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1 Introduction

An important feature of a generic supergravity theory is the possibility of un-
dergoing spontaneous supersymmetry breaking without a cosmological con-
stant. By studying the universal coupling of a Goldstone fermion to super-
gravity, one can see that in a spontaneously broken supergravity theory the
contributions to the vacuum energy could in principle cancel [1]. The first
concrete example, based on a field theory lagrangian, was given by Polony
[2, 3]. He considered N = 1 supergravity coupled to a single chiral multi-
plet with canonical kinetic term and linear superpotential and showed that
it is possible to fine tune the parameters (α and β) of the superpotential
W = αz + β in such a way that the potential stabilizes the scalar fields
with vanishing vacuum energy. The scalar field masses satisfy the sum rule
m2

A + m2
B = 4m2

3/2 [3]. Polony type superpotentials were used in the first
phenomenological studies of broken supergravity. They generate the soft
breaking terms of the observable sector of standard (electroweak and strong)
interactions in the supersymmetric extension of the standard model and of
grand unified theories (For a review, see Ref. [4]).

The Polony classical potential is rather unnatural because it requires an
ad hoc superpotential. Subsequent studies of the superHiggs sector of super-
gravity models lead to the introduction of a more appealing class of theories,
the so called no-scale supergravities [5, 6]. In these models, the vanishing
vacuum energy of the classical potential is obtained without stabilizing the
scalar superpartner of the Goldstino. Instead, there is an exact cancella-
tion, prior to minimization, of the positive Goldstino contribution against
the negative gravitino contribution to the vacuum energy without the need
of fine-tuning the parameters. The no-scale structure of these models poses
further constraints on the soft-breaking terms which enter in the phenomeno-
logical Lagrangians [7].

The first construction of an extended supergravity exhibiting a no-scale
structure was in the context of N = 2 supergravity coupled to abelian vector
multiplets in presence of a Fayet-Iliopoulos term [8]. For a certain choice of
the geometry of the scalar manifold, a spontaneous breaking of N = 2 to
N = 0 with flat potential takes place. Later, models with N = 2 supersym-
metry partially broken to N = 1 were found. In these models the vector
multiplets gauge particular isometries of the quaternionic variety pertaining
to the hypermultiplets. The breaking of supersymmetry with naturally van-
ishing vacuum energy was achieved by gauging two traslational isometries
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of the quaternionic manifold [9, 10]. One unbroken supersymmetry required
a relation between the gauge coupling constants of the two translational
isometries. To the nt translational isometries of the quaternionic manifold
correspond nt axion fields bi transforming by a shift. We can express the
shift corresponding to the gauged isometries as

bi(x) −→ bi(x) + gi
1ξ

1(x) + gi
2ξ

2(x),

so the covariant derivatives are

Dµb
i = ∂µb

i − gi
1A

1
µ(x)− gi

2A
2
µ(x).

The simplest model [9, 10] is based on the quaternionic manifold of quater-
nionic dimension nH = 1

SO(1, 4)

SO(4)
' USp(2, 2)

USp(2)× USp(2)
.

It has three translational isometries, i = 1, . . . 3. By choosing a gauging
such that g1

1 = g, g2
2 = g′ and zero otherwise, one unbroken supersymmetry

implies that |g| = |g′|.
It was later shown [11, 12] that it is possible to couple this N = 2 hidden

sector to observable matter for a suitable choice of the vector and hypermul-
tiplet geometry and for appropriate gauge groups.

The no-scale structure for N > 2 extended supergravity is encountered in
the context of eleven dimensional supergravity with Scherk-Schwarz general-
ized dimensional reduction. This produces spontaneously broken supergrav-
ity theories in four dimensions [13, 14]. The four dimensional interpretation
of these theories [15] is an N = 8 gauged supergravity whose gauge algebra
(a “flat” algebra according to Ref. [13]) is a 28 dimensional Lie subalgebra
of E7,7 obtained in the following way: Consider the decomposition

e7,7 −−−−−−→
e6,6+so(1,1)

e6,6 + so(1, 1) + 27+ + 27−
,

Then the flat subalgebra is the semidirect sum of a factor u(1) in the Car-
tan subalgebra of usp(8) (maximal compact subalgebra of e6,6) with the 27
translational subalgebra 27−.The commutation rules are

[XΛ, X0] = f Σ
Λ0XΣ,

[XΛ, XΣ] = 0 Λ = 1, . . . 27,
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with f Σ
Λ0 = MΣ

Λ in the CSA of usp(8).
The 27 axions aΛ in E7,7/SU(8) transform under the gauge algebra as

follows:
δaΛ = MΛ

Σξ
Σ + ξ0MΛ

Σa
Σ,

and their covariant derivatives, in terms of the gauge fields Bµ and ZΣ
µ , are

Dµa
Λ = ∂µa

Λ −MΛ
Σa

ΣBµ −MΛ
ΣZ

Σ
µ .

The gauge fields transform as

δZΛ
µ = ∂µξ

Λ + ξ0MΛ
ΣZ

Σ
µ − ξΣMΛ

ΣBµ

δBµ = ∂µξ
0

With respect to USp(8) the representation 27 of E7,7 is the two fold anti-
symmetric Ω-traceless representation, so we can write Λ → (a1, a2) and

MΛ
Σ → M

[a1

[b1
δ

a2]
b2] − Ω−traces

where Ma1
b1

turns out to be the gravitino U(1)-charge matrix,



m1ε 0 0 0
0 m2ε 0 0
0 0 m3ε 0
0 0 0 m4ε


 (1)

with ε =

(
0 1
−1 0

)
. The gravitino mass matrix is the symmetric 8×8 matrix

Sab = e−3φ(MΩ)ab,

where φ is the radion field [15, 16]. This is the constant term in the fifth
component of the USp(8) connection of E6,6/USp(8) upon generalized dimen-
sional reduction [17].

The most recent example of no-scale extended supergravity is the N = 4
spontaneously broken theory [16, 20] which is the low energy effective action
for type IIB superstrings on type IIB orientifolds in presence of D3-branes
and with three-form fluxes turned on [18]. In presence of n D3-branes this
theory corresponds to a gauged supergravity with gauge group the direct
product T12×U(n) which are a particular set of isometries of the sigma model
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SO(6, 6 + n2)/SO(6)× SO(6 + n2). The latter is a sigma model of an N = 4
supergravity theory coupled to 6 + n2 vector multiplets. In the superstring
interpretation, six of the vector multiplets come from the supergravity fields
on the bulk and the rest comes from a non abelian D3-brane Born-Infeld
action coupled to supergravity. The twelve bulk vectors gauge the T12 factor
and the gauge vectors living on the brane gauge the U(n) Yang-Mills group.
The full action has been recently constructed [21]. It is a no-scale N = 4
supergravity with four arbitrary gravitino masses and its moduli space is
a product of three non compact projective spaces U(1, 1 + n)/U(1) × U(n)
[22]. If we formally integrate out step by step the three massive gravitino
multiplets (in this process N = 4 → N = 3 → N = 2 → N = 1) we end
up with an N = 1 no-scale supergravity with a particular simple form which
falls in the class of no-scale models studied in the literature [7].

The paper is organized as follows. In Section 2 we review the scalar
potential in N -extended supergravity and outline the properties of no-scale
supergravities regardless of the specific matter content and of the number
of supersymmetries. In Section 3 we formulate the N = 8 and N = 4
spontaneously broken theories discussed so far in the context of no-scale
gauged supergravities. In Section 4 we briefly review the N = 1 no scale
models and consider the N = 1 type IIB orientifold model in this framework.

2 Scalar potential in N-extended supergrav-

ity: vacua without cosmological constant

We consider an N -extended supergravity theory in D = 4. We will denote
by ψµA, A = 1, . . .N the spin 3/2 gravitino fields and by λI the spin 1/2
fields (the spinor indices are not shown explicitly). They are all taken to be
left handed, and the right handed counterparts are denoted by ψA

µ and λI .
The scalar fields will be denoted by qu, and are coordinates on a Riemann
manifold M. Supersymmetry requires that M has a restricted holonomy
group H = HR × HM , with HR being U(N) or SU(N) (U(N) being the R-
symmetry group) and HM varying according to the different matter multiplet
species. It also requires that on M there is an HR-bundle with a connection
whose curvature is related to the geometric structure of M [23].

For N = 1 supergravity coupled to n chiral multiplets we have a Kähler-
Hodge manifold of complex dimension n, with HM = SU(n) and HR = U(1).
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On M there is a U(1) bundle whose Chern class is equal to the Kähler class.
For N = 2 coupled to n vector multiplets we have a special Kähler-

Hodge manifold. If we have nh hypermultiplets, then M is a quaternionic
manifold of quaternionic dimension nh. The holonomy is H = HR×HM with
HR = SU(2) and HM = USp(2nh). On M there is an SU(2)-bundle with
curvature equal to the triplet of hyperKähler forms on M.

For N > 2 the manifolds of the scalars are maximally symmetric spaces
M = G/H with H = HR + HM . Then there is also an HR-bundle on M
whose connection is the HR part of the spin connection.

For N = 3 with nv vector multiplets HM = SU(nv) and HR = U(3). For
N ≥ 4 the supergravity multiplet itself contains scalars. For N = 4 with
nv vector multiplets HM = SO(nv) and HR = SU(4) × U(1). For N > 4
there are no matter multiplets and H = HR = U(N) except for N = 8 where
H = SU(8) [24].

The above considerations imply that the covariant derivative of the su-
persymmetry parameter, DµεA, contains, in presence of scalar fields, an HR

connection in addition to the spacetime spin connection.

The supersymmetry variations of the fermions in a generic supergravity
theory can be expressed as [25]

δψAµ = DµεA +
1

2
SABγµε

B + · · · (2)

δλI = iP I
µAγ

µεA +N IAεA + · · · , (3)

where SAB = SBA, and N IA are sections of HR bundles on M which de-
pend on the specific model under consideration. The dots stand for terms
which contain vector fields. P I

µAdx
µ is pullback into spacetime of P I

uAdq
u, the

vielbein one-form on M, so

P I
µA = P I

uA∂µq
u.

The variation of the scalars is then given by

δquP I
uA = λ̄IεA.

The supergravity lagrangian contains the following terms

1√−gL = · · ·+ SABψ̄
A
µ σ

µνψB
ν + iN IAλ̄Iγ

µψµA +M IJ λ̄IλJ + c.c.−V (q)
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where M IJ is the mass matrix of the spin 1/2 fields and V (q) is the potential
of the scalar fields. The potential must be such that the supersymmetry
variation of all these terms cancel. This implies [26, 27]

δA
BV (q) = −3SACSBC +N IANIB (4)

∂V

∂qu
P I

uA = 2iN IBSBA + 2M IJNJA,

where NIA = (N IA)∗ and SAC = S∗
AC .

Flat space requires that on the extremes ∂V /∂qu = 0 the potential van-
ishes, so

3
∑
C

SACSCA =
∑

I

N IANIA, ∀A.

The first term in the potential (4) is the square of the gravitino mass matrix.
It is hermitian, so it can be diagonalized by a unitary transformation. Assume
that it is already diagonal, then the eigenvalue in the entry (A0, A0) is non
zero if and only if N IA0 6= 0 for some I. On the other hand, if the gravitino
mass matrix vanishes then N IA must be zero.

For no-scale models, there is a subset of fields λI′
for which

3
∑
C

SACSCA =
∑
I′
N I′ANI′A, ∀A (5)

in all M. This implies that the potential is given by

V (q) =
∑
I 6=I′

N IANIA,

and it is manifestly positive definite. Zero vacuum energy on a point of M
implies that N IA = 0, I 6= I ′ at that point. This happens independently
of the number of unbroken supersymmetries, which is controlled by N I′A

(gravitino mass matrix).
In N extended supergravities, the axion couplings to the gauge fields

Dµa
i = ∂µa

i − gi
ΛA

Λ
µ

are related to the gravitino mass matrix SAB through the existence, for each
pair of indices i,Λ of a section XΛ

i,AB of an HR bundle over M such that

SAB = gi
ΛX

Λ
i,AB, XΛ

i,AB = XΛ
i,BA.

In the next section we will give the particular form of SAB in N = 8 and
N = 4.
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3 No-scale N = 8 and N = 4 theories

3.1 N = 8 Scherk-Schwarz spontaneously broken su-
pergravity

In N = 8 spontaneously broken supergravity à la Scherk-Schwarz, the R-
symmetry that is manifest is USp(8) ⊂ SU(8). The spin 3/2 gravitinos are
in the fundamental representation of USp(8) (8), while the spin 1/2 fermions
are in the 8 and 48 (threefold Ω-traceless antisymmetric representation). We
will denote them as ψµa, λa and λabc.

From a dimensional reduction point of view, the scalar potential is origi-
nated by the five dimensional σ-model kinetic energy term

√−ggµνP abcd
µ Pνabcd, for µ = ν = 5,

where P abcd
µ is the pullback on spacetime of the vielbein one form of the coset

E6,6/USp(8).
From the generalized dimensional reduction, the four dimensional scalar

potential is

V =
1

8
e−6φP abcd

5 P5abcd, (6)

where φ is the radion field. This term would not appear in a standard
dimensional reduction.

The five dimensional supersymmetry variations are

δψµa = Dµεa + · · ·
δλabc = Pµabcdγ

µεd + · · · .
We denote by Qµab the USp(8) connection in five dimensions. The functions
SAB and N IA of the previous section (3) are then

Sab =
1√
3
e−3φQ5ab, Nab = e−3φQab

5 , Nabcd = e−3φP abcd
5

(the indices can be raised or lowered with the antisymmetric metric Ωab).
P abcd

5 satisfies the identity [17]

P abcd
5 P5 ebcd =

1

8
δa
eP

fbcd
5 P5 fbcd,
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which is crucial to have (4)
In the computation of the scalar potential using (4) there is an exact

cancellation between the gravitino and the spin 1/2 fermions in the 8 as in
(5),

3|Sab|2 = |Nab|2,
so that

V =
1

8
|Nabcd|2.

This explains formula (6) from a four dimensional point of view. Note that
at a linearized level (near the origin of the coset, where the exponential
coordinates φabcd are small),

P abcd
5 = M

[a
a′φ

a′bcd] − Ω−traces +O(φabcd)2,

Q5abΩ
ba′

= Ma′
a +O(φabcd),

where Ma′
a was given in (1).

The vacua with zero potential correspond to P abcd
5 = 0, while the super-

symmetry breaking depends on the vanishing eigenvalues of the matrix Q5ab.
When all the eignevalues mi of (1) are different from zero, the requirement
P abcd

5 = 0 determines all but two coordinates which are the two scalars which
are neutral with respect to the CSA of USp(8). Together with the radion,
they are the flat directions of the potential. There are three additional mass-
less scalars, the three axions in the 27 of USp(8) which are neutral under
the CSA. All together, they form the moduli space of the Scherk-Schwarz
compactification and they parameterize the coset

(SU(1, 1)

U(1)

)3
.

If some eigenvalues mi of M vanish, we have some unbroken supersym-
metries, and the moduli space of the solution is bigger. If three masses are
set to zero, then the equation P abcd

5 = 0 leaves 14 coordinates undetermined,
which parameterize

SU∗(6)

USp(6)
,

By adding the radion and 15 axions this space enlarges to

SO∗(12)

U(6)
,
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which is the moduli space of the N = 6 unbroken supergravity.
Similar reasoning can be used for the cases with two eigenvalues equal to

zero (N = 4) and only one eigenvalue equal to zero (N = 2). We observe
that in all models the spin 1/2 fermions which cancel the negative spin 3/2
contribution to the potential are precisely the Goldstino fermions. They are
in the 8 of USp(8) for the N = 8 model of section 3.1 and in the 4̄ of SU(4)
for the N = 4 model of this section. When all supersymmetries are broken
these fermions disappear from the spectrum to give mass to the gravitino.
If some supersymmetry remains unbroken then these fermions are strictly
massless.

3.2 N = 4 supergravity and type IIB orientifolds

We now consider no-scale N = 4 spontaneously broken supergravity. This
theory is the low energy limit of type IIB 10 dimensional supergravity com-
pactified on orientifolds in presence of three form fluxes and n D3 branes
with non commutative coordinates [18, 19].

The six N = 4 vector multiplets coming from the bulk lagrangian contain
36 scalars, 21 of which are the metric deformation of the 6-torus T 6 gIJ ,
I, J = 1, . . . 6, and 15 scalars coming from the four form gauge field Cµνρλ,
whose components along the 6-torus are dual to a two form

BIJ =∗CIJ , I, J = 1, . . . 6.

Turning on the three form fluxes corresponds in the effective theory to gauge
particular isometries of the coset SO(6, 6)/SO(6)× SO(6) [16]. More explic-
itly, the gauge isometries are twelve of the fifteen translational isometries in
the graded decomposition [16]

so(6, 6) = sl(6) + so(1, 1) + 15+ + 15−.

In the case when Yang-Mills N = 4 multiplets are added (describing the
D3 brane degrees of freedom), the gauge group is T12 × U(n). This theory
gives rise to a no-scale supergravity with four arbitrary parameters for the
gravitino masses [20].

The SU(4) (R-symmetry) representations of the bulk fermions are as fol-
lows:
spin 3/2 (gravitinos) in the 4,
spin 1/2 (dilatinos) in the 4̄,
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spin 1/2 (gauginos, from the 6 vector multiplets) in the 20+4̄.
The fermions in the brane (gauginos) form n2 = dim U(n) copies of the

representation 4 of SU(4).
Computing the potential (4), the subset of fields λI′

(5) are the bulk
gauginos in the 4̄. The condition for vanishing potential [21] is then N IA = 0
for I 6= I ′. For the bulk fermions it fixes the complex dilaton, 18 radial
moduli and 12 axions. For the brane gauginos it fixes all the scalars but the
ones in the CSA of U(n).

4 N = 1 no-scale supergravities

Supergravity theories with a positive definite potential have a particular con-
venient set up in the context of N = 1 supergravity. N = 1 theories can be
obtained from an N -extended supergravity which is spontaneously broken to
N = 1 and then integrating out the massive modes. This will be still true
if N = 1 is itself spontaneously broken, provided the mass of the N = 1
gravitino is much smaller than the other gravitino masses.

To compute the contribution to the scalar potential of the chiral multiplet
sector of an N = 1 theory it is convenient to introduce some auxiliary fields
[28]. We denote by u the auxiliary field associated to the gravity multiplet
and by hi the ones associated to the chiral multiplets. Let K be the Kähler
potential and W be the superpotential. We introduce the function

Φ

3
= e−

K
3 .

Then, the scalar potential is given by [29]

−(Φ

3

)2
V = −1

9
Φ|u|2 − Φij̄h

ihj̄ +Wih
i + W̄īh

ī +

1

3
u∗(3W̄ − Φih

i) +
1

3
u(3W − Φīh

ī). (7)

(the derivatives with respect to zi and z̄ ī are denoted by subindices i and ī).
The standard potential is easily obtained by making the field redefinition

ũ = u−Kih
i

so that

−(Φ

3

)2
V = −1

9
Φ|ũ|2+1

3
ΦKij̄h

ihj̄+Wũ+W̄ ũ∗+(KiW+Wi)h
i+(KīW̄+W̄ī)h

ī.
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Eliminating the auxiliary fields we get [30]

V = eK
[
Kij̄DiWDj̄W̄ − 3|W |2],

where DiW = ∂iW +KiW .
The simplest example of no-scale supergravity is given by a CPn+1 σ-

model [7] for which

Φ = t+ t̄−
∑

A

cAcĀ, A = 1, . . . n

and an arbitrary superpotential W (cA). From (7), since Φtt̄ = 0, then the
variation with respect to ht implies u = 0, and then the potential reduces to

−(Φ

3

)2
V =

∑
A

(hAhĀ + hAWA + hĀWĀ).

Then

V = e
2
3
K |∂W
∂cA

|2

so the extremes with vanishing vacuum energy occur for ∂W/∂cA = 0. In
this example the gravitino mass contribution to the potential 3eK |W |2 is
canceled by the χt fermion contribution.

The crucial point here is that the matrix Φij̄ has determinant zero and
rank n [31]. Such a situation generalizes to a class of models of the following
type

Φ =
m∏

r=1

(tr + t̄r −
∑

A

crAcrĀ)
1
m , A = 1, . . . n

and W a function only of crA. This expression corresponds to the Kähler
potential of the product of m spaces CPn+1 each with curvature 3/m.

The function Φ is homogeneous of degree 1 in the variables xr = tr +
t̄r−

∑
A crAcrĀ. This implies that the matrix of second derivatives has a null

vector ∑
s

∂2Φ

∂xr∂xs
xs = 0,

and from the form of the potential this implies that u = 0. Then the potential
becomes

−(Φ

3

)2
V = −

∑
rs

Φrsh̃
tr h̃t̄s + hcrAhc̄rĀΦr + hcrAWcrA

+ h̄c̄rĀW̄crA
,
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where
h̃tr = htr − hcrA c̄rĀ.

Eliminating the auxiliary fields one finds

V = −eK
∑

r

1

Kr
| ∂W
∂crA

|2 = eK
∑

r

KcrAc̄sB̄
∂W

∂crA

∂W̄

∂c̄sB̄
,

where we have used the inverse of the Kähler metric

KcrAc̄sB̄ = −δrA sB̄

1

Kr
.

An example of the above situation is realized in type IIB orientifold with
fluxes if one breaks N = 4 to N = 1 [22]. In this case m = 3, crA are the
brane coordinates in the adjoint of U(n), and the superpotential is

W (crA) = f + gABCc1Ac2Bc3C ,

where f is the constant flux that breaks N = 1 to N = 0 and gABC are the
structure constants of SU(n).
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