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1. Introduction and Motivation

The experimental discovery of a Higgs boson
could to be one of the next big milestones in par-
ticle physics. If a Higgs boson exists, it will most
certainly be found at the Large Hadron Collider
(LHC), or even before, at the Tevatron.

The Higgs sector is the least explored part of
the Standard Model. In particular, it is unclear
if really the minimal model with a single Higgs
doublet is realized in Nature. Extended mod-
els, like the Minimal Supersymmetric Standard
Model (MSSM), predict a larger variety of Higgs
bosons which differ among each other for example
by their mass, charge, CP-parity, and couplings.

Hints towards physics beyond the Standard
Model could be obtained from measuring these
properties of a Higgs boson, once discovered. In
this respect, it is essential to understand the theo-
retical values of these quantities in the framework
of the Standard Model as precisely as possible.

A clear understanding of the Higgs properties
is often based on the precise knowledge of the pro-
duction rates. One can distinguish four main pro-
duction mechanisms at hadron colliders: Gluon
fusion, associated production with weak bosons,
weak boson fusion, and associated production of
the Higgs boson with a top–anti-top pair. The
theoretical progress in each one of these modes
has been enormous over the past few years, both
for the signal and the background processes (see,
e.g., Ref. [1] for a review and the corresponding
references). In the following we will only focus on
the signal cross section in the gluon fusion chan-
nel.

2. Gluon fusion

The gluon fusion mode has been shown to be
the dominant production mechanism for Higgs
bosons at hadron colliders a long time ago [2].
The coupling of the Higgs boson to gluons is me-
diated by a top quark triangle, so that the leading
order process is described by the one-loop dia-
gram shown in Fig. 1.

The fact that the LO process already requires
a one-loop calculation makes the evaluation of
higher orders even more challenging. It turns
out, however, that there is an approximation to
the problem that simplifies the task of evaluating
higher orders significantly, without much loss in
theoretical accuracy. The relevant limit is given
by taking the top quark very heavy as compared
to the Higgs boson. Keeping the full top mass
dependence at LO and evaluating the higher or-
ders in the heavy top limit leads to a very good
approximation to the exact result. This was ex-
plicitly demonstrated at NLO [3], where the full
top mass dependence is known.

In the heavy top limit, the original diagrams
factorize into a massive component with vanish-
ing external momenta, and a massless component
with the physical momenta of the in- and outgo-
ing particles. The massive component represents
an “effective coupling constant” C(αs) which
multiplies the ggH interaction vertex. C(αs) can
be evaluated perturbatively and is known up to
N3LO [4].
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3. NNLO calculation

The sub-processes to be evaluated for the
NNLO rate are

• gg → H up to two-loop level

• gg → Hg, qg → Hq, qq̄ → Hg up to one-
loop level

• gg → Hgg, gg → Hqq̄, qg → Hqg, qq̄ →
Hqq̄, qq̄ → Hgg, qq → Hqq at tree level

All the one-loop processes can be evaluated ana-
lytically using known loop and phase space inte-
grals. On the other hand, the evaluation of the
two-loop virtual diagrams as well as the phase
space integration of the double real emission con-
tributions required new techniques, even though
a very similar process, the Drell-Yan production
of lepton pairs, had been evaluated up to NNLO

about ten years before [5].
The initial impulse was provided in a paper by

Baikov and Smirnov [6].1 It contains a recipe to
evaluate the three-point functions at two loops in
complete analogy to massless three-loop propa-
gator diagrams. The evaluation of the latter is
standard in the field of multi-loop calculations.
It can be done with the help of the FORM pro-
gram MINCER [7]. Using Ref. [6], one can evaluate
general massless two-loop vertex diagrams with
two massless legs in a similar fashion. The cor-
responding integration routine can easily be con-
nected to the diagram generator QGRAF [8] in the
framework of the package GEFICOM [9] (see also
Ref. [10]), so that the evaluation of the NNLO vir-
tual contributions to gg → H is done fully auto-
matically [11].

Let us now describe the evaluation of the phase
space integrals for the emission of two gluons or
quarks. In a first step, they were evaluated in
the soft limit, i.e., when the momenta of the fi-
nal state gluons (or quarks) tend to zero. This
limit suffices to cancel the infra-red divergences
of the virtual and soft single-emission contribu-
tions, so that after mass factorization one ob-
tains a finite result. The result was then com-
bined with the previously known collinear terms
1R.H. is indebted to A. Czarnecki for initially pointing out
the relevance of this paper.

∝ ln3(1− x) [12] (x ≡ M2
H/ŝ) to arrive at the so-

called “soft+sl” [13] or “SVC” [14] approximation.
Numerical differences between the final results of
Ref. [13] and [14] could be attributed partly to the
different treatment of formally subleading terms
∝ lnn(1 − x), n = 0, 1, 2. The remaining dif-
ference was due to the different sets of parton
distribution functions: No published set of NNLO

parton distributions was available at that time, so
that Ref. [13] used NLO sets for the NNLO curves,
while Ref. [14] used unpublished NNLO sets.

The soft limit was used as a starting point for
the method to evaluate the complete NNLO re-
sult [15]. This means that a systematic expan-
sion of the partonic cross section around the soft
limit x → 1 was constructed, where ŝ is the par-
tonic c.m.s. energy. This leads to a series in
(1 − x)n, whose coefficients depend logarithmi-
cally on (1−x), up to ln3(1−x) at NNLO. The se-
ries was evaluated analytically up to n = 16 [15].
The resulting hadronic cross section was obtained
from this by convolution with the proper parton
distributions. For n > 5, its prediction is almost
independent on n, indicating that small values of
x have no significant influence on the final result.
The physical hadronic rate is thus perfectly de-
scribed in this approach.

The series in (1− x) as described above, taken
up to n = ∞, is nothing but a representation of
a sum of tri-, di-, and simple logarithms,2 multi-
plied by powers of of x, 1/x, and 1/(1 − x), just
like, e.g.,

π2

6
−
∞∑

n=1

(1− x)n

n

(
1
n
− ln(1 − x)

)
(1)

can be viewed as a representation of Li2(x). Thus,
making an ansatz for the resummed result with
unknown coefficients for these functions and ex-
panding it in terms of (1 − x), one can actually
determine the coefficients from the truncated se-
ries, by solving a system of linear equations. This
requires the knowledge of a sufficient number of
terms in the expansion, of the order of 100 in
our case. The required efforts for the evaluation
and manipulation of the intermediate expressions
2This can be deduced from the known NNLO result for
the Drell-Yan process [5,15].
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Figure 1. Leading order diagram for Higgs pro-
duction in gluon fusion.

are quite remarkable. The resummation has been
achieved in Ref. [16], and the result is identical
to the expression of Ref. [17], obtained through a
completely different method (see also Ref. [18]).
For the final numerical results presented below,
however, it is irrelevant if we use the truncated
series of Ref. [15], or the closed form of Ref. [17].

In order to arrive at a consistent NNLO result,
it is not sufficient to evaluate the partonic cross
section up to NNLO. One also needs to account
for the parton evolution up to the same order. So
far, the exact evolution kernels are not known.
Thus, until the exact NNLO evolution becomes
available, we use the approximate NNLO parton
set of Ref. [19] which is based on moments of the
structure functions [20].

4. Results

Let us now present the results for the produc-
tion of a Standard Model Higgs boson at the
Tevatron and the LHC [15,17]. Fig. 2 shows the
total cross section for Higgs production at (a)
the Tevatron, and (b) the LHC. One observes
a nicely converging perturbative series, together
with a clear reduction of the scale dependence in
both cases. Soft gluon resummation increases the
NNLO curves by about 10%, confirming the sta-
bility of the perturbative result [21].

To investigate the scale dependence in more de-
tail, we show the variation of the cross section
with respect to the renormalization and the fac-
torization scale µR and µF for a fixed Higgs mass
of MH = 115GeV at the Tevatron and the LHC

in Fig. 3 and 4, respectively. In the left panel of

each figure, µR and µF are identified and var-
ied simultaneously within the rather conservative
range of MH/4 < µ < 4MH . In the center pan-
els, the renormalization scale µR is identified with
MH , while µF is varied, and in the right panels,
µF is fixed, and µR is varied. Using the varia-
tion between MH/2 and 2MH as an indication
of the theoretical uncertainty, one arrives at the
conclusion that the cross section at the Tevatron
is known to about ±15%, at the LHC to about
±10%.

5. Pseudo-scalar Higgs production

The method described in Sect. 3 can also be ap-
plied to evaluate the production rate of a pseudo-
scalar Higgs boson, as it is predicted in extended
models like the MSSM. One should keep in mind,
however, that the couplings of the Higgs bosons
may be altered in such theories. In the MSSM, for
example, the coupling to bottom quarks might be
enhanced by large values of tanβ. In this case,
bottom loop contributions cannot be neglected
even at higher orders in QCD.

In Ref. [22], the top loop contribution to the
total rate for pseudo-scalar Higgs production was
evaluated up to NNLO QCD. The corrections were
found to be very similar to the scalar Higgs case,
while the leading order result determines the
different overall normalization. In consequence,
within the limit where bottom quark contribu-
tions can be neglected, the production rate for
pseudo-scalar Higgs bosons is known to the same
level of accuracy as for scalar Higgs bosons.

Conclusions. The production rate for scalar
and pseudo-scalar Higgs bosons has been shown
to be described by a well-behaved perturbative
series up to NNLO. The newly developed calcu-
lational methods of Ref. [15] and Ref. [17] should
prove useful also in many other applications.
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Figure 3. Scale dependence of the cross section for MH = 115GeV at the Tevatron Run II (
√

s = 2TeV).
Left: variation of µ ≡ µR = µF ; center: variation of µF with µR = MH ; right: variation of µR with
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Figure 4. Same as Fig. 3, but for the LHC.
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