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I. INTRODUCTION

The non-Abelian gauge �eld theory was invented by Yang and Mills [1] almost half
a century ago; it now permeates the study of elementary particles, both strong and
electroweak. In all cases, the number of spin-1 gauge �elds is equal to the number
of generators of the gauge group. For example, for the SU(2) case, there are three
generators and also three Yang-Mills �elds. It is the purpose of the present paper to
study the question: What happens if more Yang-Mills �elds are introduced than the
number of generators of the gauge group?

This possibility has actually been investigated already in the original paper of
Yang and Mills [1]. They showed that such additional gauge �elds are \allowed by
the very general form" but \irrelevant to the question of isotopic gauge."

It is this sentence of Yang and Mills that initiated the present investigation. Since
their conclusion holds whenever the gauge group is semisimple, the additional gauge
�elds are of interest for non-semisimple gauge groups. It is found that, at least for
some cases and perhaps in most cases, the number of relevant spin-1 gauge �elds can
be larger than the number of generators of the underlying gauge group. It is hoped
that this phenomenon, which we did not anticipate, may be of use for particle physics.

In particle physics, the \simplest" Lie groups seem to play the most fundamental
roles. For example, in the electroweak theory of Glashow [2], Weinberg [3] and Salam
[4], the group is SU(2)
U(1). It is therefore the purpose here to study the \simplest"
non-semisimple group (besides U(1)n) in the sense that the number of generators is
the smallest. If there is only one generator, then the Lie group is necessarily Abelian.
We shall concentrate here on the non-Abelian Lie group with two generators.

These two generators L1 and L2 can be chosen to obey the commutation relation

[L1; L2] = L2 : (1)

This commutation relation leads essentially to only one gauge group. Faithful repre-
sentations of the lowest dimension are

L1 =

 
1
2 + s 0
0 �1

2 + s

!
;

L2 =
�
0 1
0 0

�
; (2)

where s is an arbitrary complex parameter.
In Sec. II, we study the transformation properties of the gauge �elds relevant for

a doublet of scalar �elds transforming locally with the representation (2). In Sec.
III, we discuss the elementary properties of these gauge �elds and especially the
in
uence of the s parameter. In Sec. IV, we extend our results to all representations
where L1 can be diagonalized and show in Sec. V how the gauge system of the 2-
dimensional representation extends directly to all these representations. In Sec. VI,
the Lagrangian of the gauge �elds is constructed on general grounds. Finally, we give
a brief discussion and conclusions in Sec. VII.

2



II. GAUGE TRANSFORMATIONS

Following step-by-step the procedure pioneered by Yang and Mills, we consider a
doublet scalar �eld in four space-time dimensions

�(x) =

 
�1(x)

�2(x)

!
(3)

that transforms locally as
�0(x) = V (x)�(x) : (4)

The in�nitesimal form of V (x) is

V (x) = 1 + �1(x)L1 + �2(x)L2 ; (5)

where L1 and L2 are given by Eq. (2).
The derivative D�� is de�ned by

D�� = (@� +A�)� = @�� +A�� (6)

and must transform in the same way as � itself

(D��)
0 (x) = V (x) (D��)(x) : (7)

Equations (4) and (7) imply that

A0� = V A�V
�1 � (@�V )V

�1 ; (8)

meaning that this basic result of Yang and Mills is valid for the present gauge group.
The in�nitesimal form of Eq. (8) is

A0� = A� + �1 [L1; A�] + �2 [L2; A�]� @��1L1 � @��2L2 : (9)

Let us study this equation in some detail. Since �1 and �2 are arbitrary functions
of the space-time variables x, this equation implies that there must be at least two
gauge �elds in A�. The usual choice is

A�(x) = A(1)
� (x)L1 +A(2)

� (x)L2 : (10)

With this choice, which involves two gauge �elds A(1)
� (x) and A(2)

� (x), Eq. (9) can
indeed be satis�ed.

Following the discussion of Yang and Mills as quoted in Sec. I, Eq. (10) is not the
only possible choice: it is entirely allowed to have more than two gauge �elds. As
seen from Eq. (6) or Eq. (10) for example, A�(x) is a 2 � 2 real matrix, and it is
therefore natural to consider the case of four gauge �elds, namely Aij

� ; i; j = 1; 2. It

is convenient to organize these four Aij
� as a column matrix Aa

�; a = 1; 2; 3; 4:0BBBBB@
A1

�

A2
�

A3
�

A4
�

1CCCCCA �
0BBBBB@
A11

�

A12
�

A21
�

A22
�

1CCCCCA : (11)
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In this notation, the transformations of Eq. (9) are

A0� = A� + �iXiA� + @��iWi (12)

with

X1 =

0BBB@
0 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 0

1CCCA ; (13)

X2 =

0BBB@
0 0 1 0
�1 0 0 1
0 0 0 0
0 0 �1 0

1CCCA ; (14)

W1 =

0BBB@
�(1

2
+ s)
0
0

1
2
� s

1CCCA ; (15)

W2 =

0BBB@
0
�1
0
0

1CCCA : (16)

The Xi of Eqs. (13) and (14) satisfy the same commutation relations (1) of the L1

and L2, namely,
[X1;X2] = X2 : (17)

Equations (13){(16) are very instructive because they exhibit the basic features
due to the fact that the gauge group under consideration is not semisimple. These
features can be seen as follows. Suppose a linear transformation T is applied to A�

of Eq. (11) so that the �rst two components of TA� are linear combinations of the
gauge �elds A(1)

� and A(2)
� of Eq. (10). Furthermore, after applying this T , W1 and

W2 both take the form where the third and fourth components are zero. Let TX2T
�1

be expressed as

TX2T
�1 =

 
Y11 Y12

0 Y22

!
; (18)

where the Y 's are 2�2 matrices. While Y21 is zero, the question is: Can Y12 be made
zero or not? Consider any vector with v4 6= v1

V0 =

0BBB@
v1
0
0
v4

1CCCA ; (19)

which is not a multiple of W1. That

X2V0 =

0BBB@
0

v4 � v1
0
0

1CCCA (20)
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means that all these V0's, which do not lie in the space spanned by W1 and W2, give
a X2V0 which is proportional to W2. This implies that

Y12 6=0 : (21)

That Y12 is not zero has profound consequences. If the above considerations are
applied to a gauge group that is semisimple, the resulting Y12 can always be put to
zero. Thus (21) is a novel feature intimately related to the fact that the present
gauge group is not semisimple. Physically, that Y12 is non-zero means that the two
additional gauge �elds are not \irrelevant" and are coupled to the two original gauge
�elds.

In order to see these new features more clearly, it is convenient to use the following
speci�c linear transform T : eAa

� = T abAb
� (22)

with

T =

0BBB@
0 1 0 0
1 0 0 �1

1
2
� s 0 0 1

2
+ s

0 0 1 0

1CCCA : (23)

Note that this T is of determinant one and hence invertible whatever be the value of
s. One �nds that, in this tilde basis, the in�nitesimal eA� transformation now becomeseA0� = eA� + �i

fXi
eA� + @��i

fWi (24)

with

fX1 =

0BBB@
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 �1

1CCCA ; (25)

fX2 =

0BBB@
0 �1 0 0
0 0 0 2
0 0 0 �2s
0 0 0 0

1CCCA ; (26)

fW1 =

0BBB@
0
�1
0
0

1CCCA ; (27)

fW2 =

0BBB@
�1
0
0
0

1CCCA : (28)

With the T of Eq. (23), the Y12 of Eq. (18) is explicitly

Y12 =
�
0 0
0 2

�
(29)

which is not zero and cannot be brought to zero by any further change of basis
respecting (27) and (28).
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III. ELEMENTARY PROPERTIES OF GAUGE FIELDS

In the representation (2) for L1 and L2, there is a continuous parameter s. This
is another feature not present for �nite-dimensional representations of semisimple
groups.

In the transformations of the gauge �elds A� and eA� as given by (12) and (24)

respectively, this parameter s appears explicitly: inW1 for A� and in fX2 for eA�. Such

appearances are undesirable because they imply that both A� and eA� depend on the
representation for the doublet scalar �eld �(x) of Eq. (3).

We therefore look for a further linear transform of the gauge �eld such that this s
dependence appears in neither the new Xi nor the newWi. For this purpose, consider
�rst the case

s 6=0 : (30)

Under this assumption, de�ne similar to Eq. (22),

bAa
� =

eT ab eAb
� (31)

with

eT =

0BBB@
1 0 0 0
0 1 0 0
0 0 1=s 0
0 0 0 1

1CCCA : (32)

The determinant of this diagonal eT is 1=s, which is well-de�ned because of (30). In
the hat basis, the in�nitesimal transformation is

bA0� = bA� + �i
cXi
bA� + @��i

cWi (33)

with

cX1 = fX1 =

0BBB@
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 �1

1CCCA ; (34)

cX2 =

0BBB@
0 �1 0 0
0 0 0 2
0 0 0 �2
0 0 0 0

1CCCA ; (35)

cW1 = fW1 =

0BBB@
0
�1
0
0

1CCCA ; (36)

cW2 = fW2 =

0BBB@
�1
0
0
0

1CCCA : (37)
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There is no dependence on s in Eqs. (34){(37), as desired. The Y12 is still given by
(29).

The bA�, not A� or eA�, is the desired gauge �eld. Let the gauge transform (33) be
written out component by component:bA10

� = bA1
� + �1

bA1
� � �2

bA2
� � @��2 ; (38)bA20

� = bA2
� + 2�2

bA4
� � @��1 ; (39)bA30

� = bA3
� � 2�2

bA4
� ; (40)bA40

� = bA4
� � �1

bA4
� : (41)

It is seen from (38) and (39) that @��2 and @��1 appear respectively in the gauge

transforms of bA1
� and bA2

�, similar to those in the original paper of Yang and Mills

[1]. We therefore refer to these two components bA1
� and bA2

� of the gauge �elds as
Yang-Mills �elds of the �rst kind. In contrast, the derivatives of �1 and �2 do not
appear in the gauge transformations of bA3

� and bA4
�, as given by Eqs. (40) and (41).

This is a new feature, and we call these two components bA3
� and bA4

� of the gauge
�elds Yang-Mills �elds of the second kind.

In this present case of a non-semisimple gauge group, these two Yang-Mills �elds
of the second kind are not \irrelevant." As seen from Eq. (39), bA4

� appears on the
right-hand side, and thus plays a role in the gauge transform of the Yang-Mills �eldbA2

� of the �rst kind. This is the direct consequence of the fact that the Y12 of Eq.
(18) is not zero.

Aside from a possible linear transform among them, the Yang-Mills gauge �elds
of the second kind are well de�ned. When the Yang-Mills �elds of the second kind
are present, it is allowed to add arbitrary linear combinations of these �elds of the
second kind to the Yang-Mills gauge �elds of the �rst kind.

It only remains to express the original A� in terms of these Yang-Mills �elds bA�:

Aa
� = Rab bAb

� (42)

with, because of (30),

R = T�1 eT�1 =
0BBB@
0 s+ 1

2
s 0

1 0 0 0
0 0 0 1
0 s� 1

2 s 0

1CCCA : (43)

Of course, A� of (42) is to be used in the derivative D�� of Eq. (6), and depends on
the value of s of the representation for �, as expected.

Two comments are appropriate at this point. First, the only transform that leavescX1; cX2; cW1 and cW2 unchanged (sometimes referred as the stability group) is the iden-
tity.

Secondly, it is seen from Eq. (43) that the limit s! 0 is well de�ned for R itself,
and thus it is trivial to remove the restriction (30). In fact,

R js!0 =

0BBB@
0 1

2 0 0
1 0 0 0
0 0 0 1
0 �1

2 0 0

1CCCA : (44)
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In this case of the representation with s = 0, one Yang-Mills gauge �eld of the second
kind, bA3

�, decouples.

IV. THE DIAGONAL L1 REPRESENTATIONS

In this section, we describe brie
y the non-decomposable representations of our
algebra (1) for which L1 can be diagonalized. Those of dimension d = n+ 1 are, up
to a change of basis, of the form

L1 =

0BBBBBB@

n

2
+ s 0 0 : : : 0
0 n

2
� 1 + s 0 : : : 0

0 0 n

2
� 2 + s : : : 0

...
...

...
. . .

...
0 0 0 : : : �n

2
+ s

1CCCCCCA ;

L2 =

0BBBBB@
0 1 0 : : : 0
0 0 1 : : : 0
0 0 0 : : : 0
...

...
...

. . .
...

0 0 0 : : : 0

1CCCCCA ; (45)

where s is an arbitrary complex parameter.
Let us brie
y outline the arguments which can be used to prove this result.
Take any representation for which L1 is diagonal. The eigenvalues can be classi�ed

in sets associated with the following si's:

s1 ; s1 + 1 ; s1 + 2 ; : : : ; s1 + n1
s2 ; s2 + 1 ; s2 + 2 ; : : : ; s2 + n2
...

...
...

. . .
...

si ; si + 1 ; si + 2 ; : : : ; si + ni

; (46)

where either si � sj for i 6= j is not an integer or, if si � sj is an integer, the corre-
sponding sets are separated by at least 2 units.

Since, for any vector V which is the eigenvector of L1 with eigenvalue s, we have
by the basic commutator relations

L1 (L2V ) = (L2L1 + L2) V = (s+ 1) (L2V ) : (47)

We see that two states can be connected by L2 only in the case that they belong
to one of the above sets (46). Hence, once transformed in the block diagonal form
corresponding to the above sets of eigenvalues, the representation decomposes into
these blocks. It is suÆcient to study each block in turn.

We call s the corresponding lowest eigenvalue and s+ n its highest. Suppose that
the eigenvalue s+ k with k = 0; : : : ; n has multiplicity mk � 1.

Take any non-zero vector V eigenstate of L1 of eigenvalue s + k. The successive
action of L2 on V generates a set fSV g of non-zero vectors

L1V = (s+ k)V ;

8



fSV g �
n
V;L2V; (L2)

2V; : : : ; (L2)
L�1V

o
;

(L2)
LV = 0 ; 1 � L � n � k : (48)

Let us call LV = L the length of the chain built on V .
We now consider the sequence V1; V2; : : : of vectors de�ned as follows:

� Among all the vectors which are linear combinations of the eigenvectors of L1

with eigenvalue s, take any vector of minimal length LV1 and call it V1.

� Among all the vectors which are linear combinations of the eigenvectors of L1

with eigenvalue s but not along V1, take any vector of minimal length and call
it V2. Note that the length LV2 is larger or equal to the length LV1.

� Among all the vectors which are linear combinations of the eigenvectors of L1

with eigenvalue s but not situated in the subspace spanned by the vectors V1; V2,
take any vector of minimal length and call it V3.

� Continue the process until the space of eigenvalue s is exhausted, thus de�ning
successively m0 vectors.

� Among all the vectors which are linear combinations of the eigenvectors of L1

with eigenvalue s+ 1 but not situated in the subspace spanned by the vectors
fL2V1; L2V2; : : : ; L2Vm0

g, take any vector of minimal length and call it Vm0+1.
If there is no such vector move to the space of eigenvalue s + 2 and repeat
the process. Note that, this time, the length LVm0+1

can be smaller than the
preceding lengths.

� Among all the vectors which are linear combinations of the eigenvectors of L1

with eigenvalue s+ 1 but not situated in the subspace spanned by the vectors
fL2V1; L2V2; : : : ; L2Vm0

; Vm0+1g, select a vector of minimal length and call it
Vm0+2. If there is no such vector move to the space of eigenvalue s + 2 and
repeat the process excluding the subspace fL2

2V1; L
2
2V2; : : : ; L

2
2Vm0

; L2Vm0+1g.

� Repeat the process successively for all the eigenvectors of eigenvalues s+1; s+
2; s+ 3; : : : until the complete space of all eigenvalues of L1 is exhausted.

� Remark: This procedure provides a set of vectorsn
V1; L2V1; L

2
2V1; : : : ; V2; L2V2; : : :

o
(49)

which are linearly independent. Indeed, if they were not, one would have a
combination of vectors of given eigenvalue s+ k (see (51)) of L1 equal to zero:

�p(L2)
apVp + �q(L2)

aqVq + : : :+ �r(L2)
arVr + : : :+ (L2)

axVx = 0 ;

for p < q < : : : < r < : : : < x : (50)

Note that, if Vr corresponds to an eigenvalue sr of L1, the integers ap; aq; : : :
obey the relations

sp + ap = sq + aq = : : : = sr + ar = : : : = sx + ax = s+ k ;

sp � sq � : : : � sr � : : : � sx ;

ar < LVr ; for all r : (51)

9



By constructing the set fSV 0

x
g based on the vector

V 0

x = �p(L2)
ap�axVp + �q(L2)

aq�axVq + �r(L2)
ar�axVr + : : :+ Vx ;

Lax
2 V 0

x = 0 (52)

rather than Vx, one would construct the vector V 0
x of length ax smaller than the

length of Vx (see (51)) contrary to the hypothesis.

� To any vector in the constructed series Vr, there corresponds the set fSVrg, the
basis of a non-decomposable representation of the group of the form (45) with
a dimension d = LVr and with a well-chosen

s = sr +
LVr � 1

2
: (53)

This ends the proof of the decomposition of the representations for which L1 is
diagonal.

We end this section with a word on the non-decomposable representations where
L1 assumes a non-diagonal form, in fact a Jordan form. There are many such repre-
sentations. Some have a very elaborate structure. It is suÆcient for our later purpose
to write the simplest example which is 3-dimensional and assumes the form

L1 =

0B@
2
3 + s 0 0
0 �1

3 + s 1

0 0 �1
3 + s

1CA ;

L2 =

0B@ 0 0 1
0 0 0
0 0 0

1CA : (54)

V. GAUGE FIELDS FOR MATTER FIELDS BELONGING TO A

DIAGONAL L1 REPRESENTATION

In this section, we give the arguments showing that, for a matter �eld belonging
to a general diagonal L1, non-decomposable, d-dimensional representation, the gauge
�eld structure is exactly the same as for a matter �eld transforming with the two-
dimensional representation (2). It consists of two gauge �elds of the �rst kind and
two gauge �elds of the second kind. There are d2 � 4 other gauge �elds which are
\irrelevant" as they decouple from the gauge �elds of the �rst and the second kinds.

Suppose that the matter �eld �(x) has d scalar components and transforms as
in (4), (5) with the in�nitesimal L1; L2 given by (45). In the generalized derivatives
there appears a set of four d � d matrices A� transforming as (8), (9). It is again
convenient to associate the matrix A�, with components Aij

� ; i; j = 1; : : : ; d, with the

d2-dimensional vector Aa
�; a = 1; : : : ; d2

A� =) Aa
� (55)
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by
Ad(i�1)+j

� = Aij
� : (56)

For these Aa
� �elds, the gauge transformations are again of the form (12). The Xi

are d2 � d2 matrices generalizing Eqs. (13) and (14). The two d2-dimensional vectors
W1 and W2 are those associated with �L2 and �L1, respectively. It is however
somewhat easier to continue to work with the matrix Aij

� , using the initial L1 and L2

matrices (45) and the commutator action (9).
Let us introduce the following four d� d matrices, Mm;m = �1; 0; 1 and P0, and

thus the corresponding vectors. The non-zero elements of these matrices are

M�1(j + 1; j) = �
(d� j)j

2
; j = 1; : : : ; d� 1 ;

M0(j; j) = �
d� 2j + 1

2
; j = 1; : : : ; d ;

M1(j; j + 1) = 1 ; j = 1; : : : ; d� 1 ;

P0(j; j) = 1 ; j = 1; : : : ; d : (57)

These matrices obey commutation rules with L1 and L2 which govern the homoge-
neous part of the transformation rules of the gauge vectors (see (9)):

� The three Mm transform in�nitesimally as a 3-dimensional representation of
our algebra

[L1;Mm] = mMm ;

[L2;M1] = 0 ;

[L2;Mm] = Mm+1 ; m = �1; 0 ; (58)

� while the last one, P0, transforms as the 1-dimensional representation

[L1; P0] = 0 ;

[L2; P0] = 0 : (59)

Finally, we have the correspondence

L1 = �M0 + sP0 =) �W2 ;

L2 = M1 =) �W1 : (60)

The gauge vectors which lie in the direction of these four vectors are the four
\relevant" gauge �elds. They contain the gauge �elds of the �rst kind in the directions
of W1 and W2 and the two gauge �elds of the second kind. The d2 � 4 remaining
vectors can be classi�ed by using the reduction of a general representation as described
in Sec. IV starting the procedure with the vector V1 of lowest value of s = �(d�1)=2
corresponding to the matrix with only one non-zero element, namely, V1(d; 1) = 1.

Using the notation [d] for a representation of dimension d, it is easy to see that
the resulting decomposition of the action on the d2 gauge �elds (56) is as follows:

[d2] =
d�1X
�i=0

[2i+ 1] = [1]� [3]�
d�1X
�i=2

[2i+ 1] ; (61)
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where the part [4] = [1]�[3] is equivalent to (57) and, in the basis just referred to, acts
on the above 4-dimensional space which contains the subspace spanned by vectorsW1

and W2. The other (2i+ 1)-dimensional representations (with 2 � i � d� 1) are the
non-decomposable ones of the diagonal case ((45) with their own si = 0).

In a way completely analogous to the argument outlined around (18), we apply
a transformation T in such a way as to bring the linear combinations of the four
vectors (57) in positions 1; 2; 3; 4 and to put the d2 � 4 other vectors obtained in the
procedure in the remaining positions 5; : : : ; d2. Then, both the d2 � d2 matrices X1

and X2 take the form

TXiT
�1 =

 
Z i
11 0

0 Z i
22

!
; (62)

where Z i
11 is a 4 � 4 matrix analogous to (18) and Z i

22 a (d2 � 4) � (d2 � 4) matrix.
The non-diagonal blocks are zero.

Hence we conclude that all matter �elds transforming with diagonal representa-
tions belong to the same theory with, in the general case, exactly the same four

vector �elds (57). Again there are two Yang-Mills gauge �elds of the �rst kind and
two Yang-Mills gauge �elds of the second kind. The gauge �elds corresponding to the
d2 � 4 remaining vectors are \irrelevant" as seen from (62).

To conclude this section let us write explicitly the matrix A� which has to be used
in the covariant derivative (6) of the d-dimensional �eld

A� = bA1
�M1 � bA2

�M0 � 2 bA4
�M1 + s( bA2

� +
bA3
�)P0

= bA2
�L1 + bA1

�L2 + s bA3
�P0 � 2 bA4

�M1 : (63)

Again we see that for s = 0, the �eld bA3
� decouples.

From Eq. (63), we see the correspondence between the two Yang-Mills gauge �elds

usually called A(1)
� and A(2)

� (see (10)) and our hat �elds bA1
� and bA2

�:

A(1)
� = bA2

� ;

A(2)
� = bA1

� : (64)

If an analogous study is performed using, for the scalar �elds, another non-
decomposable representation with a non-diagonal L1, the picture changes drastically.
We have analyzed in full detail what happens for a few of these representations and
in particular for the representation (54). In the later case there are, apart from the
two Yang-Mills �elds of the �rst kind, in general seven Yang-Mills �elds of the second
kind. This new system of altogether nine Yang-Mills �elds does not contain the set
of the four Yang-Mills �elds relevant to the representations where L1 is diagonal.

VI. THE GAUGE FIELD LAGRANGIAN

We can write easily a gauge invariant Lagrangian which is, up to a factor,

LI = trace (F ��F��) (65)
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familiar for simple groups but also

LII = (trace F ��) (trace F��) : (66)

These results are obvious if the curvatures are de�ned, as usual, by

F�� = [D�;D� ] ; (67)

which, in view of (7), transform as

(F��)
0 = V F��V

�1

= F�� + �i [Xi; F�� ] in�nitesimally : (68)

This means that the curvatures are invariant under the non-homogeneous part of
the transformation (24) induced by the W 's and transform covariantly under the
homogenous part induced by V . The invariance of the Lagrangians (65) and (66)
follow. It should be noted that these Lagrangians are invariant not only under our
gauge group but more generally under transformations with any matrix V , namely
the group GL(2,R) or even GL(2,C), which contain our group as a subgroup.

Since the bAa
�; a = 1; : : : ; 4 gauge �elds are the basic �elds of the �rst and of the

second kind for all the diagonal representations, we focus our attention on them.
Recall that their in�nitesimal transformation properties are summarized in (33) with
Xi and Wi given by (34){(37).

In view of the new feature related to the presence of gauge �elds of the second
kind, we did not want to be prejudiced by the familiar result and we have decided to
start with a minimal set of general conditions.

1. The Lagrangian should be Lorentz invariant.

2. Terms of a kinetic energy type for the vector �elds should appear in the La-
grangian, i.e., a sum of terms quadratic in the space-time derivatives of the
�elds

�1(a; b)
�
@� bAa

�

� �
@� bAb�

�
+ �2(a; b)

�
@� bAa

�

� �
@� bAb�

�
(69)

for a suitable set of values of the constants �i(a; b).

3. The Lagrangian should be invariant under the gauge transformations.

4. Terms which are total divergences can be eliminated.

As a result of condition 3 and because of the existence of the inhomogeneous part
in the transformation, two types of terms should be added to (69):

� terms quadratic in the �elds and at the same time linear in the space-time
derivatives


(a; b; c)
�
@� bAa

�

� bAb� bAc� ; (70)

� terms quartic in the vector �elds

Æ(a; b; c; d) bAa
�
bAb� bAc

�
bAd� : (71)
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The coeÆcients �1(a; b), �2(a; b), 
(a; b; c) and Æ(a; b; c; d) obviously enjoy the sym-
metries

�1(a; b) = �1(b; a) ;

�2(a; b) = �2(b; a) ;

Æ(a; b; c; d) = Æ(b; a; c; d) ;

Æ(a; b; c; d) = Æ(a; b; d; c) ;

Æ(a; b; c; d) = Æ(c; d; a; b) : (72)

Taking the most general linear combination of terms of the form (69), (70) and (71),
after lengthy computations, we have shown that we recover, in general, a linear com-
bination of the two obvious Lagrangians (65) and (66) and nothing more.

More precisely:

� First as a consequence of the space dependence of the parameters, i.e. to the
presence of the inhomogeneous terms in the transformation, we have obtained
the expected result: the Lagrangian can be written in terms of the covariant
derivatives bF ��a only. The Lagrangian then takes the form

�ab bF ��a bF b
�� : (73)

� Global symmetry then remains to be imposed. This leads to the �nal restrictions

�11 = �12 = �13 = �24 = �34 = �44 = 0 ;

�14 = 2(�22 � �33) ;

�23 = �33 : (74)

We see that there are two free parameters g1 = �22 and g2 = �33.

The �nal form of the most general invariant Lagrangian in the hat basis is then

L = g1
� bF (2)�� bF (2)

�� + 4 bF (1)�� bF (4)
��

�
+ g2

� bF (3)�� bF (3)
�� + 2 bF (2)�� bF (3)

�� � 4 bF (1)�� bF (4)
��

�
: (75)

Going back from the hat basis to the initial basis for the A�'s by the R transform
of (42), we recover for the particular values

g1 =
5

2
; g2 = 2 (76)

the usual Lagrangian (65) as a particular case, while for

g1 = g2 = 4 (77)

we recover the second Lagrangian (66).
We defer to a later work the study of the possible physical consequences of the fact

that, by choosing suitably g1 and g2, certain gauge �elds could have no kinetic energy
(for example if g2 = 0) and hence can be eliminated from the equation of motion
though they appear explicitly in the Lagrangian.
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VII. CONCLUSIONS AND DISCUSSION

As shown almost �fty years ago by Yang and Mills [1] when they discovered and
introduced gauge theories, the number of gauge �elds can always be chosen to be
equal to the number of the generators of the gauge group. This result is valid for any
group.

Moreover, Yang and Mills already discussed in their original article the possibility
of additional gauge �elds. They remarked that, for semisimple groups and semisimple
groups multiplied by U(1)'s, these additional gauge �elds can be removed from the
theory because they are irrelevant. A way of understanding their idea is to note that,
for these groups, the gauge transformations of the additional �elds completely decou-
ple from the original Yang-Mills �elds. In other words, Yang-Mills �elds transform
among themselves and the additional gauge �elds among themselves separately.

In this paper, we address the issue of these additional gauge �elds for non-
semisimple groups. It is found that, for this case as distinct from that of the semisim-
ple groups possibly multiplied by U(1)'s, there can be additional gauge �elds that
are not irrelevant. That is, these additional gauge �elds appear in the gauge trans-
form of the original Yang-Mills �elds. In such cases, we refer, by de�nition, to the
original Yang-Mills �elds as Yang-Mills gauge �elds of the �rst kind, and to the ad-
ditional Yang-Mills �elds as Yang-Mills gauge �elds of the second kind. Yang-Mills
gauge �elds of the second kind are well de�ned, but it is permitted to alter Yang-
Mills gauge �elds of the �rst kind by adding to them arbitrary linear combinations
of Yang-Mills gauge �elds of the second kind.

The case of the simplest non-semisimple group, where there are only two genera-
tors L1 and L2 which satisfy Eq. (1), is worked out in detail. In this case we have
studied and determined explicitly what happens when the matter �eld transforms
as a representation of that group for which L1 can be diagonalized. Apart from the
two Yang-Mills gauge �elds of the �rst kind corresponding to the two generators, the
allowed additional gauge �elds separate into two Yang-Mills gauge �elds of the second
kind with the remaining gauge �elds being irrelevant. No change of basis allows the
decoupling of the gauge �elds of the second kind and hence the elimination of these
additional gauge �elds.

For matter �elds belonging to representations of our group where L1 cannot be
diagonalized, the situation is much more complicated. For only one of these cases are
the results reported brie
y in this article.

We have shown that the Lagrangian for the gauge �elds is not unique since the
most general gauge invariant Lagrangian depends on two arbitrary parameters. For
certain values of the parameters, some gauge �elds may have no kinetic energy and
appear in the theory as non-propagating �elds of spin 1.

A general argument can be given as follows to indicate that the behavior we have
discovered for the above simplest group is generic. For semisimple groups, the re-
ducible representations are all fully reducible (or decomposable). This is not true for
non-semisimple groups. Since the gauge �elds belong to the direct product of the
representation of the matter �eld with its inverse transposed, this product is always
reducible as it contains the adjoined representation to which the Yang-Mills gauge
�elds of the �rst kind belong. But since for non-semisimple groups this product is in
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general reducible but not fully reducible, there will be Yang-Mills gauge �elds of the
second kind connected to the Yang-Mills �elds of the �rst kind, in a way analogous,
with appropriate changes, to (18) and (21).

Acknowledgment

A large part of this work was carried out while the authors were visiting CERN. We
are very grateful to the Theory Division for its hospitality.

The work of one of the authors (J.N.) was supported in part by the Belgian Fonds
National de la Recherche Scienti�que, while that of the other (T.T.W.) was supported
in part by the United States Department of Energy under Grant No. DE-FG02-
84ER40158.

[1] C. N. Yang and R. L. Mills, Phys. Rev. 96 (1954) 191.

[2] S. Glashow, Nucl. Phys. 22 (1961) 579.

[3] S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264.

[4] A. Salam, in Elementary Particle Theory, Proceedings of the Nobel Symposium, ed. N.

Svartholm (Almquist and Forlag, Stockholm, 1968).

16


