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Exact Chiral Symmetry on the Lattice: QCD Applications∗
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I review recent progress and results in lattice QCD obtained using fermions with exact chiral symmetry.

1. Introduction

In the last few years it has been understood
that exact chiral symmetry can be realized at fi-
nite lattice spacing. A breakthrough started with
the observation that massive Dirac fermions in
4 + 1 dimensions reduce to chiral fermions in 4
dimensions under certain conditions [1–3]. The
resulting effective operator D of light boundary
fields [4,5] has the correct continuum limit, no
doublers, and is local [6]. Most remarkably, it
satisfies the Ginsparg–Wilson (GW) relation [7]

γ5D +Dγ5 = āDγ5D , (1)

which guarantees an exact chiral symmetry [8]

δq = γ5(1− āD)q , δq̄ = q̄γ5 (2)

of the fermion action at non-zero lattice spacing.
Within the perfect-action approach [9], a

fermion operator that satisfies the GW relation
can be defined [10], but no explicit construction
has been found so far (see [11] for a recent review).

In QCD a chiral symmetric regularization en-
tails many theoretical advantages: in the infrared
it allows one to simulate massless quarks and it
provides a natural definition of the topological
charge; in the ultraviolet it simplifies the subtrac-
tion of divergences in composite operators.

Last year an important step forward was the
demonstration that Neuberger’s fermions can be
used for large-scale QCD computations, at least
∗This work was supported in part by the European Com-
munity’s Human Potential Programme under contract
HPRN-CT-2000-00145, Hadrons/Lattice QCD.

in the quenched approximation. As a result, very
light quarks can be handled and legendary prob-
lems such as the ∆I = 1/2 rule in K → ππ decays
are greatly simplified and can be attacked.

In this talk some of the phenomenological ap-
plications of Ginsparg–Wilson fermions are re-
viewed. Most of the numerical studies reported
are exploratory. Please refer to the parallel ses-
sion contributions for interesting theoretical de-
velopments which are not covered in the follow-
ing.

2. Domain-wall-overlap fermions

The five-dimensional domain-wall Dirac opera-
tor can be defined as [3,12]

D =
1
2

[
γ5(∂∗s + ∂s)− as∂

∗
s∂s

]
+X , (3)

where s labels the sites and as the lattice spacing
in the fifth dimension. The operators ∂∗s and ∂s

are the forward and backward derivatives,

X = DW − 1
ā

, ā =
a

ρ
, (4)

with 0 < ρ < 2. The massless four-dimensional
Wilson operator is

DW =
1
2

[
γµ(∇µ +∇∗µ)− a∇∗µ∇µ

]
, (5)

where∇µ and∇∗µ are the gauge-covariant forward
and backward derivatives

∇µq(x) =
1
a

[
Uµ(x)q(x + aµ̂)− q(x)

]
(6)

∇∗µq(x) =
1
a

[
q(x)− U †µ(x− aµ̂)q(x− aµ̂)

]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25361707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

and a is the lattice spacing in the physical four
dimensions. The operator is supplemented with
the boundary conditions

P+q(0, x) = P−q(asNs + as, x) = 0 (7)

where P± = 1
2 (1 ± γ5) and Ns is the extension

in the fifth dimension. From a four-dimensional
point of view, the system corresponds to QCD
with many flavours mixed in a peculiar way.

By integrating out the heavy flavours, a four-
dimensional effective action of light boundary
fields is left [4,5]

āDNs = 1 + γ5
(1 + H̃)Ns − (1− H̃)Ns

(1 + H̃)Ns + (1− H̃)Ns
, (8)

where

X̃ ≡ asX

2 + asX
, H̃ ≡ γ5X̃ . (9)

For Ns →∞, a massless effective action

āDDW =

(
1 + X̃

1√
X̃†X̃

)
(10)

is derived and the Neuberger operator [5]

āDN =
(

1 +X
1√
X†X

)
(11)

is obtained if the limit as → 0 is also taken. Most
remarkably, the effective massless Dirac operators
in Eqs. (10) and (11) satisfy the GW relation [13].

3. Exact chiral symmetry at finite a

For a given operator D that satisfies the
GW relation, the QCD fermion action with Nf

flavours can be written as
SF

a4
=
∑

x

ψ̄(x)
[
(D + P−M†P̂− + P+MP̂+)ψ

]
(x)

where

P̂± =
1
2
(1± γ̂5) , γ̂5 = γ5(1− āD) , (12)

M = diag(m1, . . . ,mNf
), ψ̄ = (q̄1 , · · · , q̄Nf ) and

ψ is defined analogously. It is invariant under the
U(Nf )L×U(Nf )

R
global transformations

ψL → VLψL ψ̄L → ψ̄LV
†
L

ψR → VRψR ψ̄R → ψ̄RV
†
R , (13)

where VL,R ∈U(Nf )L,R and

ψR,L = P̂±ψ ψ̄R,L = ψ̄P∓ , (14)

if also M → VLMV †R. No additive quark mass
renormalization is required. The action is O(a)-
improved, since no chiral invariant operators of
dimension d = 5 can be constructed.

The global chiral anomaly is recovered à la Fu-
jikawa [14,8]. The fermion integration measure is
not invariant under U(1)A transformations, and
the topological charge density from the corre-
sponding Jacobian

a4Q(x) =
ā

2a
Tr
[
γ5D(x, x)

]
(15)

satisfies [5,15]

n− − n+ = index(D) = a4
∑

x

Q(x) , (16)

with n± the number of right and left zero modes
of the fermion operator.

Bilinear fermion operators with proper chiral
transformations

Oαβ
Γ (x) = q̄α(x)Γq̃β(x) , q̃β =

(
1− ā

2
D
)
qβ (17)

are O(a)-improved, but they do not transform in
a simple way under CP [16,17]. However in cor-
relation functions of local operators at non-zero
physical distance, it holds

Oαβ
Γ (x) =

1
(1 − ā

2mβ)
q̄α(x)Γqβ(x) (18)

and a simple CP transformation [x̃ = (x0,−~x)]

Oαβ
Γ (x) CP−→ 1− ā

2mα

1− ā
2mβ

Oβα
Γ (x̃) (19)

is recovered [16]. The generalization to four-
fermion operators is straightforward.

Non-singlet local rotations lead to exact vector
and axial Ward identities (WI), and the very same
definition of the bare quark mass appears in the
axial and vector WIs and in the quark propagator.

The conserved currents Va
µ and Aa

µ can be con-
structed by extending the gauge groupSU(Nc) →
SU(Nc)×U(1) [7,18]. By performing a local U(1)
flavor rotation

Uµ(x) → U (α)
µ (x) = eiαµ(x)Uµ(x) , (20)
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the kernel

Kµ = −i δD(U (α)
µ )

δαµ(x)

∣∣∣
α=0

(21)

can be used to define the following conserved cur-
rents [18]

Va
µ = q̄

(
P−KµP̂+ + P+KµP̂−

)
T aq (22)

Aa
µ = q̄

(
P−KµP̂+ − P+KµP̂−

)
T aq (23)

where T a is a generator of the non-singlet trans-
formations. It is interesting to note that (con-
served) current–current correlators and their gen-
eralizations require the propagator from any
point to any point [16].

In the chiral limit, the local anomalous flavour-
singlet WIs read

〈∂∗µA0
µ(x)Ô〉 = 2Nf〈Q(x)Ô〉+ 〈δx

AÔ〉 , (24)

where δx
AÔ is the local variation of any finite

(multi)local operator Ô, and A0
µ(x) is the sin-

glet axial current. By assuming the absence of a
UA(1) massless Goldstone boson, the correspond-
ing integrated WIs read

0 = 2Nfa
4
∑

x

〈Q(x)Ô〉+ 〈δAÔ〉 . (25)

Since the second term in the r.h.s. of Eq. (25) is fi-
nite, it follows that a4

∑
xQ(x) is also finite, as it

has finite insertions with any string of renormal-
ized fundamental fields. Therefore Q(x) can only
mix with operators of dimension ≤ 4 and vanish-
ing integral, hence only with ∂∗µA0

µ(x). No power-
divergent subtractions with lower dimensional op-
erators (such as the pseudo-scalar quark density)
have to be performed [19]. This is a very dis-
tinctive feature of GW fermions. Calling Z the
mixing coefficient, one can define finite operators
Q̂ and Â0

µ by writing

Q̂(x) = Q(x)− Z

2Nf
∂∗µA0

µ(x) (26)

Â0
µ(x) = (1− Z)A0

µ(x) , (27)

and the renormalized singlet axial WIs are

〈∂∗Â0
µ(x)Ô〉 = 2Nf〈Q̂(x)Ô〉+ 〈δx

AÔ〉 . (28)

Renormalization constants of several composite
operators have been studied at one loop in per-
turbation theory for domain-wall fermions [20–25]
and overlap fermions [26–32]. Non-perturbative
determinations have been obtained for the non-
singlet local vector and axial currents [33–35], for
the scalar and pseudoscalar densities [33,34,36],
and for some four-fermion operators [37,38].

4. Meson spectroscopy

In the past year several collaborations have
computed the meson spectrum and light quark
masses using GW fermions, either with the over-
lap formulation [34–36,39] or with the perfect ac-
tions [40,41]. Simulated lattices have linear ex-
tensions L = 1–3 fm and lattice spacings a =
0.08–0.2 fm. Results for the pion mass squared
in units of 1/r20 (r0 = 0.5 fm) as a function
of the quark mass normalized at the reference
point M2

P = 2M2
K (MK = 495 MeV), are shown

in the first plot of Fig. 1. Data in the range
500 . MP . 800 MeV show a linear behaviour
with a vanishing intercept within the statistical
errors. The linearity manifests itself as a wide
plateau in the second plot of Fig. 1 and it is in
very good agreement with what was previously
observed with Wilson-type fermions in the same
range of masses (see for example [42–44]). For
degenerate quarks, quenched chiral perturbation
theory at the next-to-leading order (NLO) pre-
dicts [45,46]

M2
P

2m
=

Σ
F 2

[
1− δ

(
1 + log

(M2

µ2
χ

))
+ (29)

αM2

3(4πF )2
(
1 + 2 log

(M2

µ2
χ

))
+
(
2α8 − α5

) M2

(4πF )2
]

where Σ, F , m0, α are the leading-order (LO)
couplings of the quenched QCD chiral Lagrangian
[47,48], α5, α8 are some of the NLO ones, µχ =
4πF , M2 = 2Σm/F 2 and δ = m2

0/3(4πF )2. A
comparison of Eq. (29) with the data in Fig. 1
indicates small corrections due to quenched chiral
logs and/or higher order terms in this range.

Since GW fermions do not suffer from excep-
tional configurations, lighter pion masses can be
simulated, provided the physical volume and the
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Figure 1. On the left, (r0MP )2 vs the quark mass normalized at the reference point M2
P = 2M2

K : green
circles [49], black circles [34], blue squares [36], green diamonds [35], red circles [41], yellow diamonds
[39]. On the right, (r0MP )2/(m/mref) vs (m/mref): green circles [43], black circles [34], red circles [41].

cut-off are large enough. First exploratory stud-
ies in the region 200 . MP . 400 MeV have been
reported at this conference [35,40,41].
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Figure 2. y vs x with FP action from Ref. [41].

The presence of quenched chiral logs can be
tested in the double ratio of meson masses with
non-degenerate quarks [47,44]

y =
4m1m2

(m1 +m2)2
M2

P,12

M2
P,11

M2
P,12

M2
P,22

. (30)

At NLO

y = 1 + δx+
α

3(4πF )2
2Σ
F 2

w +O(m2
1,m

2
2) , (31)

where

x = 2 +
m1 +m2

m1 −m2
log
(m2

m1

)
(32)

w =
( 2m1m2

m2 −m1
log
(m2

m1

)
−m1 −m2

)
(33)

and µχ appears explicitly in Eq. (31) at higher
orders only.

Using the fixed-point (FP) and chirally im-
proved (CI) actions, the Bern–Graz–Regensburg
(BGR) collaboration computed meson masses
with non-degenerate quarks [40,41]. In Fig. 2
data obtained with the FP operator on a lattice
with a ' 0.15 fm and L ' 2.4 fm are shown.
By neglecting 2αΣw/3F 2(4πF )2 and higher or-
der terms in Eq. (31), they obtain δ = 0.17(2)
and δ = 0.18(2) for the FP and CI actions respec-
tively [41]. More studies are needed to properly
assess the systematics due to finite volume effects
and/or finite lattice spacing, and to remove the
uncertainties due to the leftover explicit symme-
try breaking of these actions. An extensive com-
parison of these results with those obtained in the
past with standard actions can be found in [50].
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5. The chiral condensate

The chiral condensate Σ has been computed
with Wilson-type fermions by fitting M2

P /2m
with the LO term on the r.h.s. of Eq. (29)
[51,52]. The same analysis has been repeated
with overlap fermions in Refs. [34,36] and the
results are reported in Fig. 3 as well. Within
the statistical errors, the results are compati-
ble with the continuum extrapolated value ob-
tained with non-perturbatively improved Wilson
fermions [43]. This represents a further indica-
tion that O(a2) effects are moderate with overlap
fermions. More studies with lighter quark masses
and larger volumes are needed to properly assess
the systematics of these encouraging results.
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Figure 3. Chiral condensate vs a: black squares
[51], black diamonds [52], black circles [43], red
circles [34], red squares [36].

Properties of QCD Green’s functions in a fi-
nite box of linear extension L and with very light
quark masses can be studied within chiral pertur-
bation theory [54]. If 2mΣL4 ∼ 1, L� 1/(4πF )
and p2 ∼ 1/L2, the correlation functions can be
expanded in powers of a parameter ε with
√

2Σm
Λ2

χ

∼ p2

Λ2
χ

∼ O(ε2) (34)

Figure 4. Quark mass dependence of the
scalar condensate for three volumes: 84(circles),
104(squares), and 124(triangles), from Ref. [53].

and Λχ being the cut-off of the effective theory
[54]. At leading order the partition function is
given by

Z(m, θ) =
∫

SU(Nf )

dU0dξ × (35)

exp
[1
2

∫
d4xTr (∂µξ∂µξ) + zReTr (eiθ/NfU0)

]
where the pion field is factorized as U(x) =
U0 exp (i

√
2ξ(x)/F ) and z = mΣV . The integral

over the global mode∫
SU(Nf )

dU0 exp
[
zReTr (eiθ/NfU0)

]
(36)

needs to be done exactly, while a reordered chiral
perturbation theory applies to the non-zero in-
tegration mode ξ(x). Partition functions Zν(m)
and correlations can be defined in sectors of fixed
topology by Fourier transforming in θ [55]. By
comparing the chiral perturbation theory expec-
tations for the correlation functions with the lat-
tice data, the basic assumption of spontaneous
symmetry breaking can in principle be verified
and the low energy constants (LEC) of the chiral
Lagrangian extracted. Properties of QCD in the
infinite volume limit can then be recovered.
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The ε-expansion has been extended to
quenched QCD in Refs. [56,57]. At the leading
order, the chiral condensate in a sector of fixed
topology ν reads

Σν(z)
Σ

= z
(
Iν(z)Kν(z)+Iν+1(z)Kν−1(z)

)
+
ν

z
(37)

where Iν(z) and Kν(z) are modified Bessel func-
tions [57]. One-loop corrections give [58,59]

Σ1−loop
ν (z) =

z′

z
Σν(z′) (38)

where z′ = mΣeffV ,

Σeff(V ) = Σ
[
1− m2

0

3(4πF )2
(
β̃2 + log

(L2
0

L2

))
− α

3(4πFL)2
β̃1

]
, (39)

1/L0 is the renormalization scale and β̃i are
two universal “shape coefficients” [59]. It is in-
teresting to note that the expansion parameter
ε ∼ 1/(4πLF ) in Eq. (38) is comparable to
M2

P /(4πF )2 in Eq. (29) for light pions (MP ∼
1/L), while the prefactors turn out to be differ-
ent.

Quenched QCD in the ε-regime has been ex-
plored on the lattice in Refs. [60,53]. In Fig. 4
an example of the results obtained in Ref. [53]
with overlap fermions for the vacuum expecta-
tion value of the scalar density in the topologi-
cal sector ν = ±1 at different volumes and var-
ious masses is shown. Even with poor statis-
tics and small volumes, a signal compatible with
the expectations of chiral perturbation theory has
been reported. Analogous analyses have been at-
tempted in Ref. [61,40]. More studies at larger
volumes and higher statistics are needed to con-
firm the indications of these exploratory investi-
gations.

6. Topological susceptibility

In the chiral limit, the Fourier transform of the
singlet axial WI in Eq. (28) for Ô = Q̂ reads

χt(p) = a4
∑

x

e−ipx〈Q̂(x)Q̂(0)〉+ CT(p) (40)

=
a4

2Nf

∑
x

e−ipx〈∂∗µÂ0
µ(x)Q̂(0)〉+ CT(p)

where the same contact term CT(p) has been
added to both sides of Eq. (40) to make them
separately finite. CT(p) is a fourth-degree poly-
nomial, which can be chosen to vanish at p = 0
since in this case the second line of Eq. (40) is
certainly finite in the absence of zero-mass par-
ticles in the singlet channel. As a consequence,
the topological susceptibility vanishes in the chi-
ral limit, i.e. χt(0) = 0 [19].

For MP → 0, the leading chiral behaviour

χt(0) =
F 2M2

P

2Nf
+O(M4

P ) (41)

is recovered by comparing the integrated singlet
axial WIs with Ô = Q̂ and Ô = P̂ 0 [62].
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Figure 5. Summary for the quenched topological
susceptibility from [40]: filled boxes [40], empty
triangles [66], filled circles [67], empty circles [67],
filled diamonds [68], filled triangles [69].

In the chiral limit, χt(p) satisfies a three-times-
subtracted dispersion relation

χt(p) = b1 + b2p
2 + b3(p2)2 (42)

− R2
η′

p2 +M2
η′

+ (p2)3
∫

cut

ρ(t)
(t+ p2)t3

dt ,
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where the contribution of the η′ meson has been
separated since it is expected to dominate the dis-
persive integral [63]. For p2 → 0, the “sum rule”
χt(0) = 0 implies

b1 =
F 2

η′M2
η′

2Nf
, (43)

where R2
η′ = F 2

η′M4
η′/2Nf . Under the “smooth-

quenching hypothesis”, the Witten–Veneziano
formula is obtained [64,65]

F 2M2
η′

2Nf

∣∣∣Nf
Nc

=0
= a4

∑
x

〈Q(x)Q(0)〉YM

=
〈(n− − n+)2〉

V
, (44)

where the quantum average has to be done in the
pure Yang–Mills (YM) theory [19].

By using Wilson and staggered fermions it was
argued that [70,71]

χt(0) = lim
m→0

( 2m
2Nf

)2

a4
∑

x

〈P 0(x)P 0(0)〉ZV
Quen(45)

where only Zweig-violating (ZV) diagrams are in-
cluded. With GW fermions, this formula is the
algebraic equivalent of Eq. (44) [62].

The topological susceptibility defined by us-
ing Neuberger’s operator has been computed for
several lattice spacings and volumes for a pure
SU(3) YM theory [68]. Analogous computations
have been performed in the past year with over-
lap fermions [69], FP and CI actions [40,66]. A
summary of the results obtained can be found in
[40] and is reported in Fig. 5. The central value
of χt obtained with GW fermions is quite stable
as a function of the lattice spacing and is also
compatible with the value obtained by other ap-
proaches [72,73]. More work is needed at larger
volumes and smaller lattice spacings before these
encouraging indications are fully confirmed and
the magnitude of the systematic error is properly
assessed.

Exploratory computations of χt for Nc > 3
have been performed in the past year [74–76].
The results are compatible with a smooth large-
Nc limit and a non-zero χt in the limit Nc →∞.

7. K→ ππ decays

Non-leptonic K → ππ amplitudes can be
parametrized as

T [K+ → π+π0] =

√
3
2
A2e

iδ2 (46)

T [K0 → π+π−] =

√
2
3
A0e

iδ0 +

√
1
3
A2e

iδ2

T [K0 → π0π0] =

√
2
3
A0e

iδ0 − 2

√
1
3
A2e

iδ2

where δI and AI are the ππ phase shifts and the
isospin amplitudes for I = 0, 2. Direct and indi-
rect CP violation are parametrized by

ε′ =
1√
2
eiΦ ReA2

ReA0

(
ImA2

ReA2
− ImA0

ReA0

)
(47)

and

ε =
T [KL → (ππ)0]
T [KS → (ππ)0]

(48)

respectively. Experimental results reveal Φ =
π/2 + δ2 − δ0 ≈ π/4, a ∆I = 1/2 selection rule
|A0/A2| ' 22.2 and the presence of direct and
indirect CP violation in nature:

Re(ε′/ε) = (16.6± 1.6)× 10−4 [77]
|ε| = (2.282± 0.017)× 10−3 [78] . (49)

Phenomenological analyses of the unitarity trian-
gle indicate that the Standard Model picture of
indirect CP violation in the kaon system is consis-
tent with that of B decays and oscillations [79,80].

The ∆I = 1/2 rule and the value of ε′/ε can
be explained within the Standard Model only if
the strong interactions crucially affect these non-
leptonic weak transitions (see [81–83] for recent
reviews). In this case a more complicated blend of
ultraviolet and infrared effects prevented reliable
determinations of the relevant matrix elements.
Power-divergent subtractions can be needed to
construct the renormalized operators that enter
the effective Hamiltonian [84–86,31]. In the in-
frared, the continuation of the theory to Eu-
clidean space-time and the use of finite volumes in
numerical simulations generate a non-simple re-
lation between the physical amplitudes and those
computed on the lattice [87–89].
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7.1. The ∆I = 1/2 rule
By using the operator product expansion

(OPE), the CP-conserving ∆S = 1 effective
Hamiltonian above the charm threshold is given
by

H∆S=1
eff =

GF√
2

[
C+(µ)Ô+(µ) + C−(µ)Ô−(µ)

]
,

where the Wilson coefficients C±(µ) are known at
the NLO [90,91] and the bare operators are

O± =
[
(s̄aγµP−ũb)(ūbγµP−d̃a) (50)

± (s̄γµP−ũ)(ūγµP−d̃)
]
− (u→ c) .

The contributions that arise when the top quark
is integrated out are heavily suppressed by CKM
factors and can be neglected. O± belong to dif-
ferent chiral multiplets and are CPS-even. In
correlation functions at non-zero physical dis-
tance, O± cannot mix between themselves or with
other four-fermion operators, but only with the
dimension-six operator [31,16]

Qm = (m2
u −m2

c)
[
md(s̄P+d̃) +ms(s̄P−d̃)

]
. (51)

The renormalized operators are

Ô±(µ) = Z±(µ)
[
O± + bm±Qm

]
, (52)

where Z±(µ) are logarithmic-divergent renormal-
ization constants and bm± are suppressed by a
factor αs. No power-divergent subtractions are
needed to renormalize O± when fermions with an
exact chiral symmetry are used [31].

For ms 6= md,

Qm = (m2
u −m2

c)∂
∗
µ

[md +ms

ms −md
Vsd

µ (53)

+
md −ms

ms +md
Asd

µ

]
and it does not contribute to matrix elements
which preserve four-momentum [84,85].

If the charm is integrated out not only poten-
tially large contributions of O(µ2/m2

c) are ne-
glected, but ultraviolet power divergences can
arise in the renormalization pattern of the rel-
evant four-fermion operators. In this case the
∆S = 1 effective Hamiltonian can be written as

H∆S=1
eff =

GF√
2

10∑
i=1

Ci(µ)Q̂i(µ) . (54)

The so-called QCD-penguin operators are

Q3,5 = (s̄γµP−d̃)
∑

q=u,d,s

(q̄γµP∓q̃) (55)

Q4,6 = (s̄aγµP−d̃b)
∑

q=u,d,s

(q̄bγµP∓q̃a) (56)

(see Refs. [81,82] for definitions of the other op-
erators). At non-zero physical distance, mixing
with two lower-dimensional operators

Qp = md(s̄P+d̃) +ms(s̄P−d̃) (57)

Qσ = md(s̄FµνσµνP+d̃) +ms(s̄FµνσµνP−d̃)

can occur and power-divergent subtractions are
needed even with Ginsparg–Wilson fermions.

With Wilson fermions, only CPS and flavour
symmetry can be used to determine the renor-
malization pattern of O±. Even with an active
charm, a quadratic divergent contribution needs
to be subtracted in the parity-conserving sector

ÔPC
± (µ) = Z±(µ)

[
OPC
± +

∑
j

bj±O±j +

+ bτ±Qτ +
bs±
a2
Qs

]
(58)

where

Qs = (mu −mc)s̄d (59)
Qτ = (mu −mc)s̄ σµνFµνd . (60)

and O±j are four fermion operators with wrong
chirality. In this case only the flavour part of
the GIM mechanism survives due to the explicit
breaking of chiral symmetry [85].

The LECs of the CP-conserving ∆S = 1 elec-
troweak chiral Lagrangian can be extracted from
three-point correlation functions, thus avoiding
the infrared problem that affects the direct com-
putation of the K → ππ matrix elements on the
lattice [84]. No large cancellations among leading
order terms are expected in the ratio |A0/A2|; an
enhancement should therefore be visible already
at this order. As a result, a combined use of
fermions with an exact chiral symmetry and chi-
ral perturbation theory can be the starting point
to attack the ∆I = 1/2 rule.

In the past years the RBC and the CP-PACS
collaborations have studied the ∆I = 1/2 rule
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Figure 6. On the left BMS
K (2 GeV) vs (r0MK)2 for plain (circles) [38] and NNC-HYP (squares) [96]

overlap. On the right, BMS
K (2 GeV) vs the lattice spacing from various actions: black circles [97], black

squares [98], green triangles down [99], green triangles up [100], red squares [101], red diamonds [37], blue
diamonds [38], blue circles [96].

with domain-wall fermions with a finite fifth di-
mension [37,92]. They have computed the K → π
and K → 0 matrix elements for the operators of
the ∆S = 1 effective Hamiltonian in Eq. (54) and
used LO chiral perturbation theory to recover the
physical amplitudes. Although with large statis-
tical and systematic errors, both groups demon-
strated that a controlled numerical signal can be
obtained for these matrix elements. The system-
atics of these important results can be reduced
by using fermions with an exact chiral symme-
try, lighter quark masses and by considering the
effective Hamiltonian with a dynamical charm.

A different avenue is being followed in Ref. [16].
It is conceivable that the LECs of the weak chi-
ral Lagrangian can be extracted by studying the
weak interactions in the ε-regime [16]. A numeri-
cal feasibility study of this approach on the lattice
is under way. If feasible, it will be very interest-
ing to compare the results of the LECs in the two
regimes.

For direct CP violation, both the ultraviolet
and the infrared problems are more severe. An
active charm does not mitigate the ultraviolet
renormalization, and divergent power subtrac-
tions are necessary. The cancellation between two
large competing contributions from Q6 and Q8

renders ε′/ε very sensitive to higher order correc-
tions in chiral perturbation theory. Leading-order
terms may not be sufficient to reach a reliable pre-
diction in the Standard Model [93,94].

7.2. K0–K̄0 mixing: ε
By using the OPE, the ∆S = 2 effective Hamil-

tonian is given by

H∆S=2
eff =

G2
FM

2
W

4π2
C1(µ) Ô1(µ) + h.c. , (61)

where the expression of the Wilson coefficient
C1(µ) is known at NLO [95] and the correspond-
ing bare four-fermion operator

O1 = (s̄γµP−d̃)(s̄γµP−d̃) (62)

is multiplicatively renormalizable. The matrix el-
ement that encodes the long-distance QCD con-
tributions to ε

〈K̄0|Ô1(µ)|K0〉 ≡ 4
3
F 2

KM
2
KB̂K(µ) (63)

has been computed with overlap fermions in the
last year [38,96]. A plain overlap action has been
used in Ref. [38] for a lattice of linear exten-
sion L ' 1.5 fm, with a spacing a ' 0.093 fm
and for degenerate light quark masses in the



10

range ms/2 . m . ms. The RI/MOM non-
perturbative renormalization procedure has been
implemented to compute the logarithmic diver-
gent renormalization constant. NNC-HYP over-
lap fermions have been used in Ref. [96] for a
lattice of linear extension L ' 1.5 fm, with a
spacing a ' 0.125 fm and for degenerate light
quark masses in the range ms . m . 2.5ms.
The operator has been renormalized using one-
loop perturbation theory. The results of the two
computations are in very good agreement in the
common range of simulated masses, as shown in
Fig. 6.

In Ref. [38] the results have been slightly ex-
trapolated to the physical point by using the func-
tional form

B̂MS
K (2 GeV) = B0

(
1− 3

(MK

4πF

)2

log
(M2

K

Λ2
χ

)
+ b

(MK

4πF

)4)
(64)

with F = F phys
π , while a linear extrapolation has

been performed in [96]. Including the statistical
errors only, the preliminary results

B̂MS
K (2 GeV) = 0.61± 0.07 [38] (65)

= 0.66± 0.04 [96] (66)

are in very good agreement. More studies are
needed to properly assess the magnitude of the
various systematic errors.

A comparison with other determinations ob-
tained with different regularizations is shown in
the second plot of Fig. 6. Even if the statistical er-
rors are large, the agreement with the continuum-
limit world averages based on staggered results
in Ref. [97] is very good. Results obtained with
domain-wall fermions with a finite fifth dimen-
sion are below the overlap determinations, but
still compatible within errors [37,101].

8. Conclusions

Studying QCD with an exact chiral symme-
try at finite lattice spacing implies many theo-
retical advantages: in the ultraviolet it simplifies
the subtraction of divergences in composite op-
erators, in the infrared it allows one to simulate

massless quarks and it provides a natural defini-
tion for the topological charge and the topological
susceptibility.

Large-scale QCD simulations with fermions
with exact chiral symmetry are feasible with
known algorithms and the present generation of
computers, at least in the quenched approxima-
tion. A regime of light quark masses not ac-
cessible with standard fermions has already been
reached.

First results for the meson spectrum, light
quark masses, the chiral condensate and BK are
in good agreement with previous determinations
and suggest moderate discretization errors for
Neuberger’s fermions.

Important long-standing problems such as the
∆I = 1/2 rule in K → ππ decays are greatly sim-
plified and can be attacked. A combined use of
chiral perturbation theory and fermions with ex-
act chiral symmetry may lead to important new
phenomenological informations in the next few
years.
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