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1. Introduction

In type-II superstring theory in flat, ten-dimensional non-compact spacetime, all massive

strings are generally expected to be unstable quantum mechanically by a decay into lighter

particles. Massive strings are the key ingredient of string theory and crucial for the con-

sistency of the theory. Despite many years of study of string theory, very little is known

about the way a massive string decays.

Earlier calculations of decay properties are in [1]–[6], and more recent studies can be

found in [7, 8, 9]. A calculation for states with maximum angular momentum in the open

string theory was given in [6]. An inclusive decay rate was computed in [7]. A more recent

calculation for open and closed superstring theory for generic states (which have angular

momentum much less than the maximum value) is done in [9].

For small string coupling, the dominant elementary process is the decay into two

particles. If these particles are massive, then each of them will subsequently decay into

two ligther particles, and the process ends when only massless particles remain.

Here we shall explicitly compute the rate for the decay of the massive string states of

maximal angular momentum into two particles. This will be done for the closed (type-IIA

or IIB) superstring theory in flat ten-dimensional spacetime. We will consider all cases:

when these particles are both massive, when one of them is massless, and when both of

them are massless.
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A general formula for the decay can be obtained from a one-loop calculation of the

mass-shift. The inverse lifetime T −1 of a massive state of mass M is then given by

T −1 = Γ =
Im∆M 2

2M
, (1.1)

where ∆M 2 represent the radiative correction to the mass, to be expressed as a loop

expansion. At one loop, it receives a contribution from the two-particle intermediate states,

and thus Γ is the lifetime for decaying into two particles.

One can obtain the one-loop expression for ∆M 2 starting from the zero and one loop

expressions for the four graviton amplitudes. This was derived in [8] and we will briefly

review this computation in the next section 2. We get an integral expression in terms of

theta functions. [In [8] a computation of the lifetime was also attempted; however the

algorithm employed in this first investigation was not sufficiently accurate and we find now

a different and more precise result].

One finds that ∆M 2 is formally expressed as a divergent integral of a positive quantity:

its imaginary part can be computed by analytic continuation in M 2, starting from M 2 < 0

where the integral is convergent. By a systematic expansion of the integrand the calculation

then reduces to a sum of integrals of the form

I(α, ω) =

∫

ds s−α esM
2ω , (1.2)

where each term has a multiplicity depending on α and ω. The imaginary part is computed

by a standard formula:

Im I(α, ω) =
π(M2ω)α−1

Γ(α)
. (1.3)

One finds that this is precisely the expression for the one loop mass-shift in φ3 field theory,

and that ω is determined by the masses M1 and M2 of the decay products, whereas α is

related to their orbital angular momentum, which is necessary to compensate the mismatch

of J ,J1 and J2. This is reviewed in section 3.

The difficult task is to compute the multiplicity of I(α, ω), due to the large multiplicity

of the decay products. We have found a very efficient algorithm for doing that, generalizing

the well known saddle-point technique for computing the multiplicity (i.e. entropy) of the

string states. The generalities are presented in section 4. The computation of the imaginary

part is presented in section 5.

In section 6 we make a numerical analysis of our formulae. This analysis is very fast and

accurate. We have made in particular a nontrivial check: ∆M 2 can be expressed in two for-

mally equivalent ways in terms of two different theta functions, which lead to a very different

rearrangement of terms in the expansion and to different saddle point analyses. We find

nevertheless identical results, summarized in a three dimensional plot, see figures 1 and 4.

We find that Im(∆M 2) can be written as a sum over the contributions of different

channels, according to the masses M1,M2 of the particles of the decay product. It turns

out that most of es are exponentially suppressed, except for a line in the space M1,M2,
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where the decay rate has a power-like dependence on the coupling. This is a surprise, since

we do not see any special reason why, given two masses in a three-state vertex, there should

be a selection rule for the third. It is likely that that feature results from the interplay

among the decay products entropy and centrifugal barrier and phase space effects.1

The other surprise is that we find that the lifetime of the excited state of maximal

angular momentum for decaying into two particles grows with the first power of its mass

M . This is computed in section 7.

A final remark: at tree level the whole closed string decay can be described as a

sequence of successive two-body decays. If the decay products are narrow resonances —

particles with a lifetime much larger than the inverse of their mass — then the lifetime of

the first decay is the lifetime of the massive state tout court, like for instance the lifetime

of a K-meson is set by its decay into π-mesons, despite the π-meson being also unstable.

2. The mass shift

Here we review the derivation of the one-loop expression for ∆M 2 given in [8] by factorizing

the one-loop four graviton amplitude obtained by [10] in closed superstring theory (type-IIA

and type-IIB give the same result):

A1 = R4

∫

d2τ

(Im τ)2

∫ 3
∏

i=1

d2zi
Im τ

e−2
∑3

i<j ki.kjχ(zij) (2.1)

where

χ(z) = log

∣

∣

∣

∣

θ1(z|τ)
θ
′

1(0|τ)

∣

∣

∣

∣

2

− 2π
(Im z)2

Im τ
(2.2)

and R4 is a kinematical factor containing the graviton polarizations. We also set α ′M2 =

4N , and choose units where α′ = 4, so that in what follows we can set M 2 = N .

The amplitude A1 has a double pole for S → N (S = 2k1.k2 ) due to the propagator

of a massive string state with M 2 = N , produced by the collision of the two incoming

gravitons, and another similar propagator coupled to the two outgoing gravitons. The

residue of the double pole is proportional to ∆M 2, the (1-loop) mass shift of the massive

state, M 2 →M2 +∆M2. One has

A1 → Gin
1

S −N∆M2 1

S −NGout .

To get ∆M 2, one divides the double pole residue of A1 by the single pole residue of A0,

the tree level four graviton amplitude [10]:

A0 → Gin
1

S −NGout .

The poles of A1 occur as singularities of the integrand in (2.1) for z12, z34 → 0. The

integrand behaves as ∼ |z12|2S |z34|2S · F (z12, z34, z), with z = 1
2 (z1 + z2). One has to look

at the terms in the expansion of F that behave as |z12|2N−2|z34|2N−2. Further, in order to

1We thank Daniele Amati for a discussion on that point.
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select the state of maximal angular momentum J = 2N+2, one looks for the maximal power

of cos θ — the angle between the space-momenta of the ingoing and outgoing gravitons in

the c.m. frame – both in the residues of A1 and A0. In this way one obtains

∆M2 = c

∫

dsdτ1
s2

∫

d2z

s
e−

4Nπ2y2

s

∣

∣

∣

∣

πθ1(z|τ)
θ′1(0|τ)

∣

∣

∣

∣

4N

s−2N ×

×
N−1
∑

l=0

N !2

l!2(N − l − 1)!2

∣

∣

∣

s

π2
∂2
z log θ1(z|τ) + 1

∣

∣

∣

2l
, (2.3)

where s = π Im(τ) and c is a numerical constant, independent of N . In [8] the normalization

was checked by evaluating the contribution to Im∆M 2 from the decay rate of the excited

state into two massless states, and finding agreement with the explicit computation of the

decay into two gravitons.

3. Field theory

Let us first consider the case of φ3 field theory. Consider the one-loop correction to the

propagator of a particle of mass M , due to the contribution of particles of masses M1, M2

running in the loop. With a convenient parametrization, the Feynman diagram has the

following form

∆M2 =
∑

M1,M2,l0

P

∫ ∞

0
dss−β(l0)

∫ 1

0
dηe4Ws , (3.1)

with

W (η) =M2η(1− η)− ηM 2
1 − (1− η)M 2

2 .

Here β(l0) = D/2 − 1 + l0 (D = spacetime dimension), and the polynomial

P = P (M,M1,M2, l0) takes into account in particular the multiplicity of the decay prod-

ucts, l0 being related to their orbital angular momentum needed for matching the angular

momentum of the decaying state.

The IR region is t = ∞. This integral is convergent below the threshold for particle

production. Above the threshold, the integral is defined as usual by analytic continuation,

which gives rise to an imaginary part.

The threshold appears when W (η) changes sign and becomes positive. The maximum

of W (η) is at η = η0, with

η0 =
M2 −M2

1 +M2
2

2M2
,

where

W (η0) =
1

4M2

(

M2 − (M1 +M2)
2
) (

M2 − (M1 −M2)
2
)

= ~p 2 .

Hence W (η0) > 0 for M 2 > (M1 +M2)
2.

For future use we define

ω ≡ 4W (η0)

M2
= 1− 2(σ1 + σ2) + (σ1 − σ2)

2 , σ1,2 =
M2

1,2

M2
. (3.2)
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Since 4W = M 2ω − 4M 2(η − η0)
2, for large M 2, we can evaluate the integral over η

by performing a gaussian integration around the maximum at η = η0. Ignoring constant

factors, we get
∫ 1

0
dη e4Ws ∼ 1√

M2s
esωM

2

. (3.3)

We then evaluate the imaginary part of ∆M 2 by analytic continuation from M 2ω < 0 to

M2ω > 0 by means of the formula seen in eqs. (1.2) and (1.3). The final result is symmetric

in M1 ↔M2.

In the case of string theory, we will obtain ∆M 2 expressed in two different (but equiv-

alent) ways, as discussed in section 4. For comparison with the string theory expression

studied in detail in appendix A, we set M 2 = N and make the change of variable η = π
s y

to get

∆M2 =
∑

M1,M2,l0

P

∫ ∞

0
ds s−β(l0)−1e−4sM2

2

∫ s
π

0
dye−

4Nπ2y2

s
+4πy(N−M2

1 +M2
2 ) . (3.4)

In order to compare with the string theory expression studied in section 5, we make another

change of variable: η = π
s y +

1
2 , getting the field theory expression

∆M2 =
∑

M1,M2,l0

P

∫ ∞

0
ds s−β(l0)−1e[N−2(M2

1 +M2
2 )]s ×

×
∫ s

2π

− s
2π

dy e−
4Nπ2y2

s
−4πy(M2

1−M
2
2 ) . (3.5)

4. General method

Consider the formula for the one-loop string diagram eq. (2.3), which is expressed in terms

of θ1(z|τ).
We note that the integrand can be expanded in a sum of terms of the form

T (m1,m2) = s−2N+(m1+m2)−3e−
4Nπ2y2

s ·Qm1 · Q̄m2 (4.1)

where

Qm =

(

πθ1(z|τ)
θ′1(0|τ)

)2N ( 1

π2
∂2
z log θ1(z|τ)

)m

(4.2)

can be further expanded in powers of q2 = ei2πτ and in a Laurent series in p = e2iπz ,

which is symmetric under p→ p−1. After the integration over Re(τ) and Re(z) (ensuring

L0 = L̄0 on the states), we get a sum of terms like

s−2N+(m1+m2)−3e−
4Nπ2y2

s e−4k̃se4j̃πy , (4.3)

with y = Im z, s = π Im(τ).

By comparing with eq. (3.4) we see that 2N − (m1 +m2) − 2 corresponds to l0, k̃ to

M2
2 , and j̃ to M2 −M2

1 +M2
2 . We can thus determine P (M,M1,M2, l0).
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We will actually compute Im∆M 2 at fixed M1,2 summing over l0, that is summing

over every possible angular momentum and multiplicity of the decay products.

It is also useful to make a shift z → z + τ/2 and to re-express the string one-loop

diagram in the form

∆M2 = c

∫

dsdτ1
s2

∫

d2z

s
e−

4Nπ2y2

s eNs
∣

∣

∣

∣

πθ4(z|τ)
e−iπτ/4θ′1(0|τ)

∣

∣

∣

∣

4N

s−2N ×

×
N−1
∑

l=0

N !2

l!2(N − l − 1)!2

∣

∣

∣

s

π2
∂2
z log θ4(z|τ) + 1

∣

∣

∣

2l
. (4.4)

Now we can expand the integrand of eq. (4.4) in a sum of terms of the form

T ′(m1,m2) = 4−2Ns−2N+(m1+m2)−3eNse−
4Nπ2y2

s ·Q′m1
· Q̄′m2

, (4.5)

where now:

Q′m =

(

2πθ4(z|τ)
q−1/4θ′1(0|τ)

)2N ( 1

π2
∂2
z log θ4(z|τ)

)m

. (4.6)

Note that the new Q′m has integer power expansions in q and p. By looking at the terms

|q|2k = e−2ks and |p|2j = e−4jπy (after integrating over Re(τ) and Re(z)) and comparing

with eq. (3.5) we now identify k =M 2
1 +M2

2 and j =M 2
1 −M2

2 .

The two forms of ∆M 2, eq. (2.3) and eq. (4.4) are equivalent. However, the final

expressions that we will obtain using as starting points eq. (2.3) and eq. (4.4) and computing

integrals by saddle-point approximation will involve very different expansions. Therefore

it will be a nontrivial check to verify that indeed one gets the same result.

5. Calculation of the imaginary part of M 2

Here we evaluate Im∆M 2 using the string loop expression (4.4), written in terms of θ4.

It should be remembered that the result for ∆M 2 does not change if we replace θ4

by θ1, θ2 or θ3, since they differ by a shift of z and a factor that compensate the change

from e−
4Nπ2y2

s . In appendix A we repeat the analysis with ∆M 2 expressed in terms of θ1,

eq. (2.3).

We expand the binomial ( s
π2 ∂

2
z log θ4(z|τ) + 1)l and using the formula

N−1
∑

l=max(m1,m2)

1

(l −m1)!(l −m2)!(N − l − 1)!2
=

(2N −m1 −m2 − 2)!

(N −m1 − 1)!2(N −m2 − 1)!2

we get (with τ = τ1 + i s/π and z = x+ iy)

∆M2 = c

∫

dsdτ1

∫

dydx×

×
∑

m1,m2

T ′(m1,m2)
(2N −m1 −m2 − 2)!N !2

m1!(N −m1 − 1)!2m2!(N −m2 − 1)!2
(5.1)
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with T ′(m1,m2) expressed in terms of Q′m1,2
as in eq. (4.5). Now we expand

Q′m =
∑

k,j

ckj(N,m)qkpj , (5.2)

with

ckj(N,m) = − 1

(2π)2

∮

dq

q

∮

dp

p
q−kp−jQ′m , (5.3)

and similarly for the complex conjugate. From the explicit expressions for the θ4 function

given in section 6, one can see that the sum over k contains only positive integer values

of k, whereas the sum over j contains both positive and negative powers of j, with the

property ckj = ck(−j).

Let us now consider the integrals over τ1 and x. Since the imaginary part of ∆M 2

comes from the divergence of the integral at s → ∞, we can replace the integral over the

fundamental domain by an integral over the full strip. In addition, we note that θ4 → θ3
by a shift τ1 → τ1 +1. Given that the original integral gives the same result for θ3 and θ4,

we can extend the integration region in τ1 to the interval (−1, 1). Then

1

2

∫ 1

−1
dτ1

∫ 1

0
dxQ′m1

Q̄′m2
=
∑

k,j

(qq̄)k(pp̄)jckj(N,m1)c̄kj(N,m2)

=
∑

k,j

e−2ks−4πjyckj(N,m1)c̄kj(N,m2) .

The integration over y is performed by saddle point as in eq. (3.3). Then we consider the

integral over s, and use the general formula (1.3) for computing the imaginary part. We

obtain

Im(∆M 2) ∼ 4−2N

√
N

∑

j,k

(Nω)2N+ 3
2

N−1
∑

m1,m2=0

N−1
∑

m1,m2=0

(2N −m1 −m2 − 2)!

Γ(2N −m1 −m2 +
5
2 )
×

×N !2 ckj(N,m1)c̄kj(N,m2)(Nω)
−m1−m2

m1!(N −m1 − 1)!2m2!(N −m2 − 1)!2
. (5.4)

Here

ω(ρ, σ) ≡ 1− 2σ + ρ2 ,

and

σ ≡ k

N
, ρ ≡ j

N
. (5.5)

We remind that by comparing with field theory we see that the integers k, j are related to

the masses M1,M2 of the decay product (cf. eq. (3.2) ):

k =M2
1 +M2

2 , j =M2
1 −M2

2 . (5.6)

Here we consider large values of N with fixed σ and ρ. Other cases will be discussed

in appendix B and C.
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It will be clear from the calculation below that the main contribution in the sum over

m1,m2 comes from the region where 2N −m1−m2 is large. Therefore we can approximate

(2N −m1 −m2 − 2)!

Γ(2N −m1 −m2 +
5
2)
∼ N−7/2

(

2− m1

N
− m2

N

)−7/2
. (5.7)

Moreover, in the large-N limit, the sum over m1,2 is dominated by a sharp maximum; away

from the maximum the terms are exponentially suppressed like e−cN . We will see that on

the maximum r(ρ, σ) ≡ (2− (m1 +m2)/N)−7/2 is a finite function of j/N, k/N .

Therefore, we can write

Im
(

∆M2
)

∼ 4−2NN2N−1/2
∑

j,k

ω2N+ 3
2 r(ρ, σ)|L(j, k)|2 , (5.8)

where

L(j, k) =

∮

dq

q

∮

dp

p
q−kp−j

(

2πθ4(z|τ)
q−1/4θ′1(0|τ)

)2N

H(q, p; j, k) , (5.9)

and in turn

H(q, p; j, k) =

N−1
∑

m=0

(N − 1)!

m!(N −m− 1)!2

(

1
π2∂

2
z log θ4(z|τ)
Nω

)m

. (5.10)

6. Numerical evaluation of Im(∆M 2)

We now determine the functions appearing in (5.8). We will make use of the formulas in

terms of q = eiπτ1−s and p = ei2πz :

2πθ4(z|τ)
q−1/4θ′1(0|τ)

=

∞
∏

n=1

(1− pq2n−1)(1− p−1q2n−1)

(1− q2n)2

≡ exp [
1

2
f(q, p)] . (6.1)

By expanding the logarithms in the above definition of f(q, p), and interchanging the two

infinite sums, we obtain

f(q, p) = −2
∞
∑

n=1

qn(pn + p−n − 2qn)

n(1− q2n)
. (6.2)

Further:

1

π2
∂2
z log θ4(z|τ) = 4

∞
∑

n=1

q2n−1[(p+ p−1)(1 + q4n−2)− 4q2n−1]

(1− pq2n−1)2(1− p−1q2n−1)2
≡ g(q, p) . (6.3)

Define

v ≡ g(q, p)

ω(ρ, σ)
.

Now we use the formula (5.10) for H = H(q, p, j, k):

H =

n
∑

m=0

n!

m!(n−m)!2

(

v

n+ 1

)m

=

(

v

n+ 1

)n 1

2πi

∮

dt

tn+1
e(n+1)t

(

t+
1

v

)n

, (6.4)
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with n = N − 1. For large-N , the integral over t can be computed by a saddle point

evaluation. We get

H(v,N) ∼= N−N+1/2 exp [Nh(v)] , (6.5)

where

h(v) = log v + log

√
1 + 4v + 1√
1 + 4v − 1

+
1

2v

(√
1 + 4v − 1

)

. (6.6)

We have checked that this formula provides a very accurate representation for the sum

in (5.10) already for N larger than 10.

Thus we finally get

L(j, k) = N−N+1/2

∮

dq

q

∮

dp

p
q−kp−jeN[f(q,p)+h(v(q,p))] . (6.7)

The remaining integrals over q and p can also be computed by a saddle-point evaluation.

Since the functions appearing in the integrand are complicated, it is more convenient to

perform this calculation by a numerical evaluation.

The saddle-point evaluation of the integrals over q, p is done numerically by first finding

the extremum of the exponent in eq. (6.7). This determines

q0 = q0(ρ, σ) , p0 = p0(ρ, σ) .

We find numerically that the saddle point is obtained for q0 and p0 real and positive. By

performing the gaussian integration around the saddle point we get

|L(j, k)|2 ∼ N−2N+1−2e2NSL(ρ,σ) , (6.8)

where

SL(ρ, σ) = −σ log q0 − ρ log p0 +Re[f(q0, p0) + h(v(q0, p0))] . (6.9)

It is seen that the saddle is a minimum of SL for q0, p0 real, and that on it f and h are

real.

Finally, from eq. (5.8) we obtain

Im
(

∆M2
)

∼ N−3/2
∑

j,k

ω3/2(ρ, σ) r(ρ, σ)e2NS0 (6.10)

where

S0(ρ, σ) = SL(ρ, σ) + logω(ρ, σ) − log 4 . (6.11)

Also, we mention that the result for (6.6) can also be obtained by evaluating the sum

over m in eq. (5.10) by looking at the maximum, found for m0 = N(1− 1
2v (
√
1 + 4v − 1)),

and expanding around it (this is done in the appendix C).

In particular, on the maximum (2 − m1

N −
m2

N ) = 1
v (
√
1 + 4v − 1), since the same

maximum holds for m1,2. Therefore we find

r(ρ, σ) =

(

1

v(q0, p0)
(
√

1 + 4v(q0, p0)− 1)

)−7/2

. (6.12)
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Figure 1: The exponent S0 of the decay rate Γ(M1, M2) in terms of the masses M2
1/
√

N , M2/
√

N ,

computed using the formula (6.11). The kinematically allowed region is inside the triangle defined

by M1, M2 > 0, M1

M
+ M2

M
< 1. The maximum of S0 is S0 = 0 and it is located on a curve shown in

figure 3.

Our final formula for the rate of the decay channel to particles of masses M1,M2 is

thus given by

Γ(M1,M2) =
1

2
√
N

Im∆M 2

∣

∣

∣

∣

M1,M2

= ω3/2 r
1

N2
e2NS0 , (6.13)

where S0 is a function of the ratios M1

M , M2

M , with M =
√
N .

Note that Γ(M1,M2) represents the contributions of all decay channels involving par-

ticles with the same masses M1,M2 (since the multiplicity grows exponentially with the

mass, for large M1,M2, there is an exponentially large number of particles contributing to

Γ(M1,M2)).

Figure 1 is a numerical plot of S0 in function ofM1 andM2. We see that S0 is negative

definite, except on some curve (see figure 3) where it identically vanishes. Thus the first

observation is that the rate for the decay channel to particles of generic masses M1, M2 is

exponentially suppressed at large-N .

In the appendix A, figure 4 shows the numerical plot of S̃0, obtained by starting with

the expression (2.3) in terms of θ1. The two figures are identical.

Figure 2 is a plot of S0(M1) for given M2, i.e. slices of figure 1 at constant M2. One

can see that the maximum exactly passes by S0 = 0. This happens for any M2. We have

checked that the factor ω3/2(ρ, σ) r(ρ, σ) in eqs. (6.10) and (6.13) is finite inside the allowed

triangle, except on the boundary M1 +M2 =M where Γ is anyhow suppressed.

Modulo the exponentially suppressed processes, a massive particle will decay through

the special channel where S0 vanishes. This defines a curve M2 = F (M1) in the space

M1,M2, which is shown in figure 3. Such dominant channels exhibit a power-like behavior

Γ(M1,M2) ∼ N−2 . (6.14)
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Figure 2: Sections of figure 1 at constant M2. The three curves displayed corespond to M2

M
=

0.1, 0.3, 0.7 (with maxima located at M1

M
∼ 0.74, 0.28, 0.12 respectively). One can see that the

maximum always passes by S0 = 0 for every value of M2.

It is remarkable that for large-N the dynamics “excludes” decays into kinematically allowed

channels. In other words, we find that if the massive particle decays into a particle of

mass M1, the mass of the other particle M2 is uniquely determined, modulo exponentially

suppressed processes.

The curve M2 = F (M1) is well approximated by the curve
(

M1

M

)a

+

(

M2

M

)a

= 1 , a ∼= 0.73 , (6.15)

also shown in figure 3. Although this not the true analytical formula connecting M1,M2

(which is extremely complicated), eq. (6.15) is useful as a book-keeping of the approximate

relation between M1 and M2.

In the appendices B and C we have considered the cases when one of the masses M1

or M2, or both, are small with respect to N . We find that the only case which is not

exponentially suppressed is when M2 = 0 and M 2
1 = N − j with j finite (or viceversa). In

this case

Γ ∼ N−5/2 .

Thus the dominant channel is for both M 2
1,2 of order N along the curve M2 = F (M1),

where the decay width is given by eq. (6.14).

7. Lifetime of a state with maximum angular momentum

Writing the formula (6.10) for Im(∆M 2) in terms of σ1,2 =M2
1,2/N , we obtain

Im
(

∆M2
)

= N2

∫

D
dσ1dσ2

1

N3/2
e2NS0 , (7.1)

where the domain of integration is the region σ1, σ2 > 0 and
√
σ1 +

√
σ2 < 1.
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Figure 3: The curve defined by

S0(M1, M2) = 0 (solid line), describing

the dominant channels. For these spe-

cial values of M1, M2 the rate is not ex-

ponentially suppressed. The dashed line

is the curve (M1/M)a + (M2/M)a = 1,

a = 0.73.

except on the curve where S0 vanishes. Thus only a

small neighborhood of this curve contributes to the

integral (7.1). Let l be a parameter along the line,

0 < l < 1, and let n a parameter for the orthogonal

direction, where n = 0 means a point on the curve.

It is convenient to use n, l as integration variables.

The integration over l is trivial, since S0 takes the

same value (i.e. equal to zero) for all l. In the

vicinity of the line, we can expand S0 in powers of

n, and get a gaussian integral over n of the form

Im
(

∆M2
)

= N2

∫

dn
1

N3/2
e−cNn

2

, (7.2)

where c is a number of order 1. The gaussian in-

tegral gives an extra factor N−1/2, so we get (see

eq. (1.1) )

T −1 =
Im
(

∆M2
)

2
√
N

= const.
1√
N

(7.3)

or

T = constα′M . (7.4)

where we have restored α′. Thus the lifetime of a state with maximum angular momentum

in closed superstring theory is proportional to the mass.
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A. Alternative calculation of Im(∆M 2)

Here we provide an alternative calculation of Im(∆M 2) by using as starting point the

formula (2.3) in terms of θ1.

The computation is quite similar to the one done in sections 5 and 6, this time using

the expansion of eqs. (4.1) and (4.2). We also make use of the formulas

πθ1(z|τ)
θ′1(0|τ)

= sinπz
∞
∏

n=1

(1− pq2n)(1− p−1q2n)

(1− q2n)2

≡ exp

[

1

2
f̃(q, p)

]

(A.1)
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1

π2
∂2
z log θ1(z|τ) =

4

p+ p−1 − 2
+ 4

∞
∑

n=1

q2n
[(

p+ p−1
) (

1 + q4n
)

− 4q2n
]

(1− pq2n)2 (1− p−1q2n)2

≡ g̃(q, p) . (A.2)

By expanding the logarithms in the above definition of f̃(q, p), and interchanging the two

infinite sums, we now obtain

f̃(q, p) = log

[

1

4

(

p+ p−1 − 2
)

]

− 2
∞
∑

n=1

q2n(pn + p−n − 2)

n(1− q2n)
. (A.3)

Note that f̃ can be defined modulo iπ, that is modulo the sign inside the logarithm, since

in eq. (4.4) only exp (2Re f̃) appears.

Both f̃ and g̃ are even functions of q. We get the same formulas (5.9) , (5.10), (6.5)

and (6.6), with f → f̃ and g → g̃ and thus v → ṽ. Moreover, as explained in section 4,

the relation with the masses M1,2 of the exponents j̃, k̃ of the expansions q2k̃, pj̃ is now

different. In terms of the exponents j, k of section 5 we have

k̃ =
(k − j)

2
, j̃ =M2 − j .

In conclusion we obtain

Im
(

∆M2
)

∼ N−3/2
∑

j,k

ω3/2(ρ, σ)r̃(ρ, σ)e2NS̃0(ρ,σ) , (A.4)

where

S̃0(ρ, σ) = −(σ−ρ) log q̃0−(1−ρ) log p̃0+Re
[

f̃(q̃0, p̃0) + h(ṽ(q̃0, p̃0))
]

+logω(ρ, σ) , (A.5)

σ ≡ M2
1 +M2

2

N
, ρ ≡ M2

1 −M2
2

N
,

and the saddle point values q̃0, p̃0 correspond to the stationary point of S̃0.

The functions that enter into the final expression (A.5) are individually very different

from the ones appearing in the formula for S0 in section 6. The result is however the same,

to a surprising degree of accuracy, see figure 4.

B. Decay into two massless particles

The decay rate of the massive particle into two massless particles (e.g. gravitons) can also

be obtained from the general formula (4.4). We need to consider the special channel with

M1 = M2 = 0, i.e. the powers qkpj in the expansion with k = j = 0. This is obtained by

formally setting g(q, p)→ 0 (since it starts with q1) and 2πθ4(z|τ)

q−1/4θ′1(0|τ)
→ 1. For this k = j = 0

term, we thus get

∆M2

∣

∣

∣

∣

massless

= c

∫

dsdτ1
s2

∫

d2z

s
e−

4Nπ2y2

s eNs
(

1

4s

)2N N2(2N − 2)!

(N − 1)!2
. (B.1)
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Figure 4: The exponent S̃0 of the decay rate Γ(M1, M2) in terms of the masses M1/M , M2/M ,

computed using the formula (A.5). The plot should be compared to figure 1, computed by following

a different way.

Computing the integrals over x, y and τ1, we are left with an integral over s whose imaginary

part gives

Im

∫

dss−
5
2
−2NeNs ∼= 1√

N
e2N2−2N

Hence

Im∆M 2

∣

∣

∣

∣

massless

∼
√
Ne−2N(log 4−1) . (B.2)

This is exponentially decreasing for large-N .

Note that this decay corresponds to the corner M1 = M2 = 0 in figure 1, which is

also exponentially decreasing. Indeed, the numerical value at M1 = M2 = 0 of the plot is
∼= −0.7726, which agrees with −2(log 4− 1).

In [8] this result has been compared with the explicit direct computation of the decay

into two gravitons, finding complete agreement.

C. Decay into a massless and a massive particle, and remaining cases

Another interesting special case is when the massive particle decays into a massless particle

(e.g. graviton) and a massive particle. So, consider the decay M →M1 +M2 with M2 = 0

and M2
1 = N − j (we remind that M 2 = N). We consider both the case when j is a finite

integer and the case j = c N where c can be a constant less than one or c ∼ N λ−1 with

λ < 1. The case M2 = 0 is most suitably treated by the formula (2.3) expressed in terms of

θ1(z|τ), setting q = 0 to isolate the term corresponding to M2 = 0 in the expression (4.3).

Thus (see (A.1), (A.2) )

πθ1(z|τ)
θ
′

1(0|τ)
→ sin(πz) ,

1

π2
∂2
z log θ1(z|τ)→ −

1

sin2(πz)
.
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Therefore now

u(p) ≡ g(q = 0, p) =
4

(

p1/2 − p−1/2
)2 , (C.1)

ef(q=0,p) =

(

πθ1(z|τ)
θ
′

1(0|τ)

)2

= −u(p)−1 . (C.2)

Now ω = ( jN )2 thus ωN = j2/N and g
ωN = u(p)N

j2 . By following similar steps as those

which led to eq. (5.4), now we obtain

Im∆M 2 ∼ (ωN)2N+ 3
2√

N

∮

dp

p
p−j(u(p))−N

∮

dp̄

p̄
p̄−j(u(p̄))−N

×
N−1
∑

m1,m2=0

(2N −m1 −m2 − 2)!

Γ(2N −m1 −m2 +
5
2 )

Zm1 Z̄m2 . (C.3)

where

Zm ≡ Z(u(p),m, j,N) ≡ N !

m!(N −m− 1)!2
(
u(p)N

j2
)m .

We use a saddle point technique to sum over m1,2: the dominant contribution comes from

the maximum of the exponential dependence in those variables. Using the Stirling formula,

we find

Zm ∼ (N −m− 1)

√

N

m
eN logNeI , (C.4)

I = N −m− 2N log (N −m− 1)

+ m

(

− logm+ 2 log (N −m− 1) + log
u(p)N

j2

)

. (C.5)

Imposing that the derivative in m of the exponent vanishes, we get the equation for m0,

the maximum locus,

(N −m0 − 1)2 =
m0j

2

u(p)N
,

which is solved to give

N −m0 = 1− j2

2Nu
+

√

(1− j2

2Nu
)2 +

j2

u
− 1 . (C.6)

Let us now discuss different cases.

For j2/N → 0 , eq. (C.6) gives

m0
∼= N − j√

u
− 1 . (C.7)

On the maximum, we get

Z(u(p),m0, j,N) ∼ j√
u

(

N

j2

)N

uN exp

[

j√
u

]

,
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and

(2N −m1 −m2 − 2)!

Γ
(

2N −m1 −m2 +
5
2

) ∼ j−7/2

(

1
√

u(p)
+

1
√

u(p̄)

)−7/2

.

The second derivative of the exponent I is −1/m0− 2/(N −m0− 1), which in this limit is

2
√
u/j. We are left with a gaussian integral in δm1, δm2 with a spread of order

√
j, which

is small compared to the range of m. Hence

Im∆M 2 ∼ (ωN)2N+ 3
2√

N

(

N

j2

)2N

j−7/2

∣

∣

∣

∣

j3/2
∮

dp

p
p−j exp

j√
u

∣

∣

∣

∣

2

, (C.8)

where we have neglected finite powers of u and kept into account the range in m. We

recall that 1/
√
u = 1

2(p
1/2 − p−1/2). The remaining integral over p is obtained again by

saddle point technique: defining x = p1/2, we require the derivative in x of the exponent

to vanish, that is −2x−1 + 1
2(1 + x−2) = 0. The solution is x = x0 = 2 +

√
3, discarding

the other solution x = 1/x0 which would make N −m ∼ j/u(p) < 0. We get

∮

dp

p
p−j exp

[

j

2

(

p1/2 − p−1/2
)

]

∼ 1√
j
exp [− c0j] ,

where

c0 = 2 log x0 −
x2

0 − 1

2x0

∼= 0.9 .

Thus we finally obtain

Im∆M 2 ∼ j3/2

N2
exp [− 2c0j] . (C.9)

For large j, this rate is exponentially suppressed.

The calculation applies as well to the case of finite j. In this case, the exponential

factor depending on j is a finite number of order O(1), so one obtains

Γ ∼ N−5/2 .

Now consider the case when N > j ≥ N 1/2. Then eq. (C.6) gives N−m0−1 ∼ j
u−

j2

2Nu ,

and therefore we find the same result, up to negligible corrections.

Finally, consider the case j = cN . Then eq. (C.6) reduces to

N −m =
1

2

(

Nc2

u
− 2

)

(

√

1 +
4u

c2
− 1

)

,

and we have to evaluate

∮

dp

p
p−cN exp






N






− log u− 2 log

(√

1 + 4u
c2
− 1
)

c2

2u
+
c2

2u

(

√

1 +
4u

c2
− 1

)












.

We note that this is a particular case of the expression of the general case (6.7) – we recog-

nize ṽ(q = 0, p) = u(p)/c2 and the expression N(f̃(q = 0, p)+h(ṽ(q = 0, p)) in the exponent

– except that in the general case M 2
2 ∼ N we have an extra gaussian integral coming from
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the integration over q (rather than setting q = 0 to isolate the term corresponding to

M2
2 = 0). As a result, (6.7) will give an extra factor |1/

√
N |2.

Summarizing, for M2 = 0 and M 2
1 = N − j with 1 ≤ j ≤ cN , we get

Im∆M 2 ∼ j3/2

N2
exp [− bj] (C.10)

where b > 0 is a numerical coefficient of order 1.

The case when j = N , i.e. c = 1, corresponds to the M1 = M2 = 0 case treated in

appendix B. It can also be recovered as follows. We need to compute the coefficient of the

power pN in the Laurent expansion of

exp

[

N

(

− log u− 2 log

√
1 + 4u− 1

2u
+

1

2u

(√
1 + 4u− 1

)

)]

=
(p

4

)N
exp

[

N

(

1 +
∑

n>0

cnp
−n

)]

.

(C.11)

The coefficient of pN is ( e4 )
N . Now we have to take the modulus square of this coefficient,

and take into account that the generic case eq. (C.10) has an extra factor |1/√j|2 originating
from the gaussian integral around the saddle point over p. We thus obtain the correct result

for M1 =M2 = 0:

Im∆M 2 ∼ N1/2 ·
(e

4

)2N
, (C.12)

in agreement with appendix B.

Finally, we have also considered the case whenM 2
2 = n is finite or small with respect to

N , which is allowed for j > 2
√
nN −n. We find that this case is exponentially suppressed.
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