotted parameter points, the strongly
interacting MSSM partners are assumed to be heavy and all non-tau sleptons respect the LEP2 mass limit.

All points in the supersymmetric parameter space allowed by the relic densityΩχh2 = 0.05 to 0.3 are
given in Fig. 1. The green (grey) points have a too small light chargino massmχ̃+

1
< 103 GeV while the

black points obey the LEP2 limitmχ̃+
1

> 103 GeV. In the upper left panel of Fig. 1, we see the correlation
between the light chargino and the lightest slepton mass: once the neutralino LSP becomes very light the
relic density increases rapidly beyond the allowed limitΩχh2 < 0.3. The only way to reduce this relic
density is the annihilation of two LSPs to leptons. The dominant diagram for the annihilation of gaugino
LSPs is thet channel exchange of the lightest slepton (the lighter stau) in the processχ̃0

1χ̃
0
1 → ττ . A too

largeτ̃1 mass will immediately lead to an over-closing of the universe. The effect of the stau mass limit is
shown in Fig. 1. In our analysis, we generally assume that the lighter stau be the lightest scalar lepton. All
arguments, however, translate trivially to any other lightest slepton case. The black points which respect the
chargino mass limit clearly prefer a light stau, which is experimentally ruled out. Balancing the limit on the
relic density with the stau mass limit gives a minimum LSP mass ofmχ̃0

1

<∼ 18 GeV. For a fixed chargino
mass limit the effect of a relaxed stau mass limit can also be read off this figure: for example a reduced mass
limit mτ̃1 > 80 GeV already allows an LSP mass of∼ 10 GeV.

The only way to avoid the correlation described above would be a Higgsino LSP which can annihilate
through ans channelZ boson. The next two panels however show how it is the bino mass parameterM1

which drives the LSP mass to low values. In the third panel of Fig. 1, we do see two tails of light LSP
masses at small|µ| values, which we deliberately limit to|µ| > 50 GeV. The reason is that these point
represent light Higgsino dark matter and are firmly ruled out by the chargino mass limit. The lower right
panel of Fig. 1 shows how the chargino mass works together with the invisibleZ width measurement: all
black parameter points with sufficiently heavy charginos render a gaugino LSP which does not couple to the
Z boson and, therefore, automatically avoids the invisibleZ width bound. Once we move towards a lighter
Higgsino LSP, the invisibleZ decay limit is immediately violated. This shows how the LEP2 chargino mass
limit, as well as the invisibleZ width measurement, firmly rule out light dark matter with a non-negligible
Higgsino content [38].

To illustrate the interplay between the chargino and the stau mass limits, we once more print all the points
in Fig. 1, but with a different color coding: in Fig. 2 the black points obey the mass limitmτ̃1 > 103 GeV,
all other points are printed in green (grey). As described above, a heavier stau leads to an over-closed
universe, unless the LSP is a Higgsino. The behavior which can be seen in the left panel of Fig. 2 reflects
the lower limit |µ| > 50 GeV in our scan. The allowed black data points show a strong correlation of
the gaugino LSP mass and the relic density, this time for a fixed limit of the light stau mass: the allowed
relic density clearly determines the minimum LSP mass under the condition that the stau mass limit is not
violated. Again, the way to obtain a light LSP is the admixture of Higgsino content, to couple to thes
channelZ annihilation diagram. But then small LSP masses yield a small chargino mass, and in the right
panel of Fig. 2 we again see the few points which respect both LEP2 mass limits and again find a minimum
LSP massmχ̃0

1

<∼ 18 GeV. We also see how small LSP masses can be realized with very heavy chargino
massesmχ̃+

1

>∼ 300 GeV. This seems to be a slight asymmetry between the chargino mass and the scalar
tau mass dependence: since theτ̃1 mass directly enters the dominating neutralino LSP annihilation diagram,
the relation of its mass with the neutralino LSP mass is very smooth, as can be seen in the first panel of
Fig. 1. The chargino mass in contrast has to be heavier than a certain value for any given LSP mass but its
actual allowed values are not strongly correlated with the neutralino LSP mass.
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Figure 2. The MSSM data points with the neutralino LSP mass on one axis. The other axis’ in the two panels
show the LSP relic density and the lighter chargino mass. The color coding corresponds to the lighter stau mass with
only the black points respectingmτ̃1 > 103 GeV. The dashed lines are the experimental limits on the chargino mass
and a possible improved limit on the relic density. Note that in contrast to the black parameter points, not all of the
green (grey) points with too small chargino masses are included in the frames. Moreover the black points might hide
green (grey) points below them.

The only non-trivial assumption in the analysis presented above is theSU(2) relation between the left
handed slepton masses and the corresponding sneutrino mass. As always, we implicitly assume that the
lighter stau be the lightest slepton, but it is obvious from the discussion above that for very small neutralino
LSP masses, all slepton masses have to be right at the LEP limit of103 GeV. Explicitly we first check
what happens if only one lepton generation is available in the annihilation process,i.e. if, for example, the
selectrons and smuons are completely decoupled: this decoupling changes the mass limit on the neutralino
LSP from18 GeV to 25 GeV, independent of which lepton generation is available. In contrast, the decou-
pling of all sneutrinos has no significant effect on the LSP mass limit. This can be understood by comparing
the different couplings̀˜̀B̃ for left and right handed sleptons and for sneutrinos. The sneutrino coupling is
indeed suppressed. As expected from this argument, limiting the neutralino LSP annihilation to sneutrino
mediated processes only yields an increase in the mass limit from18 GeV to 27 GeV. In this sense, a slight
violation of theSU(2) symmetry between the masses in one lepton generation, which can yield slightly
lighter sneutrinos than the LEP2 mass bound of103 GeV, would not significantly change the mass limit we
obtain.

VI. CONSPIRACIES?

Going beyond the generic features described in Section V, there might be a way of avoiding the LEP
limits on charginos and sleptons: if the LSP is only very fewGeV lighter than the particle produced then
the additional final state leptons become soft and the LSP becomes slow. We briefly comment on the effect
of two possible mass degeneracies on our lower limit for the neutralino LSP mass:

First, the lighter chargino mass can be almost mass degenerate with the lightest neutralino. This leads
to additional neutralino–chargino co-annihilation as a way to circumvent the impact of the slepton mass
limits. One way to achieve this degeneracy is to have|µ| define both the lightest neutralino mass and
the light chargino mass. However, in Section V we learned that we violate the invisibleZ decay width
measurement in the case of a light Higgsino LSP. Another way this same mass degeneracy occurs is for
M2 � M1, |µ|, i.e. for a dominantly wino light chargino and lightest neutralino. Moreover, it can once
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more arise from a diagonal parameter choiceM2 = M1 � |µ|. The effects on the spectrum are identical:
the light wino-type chargino decays into slowly moving leptons or quarks and the neutralino LSP.

If a Z boson decays into two charginos which are mass degenerate with the LSP, all decay products
escape the detector unobserved and the process contributes to the invisibleZ decay width. In the limit
mχ̃+

1
� mZ and for a pure wino-type chargino we can link the partial decay width of theZ boson to the

decay width to one generation of neutrinosΓ(χ̃+
1 χ̃−1 ) ∼ 4.7 Γνν. The crucial observation is that while theZ

boson does not couple to the gaugino fraction in a pair of neutralinos, it does couple to the gaugino fraction
in a chargino pair roughly with the same strength as it couples to the Higgsino fraction. The experimental
limit on the invisible decay of aZ boson translates intoΓinv

<∼ Γνν/40. The typical finite mass correction

for a18 GeV decay product is
√

1− 4m2/m2
Z ∼ 0.9 and will not yield the required suppression by a factor

of 1/200. We can, therefore, safely assume that mass degenerate neutralinos and charginos can indeed
escape detection for continuum production but not forZ decays. Their masses have to be above half of the
Z boson mass and are not in the very light LSP regime which we are exploring.

The second type of mass degeneracy occurs between the neutralino LSP and the lighter stau. This allows
a very efficient annihilation of LSPs and prevents the universe from over-closing, even for a very light
gaugino LSP. Moreover, it allows neutralino–stau co-annihilation to reduce the relic density further [40].
As for the charginos it is not trivial to avoid theZ decay data, since the normalization of events is known,
i.e. there is a limit on invisible decays. The typical slepton partial width in the light slepton approximation
is 2(T3 − Qs2

w)2 Γνν for a left handed and2(−Qs2
w)2 Γνν for a right handed slepton. This is, again, too

large to be hidden in the error on the invisibleZ decay width. However, the stau is the lightest slepton
just because it mixes the weak eigenstates into mass eigenstates and yields a light mass eigenstateτ̃1. This
mixing can be used to decouple theτ̃1 from theZ boson, the same way that a light sbottom can avoid theZ
decay limits [37]. The tree level coupling to theZ boson vanishes for a choice of the scalar mixing angle
cos2 θ = Q/T3s

2
w which, in case of the stau, isθτ ∼ π/4. This decoupling condition does not affect the

LSP annihilation cross section and, therefore, it would be possible to have a very light neutralino and tau
slepton and get the correct amount of gaugino dark matter. The only worry is how to get one very light
tau slepton with a mass of less than18 GeV and keep the second stau heavy. Mixed pairsτ̃1τ̃2 can in that
case be produced at LEP2 even if the heavier stau has a mass of up to∼ 180 GeV. This mixed production
cross section is proportional sosin 2θτ and will not be suppressed around the decoupling point for the light
stauθτ ∼ π/4. At this point it is obvious that this kind of scenario is ruled out assuming any scalar mass
unification, involving different flavor slepton masses, Higgs masses and squark masses. Moreover, it will
have to be carefully checked that the large stau mass splitting does not violate the experimental limits on
the rho parameter.

Going back to the starting point of this section, we want to stress that the statement that an almost mass
degenerate stau-neutralino combination can escape the LEP2 trigger has to be carefully examined. Indeed
the decay products,i.e. the leptons and the neutralino LSP, will not gain any momentum from the stau or
chargino decay. However, the decaying particles,i.e. the stau or the chargino, are very light compared to
the beam energy. They themselves will move through the central detector rapidly and in turn boost their
decay products. While we are not aware of a detailed study of this part of supersymmetric parameter space
and while we did, therefore, point out possible complications in this section we very much doubt that mass
degeneracies could hide a light stau or chargino from the LEP2 experiments. To finally close this (non-
existing) loop hole should be a simple exercise for these experiments.
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Figure 3. The MSSM data points with the neutralino LSP mass on one axis. All black and green (grey) parameter
points respect the103 GeV LEP limits as well as all other limits we impose. Upper row: versus the lightest slepton
mass and versus theZ invisible decay width, like in Fig. 1. Here the color coding corresponds to the lightest chargino
mass with the black points indicatingmχ̃+

1
> 175 GeV. Lower row: versus the LSP relic density and versus the light

chargino mass, like in Fig. 2. The color now coding corresponds to the lightest slepton mass with the black points
indicatingmτ̃1 > 175 GeV.

VII. OUTLOOK

Following the detailed discussion above, we emphasize that the neutralino LSP mass limitmχ̃0
1

>∼
18 GeV is only possible because we have mass limits on charginos and all sleptons simultaneously. One of
the two alone will not constrain the general MSSM parameter space. The kind of collider which seems to be
designed to fulfill this task of multiple searches for new particles aree+e− colliders. The lead in this field
has by now been changed from LEP2 to a linear collider [41]. The latter in a first stage could for example
collect data at the top threshold. Assuming that this initial stage might not be sufficient to exploit theχ̃0

1χ̃
0
2

production channel and discover the lightest neutralino we estimate what a175 GeV limit on charginos and
sleptons would mean for the neutralino LSP mass. The results are depicted in Fig. 3. The upper row of plots
is color coded the same way as Fig. 1: only the black points respect the mass limit for the lightest chargino
mχ̃+

1
> 175 GeV. As expected the minimal possible neutralino LSP mass decreases once we enforce the

stau mass limitmτ̃1 > 175 GeV, yielding a lower limit ofmχ̃0
1

> 35 GeV. For this figure, we implicitly
assume that the light stau be the lightest slepton. A minimum mass of175 GeV, therefore, means that all
other sleptons respect this mass limit as well. The invisibleZ decay width does not have any impact on
this result. The lower row of plots in Fig. 3 is color coded just like Fig. 2: only the black points respect the
projected TESLA limit on the lightest sleptonmτ̃1 > 175 GeV.

In the left panel of the lower row in Fig. 3 we also see the change of the allowed neutralino LSP mass
e.g.if we require the relic density to be the central measured valueΩCDMh2 = 0.12 ± 0.04 [29]: no LSP
masses below∼ 30 GeV are consistent with this central value and the103 GeV LEP2 bounds. An upper
limit of Ωχh2 < 0.2 will automatically increase the lower LSP mass limit tomχ̃0

1
> 25 GeV.
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In Summarywe investigate how the LEP2 limits narrow the allowed range of the mass of a neutralino
LSP in a generalR parity conserving MSSM. These LEP2 mass limits have to be respected by all scalar
leptons including all sneutrinos and by the charginos. The only assumption we use is that the LSP be
responsible for the observed dark matter density. Under these assumptions the absolute lower limit on the
neutralino LSP mass ismχ̃0

1
> 18 GeV. The lowest values for the LSP mass require all sleptons and

the chargino to be just above the LEP2 limit of103 GeV and yield an allowed relic density at the upper
boundary ofΩχh2 ∼ 0.3.

Note added: after this paper had appeared as a preprint a similar analysis was published, which pointed
out that small neutralino LSP masses are allowed for strongly mixed gaugino–Higgsino neutralinos [42].
The annihilation of these LSPs has to mainly proceed through a light pseudoscalar Higgs bosonA in the
s channel. To not over-close the universe the pseudoscalar Higgs boson mass has to be light, sitting in an
allowed corner of the MSSM parameter space withmA ∼ 90 GeV andmh ∼ 90 GeV for the light scalar
Higgs boson mass [43]. The main constraint on this kind of models then becomes the invisibleZ decay
width and even more importantly theb → sγ. We point out that after including all constraints we do find
smaller LSP masses when fixingmA = 90 GeV and scanning over the MSSM parameter space. For a fixed
valuemA = 110 GeV there still remain a few parameter points with an allowed LSP mass between 16 and
17 GeV, while for mA

>∼ 130 GeV the LSP annihilation through thes channel pseudoscalar is not efficient
enough to impact the results described in this letter.
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