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Abstract: Skyrme theories on S3 and S2, are analyzed using the generalized zero cur-

vature. In the first case, new symmetries and integrable sectors, including the | B |= 1
skyrmions, are unraveled. In S2 the relation to QCD suggested by Faddeev is discussed.

1. Introduction

Skyrme theory, based on chiral fields with an stabilizing quartic derivative term [1] at

the classical level, was an alternative to the standard field theory approach in ideas and

methods. The theory was shown later to correspond to the non-abelian gauge theory

with expansions in number of colours (soliton aspects) [2] and momentum (chiral aspects).

Faddeev conjectured a more direct connection to pure QCD, restricting the Skyrme chiral

fields to the coset SU(2)/U(1) [3]. Non-perturbative progress generally used numerical

methods both for ordinary Skyrme [4] as well as for Faddeev σ-model formulation [5],

which has been also investigated on the lattice [6]. A generalization of the zero-curvature

methods of two dimensional field theory to higher dimensions [7] offered a new possibility

for analytical progress, in a scheme which uses gauge techniques and fields as auxiliary

connections to study non-linear systems. A zero curvature representation for Skyrme-

Faddeev theory was given in [8] among other examples of models defined on the sphere

S2, and discussed in [9] in connection with QCD. The integrable sector of the S3 Skyrme

theory corresponding to | B |= 1, was found in [10].
∗Speaker.
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Here we review and explore further both theories with that integrablity method, which

is very briefly summarized in next section 2, devoted to the ordinary Skyrme. The gauge

ambiguities of the method are exhibited and the choice of the hedgehog Ansatz, found by

direct computation in [10], is explained. In section 3 we work out in detail the Skyrme

Faddeev case, and we discuss how the gauge formalism of the method clarifies the obser-

vations [11] and conjectures of a connection between Skyrme-Faddeev theory and the long

distance limit of the non abelian gauge theory.

2. The Skyrme model

The Lagrangian density for the Skyrme model can be written as:

L = −f
2
π

4
tr
(
U †∂µUU †∂µU

)
+
1

32e2
tr
[
U †∂µU,U †∂νU

]2
(2.1)

where fπ and e are phenomenological constants, and U is an unitary matrix representation

of a compact Lie group G. The cases of physical interest correspond to G being SU(2)

or SU(3). In terms of the Lie algebra valued field Aµ = U
†∂µU = AiµTi we can write the

Lagrangian as:

L = −f
2
π

4
tr (AµA

µ) +
1

32e2
tr {[Aµ, Aν ][Aµ, Aν ]} (2.2)

The equations of motion which can be derived from this Lagrangian are:

∂µ (A
µ − ε[Aν , [Aµ, Aν ]]) = 0 (2.3)

where ε = 1/4f2πe
2.

Let us define the auxiliary field

J̃µ = Aµ − ε[Aν , [Aµ, Aν ]] (2.4)

The equations of motion can then be written in the form ∂µJ̃
µ = 0. The space components

of the second term in (2.4) can be normalized to the degree of the map S3 → S3, which
gives a topological meaning to the baryon number of the solution. Squaring it one gets a

lower bound for the energy functional in a given charge sector, which unfortunately can

only be saturated in 3 spatial dimensions by A = 0. In addition, the bound does not lead

to a lower degree equation of the BPS type [12]. In fact, the only known exact solution is

the original B = 1 hedgehog Ansatz for the static Skyrme field:

U(~x) = exp (ir̂ · ~τf(r)) (2.5)

where r = |~x| and r̂ = ~x
r , ~τ are the Pauli matrices, and f(r) is the profile function.

With this unique maximally symmetric Ansatz, it is well known [13] that the equations of

motion (2.3) reduce to an ordinary differential equation in f , which has then to be handled

numerically (but being an ODE it is an existence proof). One way to progress in the

analytical understanding of the Skyrme model, is to study its equations of motion with the

geometric approach of ref. [7] as we now explain.

– 2 –
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The method is a generalization, for a (d+1)-dimensional space-time, of the well known

two dimensional Lax-Zakharov-Shabat zero curvature condition. The construction involves

a flat connection on the space of (d − 1)-loops (closed (d − 1)-dimensional hypersurfaces)
which is built from a 1-form A and a d-form B on space-time. It is possible to find local
sufficient conditions on the latter for the loop space connection to be flat. Those conditions

involve a non-semisimple Poincaré type algebra which decomposes into a Lie algebra G and
an invariant abelian subalgebra P transforming under some representation R of G. The
local zero curvature conditions are given by

Fµν = ∂µAν − ∂νAµ + [Aµ , Aν ] = 0 ; DµB̃
µ = ∂µB̃

µ +
[
Aµ , B̃µ

]
= 0 (2.6)

where B̃µ is the dual of the d-form refered above.

In our d = 3 Skyrme case, since Aµ = U
†∂µU is flat by construction, it is natural

to start with Aµ ≡ Aµ. Take B̃µ ≡ J̃aµPa, where we have written J̃µ = J̃aµTa, with Ta’s
being the generators of G, and Pa’s transforming under the adjoint representation of G, i.e.
[Ta , Tb ] = if

c
abTc, [Ta , Pb ] = if

c
abPc, and [Pa , Pb ] = 0. Notice that the Jacobi identities

require that [Aµ, J̃
µ] = 0. Then it is clear that (2.3) is equivalent to (2.6). We have then

expressed Skyrme equations as local zero curvature conditions of [7].

2.1 Constraints.The most simple case

Notice that with Aµ = U †∂µU , the quantities Jµ ≡ UB̃µU † are conserved currents as
a consequence of (2.6). Together with J̃µ themselves, those are the Noether currents

associated to the G ⊗ G global symmetry of the Skyrme model. If the equivalence holds
only for B̃µ being in the adjoint representation, we have just reexpressed the equations of

motion with the geometric gauge formalism, while if it holds for any representation, we can

discover hidden symmetries, as in the 2d case of Sine Gordon and Toda theories. In the

Skyrme model that can be implemented and the formulation (2.6) can be used to construct

an infinite number of conserved currents for some sectors of the Skyrme theory. However,

the sectors one gets depend crucially on the choice (gauge) of the zero curvature potentials.

In [10] it was constructed an integrable sector containing the charge ±1 skyrmions. Here
we discuss the integrable sector of Skyrme theory obtained from the choice above of A and

B. One can just follow the case of the chiral model [14] and introduce, for any integer spin

j representation of SU(2), the operator1

B̃(j)µ = −J̃+µ P (j)+1 +
1√
j(j + 1)

J̃0µP
(j)
0 + J̃

−
µ P

(j)
−1 (2.7)

where we have denoted the quantity (2.4) as

J̃µ = J̃
+
µ T+ + J̃

0
µT3 + J̃

−
µ T−

and where T3,± are the usual basis for the angular momentum algebra and P
(j)
m trans-

form under the spin j representation of SU(2), i.e. [T3 , T± ] = ±T±, [T+ , T− ] = 2T3,[
T3 , P

(j)
m

]
= mP

(j)
m ,

[
T± , P

(j)
m

]
=
√
j(j + 1)−m(m± 1)P (j)m±1, and

[
P
(j)
m , P

(j)
n

]
= 0.

1Notice that the normalization of the coefficients are due to the fact that (−P (1)+1 ), (P (1)0 /
√
2) and P

(1)
−1

constitute the basis of the adjoint of SU(2) that transforms exactly as T+, T3 and T− respectively.

– 3 –
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Denoting Aµ = A
+
µ T+ + A

0
µT3 + A

−
µ T−, and using the fact that [Aµ, J̃µ] = 0 we get

that Aµ,iJ̃jµ − Aµ,j J̃ iµ = 0, for i, j = 0,±. Consequently, for the spin 1 representation we
get

[
Aµ , B̃

(1)
µ

]
= 0. However, for j > 1 we get that

[
Aµ , B̃

(j)
µ

]
= 0 if and only if

Aµ,+J̃+µ = A
µ,−J̃−µ = 0 (2.8)

The conclusion we then reach is that if we substitute the operator (2.7) into (2.6)

with Aµ ≡ Aµ = U †∂µU , we get, for j = 1, just the equations of motion for the Skyrme
model, namely ∂µJ̃µ = 0. However, if we impose the constraints (2.8) we can get the same

equations but with the zero curvature potential B̃ being in any integer spin j representation.

That implies that the submodel of the Skyrme theory defined by the equations

∂µJ̃µ = 0 ; Aµ,+J̃+µ = A
µ,−J̃−µ = 0 (2.9)

possesses an infinite number of conserved currents given by

J (j)µ = UB̃
(j)
µ U

† ≡
j∑

m=−j
J (j),mµ P (j)m ; for any positive integer j (2.10)

2.2 The sector of the skyrmion solution

The restriction

A±µ J̃
µ
± = 0 (2.11)

is highly non-trivial, and it is not clear whether the reduced model has any solutions at

all.2 For the only known Ansatz (2.5), it turns out that the constrained equations (2.11)

in the static case, restricts the profile function f(r) severely. One finds that the conditions

(2.11) are solved by

fR(r) = 2ArcCotan (c r) (2.12)

where c is a constant representing the (inverse) size parameter of the extended solution.

The configuration (2.12) does not solve the static equations of motion ∂kJ̃k = 0. However,

it approximates the solution for an interval of the radial variable r which is of physical

interest. Plugging (2.12) into the equations of motion, one gets a polynomial in r of order

four. Solving it implicitly for c, for the physical values of the couplings, one finds that

there exist admissible solutions for values of r up to half a Fermi strongly peaked around

a very reasonable value of c, between 2 and 3 Fm−1 for fπ in the typical range of 60 to
120 GeV . The minimum of the energy for these lower and upper values is 1 and 2 GeV

respectively, again as expected. So, for practical purposes, we conclude that the restricted

solution (2.12) is in fact a good approximation for values of r of the order of the light

particle sizes and for the physical values of the size parameter c.

It is also interesting that this simplified Ansatz was used in [15] to argue the absence

of stable solutions in the Susy CP 1, although the authors warn for the possibility that it

might not be a solution, as we see here in the related Skyrme case.

2The constraint is analogous to the chiral model [14], where it is not difficult to obtain solutions, although

subject to the scaling instabilities.
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We have seen how the geometric method [7] works in the construction of integrable

submodels of the Skyrme theory. The great problem is to find the gauge choice for the zero

curvature potentials that produce constraints compatible with the equations of motion.

The physical solution of the Skyrmion turns out no to be in the simple gauge chosen

above, namely by starting directly with the adjoint representation as in the case of the

chiral model [14].

The correct choice of gauge to get the charge ±1 skyrmions inside the integrable sector
was presented in [10]. One has to write the group element as

U =W † e−iζτ3 W (2.13)

where τ3 is the diagonal Pauli matrix and

W ≡ 1√
1+ | u |2

(
1 iu

iu∗ 1

)
(2.14)

with ζ being a real scalar field, and u a complex one. Then the zero curvature potentials

are taken to be

Aµ ≡ −∂µW W † = 1

1+ | u |2
(
−i∂µu τ+ − i∂µu∗ τ− + 1

2
(u∂µu

∗ − u∗∂µu) τ3
)
(2.15)

B̃µ ≡ −iRµτ3 + 2 sin ζ

1+ | u |2
(
eiζ Sµ τ+ − e−iζ S∗µ τ−

)
(2.16)

where

Rµ ≡ ∂µζ − 8λ sin2 ζ

(1+ | u |2)2
(
Nµ +N

∗
µ

)

Sµ ≡ ∂µu+ 4λ
(
Mµ − 2 sin2 ζ

(1+ | u |2)2 Kµ
)

(2.17)

and

Kµ ≡ (∂νu∂νu∗) ∂µu− (∂νu)2 ∂µu∗
Mµ ≡ (∂νu∂νζ) ∂µζ − (∂νζ)2 ∂µu
Nµ ≡ (∂νu∂νu∗) ∂µζ − (∂νζ∂νu) ∂µu∗ (2.18)

One can check that the conditions (2.6) with the potentials (2.15) and (2.16) are equivalent

to the equations of motion (2.3).

By extending the potential (2.16) to any integer spin j representation, in a manner

similar to the one we did in (2.7), one gets highly non-trivial constraints. However, in the

static case those constraints reduce to the conditions

~∇u · ~∇u = 0 ; ~∇u · ~∇ζ = 0 (2.19)

They are easily solved by the time independent configurations

ζ = ζ (r) u = u (z) u∗ = u∗ (z∗) (2.20)

– 5 –
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where the coordinates are such that the metric is

ds2 = (dr)2 +
4r2

(1+ | z |2)2 dz dz
∗ (2.21)

If one takes u = z and u∗ = z∗ the decomposition (2.13) becomes the hedgehog ansatz
(2.5), with ζ (r) palying the role of the profile function f(r). So, the skyrmions of unity

charge belong to the integrable sector. The rational map ansatz are particular cases of

the configurations (2.20), and so solve the constraints (2.19). However, the rational maps

associated to charge greater than 1 do not provide solutions for the Skyrme model, but

just approximations to the true solutions.

Summarizing, we have a submodel of the Skyrme theory with an infinite number of

local conserved currents, and that possesses the charges ±1 skyrmions as solutions.

3. The Skyrme-Faddeev model

In view of the above results it is natural to attempt to go from the widing number charge

of S3 → S3 to the Hopf map S3 → S2 reducing the target space to the sphere S2 ≡
SU(2)/U(1). The topological charge becomes the linking number of the preimages of

points of S2. This is what Faddeev proposed, looking for the string of QCD. The solitons

would have then knot configurations and the simplest allowed solution would be axially

symmetric. The action for the Skyrme-Faddeev model is then given by

S =

∫
d4x

(
m2 (∂n)2 − 1

e2
(∂µn× ∂νn)2

)
(3.1)

where n is a SU(2) triplet of scalar field with unit norm, n2 = 1 and m is a parameter

with dimensions of mass. A potential term can be added [16] to circumvent the global

problems with colour in the glueball interpretation. Such explicit breaking of the global

symmetry was first suggested in [6] to avoid spontaneous Goldstone modes, incompatible

with the mass gap of pure QCD. These terms are also required for the pion mass and

phenomenological application in the ordinary Skyrme case.

On the sphere the complex u field of the stereographic projectionit is very useful

n =
1

1+ | u |2
(
u+ u∗,−i (u− u∗) , | u |2 −1) ; u ≡ u1 + iu2 = n1 + in2

1− n3 (3.2)

The energy for static configurations on the Skyrme-Faddeev model is easily found [3, 8],

E = E1 + E2 (3.3)

with

E1 ≡ 4m2
∫
d3x

| ∇u |2
(1+ | u |2)2

E2 ≡ 8
e2

∫
d3x

(
| ∇u |4 − (∇u)2 (∇u∗)2

)
(1+ | u |2)4 (3.4)

– 6 –
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All models on the sphere S2, independent of the dimension of space-time, have a

convenient natural formulation of the zero curvature (2.6) in the approach of [7] given by

Aµ = −∂µW W−1 (3.5)

=
−i

(1+ | u |2)
(
(∂µu+ ∂µu

∗) T1 + i (∂µu− ∂µu∗) T2 + i (u∂µu∗ − u∗∂µu) T3
)

whereW is the group element given in (2.14), Ti being the usual basis of SU(2), [Ti , Tj ] =

iεijk Tk. To obtain the Skyrme-Faddeev’s model equations of motion from (2.6) one takes

B̃µ =
1

1+ | u |2
(
Lµ P

(1)
1 − L∗µ P (1)−1

)
(3.6)

with P
(1)
i being the same as in (2.7), and

Lµ ≡ m2∂µu− 4
e2

Kµ

(1+ | u |2)2 (3.7)

and Kµ is defined in (2.18).

3.1 The rotor spectrum

Models on the sphere have also in common an integrable sector given by the constraint 3

(∂u)2 = 0 (3.8)

Indeed, if one replaces in (3.6) P
(1)
±1 by P

(j)
±1 , with j integer, then the zero curvature (2.6)

gives the Skyrme-Faddeev’s model equations of motion plus the constraint (3.8). Conse-

quently, such submodel has an infinite number of local conserved quantities.

We observe that the scaling stability of the static solutions under the Derrick’s theorem

requires that the tw o terms in the energy in (3.3) should be equal

E1 = E2 (3.9)

For the submodel, the second term of E2 in (3.4) does not exists and that relation

implies ∫
d3xJ =

∫
d3xJ 2 (3.10)

where J is
J = 2

m2e2
| ∇u |2
(1+ | u |2)2 (3.11)

Therefore, the submodel presents a rotor like spectrum, with energy given by

E = 2m4e2
∫
d3xJ (J + 1) = 4m4e2

∫
d3xJ = 4m4e2

∫
d3xJ 2 (3.12)

3For the simplest O(3) model in 2 + 1 this constraint generalizes the Cauchy Riemann conditions of the

baby Skyrmion solution [7].

– 7 –
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3.2 Gauge vacua and knots

The geometrical formulation of Skyrme-Faddev model contains an intriguing property,

which can be relevant for the connection with the gauge theory, as observed recently in the

context of lattice approach [6] and [11].

Writing explicitly the components along the step operators of the auxiliary flat con-

nection (3.5) (as in eq. (6.58) of [7]) as

A1j ≡
∂ju+ ∂ju

∗

(1+ | u |2) A2j ≡ i
∂ju− ∂ju∗
(1+ | u |2) (3.13)

one has

A1jA
1
j +A

2
jA
2
j = 4

| ∇u |2
(1+ | u |2)2 (3.14)

and (
A1iA

2
j −A1jA2i

)2
= 8
| ∇u |4 − (∇u)2 (∇u∗)2

(1+ | u |2)4 (3.15)

Consequently, the static energy (3.3) reads

E =

∫
d3x

((
A1jA

1
j +A

2
jA
2
j

)
+
(
A1iA

2
j −A1jA2i

)2)

=

∫
d3x

(
4
| ∇u |2
(1+ | u |2)2 + 8

| ∇u |4 − (∇u)2 (∇u∗)2
(1+ | u |2)4

)
(3.16)

Where e = 1 = m has been taken (notice that eq. (12) of [11] corresponds to e =
√
2)

As observed in [6] the first term is formally the functional used (upon minimization) to

fix non-abelian theories to the so called maximal abelian gauge (MAG)4[18].This suggests

then that the minima of the Skyrme-Faddeev, knot configurations with topological charge

given by linking numbers, may correspond to the vacua of the nonabelian theory, fixed to

maximal abelian gauge.

Our analysis shows, firstly, that the static energy does not correspond strictly to the

MAG, as it involves diagonal components from the commutator in the second term. Those

diagonal colour components are absent in the submodel, since due to the constraint (3.8),

the second term involves just | ∇u |4, the square of the first term, which only has trans-
verse colour degrees of freedom. Moreover, it is more simple and it has a rotor spectrum.

Therefore, definite results about exact (or approximate) solutions of the Skyrme- Faddev

model, will be relevant for the MAG procedure, and vice versa.

Another result from the analysis is that the commutator term for the energy of the

full model, involves the diagonal component as a curl, i.e. as chromomagnetic potential,

since the connection A is flat, which is relevant for the results of dual variables in the

connection with with QCD [16]. It also shows that the Skyrme -Faddev energy cannot be

the functional given by space integral of A2, which has been investiagted by numerical and

4This mimics the abelian Higgs phenomenon and it should correspond to the monopole condensation

scenario of confinement [17]
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analytical methods [19] and [6]. The idea of breaking splicitly the global SO(3) symmetry,

has been also discussed in our approach [9]. With such an additional potential term, while

it is possible to have infinite conserved currents, the chances of finding stable solutions are

reduced considerably.

4. Conclusions

We have reviewed applications of the generalized zero curvature approach, based on gauge

techniques, to the Skyrme theories, which capture topological features of the gauge theory.

The original Skyrme theory [10], is specially appropriate to understand how the method

works and its difficulties. The results for the integrable sector of the Skyrmion Ansatz,

found by direct computation in [10], are explained and some useful details are provided.

For the Skyrme Faddeev model we paid special attention to the observations that the

auxiliar gauge formalism allows to look at the Skyrme Faddeev model as a gauge fixing of

the nonabelian theory. Our analysis shows that the static energy corresponds strictly to

the functional minimized in MAG fixing procedure only in the reduced submodel, which

is more simple and it presents a rotor spectrum. In the full model it has still diagonal

degrees of freedom, of the chromomagnetic type. We conclude, in agreement with results

from perturbative [20] and lattice methods [6], that there is some evidence for the Skyrme

Faddeev model representing global properties of the pure non-abelian theory in the infrared,

but that some ingredients are missing and more work is requiered. And that the generalized

zero curvature method can be useful for that, as it gives physical interpretation to the gauge

dependent quantities from non-linear models, for which one learns in turn from the gauge

theory.
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[5] R.A. Battye, P.M. Sutcliffe, Phys. Rev. Lett. 81 (1998) 4798;

J. Hietarinta and P. Salo, Phys. Rev. D 62 (2000) 81701.

[6] L. Ditmann, T. Heinzl and A. Wipf, Nucl.Phys.Proc. Suppl. 106 (2002) 649, hep-lat/0110026;

L.Ditmann, T. Heinzl and A. Wipf, hep-lat/0210021.

[7] O. Alvarez, L. A. Ferreira and J. Sánchez Guillén, Nucl. Phys. B529 (1998) 689,

hep-th/9710147.

[8] H.Aratyn, L. A. Ferreira and A.H. Zimerman, Phys. Lett. 456B (1999) 162, hep-th/9902141.

[9] J. Sánchez-Guillén Phys. Lett. 548B (2002) 252, Err. Phys. Lett. 550B (2002) 220 ,

hep-th/0208215.

[10] L. A. Ferreira, J. Sánchez-Guillén, Phys. Lett. 504B (2001) 195, hep-th/0010168.

[11] P.van Baal and A. Wipf, Phys. Lett. 515B (2001) 181, hep-th/0105141.

[12] B. A. Dubrovine, S.P. Novikov, A. T. Fomenko. Contemporary Geometry. Part II. ” Nauka ”,

Moscow 1979.

[13] I. Zahed, G.E. Brown, Physics Reports 142(1986) 1.

[14] D.Gianzo, J.O. Madsen and J. Sánchez-Guillén,Nucl. Phys. B537 (1999) 586;

E.E.Leite and L.A. Ferreira, Nucl. Phys. B547 (1999) 471;

K. Fujii, Y.Homma and T. Suzuki Phys. Lett. 438B (1998) 290.

[15] E.A. Bergshoeff, R. Nepomechie and H. J. Schnitzer; Nucl. Phys. B249 (1985) 93.

[16] L. Faddeev and A.I. Niemi Phys. Lett. 525B (2001) 195.

[17] G.t’Hooft, Nucl. Phys. B190 (1981) 555; S.Mandelstam Phys. Lett. 53B (1975) 476.

[18] A.S. Kronfeld, G. Schierholz and U.J. Wiese, Nucl. Phys. B293 (1987) 461; see H. Ichie and

H. Suganuma, hep-lat/9906005 for a comprehensive review.

[19] L. Gubarev, L. Stodolsky and V.I. Zakharov Phys. Rev. Lett. 86 (2001) 2220;

M.A. Semenov-Tyan-Shanskii and V.A. Franke, Steklov AN SSSR, 120 (1982), 159.

Translation Plenum Press, N.Y. 1986, p.999;

P. van Baal hep-th/9511119; D. Zwanziger Progr.Theor. Phys. Suppl 131 (1998) 233.

[20] L. Faddeev and A. Niemi Phys. Rev. Lett. 82 (1999) 1624;

H.Gies, Phys. Rev. D63 (2001) 125023,hep-th/0102026;

Y.M. Cho, H.W.Lee and D.G. Pak, hep-th/0105198.

– 10 –


