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Abstract

The LHC, the new superconducting particle accelerator presently under construction at CERN, makes
use of some 1200 dipole magnets for orbit bending and 500 quadrupole magnets for
focusing/defocusing of the circulating high-energy proton beams. Two or three column-type support
posts sustain each cryomagnet. The choice of a convenient material for these supports is critical,
because of the required high positioning accuracy of the magnets in their cryostats and stringent
thermal budget requirements imposed by the LHC cryogenic system. A glass-fibre/epoxy resin
composite has been chosen for its good combination of high stiffness and low thermal conductivity
over the 2-293 K temperature range. Plies of long glass-fibres are stacked optimally yielding the best
mechanical behaviour. However, heat leaks from the supports are influenced by the thermal
characteristics of the composite, which in turn depend on the orientation of the fibres. To study the
dependence of the thermal conductivity on fibre's orientation, we performed high precision thermal
conductivity measurements of various samples of glass-fibre/epoxy resin composite. The results of the
thermal conductivity measurements are compared with integral measurements on support posts for
LHC cryomagnets and with mixing models.
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Thermal conductivity of structural glass-fibre/epoxy composite as a function of fibre orientation
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The LHC, the new superconducting particle accelerator presently under
construction at CERN, makes use of some 1200 dipole magnets for orbit bending
and 500 quadrupole magnets for focusing/defocusing of the circulating high-
energy proton beams. Two or three column-type support posts sustain each
cryomagnet. The choice of a convenient material for these supports is critical,
because of the required high positioning accuracy of the magnets in their cryostats
and stringent thermal budget requirements imposed by the LHC cryogenic system.
A glass-fibre/epoxy resin composite has been chosen for its good combination of
high stiffness and low thermal conductivity over the 2-293 K temperature range.
Plies of long glass-fibres are stacked optimally yielding the best mechanical
behaviour. However, heat leaks from the supports are influenced by the thermal
characteristics of the composite, which in turn depend on the orientation of the
fibres. To study the dependence of the thermal conductivity on fibre’s orientation,
we performed high precision thermal conductivity measurements of various
samples of glass-fibre/epoxy resin composite. The results of the thermal
conductivity measurements are compared with integral measurements on support
posts for LHC cryomagnets and with mixing models.

INTRODUCTION

Supports are crucial elements in cryogenic structures: they must guarantee both a sufficient mechanical
performance and low conduction heat in-leaks. A thermo-mechanical optimisation is necessary to fulfil
these two conflicting requirements. Composites are well adapted and hence widely used for such
applications. LHC cryomagnet supports, manufactured in low-cost glass fibre reinforced epoxy (GFRE),
match the requirements of a sufficient mechanical stability during transport, installation and operation of
the cryomagnets and allow at the same time a heat in-leak at 2 K as low as 40 mW per support [1].

Each support post is designed to carry heavy loads, up to 12 tons,
and to keep a high positioning accuracy. The lay-up of the long glass-
fibres plies has been optimised to fit these mechanical requirements. On
the other hand, very little data on the thermo-mechanical conductivity of
such structural composites exists, rendering a correct thermal
optimisation difficult. A test bench for precise measurement of k(T) for
insulators has therefore been constructed and calibrated. Here we
describe the set-up and present first results for pure resin and composites
with different fibre orientations. Samples of the materials used for two
types of support posts, series ones (subsequently referenced as A) and
pre-series ones (subsequently referenced as B) are manufactured.
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Figure 1 Structure of A-type

Table 1 presents the main characteristics of the composites. layer and cupons cut-out.

Measured data are compared with literature [2,3] and with measurements on LHC support posts.
Finally, models of the thermal conductivity are constructed to check their agreement with data.
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Type  Epoxyresin  Glass  Fibre Layer % of fibres per Stacking

fibre vol. (V1) orientation per layer
A 823RTM E 0.46 Triaxial fabric ~ 49% (0°) 51% (£45°) 4 layers at 0°
Cytec Fiberite (see Fig.1)
B UF3339 S2 0.5 Biaxial fabric ~ 49%(fill) 51%(warp)  [0/-45/45/-45/0/
Thiokol 45/-45/45/-45/45]

Table 1 : Main properties of A and B type composites.
SET-UP

Thermal conductivity is measured in a “4-wires” scheme, where a
known heat flux is applied to the sample and the resulting .

temperature difference is measured directly in the sample’s body to  — ~ J -
avoid errors due to contact resistance at the extremities (see Figure S‘“Piﬂg slots E—
2). The test-bench, miniaturised to hold into the neck of a Dewar, —— —— ~
consists in a long tube, ending with a small chamber, which EIS{I]TE\I/?(T: % V A}V — :
contains the sample holder. The sample holder hangs from a copper +—— —] — —
disk in contact with the surrounding cryogenic liquid, via an E — ~_
appropriate thermal impedance separating the temperature of the ——— —— 7?;?;33
sample holder’s base from that of the cryogen bath. The ‘[heat S - ;
50x8x4mm sample is cooled by its upper extremity via the sample- LCreepe / calibrated |— ——
holder’s base, while heat is applied at its lower extremity. The glcuum: impedancdl |
extremities of a thermocouple in differential mode are inserted into =% vo —
the sample. A TVO carbon-glass thermometer monitors the base ‘:E:Zfer; B isensorj‘
temperature. Any thermal by-pass of the sample leads to an +—— T — —
overestimation of the thermal conductivity; hence, contact ~: — ?hﬁ
resistance between the sample and the thermocouple is minimized, Radiation 5 :0%
as are conductive losses across the wires. Wire’s number, length and ih‘dL\ :: — —
material are carefully dimensioned, wires are heat-sinked at the — — —
base. In principle, with an appropriate choice of thermal impedance A e | sample —
to the heat sink, the test-bench can operate at any temperature charcoal heater — ;‘
between SK and 300K, but as the temperature is increased, radiative [ | —
losses to the vacuum vessel start to by-pass the sample, and a E;ﬁ;ﬁcrxogﬁenﬁic bathh —— j
radiation screen, cooled by the base, becomes mandatory. In spite

of all these precautions, very low temperature differences have to Figure 2 Schema of the test-bench

be maintained across the sample.
Calibration with a certified graphite sample from NIST [4] has permitted to estimate the error on
k(T) as limited to +5%.

MEASUREMENT RESULTS

Samples of A-type have been cut in different orientations of the composite. Pure resin samples are also
included in the test program. Samples of B-type are only cut at a 0° orientation. Figure 3 shows the
measured thermal conductivity values.

As expected, pure resin displays the lowest conductivity. Within the A-type samples, the highest
conductivity is obtained for the highest fibre’s content in the longitudinal direction. Sample B has a 30%
larger conductivity than sample A. The thermal conductivity is approximately proportional to the
longitudinal fibre’s contents. Literature on conductivity of composite as a function of fibre content and
orientation is spare ([5,6] and references therein). On figure 2, we compare our results with published data
obtained for a similar fibre’s content. A qualitative agreement is obtained. Data are also in agreement
(within 10%) with conductivity measurements performed on two complete support posts manufactured in
composites A and B, previously measured on a dedicated test-bench [1].
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Figure 3 Comparison between our measurements and literature.

MODELLING

Some references on unidirectional composites (fibres embedded into the resin along a single direction)
present measurements and models for the thermal conductivity. However, cryogenic supports should be
mechanical parts resisting to complex load sets. Therefore, the optimised composite should be
multidirectional, manufactured from layers of various orientations. In consequence, knowing the overall
conductivity of multidirectional composites is of prime importance. In order to model it, we may have to
consider coupling between the layers and between the differently oriented fibers of each layer.

Unidirectional composites.
Let 4, and A, be the conductivities of the material in the fibre’s direction and perpendicularly to it, while

A, and A, are resin’s and fibre’s conductivities. Glass fibre and resin are treated as isotropic materials.

V, denotes the volume fraction of fibres.The longitudinal conductivity is given by a classical mixing law:
A=AV, +2,(1-7,) (1

For the computation of the transverse conductivity, several modified mixing laws are available. We
consider three of them: Rayleigh’s [7], Pilling’s [8] and Clayton’s [9] laws. In particular, the first one is
the analytical solution for the tranverse conductivity of a square array of cylinders, while the second is an
improvement of the classical mixing law. The three models yield approximatively the same results.

Some authors [5] report a good agreement between measurements and such models for unidirectional
composites. However, discrepancies appear at low temperatures, where phonon transmission impedance
(Kapitza effect) between fibers and resins becomes non-negligible (see [10,11]).

Multidirectional composites.

One can find in the literature various analytical exact solutions for geometries of limited complexity (see
[12]) which provide well tunable models containing coupling effects between fiber layers, while finite
element models (FEM) can accurately account for complex geometries, with the disadvantage of needing
one mesh for each configuration. We avoided heavy FEM models and chose to construct an analytical
model for A-type composite. We turned to a first approach without coupling between layers. The four
interleaved layers are considered as thermally independent, and each of them is seen as a stack of three
unidirectional layers, which are not thermally interacting. The overall conductivity is the one of the
constitutive layers in a parallel heat-transfer mode. The conductivity tensor of a layer is diagonal in its
principal frame (in-plane tensor, with its first axis along the fibers’ direction). In a different frame, rotated
by an angle 0, it becomes:
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Ao =P;' AP, )

where P is the rotation matrix. Hence, the conductivity of a 0° layer is &, Ao €y = A, , while the one of a

layer rotated by an angle of 45° is equal to €. s &y =1(2, + 1,). The overall conductivity is then:
Ay =ad, +1(1-a)(d, +1,) (3a)

where o denotes the ratio between longitudinal and non-longitudinal fibres in a single layer. The
longitudinal conductivity is computed applying the linear mixing rule eq.1, the transverse is calculated
with any of the three models presented above.

Measurements have been performed for samples cut in the 0° as well as the 45° and 90° directions
(see Figure 1). In the two other cases, we can estimate the effective conductivity in the same way,
namely:

Ay =ad, ++(1-a)(d, +4,) (3b) and A =14, +4,) (3¢)

Then, the only variable which is not known in this model is A the thermal conductivity of E-glass
fibres. We used this model to compute it and compare the resulting value with [2]. We obtain in this way
a different value of A, for each orientation of the composite. The three values are in the correct range, as
seen on Figure 3, but a systematic trend, i.e. higher ‘reconstructed’ fibre conductivity for orientations
close to 0°, more striking at low temperatures, reminds us that our model is not only neglecting the
Kapitza effect mentioned above, but also the coupling between layers.

CONCLUSIONS

Precise thermal conductivity measurements are needed for thermo-mechanical optimisation of cryogenic
supports, since they permit tuning of predictive models. We have shown that we are able to perform
measurements on a large temperature range and that anisotropic behaviour of reinforced composites can
be accurately detected. To allow a best fit of data, the interaction between fibres and resin in the
transverse direction has to be calculated, especially below 10K. Further work is necessary to obtain a
larger set of data, and then to be able to qualify or construct a convenient model to predict the
conductivity of a reinforced composite knowing the characteristics of the constitutive materials.
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