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ABSTRACT

The frequency spectrum and angular distribution of radiation from an
undulator is expressible as an integral over the longitudinal �eld pro�le
of the undulator. In this paper this integral is approximated explicitly
in terms of special functions, and the result compared with the value of
the \exact" integral evaluated numerically. The agreement is excellent
throughout regions of practical importance for arbitrary undulator strength
K and harmonic number n. A quite complicated monochromatized angular
beam pro�le (centered on n = 7 and running beyond the n = 10 ring) shows
excellent agreement with a published (ESRF) pro�le.
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1. Formulation of the Problem

The fundamental parameters characterizing an undulator (or wiggler) are K, where � =

K=
 is the maximum angle of an electron passing through the device, the wiggler period

�w, the number of wiggler periods Nw, and the relativistic factor 
 of the electron beam.

Since this paper assumes ideal electron beams, the spreads of beam direction and energy

are taken to be negligibly small.
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Figure 1.1: Orbit geometry and de�nition of horizontal angle � and
vertical angle  locating the detector position P relative to the wiggler
axis. The orbit curvature is much exaggerated as (in the approximation of
the paper) the transverse displacement (though not velocity) of the electron
is neglected.

The fundamental formula to be evaluated gives the Fourier transform (frequency !) of

the electric �eld as observed, at observation point P in Fig. 1.1, due to a single electron of

charge q passing through the undulator;1�3eE (!; �;  )
q
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i!p
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2

�w
c

�
Nw
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�w
c

ei!t(tr)
v?

c
dtr : (1:1)

In this formula v? is the electron velocity normal to the line running from electon position

to point P, and t is \observer time". To adequate accuracy the \retarded time" tr is given

by z = ctr where z is the electron's longitudinal position at time tr. The (di�erential)

relation between t and tr is
dt

dtr
= 1�cR � v (tr)

c
: (1:2)
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Approximating the orbit by a pure sinusoid, the velocity is given by

v

c
=
v

c
� cos kwz x̂+

�
1� 1

2
2
� �2

2
cos2 kwz

�
ẑ; (1:3)

where kw = 2�=�w. Some geometric approximations to be used are

cR � �x̂+  ŷ +

�
1� #2

2

�
ẑ;

1�cR � v
c
� ��� cos kwz +

1

2
2
+
#2

2
+
�2

2
cos2 kwz;

v?

c
=
v

c
�
�cR � v

c

� cR � (� cos kwz � �) x̂�  ŷ +
���� cos kwz + #2

�
ẑ :

(1:4)

where #2 = �2 +  2. Substituting into Eq. (1:2) yields

d (ct)

dz
= ��� cos kwz +

1 +K2=2

2
2
+
#2

2
+
�2

4
cos 2kwz : (1:5)

Integrating this equation gives the observer time t in terms of electron position z;

ct =
1

2
2

�
1 +

K2

2
+ 
2#2

�
z � ��

kw
sin kwz +

�2

8kw
sin 2kwz ; (1:6)

This establishes the exponent in Eq. (1:1). The integrand, dropping the z-component

because it is of order 1=
2y, is
v?

c
=

�
� cos kwz � �

� 
�
: (1:7)

The purpose of this paper is to evaluate the integral appearing in Eq. (1:1) and to

exhibit its behavior, not to justify its derivation further. For brevity the constant factor

in the denominator of the left hand side will be suppressed. This makes the implicit

assumption, standard in the �eld, though often not entirely valid, that the distance R to

the observation point is large compared to the undulator length. It has also been assumed

that the transverse displacement of the electron in the undulator is small compared to the

transverse displacement of the observation point.

Following Kim1 (though not in detail) as well as (and more closely) Als-Nielsen and

McMorrow,4 to use Eq. (1:6) it is useful to re-arrange it so that the linear term is the same

as the arguments of the trigonometric factors. Toward that end we introduce

!1 (#) =
2
2

1 +K2=2 + 
2#2
ckw ; (1:8)

y Later, while evaluating Eq. (1:1) it will not be legitimate to cavalierly drop terms like #2, but that will
be because they occur in the exponent.
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!1(#) is the n = 1 undulator resonance frequency at the particular angle #. This anticipates

a result that, logically speaking, will be an output from the calculation, but is presumably

well known in advance. In particular, the formula includes the well known result that in

the limit of \ideal" undulator action (K << 1), at the fundamental (n = 1) resonance, the

peak wavelength (in the forward direction) is given by �w=(2

2). The general resonance

formula is

!n (#) = n!1 (#) : (1:9)

At given angle # this gives the central frequency of the narrow band of frequencies cor-

responding to the n'th instance of constructive interference from successive poles. This

nearly one-to-one relation between # and ! at given n must be remembered while inspect-

ing graphical representations of the radiation.

Other variables to be used are

�t = !1 (#) t; and �z = kwz � kwctr : (1:10)

The newly introduced quantity �t is the observation time expressed as a phase angle, where

the phase is referred to frequency !1(#). Then Eq. (1:6) becomesy

�t = �z � 2
�K

1 +K2=2 + 
2#2
sin�z +

K2=4

1 +K2=2 + 
2#2
sin 2�z

� �z + p sin�z + q sin 2�z :

(1:11)

Substituting into Eq. (1:1), changing integration variable from tr to �z, and temporarily

taking Nw to be oddz, yields

eE (!; �;  ) =
i!p
2�

Z Nw�

�Nw�
exp

�
i

!

!1 (#)
(�z + p sin�z + q sin 2�z)

� �
� cos�z � �

� 
�
d�z
kwc

;

(1:12)

y Our p and q need to be multiplied by �!=!1(#) respectively to be the same as Kim's p and q. Kim's
Eq.(4.23) has a typographical error that is corrected in later formulas|his K should be replaced by the
equivalent of our �.
z If the integration range is taken to be from �� to (2Nw � 1)� (with Nw either even or odd) the

summation in the following equation (1:13) is just multiplied by a factor exp(i�(Nw � 1)!=!1), which has
magnitude 1. Because the overall phase depends on choice of origin it is in any case arbitrary, and drops
out when the (measureable) square of absolute value is taken. Hence Nw can be taken either even or odd in
subsequent formulas. In principle there could be interference between contributions of the same frequency
from di�erence undulator resonances, in which case the phase could be meaningful.
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We can now exploit the periodic nature of the exponent and integrand to represent the

integral as a sum;

eE (!; �;  ) =
ip
2�

!

kwc

0@ (Nw�1)=2X
j=�(Nw�1)=2

exp

�
i

!

!1 (#)
2� j

�1A
�
Z �

��
exp

�
i

!

!1 (#)
(�z + p sin�z + q sin 2�z)

� �
� cos�z � �

� 
�
d�z

(1:13)

This is the main formula to be evaluated. Since the integral is independent of Nw, one has

obtained a useful factorization into a \phasor sum" part (which can be readily summed)

(Nw�1)=2X
j=�(Nw�1)=2

exp

�
2�i

!

!1 (#)
j

�
=

exp
�
��i !

!1(#)
(Nw � 1)

�
� exp

�
�i !

!1(#)
(Nw + 1)

�
1� exp

�
2�i !

!1(#)

�
=

sin (Nw�!=!1 (#))

sin (�!=!1 (#))
(1:14)

and the \single period amplitude"

i

r
2

�

!

kwc

Z �

0
cos

�
i

!

!1 (#)
(�z + p sin�z + q sin 2�z)

� �
� cos�z � �

� 
�
d�z : (1:15)

Results obtained by evaluating this integral numerically will be said to be \exact" for

purposes of this paper, even though some approximations have entered its derivation.

2. Expansion-About-Resonance Approximation

It is integral (1:15) that is to be evaluated both numerically and analytically in the re-

mainder of the paper. But before doing so, to initiate qualitative discussion, and then

to concentrate on the forward peak, especially for Nw >> 1, let us introduce \fractional

frequency" � and \fractional frequency o�set" ��;

� =
1

n

!

!1 (#)
= 1 + �� : (2:1)

Exactly on resonance (i.e. at integer values of n) the value of the phasor sum isX���
��=0

=
d=d�� sin (Nw�n (1 + ��))

d=d�� sin (�n (1 + ��))

���
��=0

= Nw (�1)(Nw�1)n = Nw : (2:2)

(The last step continues to assume Nw odd.) The phasor sum factor is therefore given byX
= Nw

sin (Nw�n��)

Nw�n��
� Nw sinc (Nw�n��) ; n = 0; 1; 2; 3; : : : : (2:3)
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Since this factor is approximately equivalent to a comb of Dirac delta functions, the factor

it multiplies needs only to be evaluated on-resonance. One therefore makes the replacement

!=!1(#)! n in the integrand of Eq. (1:15), yielding

eE (!; �;  ) �
1X
n=1

eEn (�;  ) nNw sinc

�
Nw�

�
!

!1 (#)
� n

��
; (2:4)

where

eEn (�;  ) = i

r
2

�

2
2

1 +K2=2 + 
2#2
�Z �

0
cos

 
n

 
�z � 2
�K sin�z

1 +K2=2 + 
2#2
+

�
K2=4

�
sin 2�z

1 +K2=2 + 
2#2

!! �
� cos�z � �

� 
�
d�z :

(2:5)

In this form there appear to be extrema at all integer values of n. But this is somewhat

misleading. For most practical purposes one is interested in the radiation almost in the

forward direction, � =  = 0. This leaves only the x-component eEx;n(0; 0)), the term

proportional to �, in which case the integral vanishes for all even values of n. This is

because of destructive interference between the positive-going and negative-going portions

of a single wiggler period; it is easiest to see this in the limit of long wavelengths (n = 0).

These comments are the basis of the probably overly-glib statement \undulator radiation

consists of odd harmonics" which is valid only in this restricted sense. For � = 0 one has

p = 0 in Eq. (2:5), the dominant (upper) integral can be evaluated analytically for odd n;

eEn (0;  ) = i

r
�

2

n!1 (#)

kwc

K




�
Jn+1

2

(�nq) + Jn�1
2

(�nq)
�
; n = 1; 3; 5; : : : (2:6)

This is Eq. (4.45) of Kim. For many purposes this equation, taken with Eq. (2:4), gives an

adequate description of the undulator radiation. We will see though that, as well as being

restricted to odd n, and giving only the x component at that, it misses entirely the bizarre

dependence on � already present at extremely small angles (in the range 0 < � < 1=(n
))

and even with Nw = 1.

In spite of these defects, since Eq. (2:6) is valid in the center of the region of greatest

importance for the practical use of synchrotron radiation, it is appropriate to investigate

its predictions. There is an inevitable trade-o� in which the undulator beam frequency

!n(0) and intensity jEj2 are made as high as possible consistent with the machine energy
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 being as small as possible and undulator wave length �w as large as possible (so the

undulator gap height can be as large as possible). For \cleaner" operation one prefers

both the undulator parameter K and the harmonic number n to be as low as possible.

(At least until accelerator physics issues intrude, the bigger the better for Nw.) The �rst

formula governing this trade-o� is Eq. (1:9);

!n (0)

ckw2
2
=

n

1 +K2=2
; (2:7)

by which the resonant frequency can be increased by increasing n but is unavoidably

decreased by increasing K. The second key result, from Eqs. (1:11) and (2:6), is

jEnj2 (0)

2

=
�

2

�
2K n

1 +K2=2

�2 �
Jn+1

2

� �nK2=4

1 +K2=2

�
+ Jn�1

2

� �nK2=4

1 +K2=2

��2

; (2:8)

These formulas are evaluated for ranges of n and K, and the results exhibited numeri-

cally in the following table and graphically in Fig. 2.1. In each case in the table the upper

number is given by Eq. (2:8) and the lower is given by Eq. (2:7).

----------------------------------------------------------------------------------------

n\K 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.4 2.6 2.8 3.0

----------------------------------------------------------------------------------------

1 0. .24 .83 1.5 2.0 2.3 2.4 2.3 2.2 2.0 1.8 1.6 1.5 1.3 1.2

1. .98 .93 .85 .76 .67 .58 .51 .44 .38 .33 .29 .26 .23 .20

----------------------------------------------------------------------------------------

3 0. .46e-3 .023 .17 .55 1.1 1.7 2.2 2.5 2.7 2.7 2.6 2.4 2.3 2.1

3. 2.9 2.8 2.5 2.3 2.0 1.7 1.5 1.3 1.1 1.0 .88 .77 .68 .61

----------------------------------------------------------------------------------------

5 0. .54e-6 .37e-3 .011 .092 .35 .80 1.4 1.9 2.3 2.6 2.7 2.7 2.7 2.5

5. 4.9 4.6 4.2 3.8 3.3 2.9 2.5 2.2 1.9 1.7 1.5 1.3 1.1 1.0

----------------------------------------------------------------------------------------

7 0. .53e-9 .52e-5 .67e-3 .013 .091 .32 .74 1.3 1.8 2.2 2.5 2.7 2.7 2.7

7. 6.9 6.5 5.9 5.3 4.7 4.1 3.5 3.1 2.7 2.3 2.0 1.8 1.6 1.4

----------------------------------------------------------------------------------------

9 0. .48e-12 .67e-7 .36e-4 .0018 .022 .12 .37 .79 1.3 1.8 2.2 2.5 2.7 2.8

9. 8.8 8.3 7.6 6.8 6.0 5.2 4.5 3.9 3.4 3.0 2.6 2.3 2.1 1.8

----------------------------------------------------------------------------------------

11 0. .41e-15 .82e-9 .19e-5 .23e-3 .0053 .043 .18 .47 .89 1.4 1.9 2.2 2.5 2.7

11. 11. 10. 9.3 8.3 7.3 6.4 5.6 4.8 4.2 3.7 3.2 2.8 2.5 2.2

----------------------------------------------------------------------------------------

An example may help to clarify this data. Consider the points (n;K; int:; freq:) =

(1; 0:2; 0:24; 0:98); (3; 0:6; 0:17; 2:5); (5; 0:8; 0:092; 3:8); (7; 1:0; 0:091; 4:7); (9; 1:2; 0:12; 5:2). These

points have comparable intensities but, by increasing n and K together, it is possible to

increase the beam frequency from 0:98 to 5:2 (in units of ckw2

2.) Being proportional to

K2, the total radiated beam power increases by a considerably greater factor of 36 over
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this range. The beam is therefore much \cleaner" for low n values than for high; that is,

the ratio of useful to useless power is higher. Calculations like this are useful in �xing the

major storage ring and undulator parameters to achieve high brilliance.
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Figure 2.1: Histograms illustrating the dependence of undulator fre-
quency (indicated by tower height) and intensity on resonance (indicated
by tower grayscale) on undulator parameter 0 < K < 3:0 and resonance
order n = 1; 3; 5; 7; 9; 11. The grayscale is the same as in Fig. 3.1 and is
normalized to 1 (white) in the lower left hand corner. Black regions have
negligible 
ux.

3. Some Undulator Distributions

This section contains coarse undulator distributions obtained by numerical evaluation of

Eq. (1:15) for (moderately low) values of n = 3 and n = 5. Since the sinc factor is not

included for these plots, they exhibit the \modulating pro�le" that must be multiplied by

a \delta-function-like" sinc. For given direction (�;  ) (and hence given #) the e�ect is to

give only photons in a narrow band of frequencies close to !n(#) as given by Eq. (1:9). The

angular intensity pattern is proportional to j eEn;xj2(�;  ) which is exhibited for K = 1:5,

n = 3; 5, in Fig. 3.1 and Fig. 3.2. Each histogram tower represents both j eE3;xj2K=1:5(�;  )
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and the ratio !(�;  )=!3(0). The intensity is represented by the height of the tower and

the photon energy by its grayscale value.

Figure 3.1: Histogram representation of undulator radiation: the height
of each bin gives the value of j eE3;xj2K=1:5(�;  ), as given by Eq. (2:5) at the
appropriate value of (
�; 
 ). Since the photon frequency ! is known as a
function of the same independent-variable pair (�;  ) (Eq. (1:9)), it can be
exhibited as a ratio !=!3(0) which is coded by the grayscale shading. The
forward direction is marked by the highest tower which has !=!3(0) = 1
and is therefore pure white. `gamtheta' and `gampsi' stand for 
� and 
 .
The bin widths are �� = � = 0:15=
. The vertical scale is not shown,
but it extends uniformly from 0 to 2:5� 108. This data is independent of
Nw.

The bin widths are 
�� = 
� = 0:15. A detector having these acceptances and

centered, say, at the origin, would count only photons of frequency ! = !3(0) (which

makes the tower pure white.) Assuming the detector accepts all photons close to this

energy (so the sinc-factor can be treated as a Æ-function) the rate can be read o� from the

vertical axis, but still needs multiplication by the factor nNw appearing in Eq. (2:4) and



10

by the factor ��� . If the detector's fractional frequency acceptance is small compared

to 1=Nw (as is common) it is necessary to treat the sinc-factor dependency more carefully.
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Figure 3.2: Same as previous �gure except now n = 5 and bin spacings
are 2�� = � = 0:15=
. Again the unique pure white tower is in the
forward direction.

The structure of Fig. 3.2 can be understood qualitatively. The angular separation �� of

fringe maxima is approximately 5�0:075=
 = 0:375=
. The factor sin kwz advances from 0

to 1 between north and south magnet poles, so the second term on the rhs of Eq. (1:6) gives

a phase advance (with n = 5, K � �
 = 1:5) equal to 5� 2
 � 1:5� 0:375=
 � 2�. This

is why angular fringes are visible even with Nw = 1. With Nw >> 1 and the sinc-factor

included, the peaks would be much narrower but the grayscale values would be unchanged.

There appears to be no universally accepted distinction between \undulator operation"

and \wiggler operation", though K = 1 is commonly quoted as the dividing line. Here

is another suggestion. The spacing of the fringe structure in the � direction (visible in

Fig. 3.2) decreases as n increases. This fringe structure is independent of Nw. This

suggests the de�nition: For undulator operation the fringe structure is large compared to

the experimental resolution. For wiggler operation the fringe structure is not resolved by the
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detection apparatus. If this fringe structure is averaged out there seems to be no essential

distinction between undulator and wiggler operation.

4. Approximation of the Integrals By Special Functions

To describe undulator radiation conveniently at general angles and frequencies what is

required is a generalization of Eq. (2:6). Apart from the facts that p has been set to zero

in deriving that equation, and that even values of n give fractional Bessel indices, the fact

that Bessel functions are singular as functions of their indices complicates the task.

The integrand in Eq. (1:15) can be Taylor expanded in terms of the (small) variable �

cos (��+ �p sin�+ �q sin 2�) = cos (��+ �q sin 2�)

�
1� �2p2

4
+
�2p2

4
cos 2�+ : : :

�
� sin (��+ �q sin 2�) (�p sin�+ : : :) ;

(4:1)

and further terms can be derived easily. Here, motivated by Eq. (2:4), we have generalized

the meaning of variable n and replaced it by the symbol � by making the substitution

!

!1 (#)
= � : (4:2)

This means that � is allowed to lie anywhere in the range 0 < � < 1 and, in particular,

to not necessarily be an integer. Nevertheless, especially for large Nw, the sinc factor

suppresses the complete expression when � is not close to an integer, so � can be thought

of as being \close" to a particular integer n.

Using abbreviation C � cos(��+ �q sin 2�) we de�ne standard integrals

IC0 =

Z �

0
C d�; IC1 =

Z �

0
C cos� d�; IC2 =

Z �

0
C cos 2� d� ; (4:3)

and integrals IS1; IS2; : : :, are de�ned similarly, but with C replaced by S � sin(�� +

�q sin 2�). The required integral isZ �

0
d� cos (��+ �p sin�+ �q sin 2�)

��
�
0

�
cos�+

� ��
� 

��
=

�
�
�
1� �2p2=8

�
0

�
IC1 +

�
� �2p2=8

0

�
IC3 +

���p�=2
0

�
IS2

+

� �� �1� �2p2=4
�

� �1� �2p2=4
�� IC0 +

� ���2p2=4
� �2p2=4

�
IC2 +

�
�p�
�p 

�
IS1 + : : : :

(4:4)
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IC1 was evaluated for odd integer n in obtaining Eq. (2:6), but it, and the other integrals,

can now be expressed for arbitrary � and for positive integers j as

ICj =
1

4

Z 2�

0
cos

�
� � j

2
� + �q sin �

�
d� +

1

4

Z 2�

0
cos

�
� + j

2
� + �q sin �

�
d�

ISj =

Z �

0
sin (��+ �q sin 2�) sin j� d�

=
1

4

Z 2�

0
cos

�
� � j

2
� + �q sin �

�
d� � 1

4

Z 2�

0
cos

�
� + j

2
� + �q sin �

�
d�

(4:5)

All these integrals can be expressed in terms of the functions

� J� =

Z �

0
cos (� � � z sin �) d�

�E� =

Z �

0
sin (� � � z sin �) d�

(4:6)

where Ji is known as an \Anger" function and Ei as a \Weber" function. The standard

reference is Watson5; this formula is on page 308. These de�nitions are valid for general

values of �. Both functions are known to MAPLE which calculates them rapidly. Bisecting

the range, and replacing � by 2� � � in the second integral, Watson gives the formulaZ 2�

0
cos (� � � z sin �) d� =

Z �

0
(cos (� � � z sin �) + cos (2�� � �� + z sin �)) d�

= 2� cos2 �� J� (z) + � sin 2�� E� (z) :

(4:7)

In terms of these functions the required integrals are

ICj =
�

2
cos2

�
� � j

2
�

�
J��j

2

(��q) + �

4
sin ((� � j)�) E��j

2

(��q) ;

+
�

2
cos2

�
� + j

2
�

�
J�+j

2

(��q) + �

4
sin ((� + j)�) E�+j

2

(��q) ;

ISj =
�

2
cos2

�
� � j

2
�

�
J��j

2

(��q) + �

4
sin ((� � j)�) E��j

2

(��q) ;

� �

2
cos2

�
� + j

2
�

�
J�+j

2

(��q)� �

4
sin ((� + j)�) E�+j

2

(��q) :

(4:8)
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5. Practical Evaluation of the Series

The Taylor expansion of Eq. (4:4) can be spelled out in general as follows:

f (m; j) =
binomial (m; (m� j) =2)

m! 2(m�1)

a (�; j) = (�1)j=2
imaxX
0

(�1)i (�p)2i f (2i; j) ; j = 0; 2; 4; : : :

a0 (�) = a (�; 0)=2;

b (�; j) = (�1)(j�1)=2
imaxX
0

(�1)i (�p)(2i+1) f (2i+ 1; j) ; j = 1; 3; 5; : : :


 eEx (�) =
K

2
(2a0 (�) + a (�; 2)) IC;1

+
K

2

imax�1X
i0=1

�
a
�
�; 2i0

�
+ a

�
�; 2i0 + 2

��
IC;2i0+1 +

K

2
a (�; 2imax) IC;2imax+1

�K
2

imax�1X
i0=0

�
b
�
�; 2i0 + 1

�
+ b

�
�; 2i0 + 3

��
IS;2i0+2 �

K

2
b (�; 2imax + 1) IS;2imax+2

�
�
 
a0 (�) IC;0 +

imaxX
i0=1

a
�
�; 2i0

�
IC;2i0 �

imaxX
i0=0

b
�
�; 2i0 + 1

�
IS;2i0+1

!


 eEy (�) = �
 
 
a0 (�) IC;0 +

imaxX
i0=1

a
�
�; 2i0

�
IC;2i0 �

imaxX
i0=0

b
�
�; 2i0 + 1

�
IS;2i0+1

!
;

(5:1)

these expressions still need to be multiplied by the factor

i

r
2

�

!

kwc

sinNw��

sin��
; (5:2)

this factor (except for the i) is included for the following graphs. The maximum power of

p retained in the expansion is 2imax + 1. For constant accuracy imax has to increase with

increasing 
#. At �xed K the ring structure depends only on 
#. Because an oscillatory

function is being �t by a power series, the number of cycles �t is probably proportional to

the highest power retained. From the example we have studied most carefully (K = 1:35)

a suggested rule of thumb is to choose imax to be about four (or more) times the number of

rings to be faithfully calculated, but this should be investigated in each case. The following

three pairs of graphs illustrate these comments.
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Figure 5.1: The left graph shows (superimposed) the values of jeE(
�; 
 =
0:3; n = 3)j2 as given by integral (1:13) evaluated numerically and by using
the method of section 5; imax = 14
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Figure 5.2: The left graph shows (superimposed) the values of jeE(
�; 
 =
�0:2; n = 7)j2 as given by integral (1:13) evaluated numerically and by us-
ing the method of section 5; imax = 14
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Figure 5.3: The left graph shows (superimposed) the values of jeE(
�; 
 =
0:2; n = 10)j2 as given by integral (1:13) evaluated numerically and by using
the method of section 5; imax = 14.

The fractional accuracy is excellent over the full range �1=
 < � < 1=
 which includes

essentially all the radiation. To obtain excellent accuracy in the experimentally relevant

region of the central peak it is suÆcient to use only the terms exhibited explicitly in

Eq. (4:4).

Since �, but not  , has been assumed small in deriving Eq. (4:4), its region of validity

should be a narrow band centered on the  -axis. From Fig. 3.1 and Fig. 3.2 one knows

that the radiation pattern is made up of parallel valleys separated by long mountains that

are aligned with the  -axis. Since the variation with � (at �xed  ) is roughly sinusoidal

(squared) one cannot expect a power series truncated to the terms shown explicitly in

Eq. (4:4) to remain accurate outside the central three mountains. Nevertheless this trun-

cated (and hence quite simple) form should be useful in practice because it it is the central

mountain that is mainly used in most applications of undulator radiation.
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6. Post-Monochrometer Pro�le

The beam from the undulator is typically passed through a monochrometer which passes

only frequencies in a narrow band centered at, say,

!mono: = nmono: !1 (0) ; (6:1)

where nmono: is set to an integer or, typically, slightly below an integer. (For the example

to be worked out shortly nmono: = 7:0.) Substituting this into Eq. (4:2) yields

� (#) = nmono:
1 +K2=2 + 
2#2

1 +K2=2
(6:2)

as the appropriate parameter at which integral (4:4) is to be evaluated.y For large Nw we

know that the phasor factor will suppress the �eld unless � is close to an integer; call it

nharm: where

nmono: � nharm: � nmax:; (6:3)

where nmax: is the highest undulator harmonic that is kinematically possible or some

arbitrarily chosen maximum value of interest. The analysis would be simplest for nmono: =

nmax: but, in practice, it may be desirable to center the monochrometer on an undulator

resonance lower than the maximum possible. (For the example to be worked out shortly

nmax: = 10.) When this is done the harmonics for which nharm: > nmono: yield circular ring

pro�les centered on the undulator axis, at angle #harm: given by solving Eq. (6:2) to obtain


#harm: =

s�
1 +

K2

2

�
nharm: � nmono:

nmono:
: (6:4)

The convergence of series (4:4) is worst for nharm: = nmax:. To save computer time it is

sensible to calculate only at points for which the phasor factor is not negligibly small. The

larger Nw is, the slimmer are the rings in which there is any appreciable response. For

example in generating Fig. 6.1 we have taken �nharm: = �1=Nw as the range over which

the phasor factor is not negligible. This suppresses secondary di�raction rings having

intensities in the several percent range.

y Note the surprising result that the argument of the Bessel-like functions entering the post-monochrometer
pro�le, namely �(#) q = nmono:(K

2=4)=(1+K2=2), is independent of # and hence of emission direction. This
gives no important simpli�cation because the indices depend on direction.
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Figure 6.1: Spectrum for published ESRF con�guration as recalculated
using Eq. (4:4). Physical parameters were E = 6GeV, Nw = 20, �w =
46mm, E
 = 27 keV. Calculational parameters are Nw = 19, imax = 14,
nmono: = 7. This result can be directly compared with another calculation:
www.esrf.fr/machine/support/ids/Public/CentralCone/CentralCone.html
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