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On azimuthal spin correlations in Higgs plus jet events at LHC
Kosuke Odagiri
We consider the recent proposal that the distribution of the difference between azimuthal angles of

the two accompanying jets in gluon-fusion induced Higgs-plus-two-jet events at LHC reflects the CP of the
Higgs boson produced. We point out that the hierarchy between the Higgs boson mass and the jet transverse
energy makes this observable vulnerable to logarithmically enhanced higher-order perturbative corrections.
We present an evolution equation that describes the scale variation of the azimuthal angular correlation for
the two jets. The emission of extra partons leads to a significant suppression of the correlation. Using the
HERWIG Monte Carlo event generator, we carry out a parton-shower analysis to confirm the findings.
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Introduction
Gluon fusion via the top quark loop provides the dominant mechanism for Higgs boson production at

LHC. Recently, the analysis of the related (2 → 3) cross section was carried out at the leading order in
αS(MZ) in ref. delduca.

The proposal is to tag two extra jets, the motivation being the elucidation of the differences/similarities
between this process and the weak-boson-fusion process, which also comes accompanied with two extra jets.

After imposing cuts on the jet momenta similar to the weak-boson-fusion selection criteria, the soft-
gluon contribution is reduced and they obtain, as shownWe thank the authors of ref. delduca for their kind
permission to reproduce the figure.n fig. delducafig, a striking correlation between the azimuthal angles φ of
the two jets, one of which is now in the forward direction while the other one is in the backward direction.
Provided that the produced Higgs boson is CP-even, the distribution of the difference ∆φ of the two azimuthal
angles is peaked at ∆φ = 0, π and falls to nearly zero at ∆φ = π/2. If the Higgs boson is CP-odd, although
the result is not explicitly shown, the distribution is peaked at ∆φ = π/2 and falls to nearly zero at ∆φ =
0, π. file=phicutscomp.eps, width = 10cmThedistributionoftheazimuthalanglebetweenthetwohighestpT

jets, taken from ref. delduca. Results shown are for the top-quark induced gluon-fusion process, with mt =
175 GeV and in the limit mt →∞, and for the weak-boson-fusion process. delducafig

In this work, we would like to point out one potential pitfall which seems to have been neglected in
their study, namely that there are two scales in this problem. The higher scale is related to the Higgs boson
production. For a leading order analysis we can set it to be the Higgs boson mass for convenience. The
lower scale is related to the emission leading to the tagged jets and this is characterized by the jet transverse
momenta. Because of the presence of two scales, the predictions of calculations at a finite perturbative order
becomes sensitive to higher order corrections.

We investigate this problem by first establishing an evolution equation that describes the scale variation
of the azimuthal angular correlation coefficient. The large size of the relevant anomalous dimension implies
that there is significant, up to one order of magnitude, reduction in the size of the correlation coefficient.

Although the problem is formally due to the logarithm of the ratio of the two scales which enhance the
higher order contributions, we find that the ratio needs not be so large for the effect of extra emission to
become important.

An alternative approach to investigating this problem is by a parton-shower level Monte Carlo sim-
ulation. We formulate this problem as a (2 → 1) cross section convoluted with the leading logarithmic
parton shower using HERWIG herwig, which includes the azimuthal spin correlations by default by using
the algorithm of Collins and Knowles collins, knowles, peter.

The results of the two approaches are in good agreement.
We note that the weak-boson fusion mode is unaffected by extra emission, as the jet pT scale is the only

QCD scale present in this case.
We present the evolution equation analysis in sect. evolution and its comparison with the parton-shower

analysis in sect. partonshower. We present the conclusions in sect. conclusions.
Evolution equation analysisevolution

reproduce the figure. i
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Let us consider the evolution of a jet that is due to an initial state parton. In a Monte Carlo simulation,
this is described by the backward evolution.

At each stage of evolution, the probed parton has virtuality t, momentum fraction x, jet transverse
momentum pT according to some definition, and spin density ρ. We wish to measure the mean value of the
component of ρ = ρ‖ that is aligned with the reference direction given by pT . The correlation arises in the
first place because of the correlation, at the hard process level, between the planes of polarization of the
gluons involved in the Higgs boson production. Hence the decorrelation between the plane of polarization
of each gluon and the direction of the related tagged jet is equivalent to the suppression of the azimuthal
angular correlation between the two tagged jets.

In the following, pT and ρ are both two-component vectors. The spin density matrix ρij is given in
terms of the vector ρk by ρij = (1 + ρkσk

ij)/2. The third component of the vector ρ vanishes so long as the
nucleon is unpolarized collins, knowles. In terms of the distribution functions f(x, t, pT , ρ), we may write
the scale variation as follows: eqnarray ∂ <ρ‖>(x, t)∂t = ∂∂t

∫
f(x, t, pT , ρ)ρ‖dpT dρ

∫
f(x, t, pT , ρ)dpT dρ

The change in the distribution functions when the scale is raised from t to t + δt is given by: eqnarray
δf(x, t, pT , ρ) = δfin − δfout, deltaf

Combining the above with eqn. (mastereqn), thecontributionfromthetermδfout vanishes and we obtain:
eqnarray ∂ <ρ‖>(x, t)∂t = 1f(x, t)

∫
∂fin∂t

(
ρ‖− <ρ‖>(x, t)

)
dpT dρ

Now let us consider the case in which the direction of pT , or more generally the reference direction, is
to a good approximation determined at one scale given, for instance, by the jet transverse momentum pT j ,
and we are interested in the soft emission that depolarizes the gluon between this scale and the hard process
scale.

In this case, φ0 can be taken as constant. Integrating over φ, by symmetry, the term proportional
to n(φ) in eqn. (eqn2) vanishes, as does the φ dependent term in F (z, φ, ρ′). We then have: eqnarray
∂ <ρ‖>(x, t)∂ ln t = − ∫

dzzαS2πdρ′dp′T f(x/z, t, p′T , ρ′)f(x, t)
The pole at z → 1 of P̂ (z) cancels with the pole of f3(z). The expression of eqn. (eqn4) is the difference

between the change in the structure function f(x, t) given by the first term and the change in the spin density
<ρ‖> f(x, t) given by the second term. The two terms can be treated separately by introducing the plus pre-
scription to account for the δfout term given by eqn. (fout).Weobtain : eqnarray∂ <ρ‖>(x, t)f(x, t)∂ ln t =∫

dzzαS2πf(x/z, t) <ρ‖>(x/z, t) Cf3(z)+, eqn5
Taking the xj moments of the above to obtain Mellin transforms, we convert the expressions into:

eqnarray ∂ ˜[
<ρ‖> f

]
(j, t)∂ ln t = ˜[

<ρ‖> f
]
(j, t)

∫
dzzj−1αS2πCf3(z)+, eqn7

As stated above, eqn. (eqn4) specifies the evolution of polarization in regions where extra emission
does not alter the reference direction. For our purpose, the most interesting case is the soft/collinear gluon
emission from the gluon line in between the hard process and the jet pT scale.

For small enough x, such that j ∼ 1, the behaviour of the anomalous dimensions is controlled by the
z → 0 region. If we choose the g → gg splitting, the fact that P (z) has a pole at z → 0 where as f3(z)+
does not, indicates that a large disparity arises in the two quantities. < ρ‖ > is the ratio of < ρ‖ > f and
f , such that its running is governed by the difference of the above two anomalous dimensions. The relevant
splitting function is: equation

[
Cf3(z)− P̂ (z)

]
g→gg

= −2CA(1 − z)(1 + z2)z.
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