

Chargino and Neutralino Searches at LEP

Beyond the Standard Searches

Carsten Hensel

carsten.hensel@desy.de

DESY

SUSY'01, June 11-17, Dubna, Rus

Outline
MSSM Particle Spectrum
Chargino/Neutralino Production at LEP
Chargino/Neutralino Decays
Supersymmetry Breaking
Experimental Results
SUGRA
● GMSB
• AMSB
Summary

MSSM Particle Spectrum

SM particle	SUSY particle	
	weak eigenstates	mass eigenstates
$ u_L$	${ ilde u}_L$	${ ilde u}_L$
$\ell^{\pm}_{L,R}$	$\widetilde{\ell}_{L,R}^{\pm}$	$\widetilde{\ell}^{\pm}_{1,2}$
$\mathbf{q}_{L,R}$	${ m \widetilde{q}}_{L,R}$	$\tilde{q}_{1,2}$
g	\widetilde{g}	\widetilde{g}
$\mathrm{h},\mathrm{H},\mathrm{A}$	$ ilde{ extbf{h}}, ilde{ extbf{H}}$	
γ	$\widetilde{\gamma}$	$\left\{ \widetilde{\chi}_{j}^{0} ight\}$
Z^{0}	$ ilde{\mathrm{Z}}^{0}$	
H^{\pm}	$ ilde{\mathrm{H}}^{\pm}$) ~+
W^{\pm}	$ ilde{\mathrm{W}}^{\pm}$	$\left\{ \chi_{i}^{\pm}\right\}$
G	\tilde{G}	\tilde{G}

(unless otherwise mentioned *R*-parity conservation is assumed)

 $\tilde{\chi}^{\pm}$ and $\tilde{\chi}^{0}$ Production at LEP

Chargino Production

Neutralino Production

 $\tilde{\chi}^{\pm}$ and $\tilde{\chi}^{0}$ Decays (Examples)

SUSY Signatures

signature	example	scenario
jets + ₽	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \to q \bar{q'} q'' q^{\prime \prime \prime} \tilde{\chi}_1^0 \tilde{\chi}_1^0$	SUGRA
jets + leptons + 🖉	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \to q \bar{q'} \ell^+ \ell^- \tilde{\chi}_1^0 \tilde{\chi}_1^0$	SUGRA
leptons + ₽	$\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to \ell^+ \ell^- \tilde{\chi}_1^0 \tilde{\chi}_1^0$	SUGRA
γ + $ ot\!$	$\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to \gamma \tilde{\chi}_1^0 \tilde{\chi}_1^0$	SUGRA
low momentum pions + $\not\!$	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \to (n\pi) \tilde{\chi}_1^0 \tilde{\chi}_1^0 \ (n = 1, 2, 3)$	AMSB, SUGRA
$\gamma\gamma$ + $ ot\!$	$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to \gamma \gamma \tilde{G} \tilde{G}$	GMSB
$\tau^+\tau^- + \not\!$	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \to \tau^+ \tau^- \nu_\tau \bar{\nu}_\tau \tilde{G}\tilde{G}$	GMSB
stable, heavy, charged particles		
kinked tracks	long-lived charginos	all
secondary vertices		
• • •	• • •	• • •

Supersymmetry Breaking		
	Hidden Sector SUSY Breaking	
assume SUSY is realized in nature		
SM particles and SUSY particles are not mass-degenerate	?	
SUSY is not an exact symmetry of nature		
SUSY must be broken	Observable Sector MSSM	

general parameterization leads to more than 100 new parameters

(m)SUGRA

- Solution gauge couplings unify at ultra-high energy scale M_X
- SUSY breaking defined at M_X arises due to gravitational interaction
- SUGRA-inspired Constrained MSSM (CMSSM) defined by 6 parameters
 - m_0 common scalar mass at M_P
 - M_2 SU(2) gaugino mass parameter at M_{EW}
- $\tan \beta v_2/v_1$ VEV ratio of two Higgs doublets
 - μ mixing parameter of Higgs doublet fields
 - A_0 trilinear sfermion/Higgs coupling
 - m_A pseudoscalar Higgs mass at M_{EW}
- LSP: $\tilde{\chi}_1^0$ ($\tilde{\nu}$)

gravitational

interaction

Observable Sector MSSM

SUGRA: Decay Topologies

chargino channel: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow f \bar{f}' f'' \bar{f}''' \tilde{\chi}_1^0 \tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

Cross-section Limits $\tilde{\chi}^0$ $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to \mathbf{Z}^{0(\star)} \tilde{\chi}_1^0 \tilde{\chi}_1^0$ **OPAL Preliminary OPAL** 95% C.L. upper σ limit $n(\tilde{\chi}_1^0)$ [GeV] at $\sqrt{s} = 208 \text{ GeV}$ 100 **(b)** σ<0.1pb σ<0.15pb assuming 100% Z⁰ BRs **σ<0.2pb σ<0.4pb** 75 LEP-I $I egion M_{\tilde{\chi}^0_1} + M_{\tilde{\chi}^0_1} < M_{Z^0}$ is not considered 50 exclusion to kinematic limit for $\Delta M^0 = M_{\tilde{\chi}^0_2} - M_{\tilde{\chi}^0_1} > 10 \text{ GeV}$ 25 • $M_{\tilde{\chi}_1^0} > 44.9 \, { m GeV}$ 0 100 150 200 $M_{\tilde{\chi}_{2}^{0}} > 79.6 \, { m GeV}$ $m(\tilde{\chi}_2^0)$ [GeV] $(\operatorname{any} m_0, \tan \beta = 1.5)$

Interlude: Small ΔM^{\pm} **Searches**

- **small** ΔM^{\pm} implications
 - trigger:
 - Large ΔM^{\pm} : no problem
 - Small ΔM^{\pm} : only little detector activity
 - background:
 - ▶ Large ΔM^{\pm} : 4-fermion ($\sigma \sim 20$ pb)
 - Small ΔM^{\pm} : 2-photon ($\sigma \sim \mathcal{O}(nb)$)
- solution:
 - use hard ISR photons in order to
 - increase the trigger efficiency
 - reduce the two-photon background
- tradeoff:
 - small signal efficiency ($\epsilon \sim \mathcal{O}(1\%)$)

(for more details see talk by S. Paiano)

Small ΔM^{\pm} **Topology**

Two-Photon-Event

• $\sigma_{\text{LEP}} \sim \mathcal{O}(\text{nb})$

Small ΔM^{\pm} and ISR

• require ISR-Photon with $E_T > \sqrt{s} \frac{\sin \theta_D}{1 + \sin \theta_D}$

 $(\theta_D: \text{ minimal accessible polar angle})$

- signal and background events become distinguishable:
 - reject event if beam electron is detected

The Very Small ΔM^{\pm} **Region**

- for decreasing ΔM^{\pm} lifetime effects become important
- depending on expected lifetime search for:
 - secondary vertices
 - impact parameters
 - stable, heavy, charged particles (dE/dx)

$\tilde{\chi}_1^{\pm}$ quasi-stable

• OPAL 95% C.L. upper σ limit at $\sqrt{s} = 206.3$ GeV

$$M_{\tilde{\chi}_1^{\pm}} > 102 \,\text{GeV}$$

(for $\tau_{\tilde{\chi}_1^{\pm}} > 1\mu\text{s}$)

Mass Limits $\tilde{\chi}_1^{\pm}$

poor man's GMSB construction kit

- hidden sector with broken SUSY
- messenger sector: particles with $SU(3) \times SU(2) \times U(1)$ quantum numbers
- observable sector with MSSM
- free parameters
 - Λ universal mass scale of SUSY particles
 - N number of messenger pairs
 - M_m messenger mass scale
- $\tan \beta$ VEV ratio of two Higgs doublets
- $sign(\mu)$ sign of Higgs mixing parameter fields
 - \sqrt{F} SUSY breaking scale
 - implications
 - **Solution** LSP: gravitino \tilde{G} , $(M_{\tilde{G}} \sim eV keV)$
 - NLSP determines topology

GMSB: NLSP and Signal Topologie

scenario	sparticle production	final state ($+\tilde{G}\tilde{G}$)
noutrolino NIL CD	$ ilde{\chi}^0_1 ilde{\chi}^0_1$	$\gamma\gamma$
neutralino NLSP	${\widetilde \ell}_R {\widetilde \ell}_R$	$\gamma\gamma\ell\ell$
	$\tilde{\chi}_1^+ \tilde{\chi}_1^-$	$\gamma\gamma W^{+(\star)}W^{-(\star)}$
	$ ilde{\chi}^0_1 ilde{\chi}^0_2$	$\gamma\gamma \mathrm{Z}^{0(\star)}$
slepton co-NLSP	$ ilde{\chi}^0_1 ilde{\chi}^0_1$	ll'll'
$(M_{\tilde{\ell}_R} < \min[M_{\tilde{\chi}_1^0}, M_{\tilde{\tau}_1} + M_{\tau}])$	${\widetilde \ell}_R {\widetilde \ell}_R$	ll
	$\tilde{\chi}_1^+ \tilde{\chi}_1^-$	$ au u_ au auar u_ au$
stau NLSP	${\widetilde \ell}_R {\widetilde \ell}_R$	$ au au \ell \ell au au$
	$ ilde{ au}_1 ilde{ au}_1$	au au
neutralino-stau co-NLSP	$ ilde{\chi}^0_1 ilde{\chi}^0_1$	$\gamma\gamma$
$(M_{\tilde{\tau}_1} - M_{\tilde{\chi}_1^0} < M_\tau)$	$ ilde{ au}_1 ilde{ au}_1$	au au

GMSB: The NLSP Lifetime

▶ NLSP lifetime depends on gravitino mass $(M_{\tilde{G}} \propto (\sqrt{F})^2)$:

$$c\tau_{NLSP} \simeq \frac{1}{100} \left(\frac{\sqrt{F}}{100 \text{TeV}}\right)^4 \left(\frac{M_{NLSP}}{100 \text{GeV}}\right)^{-5} \text{cm}$$

• $c\tau_{NLSP} = \mathcal{O}(1\mu\mathrm{m}) - \mathcal{O}(10\mathrm{m}) \Leftrightarrow 30 \,\mathrm{TeV} < \sqrt{F} < 1800 \,\mathrm{TeV}$

- each final state may have one out of three possible topologies:
 - prompt decays
 - decays within the detector but separated from primary vertex
 - decays outside of the detector
- only a few examples of analyses can be shown ...

A Selection of GMSB Scenarios

- Minimal Gauge Mediated SUSY Breaking Scenario
 - constraints on slepton and gaugino masses
- Extended Gauge Mediated SUSY Breaking Scenario
 - no severe constraints on slepton and gaugino masses
 - search for classic SUSY signatures (+ photons)
 - $\tilde{\chi}_1^0$ is NLSP channel: $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^0 \rightarrow Z^{0(\star)} \gamma \gamma \tilde{G} \tilde{G}$ signature: $f \bar{f} \gamma \gamma + E$

GMSB: $\gamma\gamma + E$ • $e^+e^- \to \tilde{\chi}_1^0 \tilde{\chi}_1^0 \to \gamma \gamma \tilde{G}\tilde{G}$ main background $e^+e^- \rightarrow \nu \bar{\nu} \gamma \gamma(\gamma)$ ALEPH PRELIMINARY 30 Entries/(3 GeV/c²) Aleph analysis: 20 √s = 189-207 GeV after two-photon selection 93 candidates remain 10 while 88 events expected 0 50 75 100 125 0 25 150 175 200Missing Mass (GeV/c²) cuts are optimized using Entries/(5 GeV) 40 the 'Minimal Gauge Mediated SUSY Breaking 20 Model' (e.g. $\min(E_1^{\gamma}, E_2^{\gamma}) > 37 \text{ GeV})$ 0 0 70 10 20 50 60 80 90 30 40 $Min(E_1,E_2)$ (GeV) • $\tilde{\chi}_1^0$ mass limits \Rightarrow

SUSY'01, June 11-17, Dubna, Russia - p.2

GMSB: $\gamma\gamma + E$, Mass Limits

- $e^+e^- \to \tilde{\chi}_1^0 \tilde{\chi}_1^0 \to \gamma \gamma \tilde{G}\tilde{G}$
 - cross-section $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$ depends strongly on $M_{\tilde{e}_R^\pm}$
 - $\begin{array}{c} \bullet \quad \text{`CDF region' corresponding to} \\ q\bar{q} \rightarrow \tilde{e}_R \tilde{e}_R \rightarrow ee \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow ee \gamma \gamma \tilde{G} \tilde{G} \end{array}$
- mass limits calculated for $\tilde{\chi}_1^0$ lifetime smaller than 3 ns
- Aleph lower mass limit: $M_{\tilde{\chi}_1^0} \ge 99 \,\text{GeV}$ at 95% C.L. $(\sqrt{s} = 189\text{-}208 \,\text{GeV})$

GMSB: $\gamma\gamma + E$, More Limits

GMSB: $\tau^+\tau^-$ +E \checkmark sensitive to $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tau^+ \tau^- \nu_\tau \bar{\nu}_\tau \tilde{G}\tilde{G}$ search strategy depends on NLSP ($\tilde{\tau}_1$) lifetime (DELPHI approach): • $M_{\tilde{G}} \lesssim 1 \mathrm{eV}$ $\tilde{\chi}_{1}^{\pm}$ decays at vertex \Rightarrow apply 'standard' SUGRA search • $1 \text{eV} \lesssim M_{\tilde{G}} \lesssim 1000 \text{eV}$ $\tilde{\chi}_1^{\pm}$ has intermediate mean decay length • 1000eV < $M_{\tilde{G}}$ $\tilde{\chi}_1^{\pm}$ is quasi-stable \Rightarrow apply search for stable, heavy, charged particles

SUSY'01, June 11-17, Dubna, Russia - p.2

GMSB: $\tau^+\tau^-$ +E, Mass Limits

GMSB: $f \bar{f} \gamma \gamma + E$

sensitive to

 $e^+e^- \rightarrow \tilde{\chi}^0_2 \tilde{\chi}^0_1 \rightarrow Z^{0(\star)} \gamma \gamma \tilde{G} \tilde{G}$

- OPAL procedure:
 - low- and high multiplicity selection
 - $\Delta M^0 = M_{\tilde{\chi}^0_2} M_{\tilde{\chi}^0_1}$ dependent selection
 - consider nonzero $\tilde{\chi}_1^0$ lifetime
 - two-photon selection
 - one-photon selection
 - zero-photon selection (SUGRA)

GMSB: $f\bar{f}\gamma\gamma+E$, **Cross-section Lim**

$$e^+e^- \rightarrow \tilde{\chi}^0_2 \tilde{\chi}^0_1 \rightarrow Z^{0(\star)} \gamma \gamma \tilde{G} \tilde{G}$$

- limits at 95% C.L. for $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^0$ at $\sqrt{s} = 206.1 \,\text{GeV}$
- assuming $\tilde{\chi}_2^0 \rightarrow \mathbf{Z}^{0(\star)} \tilde{\chi}_1^0$ decays

anomalous mediated SUSY breaking:
SUSY particle masses are generated at
loops

- gaugino masses at one loop
- scalar masses at two loops
- free parameters
 - m_0 common scalar mass
 - $m_{3/2}$ gravitino mass
- $\tan\beta$ VEV ratio of two Higgs doublets
- $sign(\mu)$ sign of Higgs mixing parameter

Hidden Sector SUSY Breaking

AMSB: Implications

- \checkmark $\tilde{\chi}_1^0$ is LSP
- small mass splitting $\Delta M^{\pm} \sim 1$ GeV between $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^0$
- $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow (n\pi) \tilde{\chi}_1^0 \tilde{\chi}_1^0$
 - typical signature: \mathbb{Z} + little detector activity
 - use ISR Method
 - no mass limits available yet
 - but analyses are underway
 - still help needed from theory community
 - cross-sections
 - branching ratios
 - **.** . . .

lack of software that can do the calculations and produce measurable quantities

ALEPH, $\sqrt{s} = 195.4 \text{ GeV}$, $E_{\gamma} \approx 21 \text{ GeV}$, $M_{\tilde{\chi}_1^{\pm}} < 84 \text{ GeV}$

Prospects

- most results are preliminary
- more general results are expected for the next months
- LEP combinations will complete the searches
- Y2k data:
 - 220pb^{-1} per experiment with $\sqrt{s} \ge 200.0 \text{ GeV}$
 - $9pb^{-1}$ per experiment with $\sqrt{s} \ge 207.5 \text{ GeV}$

2000/11/04 16.19

Summary
Aleph, Delphi, L3, OPAL considered a huge variety of SUSY scenarios respectively search channels (<i>R</i> -parity violating scenarios not even mentioned)
$\tilde{\chi}_1^{\pm}$ excluded at 95% C.L. in almost full kinematically accessible region at LEP2
still unexcluded parameter space
final analyses will be more general
LEP combined analyses will be base and benchmark for the following years

SUSY'01, June 11-17, Dubna, Russia - p.3