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Abstract

Bogdanov A.A., Nurushev S.B., Penzo A. et al., New approaches to the pp total cross section mea-
surements at polarized colliders: IHEP Preprint 2000-36. – Protvino, 2000. – p. 14, figs. 3, tables 5,
refs.: 25.

It is proposed to extract the pp total cross section, σT (pp), from the analyzing power measurement in
elastic pp scattering in the Coulomb-Nuclear Interference region. Contributions to an accuracy of σT (pp)
determination are estimated, which arise from different sources, including the single spin-flip interaction.
Applicability of the factor of merit to the extraction of the σT (pp) from experimental data is briefly
discussed. The conclusion is made that under some conditions the precisely measured analyzing power,
AN (t), might be a good approach for σT (pp) determination.
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pREDLAGAETSQ OPREDELQTX POLNOE SEˆENIE pp-WZAIMODEJSTWIQ, σT (pp), IZ IZMERENIQ ANALIZIRU@-
]EJ SPOSOBNOSTI UPRUGOGO pp - RASSEQNIQ W OBLASTI kULON-QDERNOJ INTERFERENCII. oCENIWA@TSQ

WKLADY W TOˆNOSTX OPREDELENIQ σT (pp), WOZNIKA@]IE OT RAZNYH ISTOˆNIKOW, WKL@ˆAQ WZAIMODEJ-
STWIE S ODNOKRATNYM PEREWOROTOM SPINA. kRATKO OBSUVDAETSQ PRIMENIMOSTX FAKTORA KAˆESTWA

DLQ IZWLEˆENIQ σT (pp) IZ “KSPERIMENTALXNYH DANNYH. dELAETSQ ZAKL@ˆENIE, ˆTO TOˆNO IZMERENNAQ

ANALIZIRU@]AQ SPOSOBNOSTX, AN(t), PRI NEKOTORYH USLOWIQH MOVET BYTX HORO[IM PODHODOM DLQ

OPREDELENIQ σT (pp).
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Introduction

It has been recently suggested to apply a new approach to the measurements of the pp total

cross section, σT (pp), at present and future accelerators [1]. The approach relies on the relation
between σT (pp) and the position of maximum of the so called factor of merit, M(t) = A2N(t)dσ/dt,

introduced in polarimetry [2]. There is another observable, analyzing power, AN (t), which is also
sensitive to the total cross section. These new concepts are very attractive for us, since the pp2pp

(R7) experiment at RHIC [3] aims to measure independently three observables σT (pp), dσ(t)/dt
and AN (t) and able to check feasibility of the proposed new methods. This paper is devoted to

a detailed study of new concepts and organized in the following way. In section 1 we discuss
briefly standard techniques of measuring the total cross sections at unpolarized colliders in order

to illustrate the reached accuracy in σT (pp̄) and σT (pp)mesurements. In section 2 we outline
possible new techniques which might be applicable to the total cross section determination at
unpolarized and polarized colliders. Section 3 is devoted to the application of AN(t) and M(t) to

the E704 experimental results. In section 4 we discuss the simulated data of pp2pp experiment
at RHIC and the expected corrections to σT from different sources. In section 5 we make an

estimate of the single spin flip contribution. The last section summarizes our study of the new
approaches to σT (pp) extraction at the polarized colliders.

1. Survey of Schemes of Total Section Measurements

The total cross section measurements at colliders (ISR, Spp̄S and Tevatron) have been made

by four methods. They are the following:

1.1. The direct method. This means the measurement of the total interaction rate, ṄT

ṄT = Ṅ el + Ṅ in, (1)

where Ṅ el and Ṅ inel are the total elastic and inelastic rates measured respectively by Elastic

Scattering Detector (ESD) and Inelastic Scattering Detector (ISD). The apparatus must cover
a 4π solid angle. In reality the vacuum pipe, the beam parameters, and backgrounds in colliders
put a limit on a minimum acceptable angle Θmin. Therefore, the measurements are made up to

this angle and then one makes an extrapolation to correct the σobs (observed cross section) for
undetected events. For such an extrapolation one needs to use a phenomenological model for

hadron amplitudes and this is a weak point of this approach.
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Assuming that the machine luminosity L is known from an independent measurement, the
total cross sectin can be determined through the relation

σT = NT/L, (2)

where NT and L are summed up over a whole run. The examples of such a direct measurement
of σT are presented in Table 1, column I, taken from experiments [4] and [5]. It is evident,

that the best precision in σT of order 0,5 - 1% was reached at ISR by thorough application
of the special techniques for improving the beam quality. The precision of σT measurement at
Tevatron was limited to ±7.5% by an accuracy of the luminosity determination.

Table 1. Summary of experimental data on σT measurements at unpolarized colliders

Facility, σT , mb
reaction,

√
s I II III IV Ref.

experiment. GeV Dir. Meth. Indir.Meth. L.I.Meth. Coul. Scat.

Tevatron, pp

E710 1800 71.71± 2.02 [11]
1800 78.3± 5.9 [5]

CDF 546 61.26± 0.93 [12]
1800 80.03± 2.24 [12]
1800 72.0± 3.6 [6]

SppS

UA1 540 67.9± 5.9 [7]
UA4 541 63.0± 1.5 [8]

UA4/2 541 63.0± 2.1 [9]
UA4 546 61.9± 1.5 [10]

ISR
pp 23.5 38.80± 0.25 39.01± 0.27 39.22± 0.55 [4]
pp 30.6 40.07± 0.24 40.38± 0.31 40.53± 0.62
pp 44.7 41.90± 0.24 41.45± 0.23 41.00± 0.43
pp 52.8 42.71± 0.35 42.38± 0.27 42.02± 0.47
pp 62.7 42.96± 0.38 43.07± 0.30 43.20± 0.54
pp 23.0 38.9± 0.7 [14]
pp 31.0 40.2± 0.8

1.2. The indirect method. This is based on the optical theorem relating the differential
cross section of pp nuclear elastic scattering in forward direction (dσ

el

dt
)t=0 and the total cross

section σT :

(
dσel

dt
)t=0 =

σ2T (1 + ρ2)

16π(h̄c)2
, (3)

where ρ is a ratio of the real to imaginary part of the nuclear spin nonflip amplitude. Such
presentation assumes that any spin contribution is negligible. Usually the differential cross
section dσel

dt
is presented in the region of nuclear scattering as

dσel

dt
= (

dσel

dt
)t=0 · ebt, (4)
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where b is a slope parameter. Therefore, ( dσ
el

dt
)t=0 should be defined by extrapolation of elastic

events (measured) dN
el(t)

dt
to the t = 0 point:

dN el(t)

dt
= L · dσ

el

dt
= L(

dσel

dt
)t=0 · ebt =

dN el(0)

dt
· ebt, (5)

where

dN el(0)

dt
= L · (dσ

el

dt
)t=0. (6)

From relations 3 and 6 one can extract

σT =
1√
L
[
16π(h̄c)2

(1 + ρ2)
· dN

el(0)

dt
]1/2. (7)

So, taking L, luminosity, and ρ value from independent measurements, one can determine
σT . The fractional error in σT due to the uncertainty in the luminosity is half that in the first
method. This is the simplest way to determine σT . The examples are presented in Table 1,

column II ( [4], [6], [7], [8], [9]). The most limiting contribution comes from uncertainty in the
luminosity L measurements at Tevatron (CDF) and Spp̄S (UA1). UA4 was able to reach the

best precision of order ±2% by a thorough measurement of beam parameters. As it seen the
best accuracy in σT measurement was achieved at ISR.

1.3. The Luminosity Independent Method. In order to avoid the luminosity measure-

ment, the following technique was invented [4], [10], [11], [12]. From (2) and (7) one gets an
expression without luminosity

σT =
16π(hc)2

(1 + ρ2)NT

dN el(0)

dt
. (8)

Two types of detectors, ESD and ISD, must be used in this case. Additionally it is assumed

that ρ is known. The results of using such method are given in column III. It is seen that the
best precision in σT measurement was reached at ISR. We can note an inconsistency of order

10% between E710 and CDF measurements at
√
s=1800 GeV which may illustrate a hidden

systematic error.

The above three approaches to the σT measurement need to extrapolate the measured quan-
tatives to the zero degree. The inelastic scattering data are extrapolated by gaussian function
in the production angle or by exponential or other functions. The final result does not seem

very sensitive to the exact shape of the curve. But the elastic scattering data were constrained
by several conditions like:

• spin contributions are neglected;

• the imaginary part of the nuclear amplitude has an exponential form in the momentum
transfer in the small t region;

• the real and imaginary parts of the nuclear amplitude have the same t- dependence, thus
ρ is independent of momentum transfer.

The last two requirements were questioned in paper [13].
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1.4 The Coulomb Scattering. This method is based on the theoretically very reliable

differential cross-section and allows one to avoid the luminosity measurement.

dσc(t)

dt
=

4πα2(h̄c)2

t2
F 4(t), (9)

where α is the fine structure constant and F (t) is the proton electromagnetic form factor. Its
application requires the reaching a net Coulomb scattering region, which sits at |t| < |t0|, where
|t0| = 1.6 · 10−3(GeV/c)2 (for σT = 40mb) is a point where the Coulomb cross section is equal to
the nuclear one. At varying initial momentum pin the Coulomb scattering angle should vary as

Θ0(mrad) =

√
|t0|
pin

≈ 42

pin
. (10)

For ISR momentum pin = 15 GeV Θ0 ≈ 42·10−3
15

≈ 3mrad. This corresponds to the displacement

of the scattered proton from the beam axis of about 3 cm at the end of the ISR 10 m long straight
section. The experiment [14] was able to use this technique at two energies

√
s = 23GeV and√

s = 31GeV on the base of the 10 m space (as it was impossible to operate at an angle smaller
than 2 mrad, the Coulomb measurements could not be performed for beam momenta above

15.4 GeV/c [14]). The results of this experiment are presented in Table 1 (column IV). The
2% precision in σT measurement is a good achievement. But according to relation (10) this
method cannot be directly used at higher energies. The modification of this technique using

the accelerator lattice structure and a high β� insertion was successfully applied at Spp̄S [10]
and the Tevatron [15] for measuring the ρ-parameter. But in these experiments the absolute

normalization comes from direct luminosity measurements, not from the Coulomb cross section.
No publication exists about using this method for σT measurement at Spp̄S and Tevatron.

Presumably, it is a difficult technique for application.

2. The new approaches to the σT (pp) measurements

In principle any relation between the total cross section, σT (pp), and the measurable observ-
able can be used for the extraction of σT (pp). We have discussed four such relations in section

1. We are planning to discuss here some new approaches.

2.1 Collisions of unpolarized protons. Assume we can independently measure with high
accuracy two differential cross sections for pp elastic scattering. The Coulomb one is

dσc
dt

= π|fc|2, (11)

where

fc = ±
2αF 2(t)

t
· (h̄c) · exp(∓iαϕ). (12)

Here the upper and lower signs refer to pp̄ and pp respectively. F (t) = (1 + |t|
Λ2
)−2 is the dipole

form factor of the proton, Λ2 = 0.71GeV 2. ϕ is the Coulomb phase

ϕ = ln
2

|t|(b+ 8
Λ2
)
− 0.5772. (13)
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The nuclear elastic scattering cross section is

dσn
dt

= π|fn|2, (14)

where
fn =

σT
4π

(ρ+ i)e−
1
2 b|t|. (15)

The quantity ρ is the ratio of the real to imaginary part of the nuclear amplitude at |t| = 0,
b is a slope parameter. We can extrapolate both cross sections (4) and (9) to the point, t0,

where they are equal to each other

dσc(t0)

dt
=

dσn(t0)

dt
. (16)

By using the previous relation one can find

|t0|e−
1
2 b|t0|

F 2(t0)
=

8πα

σT
. (17)

Therefore, for small |t0|
σtot 


8πα

|t0|
. (18)

We do not know any use of this relation in high energy experimental physics. The mere

explanation of this situation might present the experimental difficulty in measuring the Coulomb
cross section at the smaller than |t0| values of the invariant transverse momenta. One can hope
that pp2pp experiment may reach the smallest t-values (around 2 × 10−4(GeV/c)2) and make

a precise measurement of dσc
dt

(out of the CNI region). Then this technique can be applied at
RHIC.

We try now to look for the additional specific features of the pp differential cross section,
which can be used for extraction of the total cross section. It is well known that the elastic

pp-differential cross section at the CNI region can be presented as

dσel(t)

dt
=

dσc
dt

+ Int+
dσn
dt

, (19)

where the first and third terms are given above by relations (9) and (14), respectively. ”Int”

means the interference cross section, which can be presented in the following way:

Int = ∓2Re(f∗c fn) = ∓
αF 2(t)σT

t
ebt/2[ρcos(αϕ)± sin(αϕ)].

Here the upper and lower signs refer to the pp and p̄p scattering, respectively. The last two

relations furnish two specific points in t axis. The first point tin is defined through the equality
of nuclear and interfering cross sections

Int =
dσn
dt

.

Therefore, for the pp case

tin = −
16παρ(h̄c)2

(1 + ρ2)σT
ebtin/2[ρcos(αϕ) + sin(αϕ)].
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Assuming bt/2� 1 and neglecting also αϕ one can find

tin =
16παρ

(1 + ρ2)σT
(h̄c)2 =

2ρ

1 + ρ2
t0.

At
√
s = 541 GeV σT = 63 mb, ρ = 0.135 so tin = 3.1 × 10−4 (GeV/c)2. For

√
s = 19.4 GeV

σT = 38 mb, ρ = −0.034 and tin = 1.3× 10−4 (GeV/c)2. A very interesting situation appears
in the elastic pp-scattering. Since the interfering term has a negative sign at t = tin this

term completely compensates the nuclear scattering. Therefore, at this point there is only the
Coulomb scattering which can be used for normalization of the counting rates. The only problem
is that the pp2pp experiment plans to reach the tmin = 7× 10−4 (GeV/c)2 which is higher than

one needs. There is another peculiar point, tic, where

Int =
dσc
dt

.

This is

tic =
4παF 2(t)(h̄c)2

σTρ
ebtic/2.

For small t this expression simplifies

tic = −
4πα(h̄c)2

σTρ
=

1

2ρ
· t0. (20)

At
√
s=541 GeV−tic = 4.2×10−3 (GeV/c)2. This is an accessible point in the pp2pp experiment.

Since at this point we have the pure nuclear scattering we can use the measurement at this point
for checking some hypotheses such as the change of the slope parameter or oscillation of the

differential cross section [13]. From the above consideration one can hope that after a time
by improving the beam quality and the apparatus resolution we will be able to realize all the

discussed above approaches, i.e. the three possibilities for the extraction of the σT .
The additional point of interest arises from the function (also a measurable one)

f2(t) = t2 · dσ
dt
. (21)

This is

t2 =
8παρ

σT (1 + ρ2)
=

ρ

1 + ρ2
· t0, (22)

where -t0 is given in (18 ). For RHIC’s top energy -t2 = 1.5×10−4(GeV/c)2 and it is the smallest

one among the four pecular points. Experimentally it is difficult to reach t2, which is smaller
than t0 by an order of magnitude.

The summary of this section is presented in the following Table 2.

Table 2. The specific points -t in the elastic pp differential cross section. The general formulae for -t as
well as their magnitudes for the top RHIC energy are presented

No labels expression value at
√
s = 500GeV Comments

1 −t0 = 8πα(h̄c)2

σT
1.1 · 10−3(GeV/c)2 Coulomb=Nucl.

2 −tic = 4πα(h̄c)2

σT ρ
4.2 · 10−3(GeV/c)2 Coulomb=Int.

3 −tin = 16παρ(h̄c)2

σT (1+ρ2)
3 · 10−4(GeV/c)2 Int.=Nucl.

4 −t2 = 8παρ(h̄c)2

σT (1+ρ2)
1.5 · 10−4(GeV/c)2 Extremum in t2 dσdt
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The practical way of finding −tin and − tic might be the following. Taking the known appa-
ratus at the fixed experimental conditions, we measure the differential cross section, dσmeas/dt.

Then we calculate by the Monte Carlo technique the Coulomb differential cross section, dσc/dt.
Their difference versus -t should reach a zero at the point, which should be −tin. In a similar

way one may get −tic.
2.2 Collisions of polarized protons. In the following we discuss the possibility of ex-

tracting of σT (pp) from the measurement of the analyzing power, AN (t), and also a factor of

merit, M(t), as it has been proposed in [1]. First of all we need the analitical formulae for those
parameters. In this section we present such formulae in an explicit form. Second we need to

prepare the set of experimental data for M(t). We do such job in the the following sections.
The simplest expression for AN(t) in the CNI region was first given in [16]. A more complete

formula including the ρ parameter, single and double spin flip interactions was recently published
[17]. We borrow the formulae from this paper, but as is usually accepted in the standard σT
measurements, we omit all the spin dependent terms. We shall later attempt to make an estimate

of the single spin flip contribution to our procedure. At the moment there is no chance to make
a similar estimate for the double spin flip interaction due to the lack of experimental information

on double spin asymmetries. The expression for AN(t) in our approach looks like

AN (t) = C0
σT (1− ραϕ)(−t)3/2

1 + C1(ρ+ αϕ)σT |t|+ C2(1 + ρ2)σ2T |t|2
. (23)

Here C0 = µp−1
8παmp(h̄c)2

= 26.7735GeV−3mb−1, C1 = − 1
4πα(h̄c)2

= −27.9972 GeV−2mb−1, and

C2 =
1

[8πα(h̄c)2]2
= 195.9609 GeV−4mb−2. The µp and mp are the proton magnetic moment and

mass, respectively. Assuming that the ρ parameter is known from dσel

dt
, we can define the total

cross section, σT , by one parameter fit to the experimental data.

The analyzing power has a maximum at the point −tA [17]

− tA = −t0[
√
3− (ρ+ αϕ) +

8

(µp − 1)
(ρI5 −R5)]. (24)

The last term corresponds to the single spin flip contribution to the total cross section. Later
we will use this formula in order to get a hint into such contribution to the position of the AN (t)

and to the magnitude of σT . From the same paper [17] we extracted the formula for the factor
of merit

M(t) = C0
σ2(1− ραϕ)2ebt|t|

1 + C1σT (ρ+ αϕ)|t|+ C2σ
2
T (1 + ρ2)t2

. (25)

Here C0 =
(µp−1)2
16πm2p(h̄c)

2 = 0.1867GeV−4mb−1. Other parameters were defined earlier. For small

t bt� 1, αϕ ≈ αϕρ ≈ 0. M has a maximum at the point tM , which is

− tM =
8πα(h̄c)2

σT
√
1 + ρ2

. (26)

Therefore the alternative to the fitting procedure is the extraction of σT from this relation. It

is seen that tM is not sensitive to the magnitude of ρ in the energy range of interest.
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3. Extraction of σT(pp) from E704 data

The E704 collaboration measured the analyzing power, AN(t), in reaction

p↑ + p→ p+ p, (27)

at the initial momentum of the polarized beam, pin = 200 GeV/c in the region 2 · 10−3 ≤
|t|[(GeV/c)2] ≤ 4 · 75 · 10−2 [18]. The experimental data are shown in Table 3.

Table 3. AN(t), dσ
el/dt, and M(t) at

√
s = 19.4 GeV

No -t,(GeV/c)2 AN ±∆AN dσel/dt,mb/(GeV/c)2 M±∆M
1 0.00288 0.0446±0.0316 106.4±2.3 0.212±0.295
2 0.0.0083 0.0311±0.0109 77.1±1.7 0.0745±0.0522
3 0.0175 0.0262±0.0101 64.5±1.2 0.0443±0.0342
4 0.0273 0.0317±0.0107 55.6±1.1 0.0559±0.0377
5 0.0368 0.0217±0.0139 52.±1. 0.0245±0.0314
6 0.0475 0.0027±0.0277 49.9±0.8 0.0003±0.0064

We should fix the parameter ρ at
√
s = 19.4 GeV. This parameter was measured at FNAL

at plab = 199 GeV/c [19] and equaled ρ = −0.034 ± 0.014. After inserting this number into
formula (23) and fitting to the 6 experimental points on AN(t), we got

σT (pp) = (37.8± 8.1)mb, (28)

with χ2 = 1.49 for ndf=5 (see Fig.1a).

Fig. 1. a) The analyzing power, AN(t), measured by the E704 collaboration at
√
s=19.4 GeV. A solid

line is the result of one parametric fit. b) The similar fit to the factor of merit, M(t), at the
same energy.
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This number is to be compared to the experimental value σT (pp) = 38.9 ± 0.7 measured
at
√
s = 23.0 GeV at ISR[14]. The compatibility of these two values proves the correctness of

the new method, though the statistics of E704 data does not allow one to reach the precision
of the standard technique: For that one needs to improve the E704 statistics by two orders of

magnitude. The second limitation comes from the beam polarization, PB , accuracy. In E704 the
∆PB/PB was ±6.8% [20] and this is an additional source of ambiguity in ∆σT (pp). The third
source contributing to the ∆σT (pp) is the detector resolution in ∆t. The E704 setup had the

resolution (geometrical) ∆t/|tmin|= 0.10, smeared out additionally due to a multiple scattering,
(∆t/|tmin|)ms 
 0.07, due to a momentum resolution (∆t/|tmin|) = 0.03. All these sources add

an additional systematic error of order ±14% (summed in quadrature) to ∆σT in (28) and put
the E704 data out of the competition with the standard techniques.

The drastic improvements of E704 data can be made at RHIC by using a polarized jet
target [21]. First of all the target polarization, PT , can be measured with a better accuracy than

the beam polarization (∆PT/PT 
 2% seems feasable) [22]. Second, due to a large luminosity the
AN statistics may be increased by two orders of magnitude. Third, since the recoil Si detector has

a good energy resolution ∆T ≈ 50 KeV [23], then at kinetic energy Trec 
 1 MeV (corresponding
to |tmax| 
 2 · 10−3 (GeV/c)2), one can reach an accuracy ∆t/|tmax| ≤ 5% or better. So, we
can overcome the main difficulties listed above. Therefore, the AN (t) measurement in the CNI

region at the fixed target mode (FTM) at RHIC is very desirable.
We turn now to the factor of merit, M(t). This is not the direct observable as AN (t) is.

Therefore, we should make a product

M(t) = A2N (t) ·
dσel

dt
, (29)

and calculate the error bar ∆M(t). We took the experimental data for dσel/dt from FNAL
experiment [19] (see Table 3, column 4). Comparing the relative error bars in AN(t) and in
dσel/dt, one can conclude that

∆M(t)

M(t)
≈ 2 · ∆AN (t)

AN (t)
. (30)

This relation already makes us pessimistic about the expected precision in the σT determination.
Nevertheless we prepared the experimental data for the factor of merit and put them in the last

column of Table 3.
Putting b = 12 GeV−2 and taking ρ the same as before, we made a fit (see Fig.1b) and got

σT = (22± 40)mb, (31)

at χ2 = 3.8 for ndf=5. Therefore, we are not able to make any conclusion at such precision of σT
extraction. As concerns the AN (t), we can conclude that the E704 data can be used only for a
qualitative illustration of the correctness of a new approach to the total cross section extraction

from the analyzing power measurements. But they can be essentially improved by repeating the
E704 measurement at RHIC using the jet target.

4. Extraction of the σT (pp) from “simulated pp2pp data” at RHIC

One of the important tasks of pp2pp experiment at RHIC is to measure the analyzing power,

AN (t), for elastic pp-scattering [3] in the CNI region. To study this, the performance of apparatus

9



to reconstruct an input AN (t) was considered. The collision energy was taken as
√
s = 500

GeV, the beam polarization was set to be 70%, the running luminosity was assumed to be

2×1029 cm−2×s−1. In order to optimize the left-right difference with vertically polarized beam,
the events produced in the azimuthal region of | cosφ| > 1/

√
2 were accepted. In such conditions

the running time of about 3.7 hours will be required to collect 2.5× 106 events. For simulation
of the “left-right” analyzing power a simple form of AN(t), given in equation (23) with condition

ρ = 0, was applied. The asymmetry AN(t) reconstructed with account for the difference in the
number of events going left and right in the detector (the far pot installed at 143 m) is shown

in Fig.2a and included in Table 4.

Table 4. AN (t)(simulated), dσel/dt, and M(t) at
√
s = 500GeV

No -t,(GeV/c)2 AN ±∆AN dσel/dt,mb/(GeV/c)2 M±∆M
1 0.0015 0.034±0.0025 275±3.8 0.3179±0.0467
2 0.0025 0.033±0.003 216±3.1 0.2352±0.0429
3 0.0035 0.041±0.003 199±3. 0.3345±0.0492
4 0.0045 0.031±0.003 192±3. 0.1845±0.0358
5 0.0055 0.027±0.003 187±3. 0.1363±0.0304
6 0.0065 0.030±0.003 184±3. 0.1656±0.0332
7 0.0075 0.029±0.003 181±3. 0.1522±0.0316
8 0.0085 0.022±0.003 178±3. 0.0862±0.0235
9 0.0095 0.027±0.003 175±3. 0.1276±0.0284
10 0.0105 0.016±0.003 172±1.3 0.044±0.0165
11 0.0115 0.025±0.003 170±1.3 0.1063±0.0255
12 0.0125 0.021±0.003 167±1.3 0.0736±0.0210
13 0.0135 0.022±0.004 165±1.2 0.0799±0.029
14 0.0145 0.014±0.003 163±1.2 0.0319±0.0137
15 0.0155 0.018±0.003 160±1.2 0.0518±0.0173
16 0.0165 0.015±0.004 158±1.3 0.0356±0.019
17 0.0175 0.018±0.004 155±1.3 0.0502±0.0223
18 0.0185 0.01±0.004 153±1.3 0.0153±0.0122
19 0.0195 0.02±0.004 151±1.3 0.0604±0.0242

We took these simulated data as the “experimental measurement” and made a fit to the
function given in equation 23 with ρ = 0. This fit is presented in Fig.2a by a solid line. At

χ2/ndf = 26.64/18, we got
σT (pp) = (58.64± 1.97) mb. (32)

This value has to be compared to the experimental data on σT (p̄p) obtained at Sp̄pS at
√
s =

541: 63.0± 1.5 mb (UA4) [8] and at Tevatron: at
√
s = 546 GeV 61.26± 0.93 mb (CDF) [12].

Consistency is very good proving that a new approach is workable and becoming competative

with standard technique.
Now we are going to apply the factor of merit for the extraction of σT from the “simulated”

pp data. For that we should prepare the experimental data for M(t). The pp elastic differential

cross section at
√
s = 541GeV can be extracted from the UA4/UA2 results [24] assuming that

the nuclear and Coulomb parts of the cross sections are equal, while the interfering term is

different and has a different sign. The restored by such a way dσel/dt is included in Table 4.
Finally the “experimental” data on M(t) are presented in the last column of Table 4. Applying

formula (25) to these data, one gets

σT = 42.1± 4.9,
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with χ2/ndf=26/18=1.42 (see Fig.2b). Though this value is much smaller than the expected one
and the error bar is twice bigger than that in the AN approach, nevertheless, M(t) also works

in the right direction. One needs only more precise experimental data.

Fig. 2. a) The simulated AN (t) data for pp2pp experiment at RHIC top energy,
√
s=500 GeV. A solid

line is the result of one parametric fit. b) The similar fit to the factor of merit, M(t), at the
same energy.

Now we turn to the discussion of difficulties which can be encountered in the application of

a new scheme to the experiment. Mostly they are systematic errors.
First of all, the beam polarization, PB , must be measured with a precision better, than an

expected magnitude of the ∆σT/σT . This is because PB and AN are related through relation

AN =
1

PB
· ε, (33)

where ε is a measurable (“raw”) asymmetry. At RHIC the main goal is to reach ∆PB/PB = ±5%
and this error contributes directly to ∆AN . This puts a stringent limit on a precision of σT (pp)
measurement. For the goal of the σT measurement at RHIC by a new technique one needs a

measurement of beam polarization with a precision better than 1%.
The error in ∆t is determined by the experimental conditions. They are the following ones:

a) the error in the angle between the two beam axes is 6 µ rad. This leads to ∆t/t 
 7%,

b) momentum resolution in measuring the scattered particle ∆p/p 
 1.5%. This leads to
∆t/t = 3%.

Adding all the listed error bars to quadrature one can expect their contribution to the ∆σT
σT

of order 9%. Obviously these contributions must be decreased in the experiment.

11



5. Single spin flip contribution to the σT(pp)

Now we attempt to estimate the single spin flip contribution to the extracted value of σT (pp).

For that we use the E-704 results for AN (t), the FNAL data for dσ
el

dt
and reconstruct the mea-

surable function

ψ(t) =
mp
√
−t

σT
AN (t)

dσel

dt
. (34)

The experimental data for this function are presented in Table 5.

Table 5. Function ψ(t) at
√
s = 19.4 GeV

.
No -t , (GeV/c)2 ψ(t)
1 0.00288 0.0062863± 0.004454

2 0.0083 0.0053902± 0.0018892
3 0.0175 0.0055208± 0.0021282

4 0.0273 0.0071884± 0.0024264
5 0.0368 0.0053433± 0.0034227

6 0.0475 0.007248 ± 0.061125

Fig. 3. The single spin dimensionless
function, ψ(t), versus -t at√
s=19.4 GeV. A solid line is the

result of two-parametric fit.

The explicit form of function ψ(t) is taken from [17]

ψ(t) = −α(µp − 1

2
− I5) +

σT
4π(h̄c)2

(ρI5− R5)t. (35)

Putting the numerical values σT = 38 mb, ρ = −0.034,
µp = 2.793, α = 1/137, we got the final formula for the

fit to the ψ(t) at
√
s = 19.4GeV

ψ(t) = −0.00654+0.0073I5+7.7(0.034I5+R5)|t|. (36)

Two-parametric fit to the ψ(t) given in Table 5 lead
to the following results: I5 = 1.63 ± 0.31 and R5 =

−0.05± 0.02 (see Fig.3).
The value of I5 differs from the one given in [25], but

for our estimate it is not so important. The position of
the AN maximum will be changed by the factor

∆t/t = ∆5 =
8(ρI5 −R5)

(µp − 1)(
√
3− (ρ+ αφ))

, (37)

so numerically the magnitude of σT (pp) will be changed
by the same factor or ≈ 4%. Therefore, for the precise

determination of the σT (pp), let, say, of order 1% , one
needs to make a better measurement of the parameters
I5 and R5.
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Conclusions

The suggestion to extract the σT (pp) from the measurement of the analyzing power, AN(t),
in the elastic pp-scattering at the Coulomb-Nuclear Interference region, works, in principle, but

encounters serious quantative problems. The severe restrictions at present come from the fol-
lowing factors: 1) precision of beam polarization measurement (contribution to ∆σT/σT 
 5%),
2) t-resolution of apparatus (
 8%), 3) ambiguity in single spin flip term (
 4%). In order for a

new approach to σT (pp) extraction to be applicable at RHIC, we must find a way of improving
precisions for items 1-3 listed above. Otherwise, this new approach will be incompetitive with

the standard technique of measuring the σT (pp).
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