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At the interaction point of a storage ring each beam is subject to perturbations due to the
electromagnetic �eld of the counter-rotating beam. These perturbations lead to a limit of the
achievable luminosity in the storage ring. We investigate this limit in the framework of the strong-
strong picture. Motion is considered only in the vertical direction and the beams are presumed
to be one-dimensional. Based on this model [1] we try to �nd stability criteria for the beam in
an electron-positron storage ring taking into account the damping of the betatron oscillations by
synchrotron radiation but neglecting the discrete nature of the radiation process and presuming a
Gaussian distribution. We analyze the instabilities by solving a linearized "Fokker-Planck equation"
without the quantum excitation term.

I. BEAM EVOLUTION

Aside of dipole induced bending the beam is subject to focusing, damping by synchrotron radiation and beam-beam
kicks at the interaction point. The beam-beam kick from the �rst (second) beam on the second (�rst) one is given by
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where N is the number of particles in a bunch and re the classical radius of the electron. The distributions of the
beams  1 and  2 are normalized to unity, i.e.
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and are assumed to be one-dimensional with horizontal width Lx. Motion is considered only in the vertical direction.
Using the small-angle approximation we obtain for synchrotron radiation and for focusing, respectively
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where p0 is the momentum of the particle and p the total momentum change after each turn. We neglect the
discrete nature of the radiation process. The dipoles have no inuence on the betatron oscillations. In a damped
system the phase space density increases. The equations describing the motion of  1;2 are given by
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They di�er from the Fokker-Planck equations by a missing quantum excitation term and from the Vlasov equations
by the fact that the phase space density is not a constant anymore. This gives us
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and a similar equation with the �rst and second beam being interchanged where Æp(s) denotes a period delta
function that has singularities at all interaction points. Because the system is damped an equilibrium does not exist.
We de�ne the distribution  0(s) such that it satis�es
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with  being a function of s if damping is present. We can think of  0(s) being a "temporary equilibrium
distribution" if the characteristic damping time is much longer than the period of betatron oscillations or perturbations.
We are not interested in �nding the actual distributions. All we want to know is whether the beam gets unstable or
not. Thus, we choose a perturbative ansatz

 1;2 =  0 �� 1;2 (8)

Substituting eqn. 8 into eqn. 6, subtracting eqn. 7 and neglecting the term made up of two perturbations we �nd
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where
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With the approximation

F (y; s) � F (s)y (11)

we can treat the perturbation as a part of the perturbed focusing function F (s). The drawback is that this step
makes the study of phenomena like Landau damping impossible. In the next step we transform eqn. 9 to action-angle
coordinates
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Only the phase of the two beams at the interaction point is of importance for our problem, but not the particular
lattice design. Therefore, we can set �0 = 0. This gives us an explicit representation of J
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where � denotes the perturbed instead of the unperturbed betatron function now. Forming the linear combinations
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and using the envelope equation eqn. 9 can be rewritten in action-angle coordinates as
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assuming that  0 =  0(J). In the following discussion we omit the label �.
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II. SOLVING THE EQUATIONS OF MOTION

The distribution for electron bunches is approximately Gaussian.
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Note that the Jacobi determinant of the transformation 13 is 1. Although our  0 as it is used in eqn. 7 depends on
s we choose an s-independent  0. This can be done if the damping after each turn is small and if we keep adjusting
� or the beam-beam parameter �, respectively, which will be introduced later. In the �nal result we simply have to
consider � in an appropriate range. Considering the problem on a turn-by-turn basis also justi�es the usage of 13
where J is a constant of motion. f must be periodic in �. Thus, we choose the ansatz
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Substituting eqn. 17 and eqn. 18 into eqn. 16 and making use of the symmetry of the integrand we obtain
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having averaged the sin� cos�-term due to synchrotron radiation over betatron oscillations. This term represents a
small alternating phase advance which we absorb by our assumptions about � and the radiation process. We evaluate
the equation at J = � where we expect the perturbations to be largest since J 0(J) has a maximum at J = �.
However, doing so removes all radial modes. The d �J - integration can be evaluated by integrating by parts. The
Heaviside step function is denoted by H0.
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Thus, the equation determining the gl's becomes
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where
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The matrix M has the following properties
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No attempt is made to solve the remaining double integral analytically. Introducing a beam-beam strength param-
eter
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where �� denotes the beta function at the interaction point one obtains the following relation for the gl's immediately
before and immediately after the interaction point by integrating through the interaction point.
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There is no coupling among di�erent Fourier components between collisions. In this case eqn. 21 simpli�es to
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III. DYNAMIC TUNE

We calculate the tune � in terms of the unperturbed tune �0 which allows us to express our �nal result in terms of
�0. This is more convenient since we usually neglect beam-beam e�ects when doing the lattice design. The tune shift
due to synchrotron radiation is many orders of magnitude lower and is neglected. Eqn. 28 expresses the perturbed
betatron tune � in terms of the unperturbed tune �0 and the di�erence in the focusing structure.
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Evaluating the integral in eqn. 10 gives
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where we have used the linearization eqn. 11 and expanded the integrand keeping only the constant term. K�(x)
denotes the modi�ed Bessel function. Thus,
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IV. COHERENT BEAM-BEAM INSTABILITY

We can summarize the solution of the equations of motion by introducing a matrix that acts on a coloumn vector
G which contains all gl's. Therefore,

G(L) = TG(0) (31)

where
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and R is a diagonal matrix which has entries e�2�il� (with � = 2��) for all l 2 Z on its diagonal. Beam-beam
instability occurs if one of the eigenvalues of T has eigenvalues whose absolute value is larger than 1.
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FIG. 1: Stability diagrams for � = 0:00. Resonances up to second (A), fourth (B) and sixth order (C), respectively, have been
included. The horizontal axis refers to �0 and the vertical axis refers to �.

V. RESULTS

In the following plots we have calculated the matrix to the indicated order for both signs and drawn a point at
(�0; �) if all eigenvalues of T have an absolute value smaller or equal 1.

VI. DISCUSSION

The coarse structure of all plots is shown in �g. 4 where we plotted the region in which the dynamic tune becomes
complex. In this region the accelerator cannot maintain a stable beam. All plots have this basic structure in common.
Including resonances up to higher and higher orders the plots get more and more complicated. Small "joints" enter
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FIG. 2: Stability diagrams for � = 0:05. Resonances up to second (A), fourth (B) and sixth order (C), respectively, have been
included. The horizontal axis refers to �0 and the vertical axis refers to �.

the diagrams which disappear again when synchrotron radiation damping is increased. As a rule of thumb the beam
is stable if the operating point lies in the shaded area of �g. 4 and satis�es � < �. However, this rule is a bit too
restrictive.
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FIG. 3: Stability diagrams for � = 0:20. Resonances up to second (A), fourth (B) and sixth order (C), respectively, have been
included. The horizontal axis refers to �0 and the vertical axis refers to �.
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FIG. 4: Area in which the dynamic tune is real. The horizontal axis refers to �0 and the vertical axis refers to �.


