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Abstract

The present version of the five-turn Continuous Transfer extraction at PS machine is based
on beam slicing by means of an electrostatic septum. Recently, a novel approach has been
proposed, where the beam is split into five beamlets by means of stable islands, created
by sextupoles and octupoles, together with a proper tune variation. In this paper, the two
approaches are compared by considering their properties in terms of equivalent optical pa-
rameters, beam emittance, and emittance after filamentation in the receiving machine (SPS)
for the various slices. Analytic expressions of the relevant optical and beam parameters are
derived for the present version of the Continuous Transfer, while the same quantities are
estimated in the case of the novel approach via numerical simulations. Finally, the robust-
ness of the approach based on adiabatic capture in transverse phase space is discussed with
particular emphasis on tune ripple effects and variation of nonlinear elements strength.
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1 Introduction
In the framework of the activities to prepare the future high-intensity proton beam for the

CERN Neutrino to Gran Sasso (CNGS) Project [1], a critical review of the key processes used
to generate such a beam has been carried out [2], in view, possibly, of an upgrade beyond the
present nominal intensity value of about 3.3 × 1013 protons per PS batch.

Among other issues, efforts have been devoted to the improvement of the present ex-
traction scheme from PS to SPS, the so-called Continuous Transfer (CT). Such an extraction
mode was developed in the mid-seventies [3] with the aim of delivering a beam to the SPS five
PS turns long and with a reduced horizontal beam emittance so to overcome the SPS aperture
limitation in the vertical plane1). This approach consists in slicing the beam by means of an
electrostatic septum: with the tune set to 6.25 this method allows generating one continuous
ribbon four-turn long plus and additional slice, represented by the beam core, for a total beam
length of five PS turns. Although this extraction mode is certainly adapted to present perfor-
mance, in the event of an intensity increase, a number of potential weak points appear, such as
the intrinsic beam losses related with the underlying principle of this extraction mode, and also
the properties of phase space matching of the different slices.

In the search for an improved extraction mode, a novel approach was proposed. In the new
scenario the beam will be separated in transverse phase space by generating stable islands inside
the region where the beam sits and by slowly (adiabatically) moving them towards higher am-
plitudes. By doing this, particles may get trapped inside islands thus generating well-separated
beamlets [5, 6]. This method is potentially superior to the present one as no intercepting device
is used to split the beam, hence no particle losses should occur during the extraction process.
Furthermore, the extracted beam should better match the phase space structure.

In this paper two key issues are addressed: the properties of phase space matching, i.e.
emittance of the extracted beam, mismatch parameters, and emittance after filamentation in
the receiving machine, as well as the robustness of the novel approach against variation of the
strength of the nonlinear magnetic elements used to generate the stable islands and tune rip-
ple effects. Quantitative answers to these aspects are the necessary ingredients to evaluate and
compare the performance of the different approaches. The analysis presented in this paper rep-
resents a more detailed and complete version of the results presented in Ref. [7].

The outline of the paper is the following: in section 2 the main definitions concerning the
beam emittance, the computation of the betatron mismatch, optical parameters, and emittance
after filamentation are presented. Also, the distributions used in the analytical computations
are discussed in details. In section 3 the present CT extraction mode is analysed. Special em-
phasis is given on the phase space matching properties of the different slices (section 3.2) and
emittance blow-up at SPS injection (section 3.3). Section 4 deals with the proposed multi-turn
extraction based on island trapping: it is briefly presented (section 4.1) while the results con-
cerning the robustness of the method and the beam characteristics at extraction are presented in
details (sections 4.2 and 4.3). Finally, conclusions are drawn in section 5. Most of the analytical
computations presented in this paper are collected in the Appendixes A- D

2 Betatron Mismatch in Normalised Phase Space
2.1 Definition of Mismatch Parameters

When a beam is injected into a circular machine, it may experience emittance blow-up due
to a number of different phenomena. In this paper we will focus on the betatron mismatch [8, 9],

1) A special optics in the transfer line joining the PS and SPS allows exchanging the two transverse planes (in
particular the emittance values) [4].
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which occurs when the beam optical parameters at injection do not fit those of the circular
machine. In this case, tails may grow at the expense of the beam core, thus increasing the
overall beam emittance. Of course, such a behaviour is particularly harmful for high-intensity
beams as they usually fill completely the machine acceptance.

To quantify the betatron mismatch, it is customary to start from the statistical definition
of beam emittance ε and optical parameters ᾱ, β̄, γ̄ [10] in terms of the second order moments
of the beam distribution [11]. By using the notation (x, x′) for the physical phase space co-
ordinates, while (x̂, x̂′) represent normalised Courant-Snyder co-ordinates [10], the following
holds:

< x2 > = β̄ ε

< x x′ > = −ᾱ ε (1)

< x′2 > = γ̄ ε.

In the equations quoted above the symbol < · > stands for the average over the beam distribu-
tion of the specified variable. It is worthwhile mentioning that whenever the beam distribution is
not centred at the origin, the second order moments in Eq. (1) are the central ones, i.e. referred
to the mean value of the beam distribution. This approach is equivalent to fit an ellipse to the
phase space distribution, where the fit parameters are its surface, amplitude, and orientation.

If the nominal Twiss parameters α, β, γ, i.e. those relative to the nominal optics, are used
to transform Eq. (1) into normalised phase space via the well-known transformation rules [10]

x̂ =
x√
β

x̂′ =
α√
β

x +
√

β x′, (2)

the key relations

< x̂2 > =
β̄

β
ε

< x̂ x̂′ > =

(
α

β̄

β
− ᾱ

)
ε (3)

< x̂′2 > =

(
α2 β̄

β
− 2 α ᾱ + β γ̄

)
ε

are obtained. The value of the rms emittance can be computed by solving Eqs. (3), namely

ε =< x̂2 > < x̂′2 > − < x̂ x̂′ >2 . (4)

The meaning of the coefficients β̄/β and α β̄/β − ᾱ is clear: they measure the deviation of the
1σ contour of the beam distribution from the circular shape it should have in normalised phase
space. In case of perfect matching one would have β̄/β = 1 and α β̄/β − ᾱ = 0, implying the
trivial relation β̄ = β, ᾱ = α. Furthermore, it turns out that the emittance after filamentation,
εafter fil., i.e. when the circular symmetry has been restored in the receiving machine, is expressed
as [9]

εafter fil. = Hε, where H =
1

2


 β̄

β
+

β

β̄
+


α

√
β̄

β
− ᾱ

√
β

β̄




2
 , (5)

where ε is the initial value of the beam emittance.
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2.2 Beam Distribution for the Present CT
It is customary to assume that the transverse beam distribution is a Gaussian function,

namely

ρG(x̂, x̂′) =
1

2 π ε
e
−
x̂2 + x̂′2

2 ε , (6)

where ε is the rms beam emittance. However, the presence of long, and strictly speaking infi-
nite, tails makes some results difficult to interpret. For this reason, a second beam distribution
has been considered, a so-called quasi-parabolic distribution (see, e.g. Ref. [12] and references
therein for more details). Such a distribution does not have tails, though it is not a truncated
Gaussian. It is represented by a smooth function

ρP(x̂, x̂′, m) =




m + 1

2 π ε (m + 2)

[
1 − x̂2 + x̂′2

2 ε (m + 2)

]m

if x̂2 + x̂′2 ≤ 2 ε (m + 2),

0 if x̂2 + x̂′2 > 2 ε (m + 2).

(7)

where m is a parameter and ε the rms beam emittance. In all the computations presented in this
paper m = 5 has been used. In Fig. 1 the comparison between a Gaussian distribution ρG and a
quasi- parabolic one ρP is shown as a function of the parameter m. The difference between the
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Figure 1: Comparison between Gaussian distribution function ρG and a quasi-parabolic one ρP

(integration over the angular variable x̂′ has been performed). The difference between the two
distributions is plotted as a function of x0/

√
ε for different values of m.

two distributions is quite small and it decreases for increasing m, thus making it an ideal choice
for the study presented in this paper.

3 Present Continuous Transfer
3.1 Basic Principle

Before describing in details the computation of the beam emittance, optical parameters,
and mismatch factors for the different slices generated by the present CT, the key elements of
the extraction mode, i.e. the complex system of slow and fast bumps and the slicing obtained by
the action of an electrostatic septum when the horizontal tune is set to 6.25 is show in Fig. 2.
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Figure 2: Principle of the CT extraction from the PS machine: the extraction scheme (left), the
kicker strength as a function of time (upper left), the normalised phase space (lower right).

3.2 Analytical evaluation of emittance and beam parameters for different slices
The goal of these computations is the evaluation of the beam emittance and betatron

mismatch for the different slices of the present CT. The starting point is Eq. (3). In the following,
two cases will be considered with an increasing degree of complexity, namely (i) a single free
parameter to be used in the generation of the five slices, and (ii) four independent parameters.

3.2.1 One free parameter
It is assumed that the position of the electrostatic septum for the first slice is the only

degree of freedom of the process. This is not true in practice, but it is a useful assumption for
visualising the results. This implies that a number of artificial symmetries are generated, e.g.
the second and third slices have the same shape, hence the same emittance; the fourth slice is
symmetric with respect to the x̂′ axis, thus satisfying αβ̄4/β− ᾱ4 = 0; the fifth slice is a square,
which implies that it is perfectly matched.

The computation of the relevant quantities under study can be carried out in closed ana-
lytical form also taking into account the dependence on the electrostatic septum position. The
results are reported in Appendix B for the case of a Gaussian beam distribution (the special
functions used in the analytical computations are listed in Appendix A). It is worthwhile stress-
ing that the special form of the beam distribution (6), i.e. ρG(x̂, x̂′) = ρG(x̂) ρG(x̂′), together
with the shape of the integration domain used in the computation of β̄i/β, and αβ̄i/β − ᾱi, has
the consequence of producing < x̂ x̂′ >= 0 for all the beam slices. This artificial effect is not
generated by the quasi-parabolic distribution.

The results of the analytical computations are shown in Fig. 3 where the emittance and
the mismatch factors for the different slices are shown for both types of beam distributions as
a function of the position of the electrostatic septum at the first slice. The two beam distribu-
tions do generate rather similar results. The main discrepancy is visible in the plot of the beam
emittance for the various slices where the effect of the long tails is clearly visible. To verify
that the Gaussian tails do not introduce non-physical results, e.g. non zero limiting value for the
beam emittance, the asymptotic limit of the analytical expressions presented in Appendix B has
been computed. The results are reported in Appendix D, based on the definitions presented in
Appendix C. The asymptotic limits prove that the computed beam emittance converges to zero,
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as it should. However, the Gaussian tails make such a convergence so slow that a rather large
beam emittance is corresponding to a phase space region where, in reality, almost no beam is
present.
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Figure 3: Relative emittance εi/ε (upper), β̄i/β (centre), and α β̄i/β − ᾱi (lower) for the five
slices as a function of x0/

√
ε (first slice solid, second dashed, third light dashed, fourth dotted,

fifth dot-dashed). The two columns refer to a Gaussian distribution (left) and a quasi-parabolic
one (right). The plot of α β̄i/β− ᾱi for a Gaussian beam distribution is not shown as it is always
equal to zero. The second and third slice have the same value of εi/ε.

Apart from this fact, the most striking feature is the difference in beam emittance for the
various slices: from the plot it is clear that by using only one free parameter it is not possible to
make the slices having the same beam emittance. Furthermore, also the other mismatch factors
confirm that the different slices behave differently and that the betatron mismatch can be quite
large.

3.2.2 Four free parameters
In reality, the performance of the kickers used for the CT extraction allows controlling

the shape of each single slice, hence, in the second case, four free parameters, representing the
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position of the electrostatic septum for the first four turns, have been considered. With the in-
creased number of degrees of freedom it is possible to closely simulate what is done in reality,
namely set the position of the electrostatic septum so to have the same extracted intensity for
each slice. The analytic expressions become too involved to be of any practical use. Hence, the
approach consisted in determining the electrostatic septum position for the ith slice so to have
an intensity equal to 1/5 of the initial one, provided the previous positions were already deter-
mined by a similar condition on the corresponding slices.

In addition a refined approach has been studied, consisting in determining the septum
positions so as to equalise the emittances of the five slices. Of course, this second attempt is not
possible in practice as no device is available to measure the beam emittance of each extracted
turn. In this case, a mixed, analytical and numerical approach has been used as no a priori es-
timate of the common value of the beam emittance is known. Hence, the analytical formulae
have been used to compute the septum positions so to obtain εi/ε = ε i ≤ 4, where ε is an
arbitrary value. Then, the resulting emittance of the fifth slice, ε5/ε, has been computed, thus
obtaining a curve ε5/ε = f(ε) in dependence of the chosen value of ε. The common value of
the emittance can be found by solving numerically the equation f(ε) = ε. In Fig. 4 (left) the
resulting curves ε5/ε = f(ε) for the Gaussian and quasi-parabolic distributions are shown.In the
right part, the sum of the emittances of the five slices is plotted as a function of ε. The common
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Figure 4: Relative emittance of the fifth slice ε5/ε (left) and sum of the relative emittances of
the five slices (right) as a function of ε, the common value of the relative emittance of the first
four slices (solid line Gaussian, dashed quasi-parabolic distribution).

value of the extracted beam emittance is εi/ε ≈ 0.365 for a Gaussian beam distribution, while
for a quasi-parabolic one it is εi/ε ≈ 0.303. This shows that the rough estimate of the emittance
of the extracted slices obtained by simply dividing by the number of slices. i.e. 1/5, does not
fit with the outcome of the computations presented here. The discrepancy originates from the
definition of beam emittance, where not only the surface in phase space but also the beam dis-
tribution, via the second-order moments, has to be taken into account. Indeed, the shape of the
curve ε5/ε = f(ε) is qualitatively the same for both beam distributions. Interestingly enough,
the total beam emittance of the five slices is considerably larger than the initial beam emittance,
the effect being more pronounced for the Gaussian distribution.
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Finally, some more insight can be gained by looking at the way the beam is sliced ac-
cording to whether intensities or emittances are equalised. In Fig. 5 the shapes of the five slices
are shown for both beam distributions. In the case of a Gaussian distribution, the dashed circle
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Figure 5: Shape of the five slices for the present CT in normalised phase space (x̂, x̂′) according
to whether intensities (left) or emittances (right) have been equalised. The results for a quasi-
parabolic distribution are shown in the upper part, while those for a Gaussian distribution are
plotted in the lower part. The solid circle represents the locus where the quasi-parabolic distri-
bution reaches zero (at

√
14σ), while the solid circle represents the 3σ contour in the Gaussian

case.

represents the 3σ contour, while for the quasi-parabolic one, the solid circle represents the line
where the distribution reaches the zero value. At least qualitatively, the two distributions reveal
similar features. The size of the central part shrinks when the intensities have to be the same: this
is a direct consequence of the fact that most of the beam is near the centre in phase space, and
hence, a small region contains a large fraction of particles. However, when the emittances have
to be the same, a larger region has to be considered for the fifth slice, as the beam emittance is
defined in terms of second order moments and the core of the beam has a rather small emittance.
One observes that for both distributions the two approaches are not compatible: minimising the
extracted beam emittances do not equalise intensities and vice-versa. To illustrate this point,
the numerical results are summarised in Table 1. A clear feature is apparent: by equalising one
quantity (intensity or emittance) the other shows huge variations between the different slices.
The most stable case seems to be the one where equal intensity is imposed: the extracted beam
emittance differs by only a factor of three between the first and the last slice. Of course, by
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Beam Slice
parameters #1 #2 #3 #4 #5

εi/ε 0.4676 0.3753 0.3651 0.2231 0.1148
β̄i/β 0.4676 1.5533 0.6828 0.7445 1.4464

G
au

ss
ia

n

α β̄i/β − ᾱi 0 0 0 0 0

E
qu

al
I

εi/ε 0.3940 0.3347 0.3272 0.2269 0.1316
β̄i/β 0.4321 1.6745 0.6391 0.8171 1.4191

α β̄i/β − ᾱi 0 0.0532 1.5700 0.0049 −0.0003

Q
ua

si
-p

ar
.

Ii/I (10−2) 4.6759 8.2613 11.2177 24.4648 51.6946
β̄i/β 0.3650 2.2610 0.4965 1.3957 1.3957

G
au

ss
ia

n

α β̄i/β − ᾱi 0 0 0 0 0

E
qu

al
ε

Ii/I (10−2) 9.4750 12.5759 13.7345 22.2097 42.0048
β̄i/β 0.3698 2.2055 0.4936 1.3212 1.3496

α β̄i/β − ᾱi 0 0.0359 2.0298 0.0097 −0.0012

Q
ua

si
-p

ar
.

Table 1: Summary of the beam parameters εi/ε, β̄i/β, α β̄i/β − ᾱi and intensity Ii for the five
slices of the present CT extraction. For the case of equal emittances, the common value for a
Gaussian distribution is εi/ε ≈ 0.365, while for a quasi-parabolic distribution εi/ε ≈ 0.303.

slightly reducing the intensity of the first slice and increasing that on the last two slices more
balance may be found. Also, less extreme results are observed using a quasi-parabolic distri-
bution. Finally, it is worthwhile pointing out that the emittance ratio of the order of 0.3, as is
the case for a quasi-parabolic distribution and for equal intensities, is in rather good agreement
with experimental measurements [13].

3.3 Injection mismatch into the SPS
The considerations presented in the previous sections refer to the beam at extraction from

the PS machine. Obviously, the most relevant quantity in the performance evaluation is the
emittance after filamentation, i.e. after injection into the SPS. Different physical effects may
contribute to emittance dilution, such as steering errors, dispersion mismatch and betatron mis-
match [8, 9]. From the previous analysis, it turns out that the five slices have different position
and angle at PS extraction. However, a correction dipole is installed in the TT2 transfer line to
compensate, at least partially, for these small differences. Therefore, this source of emittance
blow-up will be neglected in the following as well as the dispersion mismatch and only the
betatron mismatch will be taken into account.

Figure 6 shows the factor Hi as a function of the electrostatic septum position for the sim-
ple case of a single free parameter for both beam distributions. As already stressed in the pre-
vious sections, the results are qualitatively the same for both distributions. Rather large values
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Figure 6: Emittance blow-up factor Hi for four of the five slices as a function of x0/
√
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slice solid, second dashed, fourth dotted, fifth dot-dashed). The two plots refer to a Gaussian
distribution (left) and a quasi-parabolic one (right). Due to the symmetries introduced by the
single free-parameter, H2 ≡ H3.

(up to a factor of two) for Hi are obtained. The same type of analysis described in the previous
section, allows obtaining the mismatch factors Hi in the case of four independent parameters
and for two different approaches, namely same intensities or same extracted beam emittances
for the five slices. The numerical values of Hi are reported in Table 2. There, also the value of
εafter fil./ε is listed for each slice. Both approaches generate quite large blow-up factors (up to

Beam Slice
parameters #1 #2 #3 #4 #5

Gaussian
H 1.3031 1.0985 1.0737 1.0439 1.0689

εafter fil./ε 0.6093 0.4123 0.3920 0.2329 0.1227
Equal I

Quasi-parabolic
H 1.3732 1.1367 1.1046 1.0205 1.0619

εafter fil./ε 0.5410 0.3805 0.3614 0.2316 0.2397

Gaussian
H 1.5522 1.3517 1.2553 1.0561 1.0561

εafter fil./ε 0.5666 0.4934 0.4582 0.3855 0.3855
Equal ε

Quasi-parabolic
H 1.5557 1.3297 1.2617 1.0391 1.0453

εafter fil./ε 0.4714 0.4029 0.3823 0.3148 0.3167

Table 2: Summary of the mismatch factor Hi and emittance after filamentation for the different
slices of the present CT extraction.

30− 50 %). However, the overall ratio between εafter fil. and beam emittance before extraction is
at maximum of the order of 0.5− 0.6 depending on the distribution and the approach used. The
Gaussian distribution seems to generate larger values of Hi and εafter fil. than the quasi-parabolic
one. Equalising the intensity of the five extracted slices generates a better situation than having
equal emittances.
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4 The Novel Extraction Mode
4.1 Basic principle

An alternative extraction method has been proposed [5, 6] aiming at improving the weak
points of the present CT extraction, namely beam losses on the electrostatic septum and be-
tatron matching of the extracted particles. The details of the novel extraction mode, based on
adiabatic capture of charged particles in stable islands of transverse phase space can be found
in Refs. [5, 6]. The results presented in the following sections are obtained by inducing a linear
tune variation so to sweep through the fourth-order resonance. The model used in the numerical
simulations is a Hénon-like map(

X̂n+1

X̂ ′
n+1

)
= R(2 π νn)

(
X̂n

X̂ ′
n + X̂2

n + κ X̂3
n

)
, (8)

where (X̂, X̂ ′) are obtained from the Courant-Snyder [10] co-ordinates (x̂, x̂′) by means of the
non-symplectic transformations

X̂ =
1

2
K2 β

3/2
H x̂ X̂ ′ =

1

2
K2 β

3/2
H x̂′, with Kl =

L

B0 ρ

∂lBy

∂xl
, (9)

K2 (K3) being the integrated sextupole (octupole) gradient, L the length of the nonlinear ele-
ment, By the vertical component of the magnetic field, B0 ρ the magnetic rigidity of the charged
particle, and βH the value of the horizontal beta-function at the nonlinear elements location.
R(2 π νn) is a 2 × 2 rotation matrix of angle νn (the fractional part of the horizontal tune), and
κ is expressed as

κ =
2

3

K3

βH K2
2 . (10)

The final result is shown in Fig. 7 where the beam distribution during the capture process
is reported, and in Fig. 8 where the projection of the final beam distribution is shown. The value
of κ used to generate the data shown in Figs. 7, 8 is −1.6.

Considering typical PS parameters, such as βH ≈ 20.4 m and εH(2σ) ≈ 22 µm2), to-
gether with the parameters used in the numerical simulations, i.e. σ = 0.037 and κ = −1.6,
then K2 ≈ 0.88 m−2 and K3 ≈ 122.57m−3 are the values necessary for trapping and splitting
the beam at 14 GeV/c. Both K2 and K3 are well within limits of available PS hardware. Also,
the conversion factor between X̂ and standard physical co-ordinate x is easily found from Eq. 9.
The numerical value of the conversion factor is about 0.11 m. Hence, the separation between
the centre of the core and that of the right-most island is about 3.3 cm (see Ref. [15] for more
details).

The proposed method should allow extracting the beam with better betatron matching.
Furthermore, the first four beamlets have exactly the same beam parameters as the stable is-
land used to extract the beam determines them. However, for the sake of completeness and to
illustrate the behaviour of the proposed method, relevant quantities such as beam emittance,
mismatch factors, and H-factor will be shown for all five structures (see the four stable islands
plus the region around the origin in Fig. 7, lower right). To this aim the islands will be labelled
starting from the central upper one and rotating clockwise, with island number five the central
part.
2) This value of the horizontal emittance is the reference value for high-intensity beams, issued from acceptance

measurements performed in the past [2].
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Figure 7: Evolution of the beam distribution during the trapping process with four islands. Each
plot represents 4.9 × 105 points. The initial Gaussian distribution is centred on zero and has
σ = 0.037. The value of κ is −1.6.

4.2 Robustness of the proposed method
4.2.1 Variation of nonlinear elements strength

A key issue is the robustness of the novel method against variation of the strength of
nonlinear elements. In fact, small deviations of K2, K3 from their nominal values might change
the islands parameters, thus modifying the extracted beam emittance and the capture efficiency.
Numerical simulations allowed testing this point. By using the nominal model, the value of the
parameter κ, defined in terms of sextupolar and octupolar strength, has been changed, without
varying any other parameter (functional dependence of the tune variation on the turn number
and initial beam emittance). The results are shown in Fig. 9. The data concerning all four islands
are shown to illustrate the differences between the various phase space structures. However, it
should be emphasised that for the actual beam extraction, only one island will be used which
will make the first four beamlets exactly equivalent as far as the optical and beam parame-
ters are concerned. Both β̄i/β and α β̄i/β − ᾱi do not deviate considerably from the perfectly
matched values: only the fourth island seems to differ from the others. Also the dependence
on κ is mild and smooth. As far as the relative emittance is concerned, the four islands have
the same behaviour, showing a sensible dependence on the value of κ. However, this fact is not
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at all surprising, as κ dictates the island size [14]. It is important to stress the fact that even
for this novel approach, the extracted beam emittance is about 0.4 − 0.45 times smaller than
that of the circulating beam (for the last beamlet, a more favourable value is obtained for the
first four beamlets), comparable with the value for the present CT extraction obtained by the
computations presented in the previous sections.
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Figure 8: Beam distribution function at the end of the capture and transport process, for all five
beam slices shown in Fig 7 at the end of the capture process.
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Figure 9: Properties of the five beamlets vs κ for the novel extraction mode based on adiabatic
capture: relative beam emittance εi/ε (upper left), mismatch factor β̄i/β (upper right), and mis-
match factor α β̄i/β − ᾱi (lower centre) (black square first, open square second, open triangle
third, open circle fourth, black circle fifth beamlet).

4.2.2 Tune ripple
Contrary to the present CT, the proposed technique might suffer from tune ripple during

the delicate phase of adiabatic capture. In fact, a periodic modulation of the nominal tune may
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generate particles’ diffusion resulting in emittance blow-up (see Refs. [16, 17, 18] as an example
of some accelerators physics issues related with modulational diffusion and Ref. [19] for a
general review of the problem). The effect of tune ripple consists in periodically displacing the
islands and, at a smaller level, also varying their size. Numerical simulations were performed
to test this issue. The model (8) has been modified by adding a periodic tune modulation to the
necessary linear tune variation.

νn = ν̄n [1 + ∆ν cos(2 π n fripple + φ)] , (11)

where ν̄n represents the nominal time-dependence of the tune, ∆ν, fripple, φ are amplitude,
frequency (properly converted from Hertz into turns), and phase of the ripple, respectively.
Different values of the frequency fripple and of ∆ν have been used in the simulations. In Fig. 10
the final result of the adiabatic capture is shown, together with the tune curve.
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Figure 10: The generated beamlets at the end of the capture process (left) for three different
ripple frequencies, 50 Hz (upper), 100 Hz (centre), and 600 Hz (lower). The tune variation is
shown on the right. The tune ripple amplitude ∆ν is 5 × 10−4 in all the cases.
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It is clearly seen that the higher-frequency ripple has a bigger effect on the five beam-
lets: in these cases their shape is almost unchanged, but the size is increased. Furthermore, the
density is proportionally decreased as it is evidenced by the lighter colour. Detailed numerical
simulations confirmed that the optical parameters do not depend strongly on the presence of
ripple and the value its characteristics parameters. Furthermore, the four beamlets correspond-
ing to the four stable islands experience a rather similar emittance blow-up, higher than the one
of the beam core. As an example, ε1/ε and ε5/ε as a function of the ripple amplitude are shown
in Fig. 11. Different ripple frequencies have been tested. The case corresponding to absence of
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Figure 11: relative emittance εi/ε for the first beamlet (left) and for the core (right), as a function
of the ripple amplitude for different ripple frequencies.

tune ripple is also shown as a reference. It is quite natural to observe that the lower frequencies
have a smaller impact on the beam characteristics, as they act for a shorter time during the adi-
abatic capture process. Also, for 50 and 100 Hz, the amplitude dependence is quite smooth and
regular. On the other hand for 600 Hz, the relative emittance shows a sudden increase already
for quite small ripple amplitudes, while it reaches a sort of saturation immediately after.

4.3 Injection mismatch into the SPS
As it was done for the present version of the CT extraction, the blow-up after injection in

the SPS was computed also for the proposed extraction. In Fig. 12 the factor Hi for the different
beamlets is shown as a function of the parameter κ. Again, the dependence on the strength of
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Figure 12: Emittance blow-up factor H for the five beamlets as a function of κ (black square
first, open square second, open triangle third, open circle fourth, black circle fifth beamlet).
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the nonlinear elements is quite smooth. Furthermore, the absolute value of Hi is much smaller
than in the case of the present CT extraction (see Fig. 6). In this respect, the proposed approach
seems to be superior to the CT. When tune ripple is taken into account, the fact that it does
not affect very much the optical beam parameters means that the mismatch at injection will be
small too.

5 Conclusions
In this paper the present CT extraction has been discussed in detail. The process of beam

slicing has been reviewed and analytical results concerning the optical parameters of the vari-
ous beam slices have been derived. Different models for the beam distribution have been used
and the dependence of the results on the form of the chosen distribution discussed thoroughly.
Furthermore, the emittance blow-up after injection in the receiving machine has been discussed
under the assumption that only betatron mismatch is the relevant perturbing effect.

Similarly, computations based on extensive numerical simulations have been performed
for a novel extraction method, recently proposed as a possible replacement for the CT. Such
a method is based on adiabatic capture of charged particles inside stable islands of transverse
phase space. Not only the optical and beam properties of the generated beamlets have been com-
puted, but also the robustness of the proposed method against variation of the key parameters,
i.e. the strength of the nonlinear elements and the presence of tune ripple, has been tested.

The proposed method seems to be superior to the present CT as far as optical parameters
matching and emittance blow-up after filamentation are concerned. The optical characteristics
of the extracted beamlets do not depend strongly on the strength of the nonlinear elements, sex-
tupoles and octupoles, used to create the islands. Of course, the emittance does depend strongly
on the sextupoles and octupoles parameters, but this is an intrinsic property of the method. As
far as the tune ripple is concerned, numerical simulations indicate that it influences mainly the
resulting beam emittance, the optical parameters of the beamlets being almost unaffected. Ad-
ditional numerical simulations, performed on a realistic model of the PS machine including also
the details of the measured ripple frequencies and amplitudes affecting the main quadrupoles,
should clarify the effect, allowing also a more quantitative analysis.

It is worthwhile pointing out that a number of issues are still to be investigated for the
novel extraction method, such as the different intensity of the five beamlets and the emittance
ratio of the extracted beamlets with respect to the beam before extraction. In addition, some ef-
fects have been neglected in the simulations presented here, e.g. synchrotron motion, coupling
between transverse and longitudinal dynamics, and high-intensity effects: a detailed analysis of
their influence on the adiabatic capture has to be quantified carefully.

Finally, we would like to mention that the central process of the novel extraction tech-
nique, namely adiabatic capture into stable islands in transverse phase space, has been con-
firmed by a series of experimental results obtained at the PS machine, where a single-bunch of
low-intensity was successfully split into five beamlets [20].
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A Special functions
Most of the computations presented in this paper deal with the evaluation of 2D integrals

involving Gaussian distributions. In this case it is customary to define the error function as the
integral

erf(z) =
2√
π

∫ z

0

e−t2 dt. (12)

By using the normalisation property of the indefinite integral it is easy to prove that

erfc(z) = 1 − erf(z) =
2√
π

∫ +∞

z

e−t2 dt. (13)

The error function can be used also to express integrals involving the product of Gaussian
distribution function and a polynomial. In particular, for the case of a second-order polynomial
the following result is obtained using integration by parts∫ z

0

t2e−t2 dt = −1

2
z e−z2

+

√
π

4
erf(z). (14)

B Expression of first- and second-order moments for the slices of present CT
In the case of a plain Gaussian distribution (6) the analytical expression of the first- and

second-order moments can be computed in closed form, also including the dependence on the
relative position of the electrostatic septum.

– First slice: The computation of the first-order moments can be performed by directly ap-
plying the definition of central moments and by taking into account the shape of the do-
main of integration. By denoting with x̂0 the relative position of the electrostatic septum,
the normalisation factor is given by

N =
1

2 π ε

∫ +∞

x̂0

e−
x̂2

2 ε dx̂

∫ +∞

−∞
e−

x̂′2
2 ε dx̂′ =

1

2
erfc

(
x̂0√
2 ε

)
. (15)

Then, one obtains

µx̂ =
1

2 π ε

1

N
∫ +∞

x̂0

x̂ e−
x̂2

2 ε dx̂

∫ +∞

−∞
e−

x̂′2
2 ε dx̂′

=

√
2 ε

π

e−
x̂2
0

2 ε

erfc
(

x̂0√
2 ε

) ,

(16)

where the final results is obtained by applying the normalisation property and a change
of variables to the original integral. Furthermore, µx̂′ = 0 by symmetry.
The computation of the second-order moments gives:

< x̂2 > =
1

2 π ε

1

N
∫ +∞

x̂0

x̂2 e−
x̂2

2 ε dx̂

∫ +∞

−∞
e−

x̂′2
2 ε dx̂′ − µ2

x̂

< x̂ x̂′ > = 0 (17)

< x̂′2 > =
1

2 π ε

1

N
∫ +∞

x̂0

e−
x̂2

2 ε dx̂

∫ +∞

−∞
x̂′2 e−

x̂′2
2 ε dx̂′ − µ2

x̂′.
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With the help of some change of variables, together with the properties reported in Ap-
pendix A, the final result is obtained

< x̂2 > = ε


1 +

√
2

π

x̂0√
ε

e−
x̂2
0

2 ε

erfc
(

x̂0√
2 ε

) − 2

π

e−
x̂2
0
ε

erfc2
(

x̂0√
2 ε

)



< x̂ x̂′ > = 0 (18)

< x̂′2 > = ε.

– Second slice: In this case both µx̂ and µx̂′ are different from zero. The normalisation
factor reads

N =
1

2 π ε

∫ x̂0

−∞
e−

x̂2

2 ε dx̂

∫ +∞

x̂0

e−
x̂′2
2 ε dx̂′ =

1

4

[
1 − erf2

(
x̂0√
2 ε

)]
, (19)

and the first-order moments are given by

µx̂ =
1

2 π ε

1

N
∫ x̂0

−∞
x̂ e−

x̂2

2 ε dx̂

∫ +∞

x̂0

e−
x̂′2
2 ε dx̂′

= −
√

2 ε

π

e−
x̂2
0

2 ε

1 + erf
(

x̂0√
2 ε

)
(20)

µx̂′ =
1

2 π ε

1

N
∫ x̂0

−∞
e−

x̂2

2 ε dx̂

∫ +∞

x̂0

x̂′ e−
x̂2

s
2 ε dx̂′

=

√
2 ε

π

e−
x̂2
0

2 ε

erfc
(

x̂0√
2 ε

) .

The second-order moments, defined as

< x̂2 > =
1

2 π ε

1

N
∫ x̂0

−∞
x̂2 e−

x̂2

2 ε dx̂

∫ +∞

x̂0

e−
x̂′2
2 ε dx̂′ − µ2

x̂

< x̂ x̂′ > = 0 (21)

< x̂′2 > =
1

2 π ε

1

N
∫ x̂0

−∞
e−

x̂2

2 ε dx̂

∫ +∞

x̂0

x̂′2 e−
x̂′2
2 ε dx̂′ − µ2

x̂′ ,

can be expressed in final form as

< x̂2 > = ε


1 −

√
2

π

x̂0√
ε

e−
x̂0
2 ε

1 + erf
(

x̂0√
2 ε

) +
2

π

e−
x̂0
ε[

1 + erf
(

x̂0√
2 ε

)]2



< x̂ x̂′ > = 0 (22)

< x̂′2 > = ε


1 +

√
2

π

x̂0√
ε

e−
x̂0
2 ε

erfc
(

x̂0√
2 ε

) − 2

π

e−
x̂0
ε

erfc2
(

x̂0√
2 ε

)

 .
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– Third slice: The results can be easily deduced from those for the second slice, by simply
considering that both slices have the same shape, only the role of x̂ and x̂′ is exchanged,
namely

x̂3 = −x̂′
2 x̂′

3 = x̂2, (23)

where the subscript stands for the slice number. The final result is:

µx̂,3 = −µx̂′,2

(24)

µx̂′,3 = µx̂,2

and

< x̂2 >3 = < x̂′2 >2

< x̂ x̂′ >3 = − < x̂ x̂′ >2 (25)

< x̂′2 >3 = < x̂2 >2

– Fourth slice: In this case the normalisation factor equals

N =
1

2 π ε

∫ x̂0

−x̂0

e−
x̂2

2 ε dx̂

∫ −x̂0

−∞
e−

x̂′2
2 ε dx̂′ =

1

2
erf

(
x̂0√
2 ε

)
erfc

(
x̂0√
2 ε

)
. (26)

Furthermore, µx̂ ≡ 0, while µx̂′ is given by

µx̂′ = −
√

2 ε

π

e−
x̂2
0

2 ε

erfc
(

x̂0√
2 ε

) . (27)

Using these results, the values of the second-order moments are derived, namely

< x̂2 > =
1

2 π ε

1

N
∫ x̂0

−x̂0

x̂2 e−
x̂2

2 ε dx̂

∫ −x̂0

−∞
e−

x̂′2
2 ε dx̂′ − µ2

x̂

< x̂ x̂′ > = 0 (28)

< x̂′2 > =
1

2 π ε

1

N
∫ x̂0

−x̂0

e−
x̂2

2 ε dx̂

∫ −x̂′

−∞
x̂′2 e−

x̂′2
2 ε dx̂′ − µ2

x̂′.

Hence

< x̂2 > = ε


1 −

√
2

π

x̂0√
ε

e−
x̂2
0

2 ε

erf
(

x̂0√
2 ε

)



< x̂ x̂′ > = 0 (29)

< x̂′2 > = ε


1 +

√
2

π

x̂0√
ε

e−
x̂2
0

2 ε

erfc
(

x̂0√
2 ε

) − 2

π

e−
x̂2
0
ε

erfc2
(

x̂0√
2 ε

)

 .

– Fifth slice: Due to the symmetries, µx̂ and µx̂′ are both equal to zero. Then, the computa-
tion of the second-order moments is quite simple. The final result reads:

N =
1

2 π ε

∫ x̂0

−x̂0

e−
x̂2

2 ε dx̂

∫ x̂0

−x̂0

e−
x̂′2
2 ε dx̂′ = erf2

(
x̂0√
2 ε

)
, (30)
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and

< x̂2 > = ε


1 −

√
2

π

x̂0√
ε

e−
x̂2
0

2 ε

erf
(

x̂0√
2 ε

)



< x̂ x̂′ > = 0 (31)

< x̂′2 > =< x̂2 > .

C Asymptotic behaviour of erfc
The analysis of the limiting behaviour of the Twiss parameters and emittance for the

different slices of the old CT extraction, requires the knowledge of the asymptotic development
of the function erfc(z) for z −→ +∞. By using the approach outlined in Ref. [21] it is possible
to obtain such a development. The first step consists in recasting Eq. (13) in the form:

erfc(z) =
2√
π

e−z2

∫ +∞

0

e−2xz e−x2

dx. (32)

Hence, the problem of finding the asymptotic development of erfc(z) is moved to the search of
the asymptotic behaviour of the integral

I(z) =

∫ +∞

0

e−2xz e−x2

dx. (33)

By using integration by parts it is possible to show that

I(z) =

N∑
i=1

(−1)

zi

i−1

[Fi−1(+∞)G−i(+∞) −Fi−1(0)G−i(0)] + RN , (34)

where RN is the remainder term and the functions F , G are defined through the recursions:

F0(x) = e−x2 Fi(x) =
d

d x
Fi−1(x) (35)

G0(x) = e−2x G−i(x) =

∫
G−i+1(y) dy. (36)

For the case under consideration, it is easy to prove by induction that

G−i(x) =
(−1)

2i

i

e−2x (37)

Fi(x) = (−1)i Hi(x) e−x2

, (38)

where Hi(x) is the Hermite polynomial of degree i in the variable x. By using the well-known
properties

Hi(−x) = (−1)i Hi(x) (39)

Hi+1(x) = 2 x Hi(x) − 2 i Hi−1(x), (40)
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it is possible to prove that

F2i+1(0) = 0 ∀ i

(41)

F2i(0) = (−1)i 2i (2i − 1)!!

and the expression for the asymptotic development reads:

erfc(z) ∼ 2√
π

e−z2
N∑

i=0

(−1)

z2i+1

i (2i − 1)!!

2i+1
. (42)

D Asymptotic expansion of equivalent Twiss parameters for the slices of present CT
In the case of a plain Gaussian distribution (6), the presence of infinite tails make it possi-

ble to test the behaviour of equivalent Twiss parameters and extracted beam emittance when the
relative position of the electrostatic septum is moved towards higher and higher amplitudes. By
using the analytical expressions derived in Appendix B together with the asymptotic expansion
of the erfc function reported in Appendix C, it is possible to obtain the asymptotic expansion
for the mismatch parameter βi/β and εi/ε. If ζ stands for x̂0/

√
ε, then the following holds (the

subscript of the various quantities stands for the slice number):

< x̂2
1 > ∼ ε

ζ2

(
1 − 5

ζ2

)
< x̂2

2 > ∼ ε

(
1 − ζ e−

ζ2

2√
2 π

)
(43a)

< x̂′2
1 > ∼ ε < x̂′2

2 > ∼ ε

ζ2

(
1 − 5

ζ2

)
(43b)

β̄1

β
∼ 1

ζ

(
1 − 2

ζ2

)
β̄2

β
∼ ζ

(
1 +

5

2 ζ2

)
(43c)

ε1 ∼ ε

ζ

(
1 − 3

ζ2

)
ε2 ∼ ε

ζ

(
1 − 5

2 ζ2

)
, (43d)

< x̂2
3 > ∼ ε

ζ2

(
1 − 5

ζ2

)
< x̂2

4 > ∼ ε

(
1 − 2 ζ e−

ζ2

2√
2 π

)
(44a)

< x̂′2
3 > ∼ ε

(
1 − ζ e−

ζ2

2√
2 π

)
< x̂′2

4 > ∼ ε

ζ2

(
1 − 4

ζ2

)
(44b)

β̄3

β
∼ 1

ζ

(
1 − 5

2 ζ2

)
β̄4

β
∼ ζ

(
1 +

3

2 ζ2

)
(44c)

ε3 ∼ ε

ζ

(
1 − 5

2 ζ2

)
ε4 ∼ ε

ζ

(
1 − 3

2 ζ2

)
, (44d)

< x̂2
5 >= ε5 ∼ ε

(
1 −

√
2

π
ζ e−

ζ2

2

)
. (45)
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