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Abstract

Devices with periodic magnetic structures such as wigglers and un-
dulators are the key components of Free Electron Lasers, Synchrotron
Radiation Sources and some types of RF power supplies. Any �eld
imperfections along beam trajectory that distort periodicity of the
magnetic �eld reduce operational performance of these devices. Thus,
accurate measurement of magnetic �eld of these devise in order to
localize and correct the �eld imperfection is very important issue.

The paper describes theory of new method based on vibrating
wire technique adopted to magnetic measurement of periodic mag-
netic structure and reports test result. The test was done using a
wiggler fabricated for Cornell High Energy Syncrotron Source with
7:8� 103G of maximum magnetic �eld and 12cm period. The method
demonstrated resolution of � 1:0G (RMS) in the measurement of �eld
imperfection and 2cm of spatial resolution.

1 Introduction

There are several methods commonly used for magnetic �eld measurement
of periodic magnetic structures. Among them are �eld mapping with Hall
probes, scanning with small searching coil and the pulsed wire technique.
Some examples of application of these methods can be found elsewhere [1],
[2], [3]. Each technique has it's own advantage and disadvantage.
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Mapping with Hall probe and scanning with searching coil can provide
accurate �eld measurement but require complicated mechanical positioning
systems and a good access to magnetic �eld region [1]. The large positioning
systems needed for long magnetic structures can be quite expansive and
requirement for good accessibility to the testing �eld region may constrain
the magnet design. Another problem common for these methods is a baseline
measurement (zero) drift which reduces precision.

The pulsed wire technique does not require special equipment and, be-
cause it uses as a probe a wire stretched through the testing magnetic �eld,
the measurement setup can be made simple. However, distortion of the pulse
signal propagating along the wire causes serious problem [4]. For this reason
the technique can be used only for measurement of short magnetic structures.
In addition, this method has very low accuracy.

The magnetic �eld measuring technique presented below is the vibrating
wire method [5] adapted to a periodic magnetic structure. It is based on the
following phenomenon. A taut wire of the length equal to the integer number
of the magnetic structure periods is stretched inside of the structure. Then,
the AC current with a resonance frequencies of the wire vibrating modes is
applied. Lorentz forces between driving current and surrounding magnetic
�eld will excite the wire vibrating modes, which are, in fact, a standing waves
with length of 2L=n, (L is the length of the wire, n = 1; 2; 3; :::). It will be
shown in theoretical section that in perfect periodic magnetic structure, the
forces can excite only modes with standing wave lengths equal to d, d=2,
d=3 ..., where d is the magnetic structure period. Any �eld imperfection
distorting periodicity will result in excitation of other, "not allowed", wire
vibrating modes. Applying AC current at resonance frequencies of the re-
stricted for perfect magnetic �eld modes and measuring amplitude and phase
of wire vibration one can reconstruct distribution of error �eld along struc-
ture and correct the errors in location where they occurred.

In compare with the Hall probe and searching coil scanning, the method
does not require expansive benches, it is more sensitive for magnetic �eld
errors and has no problem with zero drift. Like in the pulsed wire technique,
the method uses as a probe a wire stretched through the testing �eld region.
This makes measurement setup very simple and convenient for small aperture
magnets. However, in contrast with pulsed wire the presented technique is
much more accurate and can be used for measurement of long magnetic
structures.
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�
@2X

@t2
= T

@2X

@z2
� 

@X

@t
+ I(t)B(z) (2)

Here X(z; t) is the wire horizontal displacement, � is the wire density per
unit length. Terms �  and � I(t) describe damping and Lorentz force.
Elastic terms are neglected because assumed very thin wire, small amplitude
of motion and long standing waves. Supposing wire ends are �xed we have:

X(z = 0; t) = X(z = L; t) = 0 (3)

Let's �nd solution X(z; t) in form of sum of eigen modes, that satis�es the
above condition:

X(z; t) =
X
n

Xn sin(
�n

L
z) exp(i!t) (4)

Substituting (4) for (2) we yield equation for eigen modes amplitudes Xn:

X
n

(!2
� !2

n + i!) sin(
�n

L
z)Xn =

I0
�
B(z) (5)

where

!n =
�n

L

s
T

�
(6)

Note that !n are eigen-frequencies of the wire vibrating modes. Equation (5)
can be easily resolved relative to Xn by multiplying both sides by sin(�n

L
z)

and integrating over the wire length. This gives:

Xn =
I0
�

1

(!2 � !2
n + i!)

Bn (7)

where

Bn =
2

L

Z L

0

B(z) sin(
�n

L
z)dz =

2

L

Z L

0

(Bp(z) +Berr(z)) sin(
�n

L
z)dz (8)

Equations (7) and (8) express the basic idea of vibrating wire �eld-
measuring technique. One can see that the amplitude of eigen mode, Xn,
excited by Lorentz forces is proportional to the corresponding harmonic of
sine Fourier transform of the �eld along wire, Bn. Thus by measuring Xn

one can �nd Bn and reconstruct the �eld using inverse transformation:

B(z) =
X
n

Bn sin(
�n

L
z) (9)
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Figure 2: Ideal periodic �eld harmonic (solid bar, left scale) and harmonics
of error �eld (hatched bars, rigt scale) for the model depicted in Figure 1

2.2 Error Field and Periodic Field Harmonics Content

Let's compare harmonics contents of periodic and error �elds. If the wire
length is equal to integer number of structure periods and wire ends are
located at points of "zero" �eld as shown on Figure 1, then according to
equation (8) the lowest order of harmonic of periodic �eld will be nl = 2N
(for the depicted model nl = 26). If the �eld is sinus function, then this will
be only one harmonic. If the �eld is periodic but not a sinus function, the
orders of the other harmonics will be multiple to nl, i.e., n = 2nl; 3nl; :::.
In contrast, Fourier harmonics of the error �eld, can be of any order start-
ing from 1. Figure 2 shows result of calculation for the model depicted on
Figure 1. Here is one harmonic of the ideal periodic �eld (Bn=26) and verity
of the error �eld harmonics. The di�erence in harmonic contents of peri-
odic and error �elds suggests a very simple selective method of the error �eld
measurement. One can measure harmonics "restircted" for the ideal periodic
�eld, that will be error �eld harmonics, and then use these to reconstruct the
error �eld. This approach is illustrated on Figure 3. Here solid line represents
result of error �eld reconstruction using 16 lowest order harmonics, dotted
line shows original error �eld. One can see that although reconstructed �eld
amplitude and the peak width are di�erent from the original, the peak lo-
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I0 exp(i!t):

F(!) =
1

T

Z T

0

X(z0; t)I(t)dt =
I2
0

2�

X
n

sin(
�n

L
z0)

(! � !n)

4!(! � !n)2 + !2
Bn (11)

Note that F(!) is similar to a sine component of lock-in-ampli�er signal with
a driving current used as a reference. If driving current frequency is closed
to one of the eigen mode frequencies (! � !n) due to resonant denominator
n-th term will dominate in sum (11), i.e.,

F(!) '
I2
0

2�
sin(

�n

L
z0)

(! � !n)

4!(! � !n)2 + !2
Bn (12)

for
! � !n (13)

For each measured harmonic the driving current frequency has been
scanned through the resonant frequency of n-th mode of the wire vibration
and the measured function F(!) has been �tted with formula:

F(!) =
I2
0

2�
sin(

�n

L
z0)

(! �A)

4!(! �A)2 + !C2
B +D (14)

Where coeÆcients A;B and C are free parameters corresponding to !n; Bn

and . Parameter D has been added to describe non-resonance coupling
between driving current and signal from wire position sensor. The coupling
can be a result of parasitic electrical coupling between connectors or due to
non-resonance terms presented in formula (11). Other parameters (I0, �, L
and z0) are well de�ned. Harmonics Bn obtained from the �t had been used
for the �eld reconstruction.

3 Test

3.1 Test Setup

The model discussed in previous sections and depicted in Figure 1, in fact,
represents the setup used in the test.

For the test measurements there was used the wiggler recently built for
Cornell High Energy Synchrotron Source. The wiggler's general parameters
are given in Table 1.
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Length [m] 3.0
Number of poles 50
Period [cm] 12.0
Peak magnetic �eld [T] 0.780
Gap [cm] 4.0
Pole width [cm] 11.0

Table 1: General parameters the wiggler used in measurements.

The built vibrating wire (VW) probe is schematically shown in Fig-
ure 4. The length of the wire section enable to vibrate was 156cm which
equals to 13 wiggler periods. The fundamental vibrating mode frequency
was !1 � 2� � 30Hz, typical amplitude of driving current I0 � 70mA and
damping rate  � 1sec�1. The sag estimated from the frequency was 0.34mm.
As a wire position detector a "�" shaped opto-electronic assembly H21A1
(Newark Electronics) consisting of a light-emmiting-diode (LED) on one leg
and photo-transistor on other was used. The light ux detected by photo-
transistor is very sensitive to horizontal wire position. Wave form generator
"HP33120A", controlled by computer Macintosh Quadra 800, was used to
drive current through the wire. A "LAB-NB" board installed in the com-
puter and programs based on "Lab-View" software provided all needed sig-
nals proceedings. To carry out test experiments, VW probe was inserted
in the wiggler gap, so the taut wire was aligned with a wiggler center line
and wire ends were positioned between poles in regions where vertical mag-
netic �eld is close to zero. Two types of experiments described below were
performed.

3.2 Measurement of "calibrated" �eld distortion

In the �rst experiment, there was measured a wiggler �eld distortion resulted
from placing of small (2�2cm, 0:1mm thikness) �-metal shims in the wiggler
gap at di�erent locations. The shims were placed, �rst, at z = 87cm then
at z = 117cm, z starts from wire end. The amplitude of the �eld distortion
was estimated as � 14G or � 1:8 � 10�3 of maximum wiggler �eld. The
estimation was done using change in the vertical �eld integral measured with
a long ipping coil and assuming that the length of the region where �eld

8



Figure 4: Cross section of the VW probe used in the test. One end of
the probe is shown. Inside of 2cm OD plastic tubing (1), 100 �m copper-
berylliumwire (2) was taut. The wire ends were �xed on spacers (5), position
of 2mm diameter G-10 cylinders (4) de�ned the length of the vibrating wire
equal to 13 wiggler periods. A phototransistor-LED assembly (3) located at
30mm from the wire �xed point was used to detect horizontal wire motion.

was distorted is a halve of the wiggler period � 6cm as shown in Figure 1.
16 lowest order harmonics with and without the shims were measured with
VW probe. The di�erence in the harmonics was used to reconstruct the �eld
change. Results of this experiment are presented in Figure 5. Here three
plots show the reconstructed �eld distortion (solid line), model calculation
(dashed line) made in previous section and di�erence between measurement
and calculation (dotted line). To facilitate analysis, the modeled and mea-
sured �eld distortions were scaled to have the same peak amplitudes equal
to estimated �eld distortion.

There is a very good consistency between measured and calculated �eld
distortions in both cases. The measured locations of maximum �eld distor-
tion 85:7cm and 117:0cm reveal with assurance the shim locations at 87:0cm
and 117cm. Comparing measured and real locations of the �eld distortion
one can estimate the spatial resolution of the method to be better than 2cm.
The RMS residual between measured data and model (the noise) in both
cases � 1:5 � 10�4 of maximum wiggler �eld. This is much better than one
can expect from commonly used Hall probe measurement.
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Figure 6: Reconstructed wiggler error �eld measured by VW probe placed
at di�erent position along magnet. Horizontal axis gives z coordinate along
wiggler. Plots (1), (2), (3), (4) and (5) correspond to VW probe position
with probe end located next to pole 10, 11, 12, 13 and 14 (numbering starts
from wiggler's North end).

3.3 Measurement of the wiggler error �eld

The goal of the next experiment was to measure the wiggler error �eld.
Results are shown in Figure 6. To ensure that the measured data relate to
wiggler error �eld but not to systematic errors due to measuring technique,
there were made 5 measurements at di�erent VW probe position along the
wiggler. Five plots in Figure 6 show reconstructed error �eld in common
for all these measurements region. Here coordinate z is given relative to
wiggler but not to the wire. The observed correlation between reconstructed
�eld for di�erent measurements and z reassures that the measured error
�eld distribution is related to the magnet. Amplitude of the error �eld,
� 2:5�10�3 of the maximumwiggler �eld, revealed by the measurements can
be easily explained by the wiggler poles geometry variation or by variation
of magnetization strength of permanent magnets.

Conclusion

Vibrating wire technique was adapted for measurement of imperfections of
periodic magnetic structures. Based on developed theory, the VW probe was
built and test experiments were carried out. The probe demonstrated RMS
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� 1:5 � 10�4 of maximum wiggler �eld sensitivity to the non-periodic �eld
imperfection and better than 2cm spatial resolution.

The sensitivity and spatial resolution of the method can be signi�cantly
improved by optimizing the wire properties, by measuring more harmonics
and by vacuum encapsulating of the vibrating wire. The latter will decrease
air friction leading to lower damping rate and higher sensitivity.

The transfers dimensions of VW probe can be reduced to less then 1mm
scale without any other parameters degradation. That will enable the use of
the described technique for precise tuning of miniature magnetic structures
with small aperture.
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