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1 Introduction

Symmetries are one of the most fundamental concepts for understanding the laws
of nature leading to conserving quantities. Unexpected violations of symmetries
indicate some dynamical mechanism beyond the current understanding of physics.

Parity violation was discovered in 1957 [1] in nuclear β decays and pion and muon
decays [2]. In the charged current interaction of the standard electroweak theory,
parity and charge conjugation symmetries are maximally violated due to the V −A
structure [3]. All the experimental results up to now are in full agreement with the
theory.

A surprising discovery of the CP violating KL → π+π− decays [4] was made in
1964. The neutral kaon system still remains to be the only place CP violation has
been seen. The Standard Model with three Fermion families can accommodate all
the observed CP violation phenomena through the complex quark mixing matrix,
Cabibbo-Kobayashi-Maskawa (CKM) matrix [5]. However, no real precision test
has been made due to the large uncertainties in evaluating the effect of hadronic
interactions.

Interest in CP violation is not limited to elementary particle physics. It is one of
the three necessary ingredients to generate observed excess of matter over antimatter
in the universe [6]. The amount of CP violation which can be generated by the Stan-
dard Model appears to be insufficient for explaining the observed matter-antimatter
asymmetry in the universe [7], giving a strong motivation to search for new physics.

For CP violation in some B meson decay channels, the Standard Model can make
precise predictions with little influence from the strong interactions. Those channels
can be used to test the predictions quantitatively to look for a sign of new physics.
Also in the B meson system, CP violation is expected in many decay modes. The
pattern of CP violation allows us to make a systematic qualitative comparison with
the Standard Model predictions. Therefore, it is now widely accepted that the B-
meson system provides in future an ideal place for testing the Standard Model for
CP violation [9].

In this article, we first derive the formalism [10] describing the particle antipar-
ticle system, with and without CP violation. Three different mechanisms which can
generate CP violation are clearly classified, together with experimental observables
which identify contributions from the different mechanisms. Then, CP violation in
the neutral kaon system is analysed in this formalism. After a brief discussion on the
Standard Model description for CP violation in the neutral kaon system, we proceed
to the neutral B meson system. Following the discussion on some Standard Model
predictions, some thoughts are made how the situation could change if there exists
new physics contributing in the B meson system.
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2 Description of Particle Antiparticle System

2.1 Basic Formalism

Let |P0〉 and |P0〉 be the states of a neutral pseudoscalar particle P0-meson and
its antiparticle P0-meson at rest, respectively. They have definite flavour quantum
numbers with opposite signs: F = +1 for P0 and F = −1 for P0. Both states are
eigenstates of the strong and electromagnetic interaction Hamiltonian, i.e.

(Hst +Hem) |P0〉 = m0|P0〉 and (Hst +Hem) |P0〉 = m0|P0〉

where m0 andm0 are the rest masses of P0 and P0, respectively. The P0 and P0 states
are related through CP transformations. For stationary states, the T transformation
does not alter them, with the exception of an arbitrary phase. While CP is a unitary
operation, T is an antiunitary operation.

In summary, we obtain

CP |P0〉 = ei θCP |P0〉 and CP |P0〉 = e− i θCP|P0〉
T |P0〉 = ei θT|P0〉 and T |P0〉 = ei θT|P0〉 (1)

where the θ’s are arbitrary phases, and by assuming CPT |P0〉 = TCP |P0〉 it follows
that

2 θCP = θT − θT .

Since T is antiunitary, it follows that

T c = c∗ T

where c is any complex number. If we define

T |α〉 = |α̃〉, T |β〉 = |β̃〉

antiunitary operation has to give

〈α|β〉 =
[
〈α̃|β̃〉

]∗
.

On the other hand,

〈α|β〉 = 〈α|
(
T−1T |β〉

)
= 〈α|

(
T−1|β̃〉

)
,

hence

〈α|
(
T−1|β̃〉

)
=
[
〈α̃|β̃〉

]∗
.
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We can then conclude

〈α|
(
T−1|β̃〉

)
=
[(
〈α|T−1

)
|β̃〉
]∗

i.e. when the T operator changes the direction of the operation, it must be complex
conjugated.

If strong and electromagnetic interactions are invariant under the CPT transfor-
mation, which is assumed throughout this paper, it follows that m0 = m0.

Now we switch on an interaction, V , and the P can decay into final states f
with different flavours (|∆F | = 1 process) and P0 and P0 can oscillate to each other
(|∆F | = 2 process). Thus, a general state |ψ(t)〉 which is a solution of the Schrödinger
equation

i
∂

∂t
|ψ(t)〉 = (Hst +Hem + V ) |ψ(t)〉 (2)

can be written as
|ψ(t)〉 = a(t)|P0〉 + b(t)|P0〉 +

∑
f

cf(t)|f〉

where the sum is taken over all the possible final states f and a(t), b(t) and cf(t) are
time dependent functions; |a(t)|2, |b(t)|2 and |cf(t)|2 give the fractions of P0, P0 and
f at time t respectively. Since the weak interaction is much weaker than strong and
electromagnetic interactions, perturbation theory can be applied in order to solve
equation 2. Also with the help of the Wigner-Weisskopf method, which neglects the
weak interactions between the final states [8], and we obtain

i
∂

∂t

(
a(t)
b(t)

)
= Λ

(
a(t)
b(t)

)
=

(
M − i

Γ

2

)(
a(t)
b(t)

)
(3)

where the 2 × 2 matrices M and Γ are often referred to as the mass and decay
matrices.

The elements of the mass matrix are given as

Mij = m0 δij + 〈i|V |j〉 +
∑
f

P
(〈i|V |f〉〈f|V |j〉

m0 −Ef

)
(4)

where P stands for the principal part and the index i = 1(2) denotes P0(P0). Note
that the sum is taken over all possible intermediate states common to P0 and P0 for
i 6= j.

The elements of the decay matrix are given by

Γij = 2 π
∑
f

〈i|V |f〉〈f|V |j〉δ(m0 − Ef) (5)

The sum is taken over only real final states common to P0 and P0 for i 6= j.
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If the Hamiltonians are not Hermitian, transition probabilities are not conserved
in decays or oscillations, i.e. the number of initial states is not identical to the
number of final states. This is also referred to as the break down of unitarity. We
assume from now on that all the Hamiltonians are Hermitian, i.e.

|a(t)|2 + |b(t)|2 +
∑
f

|cf |2 = 1,

and also
Mij = M∗

ji, Γij = Γ ∗
ji .

Clearly |a(t)|2 + |b(t)|2 decreases as a function of time, hence Λ is not Hermitian.
Since the CP operator changes a particle state into an antiparticle state, the

following relation can be obtained if V is invariant under the CP transformation, i.e.
(CP )−1 V CP = V :

CP : |Λ12| = |Λ21| , Λ11 = Λ22 .

Since the T operator induces complex conjugation, which is equivalent to interchang-
ing a bra-state and a ket-state, the following relation can be obtained if V is invariant
under the T transformation:

T : |Λ12| = |Λ21| .

By combining the two, we obtain for the CPT invariant case:

CPT : Λ11 = Λ22 .

For a rigorous proof, equations 1, 4 and 5 are used.
It follows that

•if Λ11 6= Λ22, i.e. M11 6= M22 or Γ11 6= Γ22 :
CPT and CP are violated

•if |Λ12| 6= |Λ21|, i.e. sin (ϕΓ − ϕM) 6= 0 :
T and CP are violated .

(6)

where ϕM = arg (M12) and ϕΓ = arg (Γ12). Note that CP violation in the mass
and decay matrices cannot be separated from CPT violation or T violation.

While there is no fundamental reason to respect CP and T symmetries, it can
be shown based on only few basic assumptions that no self consistent quantum field
theory can be constructed that does not conserve CPT symmetry [11]. Therefore, we
restrict our further discussion to the case where CPT symmetry is conserved: i.e.

M11 = M22 ≡ M, Γ11 = Γ22 ≡ Γ
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thus

Λ11 = Λ22 ≡ Λ .

Differential equation 3 can be reduced to

d2 a(t)

dt2
+ 2 iΛ

d a(t)

dt
+
(
Λ12Λ21 − Λ2

)
a(t) = 0 (7)

for a(t), and a general solution is given by

a(t) = C+e
−iλ+ + C−e−iλ−

where C± are arbitrary constants which can only be defined by the initial condition.
For b(t), we obtain

b(t) =
1

Λ12

[
i
d a(t)

dt
− Λ a(t)

]

which can be used once a(t) becomes known.
Insertion of a(t) into equation 7 leads to

λ2
± − 2Λλ± +

(
Λ12Λ21 − Λ2

)
= 0

from which the eigen-frequencies are obtained as

λ± = Λ ±
√

Λ12Λ21 ≡ m± − i

2
Γ±

by solving where

m± = <λ± = M ± < (Λ12 Λ21 )1/2 (8)

and

Γ± = −2=λ± = Γ ∓ 2= (Λ12 Λ21 )1/2 . (9)

For an initially pure P0 state, we have a(t) = 1 and b(t) = 0 at t = 0, i.e.
C+ = C− = 1/2, and the solution is given by

|P0(t)〉 = a(t)|P0〉 + b(t)|P0〉
= f+(t)|P0〉 + ζf−(t) |P0〉 (10)

=

√
1 + |ζ |2

2

(
|P+〉 e− i λ+ t + |P−〉 e− i λ− t

)
(11)

where

f±(t) =
1

2

(
e− i λ+ t ± e− i λ− t

)
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and ζ is

ζ =

√
Λ21

Λ12
. (12)

The two states |P+〉 and |P−〉 are the eigenstates of λ± and are given by

|P±〉 =
1√

1 + |ζ |2
(
|P0〉 ± ζ |P0〉

)
. (13)

For an initially pure P0 state, we have

|P0(t)〉 =
1

ζ
f−(t) |P0〉 + f+(t) |P0〉 (14)

=

√
1 + |ζ |2
2 ζ

(
|P+〉 e− i λ+ t − |P−〉 e− i λ− t

)
. (15)

While P± have definite masses and decay widths (as seen from equations 11 and
15), P0 and P0 do not and they oscillate to each other (see equations 10 and 14).

2.2 CP Conserving Case

If V remains invariant under the CP transformation, from equations 1, 4 and 5 it
follows that

M12 = M21e
−i 2 θCP = M∗

12e
−i 2 θCP

thus
argM12 = −θCP + nπ,

and
Γ12 = Γ21e

−i 2 θCP = Γ ∗
12e

−i 2 θCP

thus
arg Γ12 = −θCP + n′π,

where n and n′ are arbitrary integer numbers.
For ζ , we have

ζ =

√
Λ21

Λ12
= ei (θCP+n′′π)

where n′′ is an arbitrary integer number. The two mass eigenstates |P+〉 and |P−〉
become CP eigenstates

CP |P±〉 = ± (−1)n
′′ |P±〉 .

The mass and decay width eigenvalues, equations 8 and 9, become

m± = M ± (−1)n+n′′ |M12|
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Figure 1: Relative phase relations for M12, Γ12, and CP transformation phase θCP

when CP is conserved: 1) CP = +1 state is heavier and decays faster, 2) CP = +1
state is heavier and decays slower, 3) CP = +1 state is lighter and decays faster,
4) CP = +1 state is lighter and decays slower.

and
Γ± = Γ ± (−1)n

′+n′′|Γ12|
By examining various combinations of n, n′ and n′′, we can show that the following

four possibilities exist:

1. n=even, n′=even: CP = +1 state is heavier and decays faster,

2. n=even, n′=odd: CP = +1 state is heavier and decays slower,

3. n=odd, n′=even: CP = +1 state is lighter and decays faster,

4. n=odd, n′=odd: CP = +1 state is lighter and decays slower.

Figure 1 illustrates the phase relations in a pictorial way. The choice of n′′ does not
alter the conclusion and n′′ = 0 can be adopted without any loss of generality. In
this case, |P+〉 is the CP = +1 state.
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2.3 CP Violating Case

Let us consider the time dependent decay rate for the initial P0 decaying into a CP
eigenstate f, given by |〈f |V |P0(t)〉|2, and that for the initial P0 decaying into f, given
by |〈f |V |P0(t)〉|2:

Rf(t) ∝ |f+(t)|2 +

∣∣∣∣∣ζAf

Af

∣∣∣∣∣
2

|f−(t)|2 + 2<
[
ζ
Af

Af

f ∗
+(t)f−(t)

]
(16)

Rf(t) ∝
∣∣∣∣∣Af

Af

∣∣∣∣∣
2

|f+(t)|2 +

∣∣∣∣∣1ζ
∣∣∣∣∣
2

|f−(t)|2 +
2

|ζ |2<
[
ζ∗
A∗

f

A∗
f

f ∗
+(t)f−(t)

]
(17)

where the instantaneous decay amplitudes are denoted by Af ≡ 〈f|V |P0〉 etc. and
equations 10 and 14 are used.

Since Rf (t) and Rf(t) describe the CP conjugated processes to each other, any
difference between the two is an clear proof of CP violation. As seen from the first
terms of equations 16 and 17, CP violation is generated if |Af | 6= |Af |. This is called
CP violation in the decay amplitudes.

From the second terms of Rf(t) and Rf(t), it can be seen that CP violation is
generated if |ζ | 6= 1 even if there is no CP violation in the decay amplitudes. From
equations 11 and 15, it is clear that the oscillation rate for P0 → P0 is different from
that for P0 → P0 if |ζ | 6= 1, thus this is called CP violation in the oscillation.

The third term can be expanded into

2<
(
ζ
Af

Af

)
<
[
f ∗

+(t)f−(t)
]
− 2=

(
ζ
Af

Af

)
=
[
f ∗

+(t)f−(t)
]

for Rf(t) and

2

|ζ |2<
(
ζ
Af

Af

)
<
[
f ∗

+(t)f−(t)
]
+

2

|ζ |2=
(
ζ
Af

Af

)
=
[
f ∗

+(t)f−(t)
]

for Rf(t). If CP violation in P0-P0 oscillation is absent, the first terms are identical.
Even in that case, if

=
(
ζ
Af

Af

)
6= 0

CP violation is still present. Since the process involves the decays of P0 (P0) from
the initial P0 (P0) and decays of the P0 (P0) oscillated from the initial P0 (P0) into a
common final state, it is referred as CP violation due to the interplay between
the decays and oscillations.

If CP violation in P0-P0 oscillation is small, i.e. (|ζ | − 1)2 << 1, we can derive

| sin(ϕΓ − ϕM)| << 1
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from equation 12, where ϕΓ = arg Γ12 and ϕM = argM12 as already defined. By
introducing |∆Γ/M | << 1 as

ϕΓ − ϕM = nπ − ∆Γ/M (18)

where n is an integer number, the following two approximations are possible:
a) ϕΓ = arg Γ12 base

ζ ≈
{

1 − 2|M12||Γ12|∆Γ/M

4|M12|2 + |Γ12|2
[
(−1)n+1 + i

2|M12|
|Γ12|

]}
e−i ϕΓ

m± = M ± (−1)n|M12|
Γ± = Γ ± |Γ12|

b) ϕM = argM12 base

ζ ≈
{

1 +
2|M12||Γ12|∆Γ/M

4|M12|2 + |Γ12|2
[
(−1)n + i

|Γ12|
2|M12|

]}
e−i ϕM (19)

m± = M ± |M12|
Γ± = Γ ± (−1)n|Γ12| .

3 Neutral Kaon System

3.1 Adaptation of Formalism

Now we adapt the above developed formalism to the neutral kaon system. As de-
scribed later, observed CP violation in the K0-K0 oscillation is very small. The two
mass eigenstates are called KS and KL with corresponding masses and decay widths
referred to as mS, mL, ΓS and ΓL respectively and they are known to be mS < mL

and ΓS > ΓL. Therefore, M12 and Γ12 is almost antiparallel to each other, thus
n = 1 in equation 18.

Since the kaon decay properties are experimentally well measured, enough infor-
mation is available to calculate Γ12 from the data, as described in Section 3.5. We
therefore adopt the ϕΓ base given in the previous section.

It follows that

ζ = (1 − 2ε)e−iϕΓ (20)

where the small parameter ε is given by

ε =
|M12||Γ12| sin (ϕΓ − ϕM)

4|M12|2 + |Γ12|2
(

1 + i
2|M12|
|Γ12|

)
.
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and

|KS〉 =
1√

1 + |ε|2
[
|K0〉 + (1 − 2ε)e−iϕΓ |K0〉

]
(21)

|KL〉 =
1√

1 + |ε|2
[
|K0〉 − (1 − 2ε)e−iϕΓ |K0〉

]
. (22)

From the measured lifetimes [12],

τs ≡ 1

ΓS
= (0.8934 ± 0.0008) × 10−10 s

and

τL ≡ 1

ΓL

= (5.17 ± 0.04) × 10−8 s

i.e.

∆Γ = ΓS − ΓL = (1.1174 ± 0.0010) × 1010 s−1

and the mass difference,

∆m ≡ mL −mS = (0.5301 ± 0.0014) × 1010 h̄s−1

we obtain,
|M12||Γ12|

4|M12|2 + |Γ12|2 = 0.24966 ± 0.00004

and
2|M12|
|Γ12| = 0.9488 ± 0.0026 .

Since the lifetime of KL is much longer than that of KS, it is possible to produce
a KL beam. Therefore, many kaon experiments have been done using KL beams.

3.2 CP Violation in Oscillations

The CPLEAR experiment observed CP violation in the K0-K0 oscillation by measur-
ing the difference in the oscillation rates between K0 → K0 and K0 → K0. The initial
neutral kaons were produced by pp annihilations: pp → K0K−π+ and → K0K+π−,
where the initial flavour can be defined by the charge sign of the accompanying kaon.
Semileptonic decays were used in order to determine the flavour at the moment of the
decay. Since the K0 contains an s-quark (and K0 an s-quark), K0 (K0) can decay only
into e+π−ν (e−π+ν) instantaneously. Therefore, the initial K0 (K0) can produce the
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Figure 2: Measured rate asymmetry between the initial K0 decaying into e+π−ν and
the initial K0 decaying into e−π+ν as a function of the decay time in units of τS by
the CPLEAR experiment. The solid line is obtained by fitting a constant value.

final state e−π+ν (e+π−ν) only through the K0 → K0 (K0 → K0) oscillation. From
the two measured time dependent decay rates, Re−(t) and Re+(t), an asymmetry

AT(t) =
Re+(t) −Re−(t)

Re+(t) +Re−(t)

is constructed as shown in Figure 2. Using equations 10, 14 and 20, it follows that

AT(t) =
1 − |ζ |4
1 + |ζ |4 = 4<ε

and from the measured AT(t) = (6.6 ± 1.6) × 10−3 [13],

|ζ | = 0.9967 ± 0.0008 6= 1

is obtained exhibiting a clear sign of CP violation and T violation in the K0-K0

oscillation.
The parameter |ζ | can also be measured from the semileptonic branching fractions

of KL by the lepton sign asymmetry: using equations 22 and 20, we obtain [12]

δ` ≡ B(KL → `+π−ν) − B(KL → `−π+ν)

B(KL → `+π−ν) +B(KL → `−π+ν)

=
1 − |ζ |2
1 + |ζ |2 = 2<ε

= (3.27 ± 0.12) × 10−3
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where ` can be e or µ and B stands for a branching fraction.
Using all the measurements, we obtain

<ε = (1.64 ± 0.06) × 10−3

and
arg ε = (43.50 ± 0.08)◦.

3.3 CP Violation due to Decays and Oscillations

Since the two-pion final state is a CP eigenstate with CP = +1, KL decaying into
π+π− is a CP violating decay. This was indeed the first observed sign of CP violation.
A commonly used CP violation parameter η+− is defined as

η+− ≡ 〈π+π−|V |KL〉
〈π+π−|V |KS〉 =

1 − ζ
A+−
A+−

1 + ζ
A+−
A+−

(23)

where equations 21, 22 are used and A+− and A+− denote the K0 and K0 → π+π−

decay amplitudes respectively.
The parameter η+− can be measured from the time dependent decay rates for the

initial K0 and K0 into π+π−. From equations 11 and 15, the two rates are given by

R+−(t) ∝ 1

2
e−ΓS t + |η+−|2 e−ΓL t + 2|η+−|e−Γ̂ t cos(∆mt− φ+−)

and

R+−(t) ∝ 1 + 4<ε
2

[
e−ΓS t + |η+−|2 e−ΓL t − 2|η+−|e−Γ̂ t cos(∆mt− φ+−)

]

where φ+− is the phase of η+− and Γ̂ is the KS-KL average decay width. The
second term is CP violating KL decays and the third term is due to the interference
between the KS decay and CP violating KL decay amplitudes. Figure 3 shows [14]
the measured R+−(t) and R+−(t) together with the CP asymmetry defined as

A+−(t) =
R+−(t) −R+−(t)

R+−(t) +R+−(t)

where the interference term is well isolated. At around t = 10τS, the KS decay rate is
reduced to the level of the CP violating KL decay rate, thus the asymmetry becomes
very large.
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Figure 3: The time dependent rate distributions for the initial K0 (solid circles) and
K0 (open circles) decaying into π+π− as a function of the decay time in units of τS
obtained by the CPLEAR experiment. The rate asymmetry is also shown.

This direct comparison between the two CP conjugated processes illustrates an-
other straightforward demonstration of CP violation in the neutral kaon system.
From the asymmetry, the value of η+− is measured to be [14]

|η+−| = (2.264 ± 0.035) × 10−3, φ+− = (43.19 ± 0.60)◦

which leads to

=
(
ζ
A+−
A+−

)
= −(3.099 ± 0.048) × 10−3

exhibiting that CP violation due to the interference between the decay and oscillation
is present.

3.4 CP Violation in Decays

The two-pion final state can be in a total isospin state of I = 0 or I = 2. The I = 1
state is not allowed due to Bose statistics. Using the isospin decomposition, we can
derive the K0 and K0 decay amplitudes to π+π− to be

A+− =

√
2

3
〈2π(I = 0)|V |K0〉 +

√
1

3
〈2π(I = 2)|V |K0〉

and

A+− =

√
2

3
〈2π(I = 0)|V |K0〉 +

√
1

3
〈2π(I = 2)|V |K0〉 .
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Using CPT symmetry and the S-matrix, the K0 and K0 decay amplitudes can be
related and it follows that

A+− =

√
2

3
a0e

i δ0 +

√
1

3
a2e

i δ2

A+− =

√
2

3
a∗0e

i (δ0+θCP−θT) +

√
1

3
a∗2e

i (δ2+θCP−θT)

where a0 and a2 are the K0 decay amplitudes into 2π(I = 0) and 2π(I = 2) states
due to the short-range weak interactions and δ0 and δ2 are the π-π scattering phase
shifts for the I = 0 and I = 2 two-pion configuration at

√
s = mK respectively. It

is important to note that the two-pion scattering is totally dominated by the elastic
scattering at the energy scale of the kon mass. Similarly for the π0π0 final state, we
have

A00 = −
√

1

3
a0e

i δ0 +

√
2

3
a2e

i δ2

A00 = −
√

1

3
a∗0e

i (δ0+θCP−θT) +

√
2

3
a∗2e

i (δ2+θCP−θT) .

As seen from the amplitudes, B(KS → π0π0)/B(KS → π+π−) would be 0.5 if
a2 = 0. Since the measured ratio is ∼ 0.46 [14], we can conclude that |a2/a0| << 1.
It follows that

A+−
A+−

= (1 − 2ε′) e−i (2ϕ0+θT−θCP) (24)

where the parameter ε′ is given by

ε′ =
1√
2

∣∣∣∣a2

a0

∣∣∣∣ sin(ϕ2 − ϕ0)e
i(π/2+δ2−δ0) (25)

and ϕ0, 2 = arg a0, 2.
As seen from equation 24, CP violation in the decay amplitude, |A+−| 6= |A+−|,

is present if <ε′ 6= 0. From equation 25, this is possible only if

sin(ϕ2 − ϕ0) 6= 0 and sin(δ2 − δ0) 6= 0 .

i.e. both the weak and strong phases have to be different for the I = 0 and I =
2 decay amplitudes. More generally, there must be two processes leading to the
identical final state and both the strong and the weak phases must be different
between the two processes in order to generate CP violation in the decay amplitudes.
It should be noted that from the measured π-π scattering phase shift values, we
have [15]

arg ε′ = (43 ± 6)◦

14



Using equations 20 and 24, it follows that

ζ
A+−
A+−

= (1 − 2ε− 2ε′)e−i (ϕΓ +2ϕ0+θT−θCP)

≈ 1 − 2(ε+ ε′) − i (ϕΓ + 2ϕ0 + θT − θCP)

where the approximation is made assuming that the phase difference between Γ12 and
A0A0 is small, which will be justified later. From equation 23, η+− can be derived
to be

η+− = ε+ i(ϕΓ + 2ϕ0 + θT − θCP) + ε′ .

Similarly the CP violation parameter for the π0π0 decay channel, η00, is given by

η00 = ε+ i(ϕΓ + 2ϕ0 + θT − θCP) − 2ε′ .

Thus, we expect CP violation parameters to be different between the π+π− and π0π0

decay modes if ε′ 6= 0. It has been shown by four recent experiments, NA31 [16],
E731 [17], KTeV [18] and NA48 [19],

∣∣∣∣∣η+−
η00

∣∣∣∣∣
2

= 1.0127 ± 0.0028

i.e. CP violation in the decay amplitude is present in the neutral kaon system. If we
neglect (ϕΓ + 2ϕ0 + θT − θCP), it follows that

<
(
ε′

ε

)
=

1

6



∣∣∣∣∣η+−
η00

∣∣∣∣∣
2

− 1


 .

3.5 Phase of Decay Matrix

As seen from equation 5, evaluation of Γ12 involves the decay final states which are
common to K0 and K0, which are 2π(I = 0), 2π(I = 2), 3π(I = 1), 3π(I = 2) and
3π(I = 3) states:

Γ12 ≈
∑
I=0,2

A∗
2π(I)A2π(I) +

∑
I=1,2,3

A∗
3π(I)A3π(I) .

The contribution from the decay amplitude to the 2π(I = 2) state is suppressed
by the ∆I = 1/2 rule and the small measured value of ε′. The contribution from
the three-pion decay amplitudes are suppressed by ΓL/ΓS and the measured upper
limits for the CP violation parameter for the π+π−π0 and π0π0π0 final states. In
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conclusion, the phase of Γ12 is essentially given by the phase of the A0 amplitude,
and it can be expressed as

ϕΓ ≈ argA∗
0A0 = −2ϕ0 − θT + θCP

so that
|ϕΓ + 2ϕ0 + θT − θCP| < O(10−5) .

Thus |ϕΓ + 2ϕ0 + θT − θCP| << |ε|, justifying the approximations made before.

3.6 The Standard Model Description

In the framework of the Standard Model [20], the short range contribution to K0-K0

oscillation is obtained from the box diagrams (Figure 4) to be

Mbox
12 = −G

2
Ff

2
KBKmKm

2
W

12π2

[
η1σ

2
cS(xc) + 2η2σcσtE(xc, xt) + η3σ

2
tS(xt)

]

where GF is the Fermi constant, fK, BK and mK are the decay constant, B parameter
and mass for the K-meson respectively and mW is the mass of the W-boson. The
QCD correction factors are denoted by η1 = 1.38 ± 0.20, η2 = 0.57 ± 0.01 and
η3 = 0.47 ± 0.04 and S and E are known functions of the mass ratios, xi = m2

i /m
2
W

for top (i=t) and charm (i=c). Note that

S(xc) ≈ 2.4 × 10−4, S(xt) ≈ 2.6, E(xc, xc) ≈ 2.2 × 10−3 (26)

for mc = 1.25 GeV/c, mt = 174 GeV/c2 and mW = 80 GeV/c [12]. The parameters
σc and σt are the combination of the elements of the Cabibbo-Kobayashi-Maskawa
quark mixing matrix (CKM-matrix),

VCKM =


 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




σc = VcsVcd
∗ and σt = VtsVtd

∗. We adopt the following approximation of the CKM
matrix using the parameters introduced by Wolfenstein [21]:

VCKM ≈

 1 − λ2/2 λ Aλ3 (ρ− i η)

−λ− i A2λ5η 1 − λ2/2 Aλ2

Aλ3 (1 − ρ̃− i η̃) −Aλ2 − i Aλ4η 1


 (27)

where where ρ̃ = ρ(1−λ2/2) and η̃ = η(1−λ2/2). The parameter λ is known from the
light hadron decays to be 0.221± 0.002. From the B-meson decays, |Vcb| = 0.0402±
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Figure 4: The box diagrams contributing to the K0-K0 oscillations.

0.0019 and |Vub/Vcb| = 0.090±0.025 are measured [12], giving A = 0.823±0.042 and√
ρ2 + η2 = 0.41 ± 0.11. The B-parameter takes in account the difference between

〈0|HWK±〉 and 〈f |HW|K0〉 where 〈0| is the hadronic vacuum state and 〈f | is the
common quark states between K0 and K0. The theoretical evaluations for this value
vary between 0.5 and 1.

In addition to Mbox
12 , there are large contributions from long range interactions

MLR
12 , which are difficult to evaluate. Therefore, theoretical predication for M12 =

Mbox
12 + MLR

12 cannot be given. The long range interaction involves only the light
flavours and its contribution to M12 is real in the CKM phase convention; the imag-
inary part of M12 is generated only by the box diagram. Therefore we can derive

sin(ϕM) =
=M12

|M12| =
2=Mbox

12

∆m
.

In the CKM phase convention, Γ12 can be approximated as real. Therefore, it follows
that

<ε = − =Mbox
12

2 ∆m
.

Although there are considerable uncertainties to evaluate numerically this expression,
the currently allowed range of the Wolfenstein parameters, λ, A, ρ and η gives a
consistent value of <ε with the experimentally measured value.

Prediction of ε′ requires an accurate evaluation of the phase difference between
a0 and a2. For the a0 amplitudes, the tree, the gluonic penguin and the electroweak
penguin diagrams contribute. Only the tree and electroweak penguin diagrams make
contributions to the a2 decay amplitude. All the penguin diagrams are shown in
Figure 5. Not only the short range interactions, but also the hadronic matrix elements
with long range interactions have to be evaluated in the calculations. This makes
the numerical determination of ε′ very difficult. Within the theoretical uncertainties,
values of ε′ calculated with the currently allowed range of λ, A, ρ and η are consistent
with the data.
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Figure 5: Gluonic and electromagnetic penguins contributing to the K0 → 2π decays.

3.7 CP Violation in Rare Decays

Experimental detection of KL → π0νν is clearly very challenging. The final state is
a CP eigenstate with CP = +1. Therefore, observation of this decay is a sign of CP
violation. In the Standard Model, the decay is generated by penguin diagrams or
box diagrams as shown in Figure 6.

Since the final state consists with only one hadron, long range strong interactions
do not play a role and the decay amplitudes can be denoted as

〈π0νν|HW|K0〉 = aπ0νν

〈π0νν|HW|K0〉 = a∗π0νν e
i (θCP−θT) .

Unlike for the K0 → 2π decays, φπ0νν = arg aπ0νν could be very different from φ0, so
that we could have a situation∣∣∣sin (φΓ + 2φπ0νν + θCP − θT

)∣∣∣ = |sin (2φπ0νν − 2φ0)|
>> |ε| .

The KL decay amplitude then becomes

〈π0νν|HW|KL〉 =
aπ0νν√

2

[
1 − (1 − 2ε)e−i (2φπ0νν−2φ0)

]

≈
√

2 i |aπ0νν | sin(2φπ0νν − 2φ0) .

s t c u d

dd

W
−

W
+

K
s

t c u
d

dd

W
−

ν
ν

ν
l

ν
Z0

K

ν
νZ0

s

t
c

u

d

dd

W
−

K

Figure 6: The box and penguin diagrams generating K0 → π0νν decays.
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Using isospin symmetry, the hadronic matrix element of the K0 → π0νν decay
amplitude and that of the K+ → π+e+ν decay amplitudes can be related as

〈π0|HW|K0〉 = 〈π0|HW|K+〉 .
This allow us to express the branching fractions for KL → π0νν using the branching
fractions for K+ → π0e+ν as [20]

B(KL → π0νν) =
|〈π0νν|HW|KL〉|2

ΓL

= B(K+ → π0e+ν)
τL
τ+

3α2 [=(V ∗
tsVtd)X(mt)]

2

|Vus|22π2 sin4 ΘW

= B(K+ → π0e+ν)
τL
τ+

3α2 [X(mt)]
2

2π2 sin4 ΘW

A4λ8(1 − λ2/2)2η2

≈ 3 × 10−11

where X is a known function and ΘW is the weak mixing angle. Since the hadronic
matrix element is taken from the data, the theoretical uncertainties in this determi-
nation is very small. Also the imaginary part of the amplitude is dominated by the
short range interactions which can be reliably calculated. Therefore, the theoretical
prediction can be considered to be clean.

It is interesting to note that the CP violation parameter

ηπ0νν =
〈π0νν|V |KL〉
〈π0νν|V |KS〉

as defined in the 2π case has |ηπ0νν | >> |ε|, although the both final states have
CP = +1.

The current experimental measurement for this branching fraction is < 5.9×10−7

with 90% confidence by the KTeV experiment [22], which is still far from the expected
number. However, there are several proposals to observe the decays in the near
future.

4 B-meson System

4.1 The Standard Model Description

4.1.1 Some Elements of The CKM Matrix

Among the nine elements of the CKM matrix, five of them related to the third
generation play important roles in the B meson system: Vtd, Vub, Vts, Vcb and Vtb.
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Figure 7: Three elements of the CKM matrix, Vtd, Vub, and Vts and the definitions
of φ1, φ3 and δφ3.

In the approximation given in equation 27, the phases of the five elements are given
by

arg Vtd = −φ1, arg Vub = −φ3, argVts = δφ3 + π, argVcb = arg Vtb = 0

where
φ1 = tan−1 η

1 − ρ
, φ3 = tan−1 η

ρ
, δφ3 = tan−1 λ2η.

Figure 7 shows the angles in ρ and η planes. Note that φ1 and φ3 are often referred
to as β and γ. Clearly δφ3 is very small, ∼ 0.02.

4.1.2 Oscillation Amplitude

In the Standard Model, B-B oscillation is totally governed by the short range inter-
actions, i.e. the box diagrams. Furthermore, only the top quark plays a role in the
box diagram due to the large top quark mass (see equation 26) and the structure of
the CKM matrix;

<(V ∗
tdVtb)

<(V ∗
cdVcb)

= (ρ̃− 1) ≈ 1,
=(V ∗

tdVtb)

=(V ∗
cdVcb)

≈ 1

λ2
>> 1

as seen from equation 27.
Therefore, the off diagonal element of the mass matrix, M12 is given by [20]

M12 = −G
2
Ff

2
Bd
BBd

mBd
m2

W

12π2
ηBd

S(xt)(V
∗
tdVtb)

2 for Bd (28)
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where fBd
, BBd

and mBd
are the decay constant, B-parameter and the mass of the

Bd meson.
Similarly for the Bs meson, we obtain

M12 = −G
2
Ff

2
Bs
BBsmBsm

2
W

12π2
ηBsS(xt)(V

∗
tsVtb)

2 for Bs

where fBs, BBs and mBs are the decay constant, B-parameter and the mass of the Bs

meson.
The phase of M12 is then given by

argM12 =

{
arg(V ∗

tdVtb)
2 + π = 2φ1 + π for Bd

arg(V ∗
tsVtb)

2 + π = −2δφ3 + π for Bs.

The parameter Γ12 can also be determined by taking the absorptive part of the
box diagrams with charm and up quarks in the loops. The phase difference between
M12 and Γ12 is given by

argM12 − arg Γ12 = π +
8

3

(
mc

mb

)2

η ×




1

(1 − ρ)2 + η2
: Bd

λ2 : Bs

(29)

i.e. sin(argM12 − arg Γ12) is small for Bd and very small for Bs. Note that M12 and
Γ12 are antiparallel. Therefore, the approximations for ζ , m± and Γ± given on page 8
are valid with n = 1. Since we will rely on the Standard Model description of M12,
and our experimental knowledge of the decay amplitudes is still limited, we adopt
b) φM base. We refer the mass eigenstate with larger mass as Bh (B-heavy) and the
other Bl (B-light) with their masses and decay width are given by:

mh = M + |M12|, Γh = Γ − |Γ12|

and
ml = M − |M12|, Γl = Γ + |Γ12|

respectively, and Bh (Bl) corresponds to P+ (P−) defined in equation 13.
For both Bd and Bs, we can now derive

∆Γ

∆m
=

∣∣∣∣ Γ12

M12

∣∣∣∣ ≈ 3πm2
b

2m2
WS(xt)

≈ 5 × 10−3 for Bd and Bs (30)

for mb = 4.25 GeV, mW = 80 GeV and mt = 174 GeV, where ∆m and ∆Γ are
defined as positive:

∆m = mh −ml,∆Γ = Γl − Γh .
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Using the measured values of ∆m = (0.464 ± 0.018) × 1012 h̄s−1 and the average
lifetime τ = 1/Γ̂ = (1.54 ± 0.03) × 10−12 s for the Bd mesons, where Γ̂ is the
averaged decay width, it follows that

∆Γ

Γ̂
≈ 4 × 10−3 for Bd

and ∆Γ can be neglected in the decay time distribution for the Bd system. For the
Bs mesons, using the measured lifetime (1.54 ± 0.07) × 10−12 s, it follows that

∆Γ

Γ̂
≈ 0.1 for Bs.

The effect of ∆Γ is still not large, but can no longer be neglected in the decay time
distributions.

The small decay width differences of the Bd and Bs systems do not allow to
separate one mass-eigenstate from the other, which can be done for the kaon system
by creating a KL beam. Therefore, CP violation cannot be established by just
observing the decays as in the case of KL → 2π. We either have to compare the
decay rates of the initial B0 and initial B0 states or measure the time dependent
decay rates of at least one of the two cases, i.e. either initial B0 or B0.

Since ∆m = 2|M12|, one can extract

|Vtd|2 = A4λ6
[
(1 − ρ̃)2 + η̃2

]

i.e. ρ and η, from the measured B0-B0 oscillation frequency ∆md using equation 28.
However, theoretical uncertainties in calculating the decay constant and B-parameter
are considerable and limit the accuracy on the extracted value of |Vtd|2. If the B0

s -B
0
s

oscillation frequency ∆ms = 2|M s
12| is measured, |Vtd|2 can be determined with much

small uncertainty by using the ratio ∆md/∆ms, due to better controlled theoretical
errors in fBd

/fBs and BBd
/BBs. However, the frequency of the B0

s -B
0
s oscillation is

expected to be > 1/λ2 = 20 times larger than that of the B0-B0 oscillation and we
still have to wait for sometime before it is measured.

Since |M12/Γ12| << 1, ζ given by equation 19 can be further approximated as

ζ ≈
[
1 − 1

2
=
(

Γ12

M12

)]
e−i ϕM (31)

where ϕM = argM12 as before. Seen from equation 29 and 30, the approximation
|ζ | ≈ 1 is accurate to 10−3 or better.

Similar to the kaon system, CP violation (and T violation) in the oscillation can be
measured from the time-dependent rate asymmetry between the initial B0 decaying
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into semileptonic final states with e+ or µ+, R+(t) and the initial B0 decaying into
semileptonic final states with e− or µ−, R−(t). The asymmetry is given by

R+(t) −R−(t)

R+(t) +R−(t)
=

1 − |ζ |4
1 + |ζ |4 ≈ O(10−3) for Bd and << O(10−3) for Bd

which is a very small signal.
From now on, we assume

ζ = e−i ϕM

for both Bd and Bs and ∆Γ = 0 for Bd.
In summary, the two mass eigenstates are given by

|Bh〉 =
1√
2

[
|B〉 + e−i ϕM |B〉

]

|Bl〉 =
1√
2

[
|B〉 − e−i ϕM |B〉

]

and
mh = m0 + |M12|, ml = m0 − |M12|, ∆m = mh −ml

for Bd and Bs. For the decay width, we have

Γl = Γh for Bd

Γl = Γ0 + |Γ12|, Γh = Γ0 − |Γ12|, ∆Γ = Γl − Γh for Bs

4.1.3 Time Dependent Decay Rates

Since ∆Γ is small in the B meson system, it is more convenient to derive the time
dependent decay rate from the particle-antiparticle base rather than the mass eigen-
state base. Using, equations 10 and 14 the time dependent decay rates for the final
state f can be derived as

Rf(t) ∝ |Af |2
2

e−Γ̂ t [I+(t) + I−(t)] (32)

Rf(t) ∝ |Af |2
2|ζ |2 e

−Γ̂ t [I+(t) − I−(t)] (33)

where Γ̂ is the averaged decay time, Γ̂ = (Γ+ + Γ−)/2, and Af is the instantaneous
decay amplitude for the P0 → f decays. The two time dependent functions, I+(t)
and I−(t), are given by

I+(t) = (1 + |Lf |2) cosh
∆Γ

2
t+ 2<Lf sinh

∆Γ

2
t

I−(t) = (1 − |Lf |2) cos ∆mt+ 2=Lf sin ∆mt .
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The parameter Lf is given by

Lf = ζ
Af

Af

where Af is the instantaneous decay amplitude for the P0 → f decays.

The time dependent decay rate for the CP conjugated final states fCP are derived
to be

RfCP(t) ∝ |AfCP|2
2

e−Γ t
[
I

CP
+ (t) + I

CP
− (t)

]
(34)

RfCP(t) ∝ |AfCP|2|ζ |2
2

e−Γ t
[
I

CP
+ (t) − I

CP
− (t)

]
(35)

where AfCP is the instantaneous decay amplitude for the P0 → fCP decays. Two time

dependent decay rates, I
CP
+ (t) and I

CP
− (t) are given by

I
CP
+ (t) = (1 + |LCP

f |2) cosh
∆Γ

2
t+ 2<LCP

f sinh
∆Γ

2
t

I
CP
− (t) = (1 − |LCP

f |2) cos ∆mt + 2=LCP
f sin ∆mt

where the parameter, LCP
f , is given by

LCP
f =

1

ζ

AfCP

AfCP

and AfCP is the instantaneous decay amplitude for the P0 → fCP decays.

The decay rates Rf (t) and RfCP(t) are CP conjugate to each other and so areRf(t)
and RfCP(t). If there exists any difference between the CP conjugated processes, this
is a clear sign of CP violation.

The final state f can be classified into the following four different cases:

I. Flavour specific final state (Af = AfCP = 0 or AfCP = Af = 0)

II. Flavour non specific final state

II-a. CP eigenstate (Af = AfCP and Af = AfCP)

II-b. mixed CP eigenstate (Af = AfCP and Af = AfCP)

II-c. CP non eigenstate
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4.1.4 CP Violation: Clean Case

The contribution to the B0 decaying into J/ψKS is dominated by the tree diagram
with V ∗

cbVcs. Although there exist some contribution from the penguin diagrams, the
dominant penguin diagram contribution has the CKM phase V ∗

tbVts which is close to
that of the tree diagram (Figure 8). Thus, we can safely assume that there is no CP
violation in the decay amplitude and the ratio of the B0 and B0 decay amplitudes is
given only by the CKM part. By noting that CP (J/ψKS) = −1 we obtain

A(B0 → J/ψKS)

A(B0 → J/ψKS)
= −(V ∗

cbVcsV
∗
usVud)

2

|V ∗
cbVcsV ∗

usVud|2 .

Using the formulae developed in the previous section, the time dependent rates for
the initial B0 decaying into J/ψKS, RJ/ψKS

(t), and that for B0 decaying into J/ψKS,
RJ/ψKS

(t) are given by

RJ/ψKS
(t) ∝ e−Γ̂ t

(
1 + =LJ/ψKS

sin ∆mt
)

RJ/ψKS
(t) ∝ e−Γ̂ t

(
1 − =LJ/ψKS

sin ∆mt
)

which allow to extract

=LJ/ψKS
= =

(
ζ × A(B0 → J/ψKS)

A(B0 → J/ψKS)

)
= −=

[
(V ∗

tdVtbV
∗
cbVcsV

∗
usVud)

2

|V ∗
tdVtbV ∗

cbVcsV ∗
usVud|2

]

With the Wolfenstein parameterization, it follows that

=LJ/ψKS
= − sin 2φ1 .

The same argument holds for the Bs → J/ψ φ decays and from the time dependent
decay rates

RJ/ψ φ(t) ∝ e−Γ̂ t
(
cosh

∆Γ

2
t+ 2<LJ/ψ φ sinh

∆Γ

2
t+ =LJ/ψ φ sin ∆mt

)

RJ/ψ φ(t) ∝ e−Γ̂ t
(
cosh

∆Γ

2
t+ 2<LJ/ψ φ sinh

∆Γ

2
t−=, LJ/ψ φ sin ∆mt

)

one can extract

=LJ/ψ φ = =
[
ζ × A(B0

s → J/ψ φ)

A(B0
s → J/ψ φ)

]
= − sin 2δφ3

Note that we assumed in the calculation above that CP (J/ψ φ) = +1, i.e. the
J/ψ φ state is in the lowest orbital angular momentum state of l = 0. If there exists
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Figure 8: Tree and penguin diagrams contributing to the B0 → J/ψKS and B0
s →

J/ψ φ decays.

the l = 1 state with CP (J/ψ φ) = −1, the measured =LJ/ψ φ will be diluted and
the fraction of the CP = −1 state must be experimentally measured. If there is the
same amount of CP = +1 state and CP = −1 state, =LJ/ψ φ will vanish.

An even cleaner decay channel is B0 → D∗∓π±. There is only one tree diagram,
b → c+W+ followed by W+ → u+d, which contributes to the B0 → D∗−π+ decays.
The same final state can be produced from the B0 decays with another tree diagram,
b → u + W− followed by W− → c + d (Figure 9). Therefore, the time dependent
rate for the initial B0 decaying into D∗−π+ is given by

RD∗−(t) ∝ e−Γ̂ t

[
1 +

(1 − |LD∗−π+ |2)
(1 + |LD∗−π+ |2) cos ∆mt +

2=LD∗−π+

(1 + |LD∗−π+|2) sin ∆mt

]

where

LD∗−π+ = ζ × A(B0 → D∗−π+)

A(B0 → D∗−π+)

The weak phase of A(B0 → D∗−π+) is given by VubV
∗
cd and that of A(B0 → D∗−π+)

by V ∗
cbVud. The phase of LD∗−π+ is then derived to be

argLD∗−π+ = arg Vub − argM12 + ϕS

= −φ3 + 2φ1 + ϕS

where ϕS is a possible strong phase difference between the b → u + W− and b →
c + W+ tree diagrams.

CP conjugated decay amplitudes of A(B0 → D∗−π+) and A(B0 → D∗−π+), i.e.
A(B0 → D∗+π−) and A(B0 → D∗+π−) respectively, are obtained by taking the
complex conjugate of the weak amplitudes while the strong phase remains unchanged.
Thus for D∗+π− we obtain

RD∗+(t) ∝ e−Γ̂ t

[
1 − (1 − |LCP

D∗−π+ |2)
(1 + |LCP

D∗−π+ |2) cos ∆mt− 2=LCP
D∗−π+

(1 + |LCP
D∗−π+|2) sin ∆mt

]
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Figure 9: Tree diagrams contributing for the B0 → D∗−π+ and B0 → D∗−π+ decays.

where

LCP
D∗−π+ =

1

ζ
× A(B0 → D∗+π−)

A(B0 → D∗+π−)

and the phase of LCP
D∗−π+ is given by

argLCP
D∗−π+ = − arg Vub + argM12 + ϕS

= φ3 − 2φ1 + ϕS

From the two time dependent decay rates, we can extract φ3 − 2φ1.
Note that

|LD∗−π+ | =
∣∣∣LCP

D∗−π+

∣∣∣ ≈
∣∣∣∣∣VubV

∗
cd

V ∗
cbVud

∣∣∣∣∣ = λ2
√
ρ2η2 << 1

i.e. the effect we have to measure is small.
The CP conjugated time dependent decay rate distributions are given by

RD∗+(t) ∝ e−Γ̂ t

[
1 +

(1 − |LCP
D∗−π+ |2)

(1 + |LCP
D∗−π+|2) cos ∆mt +

2=LCP
D∗−π+

(1 + |LCP
D∗−π+ |2) sin ∆mt

]

and

RD∗−(t) ∝ e−Γ̂ t

[
1 − (1 − |LD∗−π+ |2)

(1 + |LD∗−π+ |2) cos ∆mt− 2=LD∗−π+

(1 + |LD∗−π+|2) sin ∆mt

]

which can be used to obtain the same information.
A similar method can be used for the B0

s → D∓
s K± decays to extract φ3 − 2δφ3.

The effect is larger since

|LD−
s K+| ≈

∣∣∣∣∣VubV
∗
cs

V ∗
cbVus

∣∣∣∣∣ =
√
ρ2 + η2 = O(1) .
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4.1.5 CP Violation: Not So Clean Case

The penguin contribution to the Bd → π+π− decay was originally thought to be
small and the decay would be dominated by the b → u + W tree diagram. However,
the discovery of B(Bd → K±π∓) > B(Bd → π+π−) indicates that the contribution
of the penguin diagrams to the Bd → π+π− amplitude should be ∼ 20% or more.

Due to the penguin contribution, the phase of the B0 → π+π− decay amplitude
deviates from that of V ∗

ub. Furthermore, CP violation in the decay amplitude could
be present. Evaluation of those effects involves calculating contributions from dif-
ferent diagrams accurately. Strong interactions may play an important role as well.
Therefore, this decay mode may not be ideal to make precise determinations of ρ
and η from CP violation.

4.2 Case with New Physics

Decay processes where only the tree diagrams contribute should be unaffected by the
presence of physics beyond the Standard Model. Therefore, |Vcb| and |Vub| obtained
from the semileptonic decays of B mesons would not be affected by the new physics
and A and ρ2 + η2 can be obtained even if physics beyond the Standard Model is
present.

New physics could generate B0-B0 and B0
s -B

0
s oscillations by new particles gen-

erating new box diagrams. They could also generate a tree level flavour changing
neutral current contributing to the oscillation. Since these contributions are through
“virtual” states, they contribute to M12 with little effect on Γ12, i.e.

M12 = MSM
12 +MNP

12 , Γ12 = Γ SM
12

where MSM
12 and Γ SM

12 are due to the Standard Model and MNP
12 is the contribution

from the new physics. The measured ∆m is given by 2|M12| and can no longer used
to extract |Vtd|2 due to MNP

12 .

Since ∣∣∣∣ Γ12

M12

∣∣∣∣ = 2
∣∣∣Γ SM

12

∣∣∣
∆m

remains small, CP violation in the oscillation remains small as seen from equation 31.
Therefore,

ζ = e−i ϕM

is still valid. However, note that

ϕM ≡ argM12 6= argMSM
12 .
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Decay amplitudes from the penguin diagrams can be affected by physics beyond
the Standard Model since new particles can contribute virtually in the loop. There-
fore, the modes such as Bd decaying into π+π−, K±π∓ may have some contribution
from the new physics.

Since the decays Bd → J/ψKS and Bs → J/ψ φ are tree dominated, they are
little affected by new physics. Therefore we have

A(B0 → J/ψKS)

A(B0 → J/ψKS)
= −A(B0

s → J/ψ φ)

A(B0
s → J/ψ φ)

= −1

with the phase convention due to the Wolfenstein parameterization and

LJ/ψKS, J/ψ φ = ∓e−iϕM : − for Bd → J/ψKS and + for Bs → J/ψ φ

and studies of the time dependent decay rates give argM12.
The Bd → D∗π and Bs → DsK decays are generated by only the tree diagrams

and not affected by new physics. Therefore we have

argLD∗−π+ = −φ3 − argM12 + ϕS

and
argLD∗+π− = φ3 + argM12 + ϕS

and studies of the time dependent decay rates provide argM12+φ3. Similarly studies
can be done for Bs → DsK.

By combining the measurements of Bd → J/ψKS and → D∗π or Bs → J/ψ φ and
→ DsK, the angle φ3 can be determined even with presence of physics beyond the
Standard Model. By comparing the result from Bd and that from Bs, consistency of
the method can be tested. Since the phase of Vub is given by φ3 and its modulus is
measured from the semileptonic decay, ρ and η can be extracted. Once λ, A, ρ and
η are known, MSM

12 can be calculated and from the measured ∆m and argM12, the
new physics contribution MNP

12 is obtained. This can be used to identify the nature
of the new physics contributing to the oscillation.

4.3 Experimental Prospects

A possible experimental programme for the study of CP violation in the B meson
system and search for physics beyond the Standard Model can be summarised in the
following steps:

1. Determination of |Vcb| and |Vub| from semileptonic (and some hadronic) decays.

2. Measurement of ∆m for Bd and Bs
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3. Measurement of =LJ/ψKS

4. Measurement of LJ/ψ φ, LD∗∓π± and LD∓
s K±

The first step has been made by ARGUS and CLEO at Υ(4S) machines and the
four LEP experiments. BABAR and BELLE at the new asymmetric Υ(4S) machines
and CLEO will improve the precisions on those determinations. Future improvement
of theory is also an important factor. Half of the second step, ∆m(Bd) was done
by ARGUS, CLEO, UA1 at the SPS Collider, the four LEP experiments, SLD at
SLC and CDF at the Tevatron. For ∆m(Bs), we may have to wait for the next data
taking by CDF, D0 and HERA-B. The third step will be made by BABAR, BELLE,
CDF, D0 and possibly HERA-B by the year 2005.

After the second step, four parameters of the CKM matrix are all defined within
the framework of the Standard Model, e.g. A, λ, ρ and η. The third step provides an
additional information tan−1 η/(1− ρ) within the framework of the Standard Model
and consistency of the CKM picture can now be tested.

As demonstrated in the previous chapter, if physics beyond the Standard Model
exists, the fourth step is needed to clearly establish the evidence of new physics and
separate the effect due to the Standard Model and that from new physics. After the
third step, only ρ2+η2 will be known from |Vub| and the information on tan−1 η/(1−ρ)
is spoiled by new physics. Only after the fourth step, ρ and η can be determined,
together with isolating the new physics contribution.

For the last step, new generation of experiments with statistics much higher than
1010 B mesons are needed. The Bs meson is an essential ingredient. After 2005, LHC
will be the most powerful source of B mesons. Experiments must be equipped with
a trigger efficient for hadronic decay modes to gain high statistics for the necessary
final states. Particle identification is also crucial in order to reduce background.
LHCb is a detector at the LHC optimised for CP violation studies with B mesons.
The two general purpose LHC detectors, ATLAS and CMS can contribute only to
a limited aspect of the fourth step. A proposed experiment at Tevatron, BTeV, can
also make the last two steps.

Clearly CP violation is expected in many other decay channels. For many of them,
there are some theoretical problems for making accurate predictions. However, they
can be used to make a systematic study which will provide a global picture whether
CP violation can fit into the CKM picture. With all those experiments, we continue
to improve our understanding of CP violation and hope to discover physics beyond
the Standard Model.
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