
CERN-TH/2002-321

Lattice QCD — from quark confinement to

asymptotic freedom ∗

Martin Lüscher
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Abstract

According to the present understanding, the observed diversity of the strong interaction

phenomena is described by Quantum Chromodynamics, a gauge field theory with only

very few parameters. One of the fundamental questions in this context is how precisely the

world of mesons and nucleons is related to the properties of the theory at high energies,

where quarks and gluons are the important degrees of freedom. The lattice formulation of

QCD combined with numerical simulations and standard perturbation theory are the tools

that allow one to address this issue at a quantitative level.

1. Introduction

Quantum chromodynamics (QCD) is a gauge �eld theory that looks rather similar
to quantum electrodynamics. Apart from the fact that the gauge group is SU(3)
instead of U(1), the lagrange density

LQCD = 1
4F a

µνF a
µν +

∑
q=u,d,s,...

�q
{
γµ

(
∂µ + gAa

µT a
)

+ mq

}
q (1.1)

has the same general form, the �rst term being the square of the gauge �eld tensor
and the second a sum over the contributions of the up, down, strange and the heavy
quarks. No attempt will here be made to explain the detailed structure of eq. (1.1),
but an important point to note is that there are no free parameters other than the
gauge coupling g and the masses mu,md, . . . of the quarks.
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Fig. 1. In QCD the quarks interact by exchanging massless vector bosons (wiggly

line) that are referred to as gluons. They carry SU(3) quantum numbers and couple

to all flavours of quarks with equal strength proportional to the gauge coupling g.

QCD is thus an extremely predictive theory. It is also di�cult to work out so that
only too often ad hoc approximations need to be made before theory and experiment
can be compared. Precision tests of QCD are therefore still rare, and complex strong
interaction phenomena (such as those observed in heavy ion collisions) will probably
never be explained from �rst principles.

1.1 Quark confinement & asymptotic freedom

The Feynman rules derived from the QCD lagrangian suggest that the quarks are
weakly interacting with each other by exchanging massless vector bosons (see �g. 1).
Similar to an exchange of photons, the forces that result from this type interaction
fall o� like 1/r2 at large distances r, and the energy required to break up a quark-
antiquark bound state is hence �nite. Quarks have, however, never been observed
in isolation nor is there any experimental evidence for massless vector bosons other
than the photon.

An important hint to the solution of the puzzle comes from perturbation theory
itself. Once higher-order corrections are included, it turns out that the strength of
the interactions mediated by the vector bosons depends on the magnitude q of the
energy-momentum that is transferred between the quarks. Explicitly, if we introduce
an e�ective coupling
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Fig. 2. The experimentally measured values of the effective gauge coupling αs(q)

confirm the theoretically expected behaviour [eq. (1.3)] at high energies (compilation

of the Particle Data Group [?]).

�g(q) = (1.2)

where the shaded circle stands for the sum of all vertex diagrams with all possible
exchanges of virtual quarks and vector bosons, it can be shown that [?,?]

αs(q) ≡ �g(q)2

4π
=

c

ln(q/�)
+ . . . (1.3)

for large momenta q and some calculable constant c. The logarithmic decay of the
coupling (which is referred to as asymptotic freedom) is actually observed in high-
energy scattering experiments (see �g. 2), and from such measurements the value of
the mass scale � in eq. (1.3) was determined to be 213+38

−35 MeV [?] †.
The fact that the gauge coupling is weak at high energies implies that perturbation

theory will, in general, be reliable in this regime. On the other hand, as we move
towards the other end of the energy scale, the expansion breaks down at some

† The quoted value of Λ refers to a particular definition of the effective coupling that is known as

the “MS scheme of dimensional regularization”.

4



point and the physical picture associated with the Feynman diagrams consequently
becomes invalid. An immediate conflict between theory and the non-observation of
isolated quarks is thus avoided.

1.2 Lattice formulation

It remains to be shown, however, that quark con�nement is indeed a property of
QCD. Moreover, once this is achieved, computational tools need to be developed
to determine the basic properties of the quark bound states such as the pions, the
kaons and the nucleons.

The lattice formulation of QCD was introduced many years ago as a framework
in which these issues can be addressed [?]. Introductory texts on the subject are
refs. [?{?], for example, and to �nd out about the most recent developments in the
�eld, the proceedings of the yearly lattice conferences usually provide a good starting
point [?].

Very briefly lattice QCD is obtained by replacing the four-dimensional space-time
continuum through a hypercubic lattice and by restricting the quark and the gauge
�elds to the lattice points. The expression for the lagrange density (1.1) then needs
to be discretized in a sensible way, and the precise relation between the correlation
functions calculated on the lattice and the physical quantities of interest must be
understood. A few key elements of this construction are

{ The gauge symmetry can be fully preserved, and no additional unphysical degrees
of freedom are thus introduced.

{ In general the details of the discretization become irrelevant in the continuum
limit, i.e. any reasonable lattice formulation will give the same continuum theory
up to �nite renormalizations of the gauge coupling and the quark masses.

{ Lattice QCD admits an expansion in Feynman diagrams that coincides with the
usual expansion up to terms proportional to the lattice spacing. The consistency
of the lattice theory with the standard perturbative approach to QCD is thus
guaranteed.

A last point to be mentioned here is that the lattice provides a regularization of the
ultra-violet divergences that are usually encountered in quantum �eld theory. The
lattice theory is, therefore, mathematically well de�ned from the beginning.

1.3 Numerical simulations

The application of numerical simulation methods to solve the theory has been an in-
teresting perspective since the early days of lattice QCD. Today quantitative results
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Fig. 3. Recent calculations of the hadron masses mh (data points) in lattice QCD

agree quite well with the observed spectrum (horizontal lines) [?].

are practically all based on such numerical studies.
In the course of these calculations the �elds have to be stored in the memory of the

computer, and only lattices of limited size can thus be simulated. The progress in
computer technology allows the lattice extents to be doubled in all directions roughly
every 8 years. At present lattices as large as 128 × 643 can be accommodated on
(say) a commodity PC cluster with 128 nodes. The simulation then proceeds by
generating a representative ensemble of �elds through a stochastic process. Even-
tually the physical quantities are extracted from ensemble averages of products of
gauge-invariant local �elds.

In general numerical simulations have the reputation of being an approximate
method that mainly serves to obtain qualitative information on the behaviour of
complex systems. This is, however, not so in lattice QCD, where the simulations
produce results that are exact (on the given lattice) up to statistical errors. The
systematic uncertainties related to the non-zero lattice spacing and the �nite lattice
volume then still need to be investigated, but these e�ects are theoretically well
understood and can usually be brought under control.

Lattice QCD is being used to compute a wide range of physical quantities, in-
cluding the hadron mass spectrum (�g. 3), decay constants, form factors and weak
transition matrix elements. The technique is not universally applicable, however,
and quantities like the inelastic proton-proton scattering cross-section or the nucleon
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structure functions at small angles remain inaccessible.

2. Quark con�nement

As can be seen from �g. 3, there is currently no perfect match between experiment
and the lattice calculations. The experts are not alarmed by this, since the compu-
tations are still incomplete in certain respects. However, rather than going into any
details here, we now turn to the more fundamental question of quark con�nement.

2.1 Static quark potential

Quarks carry SU(3) quantum numbers and are thus sources of the gauge �eld. As
a consequence the latter exerts a force on the quarks, since any change in their
positions implies a change in �eld energy. According to the current understanding,
the con�nement of quarks is associated with an unbounded increase of the �eld
energy at large quark separations.

The ground state energy of the gauge �eld hamiltonian in the presence of a static
quark-antiquark pair separated by a distance r is referred to as the static quark
potential V (r). There are various ways to compute V (r) on the lattice. Perhaps
the most elegant approach is to consider Wilson lines that wind around a cylindrical
space-time manifold (see �g. 4). The correlation function of any two such loops can
be shown to satisfy

〈P (r)P (0)∗〉 =
T→∞

e−TV (r)
{
1 + O

(
e−Tε

)}
, ε > 0, (2.1)

where T denotes the circumference of the cylinder, and the potential can thus be
determined by calculating the correlation function.

Some recent results for the potential V (r) and the force V ′(r) are plotted in �g. 5.
They show that V (r) is monotonically rising and eventually grows linearly with a
small correction proportional to 1/r. The force is fairly strong, at least 1GeV/fm
in the whole range of distances, and if this continues to be so at larger values of
r it will evidently not be possible to separate the quark-antiquark pair. At short
distances, on the other hand, the data points rapidly approach the curves that are
obtained in perturbation theory (as it has to be since the e�ective gauge coupling is
small in this regime).
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Fig. 4. Polyakov loops are Wilson lines that wind around the space-time manifold

in the time direction. In eq. (2.1) we consider the correlation function of two Polyakov

loops with opposite orientation that are separated by a distance r in space.

2.2 String model

The data shown in the second plot in �g. 5 suggest that the force V ′(r) approaches a
constant σ ' 1.06GeV/fm at large quark-antiquark separations. σ is referred to as
the string tension, because a constant force is what would be obtained if the quarks
were held together by an elastic string.

The idea that quark con�nement is linked to the formation of string-like flux tubes
has in fact been around for very many years. We should then not only see the linear
rise in the static potential but also a characteristic 1/r correction that derives from
the zero-point energy of the transversal string vibrations. Explicitly the prediction
is that [?,?]

V (r) =
r→∞ σr + µ− π

12r
+ O(r−2), (2.2)

where (from the string theory point of view) σ and the mass µ are free parameters.
The string picture may appear to be somewhat naive, but the simulation data

for the second derivative of the static potential shown in �g. 6 agree very well with
eq. (2.2). What is plotted there is the dimensionless combination − 1

2r3V ′′(r), which,
according to string theory, should converge to π

12 at large r. If we allow for a small
higher-order correction proportional to 1/r, the data are perfectly compatible with
this.

An even better matching between string theory and the gauge theory is observed in
three space-time dimensions. In this case a string with �xed ends can only vibrate
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Fig. 5. Simulation results for the static potential V (r) [?] and the force V ′(r) [?].

The statistical and systematic errors in these calculations are smaller than or at most

equal to the size of the data symbols.

in one transversal direction and the associated zero-point energy is consequently
reduced by a factor 2. This is exactly what one �nds on the lattice when the three-
dimensional gauge theory is simulated (points and curves in the lower half of �g. 6).

2.3 Summary

The lattice studies conducted so far leave little doubt that the quarks are con�ned
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space-time dimensions (upper curves and data points) and in three dimensions [?].

because the �eld energy of the surrounding SU(3) gauge �eld rises linearly at large
distances. As far as the static potential is concerned, we have also seen that the
behaviour of the gauge theory in this regime is accurately described by an e�ective
string model. This correspondence is, incidentally, expected to extend to the con-
�nement phase of other gauge �eld theories [?{?] and to a range of other observables
such as the spectrum of excited states in the presence of static quarks [?,?].
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3. QCD from low to high energies

As explained above, lattice QCD allows us to study the phenomenon of quark con-
�nement and to compute the basic properties of the light mesons and of the nucleons.
Among the most obvious quantities to consider in this low-energy regime are the
mass mπ of the charged pions and the pion decay constant fπ. Experimentally the
latter is determined by measuring the decay rate Γπ+→µ+νµ

, while in QCD it can
be expressed as a matrix element

〈0|Aµ|π+ p〉 = ipµfπ (3.1)

of the appropriate axial quark current Aµ between the vacuum state and the one-
pion state with four-momentum p.

The experiments at the big particle colliders, on the other hand, probe the inter-
actions of the quarks and gluons at high energies (from 10 to 100 and more GeV),
where asymptotic freedom has set in and perturbation theory may be applied to cal-
culate the reaction rates. The hadronic decay width of the Z{boson, for example,
is given by

ΓZ→qq̄ = constant ×
{
1 +

αs

π
+ O(α2

s )
}

, (3.2)

where αs denotes the gauge coupling (1.3) at momentum transfer q equal to the
mass of the Z{boson and the constant includes the (calculable) contributions of the
weak and electromagnetic interactions.

3.1 Connecting different energy regimes

From a purely phenomenological point of view, it seems unlikely that there is any
connection between (say) the pion mass and the Z{boson decay rate. However, since
all strong interaction physics is described by the same underlying �eld theory, there
have to be at least some such relations.

To make this a bit more explicit, �rst note that in QCD any physical quantity is a
function of the parameters that appear in the lagrangian (1.1). The gauge coupling g

is one of them, but for the following discussion it is actually more natural to consider
the scale � in eq. (1.3) to be a basic parameter of the theory. We then infer that
there are functions G and F such that

m2
π/f2

π = G(mu/�,md/�, . . .), (3.3)

fπ/� = F (mu/�,md/�, . . .), (3.4)
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and for the masses of the kaons and the heavier pseudo-scalar mesons similar equa-
tions can be written down.

Now if we take the experimental values of the meson masses in units of the pion
decay constant as input, the equations for the meson masses can be solved for the
quark masses (in units of �) and the ratio fπ/� then becomes a calculable quantity.
Note that this ratio links the physical properties of the pions to the � parameter,
which is a characteristic scale in the high-energy regime of QCD. Since fπ/� is also
known experimentally, an interesting test is thus obtained that will only be passed
(barring miracles) if QCD is the correct theory at all energies.

3.2 The scale problem

In lattice QCD the calculation of fπ/� appears to be a di�cult task, because fπ

and � are physical quantities that refer to the properties of the theory at energies
orders of magnitude apart. A straightforward approach then requires the simulation
of lattices with a very large number of points.

It is not di�cult to obtain an estimate of what would be needed. For the compu-
tation of fπ and the meson masses, the spatial lattice size L should be at least 2 fm
as otherwise there will be sizeable �nite-volume e�ects. The e�ective gauge coupling
αs(q), on the other hand, can only be reliably determined at momenta q up to 1/a
or so (where a denotes the lattice spacing). Moreover, to able to extract � from the
asymptotic behaviour (1.3) of the coupling, q must be taken to values deep in the
high-energy regime of QCD. The combination of all these requirements then implies
that the number L/a of lattice sites in each direction has to be on the order of 100
or maybe even larger than this.

3.3 Finite-size scaling

Such lattices may become accessible at some point, but it is much more e�cient to
adopt a recursive scheme, where the large scale di�erence is bridged by a sequence
of matching lattices [?] (see ref. [?] for an introduction to the subject). The key
idea is to introduce an e�ective gauge coupling α(q) that measures the interaction
strength at a momentum q proportional to 1/L. In this way the �nite lattice size
becomes a device to probe the interactions rather than being a source of systematic
errors.

There are many ways to de�ne an e�ective coupling of this kind. We may choose
some particular boundary conditions, for example, and take the response of the sys-
tem to a change in the boundary values of the �elds as a measure for the interaction
strength [?]. The important point to note is that the �nal results (such as fπ/�) do
not depend on any of these details.
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Fig. 7. Finite-size scaling amounts to the construction of a sequence of matching

lattices with lattice spacings a = 2−ka0 and decreasing physical sizes L.

The next step is to construct a sequence of lattices with lattice spacings a and
sizes L that decrease by factors of 2 as shown in �g. 7. Starting with some physically
large lattice, it is possible to scale the lattices to very small sizes in this way without
running into technical di�culties. The coupling α(q) (the one discussed above that
is de�ned at some q proportional to 1/L) can be calculated on each of these lattices
and its evolution can thus be followed over a wide range of momenta.

3.4 Simulation results

So far such computations have been performed in the pure gauge theory and in QCD
with two flavours of quarks. As can be seen from �g. 8, the momentum dependence
of the coupling α(q) that has been studied is accurately matched by perturbation
theory already at fairly low momenta. Contact with the asymptotic behaviour (1.3)
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of the coupling can thus easily be made, and since also the low-energy regime is
safely reached, these calculations provide the desired link between that regime and
the � parameter.

For the full theory, with all flavours of quarks properly included, a similar study
has not yet been made. The reason partly is that these calculations are exceedingly
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Fig. 9. In the language of Feynman diagrams, quark polarization effects are repre-

sented by subdiagrams with closed quark lines. For technical reasons, many results in

lattice QCD still do not include these contributions.

expensive in terms of computer time, because the available simulation techniques
become very ine�cient once the quark polarization e�ects are taken into account
(�g. 9). We shall return to this issue in a moment and only note at this point that
practically all applications of lattice QCD meet the same di�culty.

Since they are often not very large, it is, however, a sensible and still widely used
approximation to neglect the quark polarization e�ects. The calculations of the pion
decay constant and of the pseudo-scalar meson masses that are required to obtain
fπ/� can then be carried out with the presently available computer resources (see
refs. [?,?] for example). As already mentioned, the lattices should be at least 2
fm wide in these computations, but this is not a problem here because the lattice
spacing does not need to be extremely small at the same time. Values from 0.05 to
0.1 fm have actually been found to be adequate in this context.

Once all this is done, and a careful analysis of the systematic errors is made, the
combination of the results yields the value [?,?]

fπ/� = 0.56 ± 0.05. (3.5)

This �gure agrees with the experimental number fπ/� = 0.62 ± 0.10 within the
quoted errors, which is somewhat unexpected since the quark polarization e�ects
have been neglected. Maybe the ratio is not strongly a�ected by them, but there
is currently no very good theoretical argument for this and the coincidence can,
therefore, not be taken as a solid con�rmation of QCD at this point. The compu-
tation nevertheless provides important insights into how precisely the low- and the
high-energy regimes of the theory are connected to each other, and it also shows the
potential of the lattice approach to lead, in due time, to some very stringent tests
of QCD.

3.5 Real-world lattice QCD simulations
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At present the great challenge in lattice QCD is to devise e�cient simulation methods
for the full theory (including quark polarization e�ects) that will work well on large
lattices and at small quark masses. The fact that the currently available techniques
will not lead very far became particularly clear at the lattice conference last year in
Berlin [?], where an e�ort was made to assess the cost of such calculations.

The �gure that is usually quoted in this context is the number of arithmetic
operations that are required to generate the next statistically independent �eld con-
�guration. An approximate and mostly empirical formula that was presented at the
conference is [?]

# operations

field configuration
' 3.3

[
140MeV

mπ

]6 [
L

3 fm

]5 [
0.1 fm

a

]7

Tflops year, (3.6)

which shows the dependence on the lattice parameters and on the calculated value
mπ of the pion mass (which depends on the speci�ed values of the quark masses).
The result is given in Tflops years, the number of operations that a computer with
a sustained speed of 1 Tflops (1012 floating-point operations per second) performs
in 1 year of running time.

While such machines will become available to the lattice community in the near
future, the poor scaling behaviour of the algorithms (the high powers in the formula)
tells us that it will not be possible to vary the lattice parameters over a wide range.
If the lattice spacing is decreased by a factor of 2, for example, the simulation time
goes up by a factor of 128 or so. Evidently this unfavourable situation calls for new
algorithmic ideas, and a signi�cant investment in purely technical R&D work will
be required in the coming years to solve the problem.

4. Conclusions

Lattice QCD was introduced nearly 30 years ago and it has since then turned into a
powerful quantitative approach to the physics of the strongly interacting particles.
Only a few topics have been touched in this talk, but this should not hide the fact
that the technique is being used to calculate many quantities of phenomenological
interest (hadron masses, decay constants, transition matrix elements, and so on) and
also to study some of the more fundamental issues such as the breaking of chiral
symmetry and the phase diagram at non-zero baryon density.
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All this work has had its share in making QCD the unique candidate of the theory
of the strong interactions. In particular, little doubt is left that the non-linearities
of the dynamics of the SU(3) gauge �eld are responsible for the con�nement of the
quarks. Moreover we have seen that quark con�nement and asymptotic freedom are
just two complementary aspects of the theory. The fact that the relation between
the parameters in the lagrangian and the basic properties of the mesons and nucleons
can be worked out on the lattice is the key to showing this, along with the ability to
compute the (non-perturbative) evolution of the e�ective gauge coupling from very
low to high energies.

Currently the quark polarization e�ects are often neglected in the numerical sim-
ulations because their inclusion slows down the computations by a large factor. It
is mainly for this reason that comparisons of the lattice results with experimental
numbers cannot at present be regarded as hard tests of QCD. Once this technical
limitation is overcome, it is clear, however, that precision tests will become a reality,
and the hope of the experts is that this will happen before the next 30 years have
elapsed!

I am indebted to Rainer Sommer for sending a set of data tables and to Peter
Weisz and Hartmut Wittig for helpful discussions and correspondence. Many thanks
also go to Daniel Iagolnitzer and Jean Zinn-Justin for having organized this unique
conference.
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