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Abstract

We investigate one-flavor QCD with an additional chiral scalar field. For a large
domain in the space of coupling constants, this model belongs to the same universality
class as QCD, and the effects of the scalar become unobservable. This is connected
to a “bound-state fixed point” of the renormalization flow for which all memory of
the microscopic scalar interactions is lost. The QCD domain includes a microscopic
scalar potential with minima at nonzero field. On the other hand, for a scalar mass
term m2 below a critical value m2

c , the universality class is characterized by per-
turbative spontaneous chiral symmetry breaking which renders the quarks massive.
Our renormalization group analysis shows how this universality class is continuously
connected with the QCD universality class.

1 Introduction

Universality of QCD means that predictions are independent of the details of the micro-
scopic interactions. This is crucial for predictivity, since the precise form of the funda-
mental interactions at very short distance scales is not known. In a large parameter space
characterizing possible fundamental interactions, the QCD universality class corresponds,
however, only to a certain domain. For other domains in parameter space, the color sym-
metry may be “spontaneously broken” by the Higgs mechanism, or all quarks may acquire
a large mass due to spontaneous chiral symmetry breaking. We are interested here in
the transition from one domain to another and in the question of what happens at the
boundary of the “QCD domain”.

Looking at QCD from a microscopic scale – say a unification scale 1015GeV – its uni-
versality class is characterized by eight massless gluons and a certain number of massless
fermions. Perturbatively, the masses are protected by the gauge symmetry and chiral sym-
metries. At a much smaller scale around 1GeV, nonperturbative effects induce masses for
all physical particles. In particular, the fermions become massive owing to chiral symmetry
breaking (χSB). This may be described by a nonzero expectation value σ ∼ 〈ψ̄ψ〉 of a
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“composite” scalar field. In order to keep the discussion simple, we concentrate here on
the case of one quark flavor – generalizations to several flavors are straightforward.

Let us now consider a class of microscopic theories with a complex fundamental “chiral
scalar field” φ which has the same transformation properties as ψ̄ψ and a classical potential

V = m2φ∗φ+
1

2
λφ(φ

∗φ)2. (1)

The symmetries also allow for a Yukawa coupling between φ and the quarks. For nonzero
〈φ〉, the chiral symmetry is broken and the quarks become massive. In the case of large
enough positive m2 (in units of some unification scale, say 1015GeV), the scalar field is
super-heavy and decouples from the low-energy theory. This range of m2 obviously cor-
responds to the universality class of QCD. All effects of the scalar field are suppressed by
p2/m2, with p a characteristic momentum. For QCD predictions, they can be completely
ignored.

On the other hand, for large enough negative m2, we expect the perturbative picture of
spontaneous symmetry breaking to hold. The scalar field gets a vacuum expectation value
(VEV)

〈φ〉 = σ = |m2
R/λφ,R|1/2, (2)

with mR and λφ,R related to m and λφ by renormalization corrections. Both σ and the
quark masses are of the order of the unification scale in this domain. The universality class
now corresponds to gluodynamics without light quarks. In the chiral limit of a vanishing
current quark mass, spontaneous χSB also generates a very light pseudo-Goldstone boson
in addition to the gluonic degrees of freedom.

Varying the microscopic scalar mass termm2 from large negative to large positive values
should lead us from the universality class with perturbative spontaneous chiral symmetry
breaking (PχSB ) to the universality class of one-flavor QCD. One of the aims of this note
is to understand the qualitative features of this transition in the vicinity of a critical value
m2

c . This is clearly a nonperturbative problem, since on the QCD side of the transition the
effective gauge coupling grows large.

Our investigation is based on a nonperturbative flow equation which is obtained by a
truncation of the exact renormalization group equation for the effective average action [1].
A crucial ingredient is the “bosonization” of effective multi-fermion interactions at every
scale [2]. This provides for a description of fundamental scalar fields and bound states
in a unified framework. A theoretical method with this feature is actually required for
our problem, since the scalar quark-antiquark bound states in the QCD description (e.g.,
the pseudo-Goldstone eta meson and the sigma meson) are expected to become associated
with the fundamental scalar in the PχSB description. In this framework, we see also how
one relevant and two marginal parameters in the PχSB universality class, namely the ones
corresponding to the mass and quartic self-interaction of the scalar field and the Yukawa
coupling, become irrelevant for the QCD universality class.

This remarkable change of the number of relevant parameters at the transition between
the two universality classes is connected with the appearance of a bound-state fixed point
for the flow of the scalar mass and self-interaction in the range of microscopic parameters
corresponding to QCD. This bound-state fixed point is infrared attractive for all couplings
except for the gauge coupling. Under the influence of this fixed point, all memory of the
details of the microscopic interactions in the scalar sector is lost. This is exactly what is
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required for the QCD universality class which has the gauge coupling as the only marginal
parameter (for a massless quark). In order to see the appearance of the bound state, it is
crucial to re-incorporate the effective multi-fermion interactions generated by the flow into
the effective bosonic interactions. This avoids an unwanted redundancy of the description.
It also solves an old problem in the investigation of gauged Nambu–Jona-Lasinio models
[3]; namely, how the presence of apparent relevant parameters in a too naive treatment of
these models can be reconciled with QCD, where no such relevant parameters are present.
In our approach, the flow towards the bound-state fixed point solves this generic problem.

As a result of our investigation, we find a qualitatively convincing picture of the transi-
tion between the two universality classes investigated. We have kept the truncation simple
in order to illustrate the change in the number of relevant and marginal parameters in a
simple way. The price to be paid is a limited accuracy in the quantitative description for
parameter regions where the effective gauge coupling grows large. In our setting, this con-
cerns primarily the quantitative details of the flow of the instanton-mediated interactions
and the running of the strong gauge coupling. We also have neglected effective bosonic
degrees of freedom except for the scalars and the gluons. Despite these shortcomings, we
expect that our quantitative results describe the right order of magnitude of one-flavor
QCD. An impression of the size of uncertainties can be gained from Table. 1 in appendix
B.

In order to illustrate our points, we compute the scalar condensate, i.e., the renormalized
minimum of the effective potential, σR =

√
Zφ|φ0|2, for a broad range of initial scalar

mass values m̄2
Λ. We note that σR is directly connected with the decay constant of the

eta meson and sets the scale for the quark mass generated by χSB . We first neglect
the anomalous UA(1) violating contributions from instanton effects which only affect the
physics at scales around 1GeV. (They will be considered in Sect. 5.) We parametrize the
microscopic interactions by the initial values of the renormalization flow at a GUT-like scale
Λ = 1015GeV. As can be read off from Fig. 1, a critical mass m̄2

c exists. For initial scalar
masses below this critical mass, m̄2

Λ < m̄2
c , the naive expectation is fulfilled, and we find

scalar condensates of the order of the cutoff, σR ∼ 1013 . . . 1015GeV. It is remarkable that
the value of the critical mass is negative and typically of the order of the cutoff or only a
few orders of magnitude below the cutoff; for example, we find m̄2

c ' −0.35Λ2 for the initial
values h̄2 = 1 and λ̄φ = 100 at Λ = 1015 (Fig. 1 (left panel)). For a perturbatively accessible
set of initial parameters h̄2 = 0.1 and λ̄φ = 1 at Λ = 1015, we find m̄2

c ' −0.0043Λ2 (Fig. 1
(right panel)). In the latter case, we find a linear dependence of the condensate on the
mass parameter, σ2

R ∼ −(m̄2
Λ − m̄2

c), as expected from perturbation theory (cf. Eq. (2)).
However, for initial scalar masses above this critical mass, m̄2

Λ > m̄2
c , the scalar con-

densate is 16 orders of magnitude smaller (not visible in the linear plot in Fig. 1 (right
panel)). In this case, symmetry breaking is triggered by the fermion and gauge sectors and
not by the scalar sector, i.e., σR is roughly of the order of ΛQCD. Therefore, even if we start
the flow deep in the broken regime with m̄2

Λ < 0 but above the critical mass, the scalar
fluctuations drive the system first into the symmetric regime where it will be attracted by
the same IR fixed point as a QCD-like system. It should be stressed that no fine-tuning of
the initial parameters is needed, neither to put the system into the domain of attraction of
the QCD universality class nor to separate the UV scale from the scale of chiral symmetry
breaking.

Only for m̄2
Λ < m̄2

c is the effective coupling between the scalars and the fermions strong
enough to induce PχSB with a magnitude determined by the initial parameters of the
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Figure 1: Renormalized scalar vacuum expectation value σ2
R versus the initial condition

for the scalar mass at the UV cutoff, m̄2
Λ. Left panel: logarithmic plot for the parameters

Zφ = 1, h̄2 = 1, λ̄φ = 100 at Λ = 1015GeV resulting in m̄2
c ' −0.35Λ2. Right panel:

linear plot for h̄2 = 0.1, λ̄φ = 1; for m̄2
Λ < m̄2

c ' −0.0043Λ2, the linear dependence
σ2

R ∼ −(m̄2
Λ − m̄2

c) as expected from perturbation theory is confirmed.

scalar sector. In this case, we would have to fine-tune the initial condition for m̄2
Λ to lie

extremely closely to m̄2
c, if we wanted to separate the UV scale from the scale of chiral

symmetry breaking. This is the famous naturalness problem which is generic for models
involving a fundamental scalar. Of course, theories without fundamental scalars such as
QCD do not have this problem, although effective scalar degrees of freedom such as bound
states can occur at low energies. It is one of our main observations that the mechanism
of how “QCD-like” theories circumvent the naturalness problem can also be applied to
models with a fundamental scalar.

The details of our study are organized as follows: in Sect. 2, we introduce the class of
models containing one-flavor QCD and derive the flow equations for a qualitatively reliable
truncation including “bosonization at all scales”. Section 3 is devoted to a discussion of
the bound-state fixed point which governs the flow of the QCD domain for weak gauge
coupling. In Sect. 4, we analyze the universal features of the QCD domain numerically and
give estimates of IR observables in the nonperturbative strong-coupling regime. Instanton-
mediated interactions are included in Sect. 5 where we also describe the fate of the pseudo-
Goldstone boson.

2 Flow equations

QCD with one massless Dirac fermion flavor coupled to an SU(Nc) gauge field is charac-
terized by the classical (or bare) action

SQCD =

∫
d4x ψ̄ iD/ [A]ψ +

1

4
F a
µνF

a
µν , (3)

where Dij
µ [A] = ∂µδ

ij − iḡT ija A
a
µ, and Ta denotes the (hermitean) generators of the gauge

group in the fundamental representation. In this work, we embed one-flavor QCD in a
larger class of chirally invariant theories including a color-singlet scalar field. For this, we
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consider the action

Γ =

∫ {
Zψψ̄iD/ψ +

λ̄σ
2

[
(ψ̄ψ)2 − (ψ̄γ5ψ)2

]
+Zφ∂µφ

∗∂µφ+ U(φ) + h̄
[
(ψ̄RψL)φ− (ψ̄LψR)φ∗

]
+
ZF

4
F a
µνF

a
µν +

1

2ξ
(∂µA

a
µ)

2

}
. (4)

Here we have used the shorthand (ψ̄ψ) = ψ̄iψi for the color indices and included a gauge
fixing term with parameter ξ but suppressed the ghost sector for simplicity. Equation (4)
reduces to one-flavor QCD if we set the four-fermion and the Yukawa interaction equal to
zero, λ̄σ = h̄ = 0, let the scalar field be auxiliary, Zφ = 0, and set ZF = 1 = Zψ (the scalar
potential is of no importance then). Furthermore, there is a redundancy in Eq. (4): we can
compensate for a shift in λ̄σ by readjusting the Yukawa coupling and the scalar potential
corresponding to a Hubbard-Stratonovich transformation (partial bosonization). But apart
from this redundancy, which will be removed later on by “re-bosonization”, different initial
values for the various parameters in Eq. (4) generally correspond to different quantum
theories. Some of these theories will belong to the same universality class sharing the same
low-energy properties, which makes them indistinguishable from a low-energy physicist’s
point of view.

We analyze this class of theories in a Wilsonian spirit upon integrating out quantum
fluctuations momentum shell by momentum shell. For this we employ the formalism based
on the exact renormalization group flow equation for the effective average action [1], [4],

∂tΓk =
1

2
STr

[
∂tRk

(
Γ

(2)
k +Rk

)−1
]
, (5)

where Γ
(2)
k denotes the second functional derivative of the effective average action Γk that

governs the dynamics of the system at a momentum scale k. The logarithmic scale pa-
rameter t is given by t = ln k/Λ, ∂t = k(d/dk), where Λ denotes the ultraviolet (UV)
scale at which we define the bare action ΓΛ. The cutoff function Rk is to some extent
arbitrary and obeys a few restrictions [4] which ensure that the flow is well defined and
interpolates between the bare action in the UV and the full quantum effective action Γk→0

in the infrared (IR).
We solve the flow equation (5) by using Eq. (4) as a truncation of the space of all

possible action functionals. As a consequence, we promote all couplings and wave function
renormalizations occurring in Eq. (4) to k-dependent quantities. Although the truncation
(4) represents only a small subclass of possible operators generated by quantum fluctua-
tions, it is able to capture many physical features of QCD-like systems.

Let us elucidate the single components in detail: for the scalar potential, we use the
simple truncation

U(φ) = m̄2 ρ+
1

2
λ̄φ ρ

2 − 1

2
ν̄ ζ, ρ = φ∗φ, ζ = φ+ φ∗. (6)

Already the ρ-dependent first two terms of the potential are capable of describing spon-
taneous χSB of the system which we are aiming at. Indeed, the order parameter σ de-
notes the minimum of the scale-dependent effective potential Uk for k → 0. The term
∼ ζ = φ+ φ∗ breaks the UA(1) symmetry of simultaneous axial phase rotations of scalars
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and fermions; it accounts for the effects of the axial anomaly. However, the presence of
the axial anomaly is not relevant for universality of spontaneous χSB , although it has,
of course, a strong quantitative impact on resulting low-energy parameters such as con-
densates and constituent quark masses. Therefore, we postpone the discussion of this
quantitative influence to Sect. 5 and set ν̄ = 0 in the following for the sake of clarity.

In the gauge sector, we do not attempt to calculate the full nonperturbative flow of ZF,
or alternatively the gauge coupling g, here, but study various possibilities for these flows
and take over nonperturbative results from the literature. The most important features of
the universality classes involve only the perturbative running of g, which is universal up
to two-loop order.

We will define the quantum theories by fixing the initial conditions for the renormal-
ization flow at the UV scale Λ. In the gauge and fermion sectors, we choose

ZF

∣∣
k=Λ

= 1, Zψ
∣∣
k=Λ

= 1, λ̄σ
∣∣
k=Λ

= 0. (7)

The first two conditions normalize the gauge and fermion fields and imply that ḡ denotes
the bare gauge coupling. The last condition states that four-fermion interactions either
have been partially bosonized into the scalar sector or are completely absent at the UV
cutoff scale Λ.

The choice of the scalar couplings at the UV cutoff will finally determine whether we
are in or beyond the QCD domain. In order to describe standard QCD in our picture, a
natural choice is given by

m̄2
∣∣
k=Λ

= +O(Λ2), λ̄φ
∣∣
k=Λ

= 0, (Zφ, h̄)
∣∣
k=Λ

→ 0, (8)

implying that the scalar fields are nondynamic, noninteracting and heavy at Λ and decouple
from the fermion sector. They could be integrated out without any effect on the fermion
sector and therefore are completely auxiliary. However, we will demonstrate below that
the infrared physics including χSB is to a large extent independent of the initial values in
the scalar sector; in other words, the QCD universality class is actually much bigger than
the restrictive choice of initial conditions of Eq. (8).1

For a concise presentation of the RG flow equations of the single couplings, it is conve-
nient to introduce the dimensionless, renormalized and k-dependent quantities,

ε =
m̄2

Zφk2
, λφ =

λ̄φ
Z2
φ

, h =
h̄

Z
1/2
φ Zψ

, (9)

in the symmetric regime of the system. In the χSB regime, the mass term becomes negative,
and we replace this coupling by the minimum of the potential ρ0 and its corresponding
dimensionless variable κ defined by

0 =
∂

∂ρ
Uk(ρ = ρ0), κ =

Zφ ρ0

k2
. (10)

Similarly, we define λ̄φ as the second ρ-derivative of the potential at the minimum in
the χSB regime. The running of the wave function renormalizations is studied using the
associated anomalous dimensions,

ηφ = −∂t lnZφ, ηψ = −∂t lnZψ, ηF = −∂t lnZF. (11)

1Already at this point, it is clear that λφ,Λ could also be chosen nonzero, which would only result in an
unimportant change of the normalization of the functional integral.
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Owing to gauge invariance, the product of gauge coupling and gauge field is renormalization-
group invariant, so that the beta function for the renormalized running gauge coupling g
is related to ηF by

βg2 ≡ ∂tg
2 = ηF g

2, g2 =
ḡ2

ZF
. (12)

Inserting the truncation (4) into the exact RG flow equation for the effective average
action, we find the following results. The scalar and fermion anomalous dimensions can be
written as

ηφ = 4v4 κλ
2
φm

4
2,2(0, 2κλφ; ηφ)

+4Ncv4 h
2
[
m

(F),4
4 (κh2; ηψ) + κh2m

(F),4
2 (κh2; ηψ)

]
, (13)

ηψ = 2C2(Nc)v4 g
2
[
(3− ξ)m

(FB),4
1,2 (κh2, 0; ηψ, ηF)− 3(1− ξ) m̃

(FB),4
1,1 (κh2, 0; ηψ, ηF)

]
+v4 h

2
[
m

(FB),4
1,2 (κh2, ε+ 2κλφ; ηψ, ηφ) +m

(FB),4
1,2 (κh2, ε; ηψ, ηφ)

]
, (14)

where v4 = 1/(32π2) and C2(Nc) = (N2
c − 1)/(2Nc). This representation is valid in the

symmetric as well as in the χSB regime. In the former, κ has to be set equal to zero,
whereas ε = 0 has to be chosen in the latter. The various quantities denoted by m
are threshold functions which control the decoupling of massive modes for decreasing k;
they also contain all dependencies on the precise choice of the cutoff function Rk. Their
definitions and explicit representations can be found in App. A or in [4].

Equation (13) agrees with [4] and [6]. We also find agreement for the second line of
Eq. (14), whereas the first line arises from the gauge-field sector (which has not been dealt
with in [4],[6]). As a further check, we note that in the perturbative small-coupling limit,
where the threshold functions m occurring above universally reduce to 1, we obtain

ηφ
∣∣
pert.

=
Nc

8π2
h2, ηψ

∣∣
pert.

= ξ
C2(Nc)

8π2
g2 +

1

16π2
h2, (15)

which agrees with the literature [7].
In the symmetric regime, the flow of the purely scalar sector can be summarized by

∂tε = −(2− ηφ)ε− 8v4 λφ l
4
1(ε; ηφ) + 8Ncv4 h

2 l
(F),4
1 (0; ηψ), (16)

∂tλφ = 2ηφ λφ + 20v4 λ
2
φ l

4
2(ε; ηφ)− 8Ncv4 h

4 l
(F),4
2 (0; ηψ), (17)

whereas in the χSB regime, we find

∂tκ = −(2 + ηφ)κ+ 2v4 l
4
1(0; ηφ) + 6v4 l

4
1(2κλφ; ηφ)− 8Ncv4

h2

λφ
l
(F),4
1 (κh2; ηψ), (18)

∂tλφ = 2ηφ λφ + 2v4 λ
2
φ l

4
2(0; ηφ) + 18v4 λ

2
φ l

4
2(2κλφ; ηφ)− 8Ncv4 h

4 l
(F),4
2 (κh2; ηψ), (19)

in complete agreement with the results of [6]. Again, the quantities denoted by l are
threshold functions [4], [8]. Now we turn to the flow of the Yukawa coupling, which is
driven by all sectors of the system:

∂th
2 = (2ηψ + ηφ) h

2 − 4v4 h
4
[
l
(FB),4
1,1 (κh2, ε; ηψ, ηφ)− l

(FB),4
1,1 (κh2, ε+ 2κλφ; ηψ, ηφ)

]
−8(3 + ξ)C2(Nc)v4 g

2h2 l
(FB),4
1,1 (κh2, 0; ηψ, ηF), (20)
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where we have to set κ = 0 (ε = 0) in the symmetric (χSB) regime. As a check, we take a
look at the perturbative limit,

∂th
2
∣∣
pert.

=
Nc + 1

8π2
h4 − 3C2(Nc)

4π2
g2h2, (21)

where we rediscover known results and also observe that the gauge-parameter ξ-dependence
has dropped out as it should.

A crucial ingredient is the flow of the fermion self-interaction, which – in dimensionful
representation – can be written as

∂tλ̄σ =
Z2
ψ

k2

[
βg

4

λ̄σ
g4 + βh

4

λ̄σ
h4
]
, (22)

βg
4

λ̄σ
:= −6

(Nc + 2)(Nc − 1)

N2
c

C2(Nc) v4 l̃
(FB),4
1,2 (κh2, 0; ηψ, ηF),

βh
4

λ̄σ
:=

(
2

Nc
+ 1

)
v4 l̃

(FBB),4
1,1,1 (κh2, ε, ε+ 2κλφ; ηψ, ηφ).

Here we neglected terms ∼ κ which arise only in the broken regime but are suppressed
therein owing to simultaneously occurring threshold functions (these terms are similar to
the last term in square brackets in Eq. (13), which has hardly any effect on the results
either). In Eq. (22) as well as in all equations above, we neglected terms of order λ̄σ
on the RHS, because λ̄σ = 0 will finally be guaranteed on all scales as discussed below.
Furthermore, we have chosen the same Fierz transformations in the Dirac algebra as in [2]
and decomposed the possible color structures of the four-fermion interaction into a color
singlet (S–P)S and color N2

c − 1-plets (S–P)N2
c−1, (V)N2

c−1. In the present work, we focus
on the (S–P)S term; in principle, the (V)N2

c−1 term could be absorbed into a k-dependent
transformation of the nonabelian gauge field in the same way as suggested in [2] for the
abelian case.2

As mentioned above, there is a certain redundancy in the parametrization of the effec-
tive action Γk owing to possible different choices of partial bosonization of the four-fermion
interaction. We remove this redundancy in the present truncation with the aid of the
following k-dependent transformation of the scalar field (“fermion-boson translation”):

∂tφk(q) = −(ψ̄LψR)(q) ∂tαk(q) + φk(q) ∂tβk(q),

∂tφ
∗
k(q) = (ψ̄RψL)(−q) ∂tαk(q) + φ∗k(q) ∂tβk(q), (23)

with a priori arbitrary functions αk(q) and βk(q). Upon this transformation, the flow
equations given above receive additional contributions ∼ αk(q), βk(q) according to

∂tΓk = ∂tΓk |φk,φ
∗
k
+

∫
δΓk
δφk

∂tφk +

∫
δΓk
δφ∗k

∂tφ
∗
k. (24)

As described in more detail in [2], these functions can be uniquely determined by demanding
for (i) ∂tλ̄σ(q

2) to vanish for all k and q2, where the momentum dependence of λ̄σ has been

2By neglecting some of the four-fermion interactions, our quantitative result will depend slightly on
the choice of the Fierz decomposition. Using “fermion-boson translation” to be described in the following,
this dependence can be removed in a larger truncation, as was recently shown in [5]. However, we checked
explicitly that quantitative results in another natural Fierz decomposition involving (S–P)S, (V)S and
(V)N2

c−1 differ from the present ones only on the 1% level.
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studied in the s channel for simplicity, λ̄σ(q
2) ≡ λ̄σ(s = q2), (ii) the Yukawa coupling h̄

to be momentum independent, and (iii) ∂tZφ(q
2 = k2) = −ηφZφ in order to render the

approximation of a momentum-independent Zφ self-consistent. Condition (i) together with
the initial condition (7) guarantees that no four-fermion interaction of this type is generated
under the flow; this interaction is bosonized into the scalar sector at all scales k. Condition
(ii) guarantees the fermion mass generated by χSB is also momentum independent, so that
the couplings in the χSB regime have a direct physical interpretation.

The field transformation (23) affects also the scalar couplings, and we obtain in the
symmetric regime:

∂tε = ∂tε
∣∣
φk

+ 2
ε(1 + ε)

h2

(
1 + (1 + ε)Qσ

)(
βg

4

λ̄σ
g4 + βh

4

λ̄σ
h4
)
,

∂th
2 = ∂th

2
∣∣
φk

+ 2
(
1 + 2ε+Qσ(1 + ε)2

)(
βg

4

λ̄σ
g4 + βh

4

λ̄σ
h4
)
, (25)

where the corresponding first terms on the right-hand sides denote the flow equations for
fixed fields as given above in Eqs. (16) and (20). In the χSB regime, we find similarly

∂tκ = ∂tκ
∣∣
φk

+ 2
κ(1− κλφ)

h2

(
1 + (1− κλφ)Qσ

)(
βg

4

λ̄σ
g4 + βh

4

λ̄σ
h4
)
,

∂th
2 = ∂th

2
∣∣
φk

+ 2
(
1− 2κλφ +Qσ(1− κλφ)

2
)(
βg

4

λ̄σ
g4 + βh

4

λ̄σ
h4
)
. (26)

Defining ∆λ̄σ := λ̄σ(k
2) − λ̄σ(0), the quantity Qσ ≡ ∂t∆λ̄σ/∂tλ̄σ(0) measures the sup-

pression of λ̄σ(s) for large external momenta. Without an explicit computation, we may
conclude that this suppression implies Qσ < 0, in agreement with unitarity; furthermore, if
the flow is in the χSB regime, the fermions become massive, and non-pointlike four-fermion
interactions in the s channel will be suppressed by the inverse fermion mass squared.3

Therefore, we model Qσ by the ansatz

Qσ = Q0
σm

(FB),4
1,2 (κh2, 0, ηψ, ηF ), Q0

σ = const. < 0, (27)

where we have introduced a threshold function with the appropriate decoupling properties
for massive fermions. The qualitative results are independent of the precise choice of Qσ,
and it is reassuring to observe a quantitative independence of the IR observables on the
precise value for Q0

σ (e.g., Q0
σ ' −0.1).

The field transformations (23) also modify the equation for λφ via the terms ∼ ∂tβk.
In the pointlike limit (q2 = 0), the modified running is given by

∂tλφ = ∂tλφ
∣∣
φk

+ 4
λφ
h2

(1 + ε)
(
1 + (1 + ε)Qσ

)(
βg

4

λ̄σ
g4 + βh

4

λ̄σ
h4
)
. (28)

It will turn out that the modification of the flow of λφ is also quantitatively irrelevant,
whereas the the modifications displayed in Eqs. (25) and (26) are of crucial importance.

3 Bound-state fixed point

The universal features of spontaneous χSB in the QCD domain that will be quantitatively
analyzed in the next section can be traced back to the occurrence of a fixed point for

3This can be inferred from the heavy-fermion limit of the two-gluon/scalar-exchange box diagram where
the internal fermion propagators become pointlike ∼ 1/mf.
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the scalar couplings. This fixed point is infrared attractive as long as the gauge coupling
remains weak and can be associated with a bound state [2].

The fixed-point structure can conveniently be analyzed with the help of the coupling

ε̃ =
ε

h2
=
Z2
ψm̄

2

k2h̄2
. (29)

Since we are interested in the domain of weak gauge coupling, for simplicity we can neglect
the anomalous dimensions in the following. In this approximation and using the Landau
gauge ξ = 0, the flow of ε̃ yields:

∂tε̃ = 8Ncv4l
(F),4
1 − 8v4l

4
1(ε)

λφ
h2
− (2− 24C2(Nc)v4l

(FB),4
1,1 g2) ε̃

−2
(
βg

4

λ̄σ
g4 + βh

4

λ̄σ
h4
)
ε̃2. (30)

(Here, all arguments of the threshold functions which are not displayed are assumed to
be equal to zero; therefore, threshold functions without any argument are simply numbers
which depend on the details of the regularization). If the scalar field is auxiliary at the
UV scale as in the QCD context, its wave function renormalization is very small initially,
Zφ � 1, so that the dimensionless renormalized mass is very large, ε � 1. In this case,
scalar fluctuations are suppressed and the threshold functions depending on ε vanish; the
right-hand side of Eq. (30) describes a parabola in the variable ε̃, and we find two positive
fixed points, 0 < ε̃∗1 < ε̃∗2, where ε̃∗1 is UV attractive but IR unstable, and ε̃∗2 is an IR stable
fixed point (see Fig. 2, solid line). It can be shown that ε̃∗1 corresponds to the inverse of the
critical coupling of the NJL model, so that our flow describes a model with strong four-
fermion interaction if we choose UV initial conditions with ε̃Λ < ε̃∗1 to the left of the first
fixed point (see, e.g, [9] for a detailed analysis of the phase structure in the abelian case).
For this choice, the system is not in the QCD domain but approaches chiral symmetry
breaking (ε̃ < 0) in a perturbatively accessible way (PχSB).

In this section, we concentrate on those initial values which release the system to the
right of the first fixed point, ε̃Λ > ε̃∗1, i.e., which are weakly coupled in the NJL language.
This will be the range of the QCD universality class. As the system evolves, it flows
towards the second fixed point ε̃∗2, which then governs the evolution over many scales.
Here, the system “loses its memory” of the initial conditions; in particular, it is of no
relevance whether we start with ε̃∗1 < ε̃Λ < ε̃∗2 or ε̃Λ > ε̃∗2. The evolution towards and in
the IR is universally governed by this fixed point ε̃∗2, which can be shown to be associated
with a fermion-antifermion bound state; e.g., in QED, the properties of the scalar field at
this fixed point correspond to those of positronium [2].

Before we elucidate the fixed-point properties further, let us briefly mention that its
existence can be generalized to the case of a scalar field describing a fundamental particle
in the UV (a Yukawa model with gauged fermions rather than QCD). In this case, we
have Zφ = 1 and ε ' O(1) at the UV scale. Now the second term in Eq. (30) can become
important, in particular for a large φ4 coupling λφ and/or small h2. When discussing the
RHS of Eq. (30) for fixed g, h, λφ, one should keep in mind that these couplings may
change with k. For large λφ/h

2, the ε̃ parabola is lowered and the first fixed point can
move to negative values, ε̃∗1 < 0 (see Fig. 2, dashed line). In this case, we can release the
system even in the broken regime at the UV scale, ε̃, ε < 0, but it still evolves towards the
bound-state fixed point ε̃∗2. In comparison with Fig. 1, this corresponds to initial values
m̄2

c < m̄2
Λ < 0. Physically, such a scenario describes a system involving fundamental
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ε̃∗1 ε̃∗2

∂tε̃
g2

g > gD
g2 = g2

D

g2 < g2
D

Figure 2: Flow of ε̃ according to Eq. (30) (schematic plot): the solid line corresponds to a
QCD scenario at weak gauge coupling; the arrows indicate the direction of the flow towards
the infrared. The dashed line corresponds to a system with fundamental scalar, Zφ|k=Λ = 1,
ε . 1, and strong scalar self-interaction. The dotted lines exhibit the destabilization of the
bound-state fixed point by the increasing gauge coupling.

scalars, fermions and gauge fields, where the scalar sector is initially weakly coupled to
the fermions. If we start in the broken regime, scalar fluctuations will drive the system
towards the symmetric regime before the fermion-gauge-field interactions induce sizable
bound-state effects which can exert an influence on the scalar sector. In this scenario, the
first fixed point ε̃∗1 < 0 is a measure of the strength of the initial effective coupling between
scalars and fermions. For strong effective coupling, ε̃Λ < ε̃∗1, an initial negative scalar mass
of the order of the cutoff, m̄2

∣∣
k=Λ

' −O(Λ2) will induce a vacuum expectation value and
a fermion mass of the same order, in agreement with naive expectations. But at weak
effective coupling, e.g., h2 ∼ O(1), λφ ' 100 and ε̃∗1 < ε̃Λ < 0, the system can still start
with an initial negative scalar mass m̄2

∣∣
k=Λ

' −O(Λ2), but finally run into the bound-state
fixed point. As an important result, the vacuum expectation value and the fermion mass
after symmetry breaking can easily be orders of magnitude smaller than the UV scale, as
exhibited in Fig. (1) in the Introduction. We conclude that all systems with ε̃Λ > ε̃∗1 belong
to the QCD universality class.

Let us now turn to the properties of the system at the bound-state fixed point. The
crucial observation is that not only ε̃ but also all dimensionless scalar couplings approach
fixed points. In the general case, the fixed-point values depend in a complicated form on
all parameters of the system. However, in the limit ε� 1 (QCD-like), we can find analytic
expressions that satisfy the fixed-point conditions ∂t(ε, h

2, λφ) = 0 to leading order:

ε∗ ' 2

|Qσ| , (31)

(h∗)2 ' 2|βg4
λ̄σ
| g4

|Qσ| =
12

|Qσ|
C2(Nc)(Nc + 2)(Nc − 1)

N2
c

v4l
(FB),4
1,2 g4

λ∗φ ' Nc (h∗)4

6C2(Nc) g2
.

From the first equation, we read off that the approximation ε� 1 is equivalent to assuming
|Qσ| � 1, which is roughly fulfilled in our numerical study with our choice of Q0

σ = −0.1.
The remarkable properties of the IR fixed point become apparent when considering the

renormalized scalar mass, m2 = εk2. Since ε → ε∗, the scalar mass simply decreases with
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the scale k, so that it is only natural to obtain small masses m2 � m̄2
Λ for small scale

ratios k � Λ. In other words, even if we start with a scalar mass of the order of the cutoff,
m̄2
∣∣
k=Λ

∼ Λ2, no fine-tuning will be necessary to obtain small mass values at low-energy
scales, as long as the running is controlled by the bound-state fixed point.

In order to approach the χSB regime, the bound-state fixed point has to be destabilized;
otherwise, the system will remain in the symmetric regime as is the case in QED. In QCD,
this destabilization arises from the increase of the gauge coupling towards the infrared [10].
From the third and last term of Eq. (30), it is obvious that an increasing gauge coupling
lifts the ∂tε̃ parabola (see Fig. 2, dotted lines). For some value g2

D of the gauge coupling,
the two fixed-points in ε̃ will be degenerate, so that there is no fixed point at all for all
g2 > g2

D. The beta function ∂tε̃ is then strictly positive, which drives the system towards
the χSB regime.

In the limit ε � 1, the critical gauge coupling of fixed-point degeneracy g2
D can be

computed analytically, and we find:

g2
D '

16

3
π2 Nc

Nc − 1

(√
1 +

1

Nc + 1
− 1

)
' 4

3
π2 1

C2(Nc)
, (32)

where we have used linear cutoff functions [11] for which l
(FB),4
1,2 = 3/2. For instance, for

SU(3) we get αD =
g2D
4π
' π

4
, which is in the nonperturbative domain, as expected.4 As soon

as g2 exceeds g2
D, the running of the scalar couplings is no longer protected by the bound-

state fixed point. Here all couplings are expected to run fast, being strongly influenced
by the details of the increase of the gauge coupling. Once chiral symmetry is broken, the
fermions decouple and the fermionic and (most of the) scalar flow essentially stops.

The scenario discussed here finally explains why the IR values of the scalar and fermionic
couplings inherit their order of magnitude from the QCD scale ΛQCD as they should,
whereas particularly the details of the scalar sector at the UV scale are of no relevance,
owing to the fixed-point structure inducing QCD universality.

4 Numerical results

In the following, we concentrate on the set of theories that belong to the QCD universality
class. In order to illustrate how universality arises from the presence of the bound-state
fixed point, we initiate our flows at a GUT-like scale of Λ = 1015GeV, where the gauge
coupling is weak and increases only logarithmically towards the infrared. Therefore, the
bound-state fixed point exists over a wide range of scales. As discussed before, hardly any
dependence on the specific initial values for the scalar potential and the Yukawa coupling
remains because of the fixed point, as we will demonstrate quantitatively in the following.

For illustrative purposes, we concentrate here on QCD-like scenarios where the scalar is
auxiliary at the UV scale, and explore this parameter space using the natural choice given
by Eq. (8) as a reference; to be precise, we use the reference set,

m̄2
∣∣
k=Λ

= Λ2, λ̄φ
∣∣
k=Λ

= 0, Zφ
∣∣
k=Λ

= 10−8, h̄2
∣∣
k=Λ

= 10−12,

⇔ ε
∣∣
Λ

= 108, λφ|Λ = 0, h|Λ = 10−2, (33)

4Strictly speaking, the value of g2
D is not a physical quantity and depends on the choice of the cutoff

function, i.e., regularization scheme. This is only natural, since the running of the coupling itself also
depends on the regularization. The scheme dependence, however, cancels out in physical quantities.
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Figure 3: Flow of ε, h and λφ in the symmetric regime according to Eqs. (16), (17),
(20), and (25). The solid lines correspond to the reference set (33), whereas the dotted
and dashed lines represent the flows for strongly differing initial values as indicated. The
insensitivity with respect to the choice of initial conditions is clearly visible. On the
horizontal axis, the exponent t10 is used for the scale k = 10t10GeV.

in our numerical studies. In all computations, we use linear cutoff functions proposed in
[11] for which the threshold functions can be determined analytically (see App. A). We
plot the flows of the renormalized dimensionless couplings ε, h and λφ in Fig. 3 for the
symmetric regime. The reference set (33) is depicted as solid lines, whereas the dashed
and dotted lines correspond to initial values which deviate from the reference set (33) by
many orders of magnitude for the corresponding couplings.

As long as we start in the range of attraction of the bound-state fixed point, we can
obviously vary the initial values for the scalar couplings over many orders of magnitude
without any appreciable effect. The system quickly approaches the bound-state fixed
point, where the initial values of the couplings become unimportant. In particular, the
scalar mass, which is allowed to be of the order of the cutoff or even much larger at k = Λ,
runs to small values ∼ k while the system is governed by the bound-state fixed point. No
fine-tuning is necessary for this.5 Let us stress once more that these features of universality
are not restricted to the reference set (33) and the variations thereof. They can also be
found in Yukawa models with a fundamental scalar (Zφ|k=Λ = 1) and even if we start in
the broken regime at the UV scale (see Fig. 1).

At the bound-state fixed point, the couplings are modulated only by the logarithmically
slow increase of the gauge coupling. Incidentally, the modulation of ε̃ = ε/h2 is completely
carried by h, whereas ε stays fixed. This agrees with our analytical fixed-point values found
in Eq. (31). A rapid change for the couplings in Fig. 3 is visible after g2 exceeds g2

D and
the bound-state fixed point has disappeared (t10 . 1).

The behavior of the system changes rapidly after the gauge coupling has grown large.
For g2 > g2

D, the bound-state fixed point vanishes and all couplings start to run fast.
The system necessarily runs into the χSB regime where the scalars develop a vacuum
expectation value and the fermions acquire a mass

m2
f = lim

k→0
k2 κh2 ≡ (hσR)2, (34)

where σR = limk→0

√
Zφ ρ0 denotes the renormalized expectation value of the scalar field.

5As a fairly weak condition, we only have to ensure that the initial scalar couplings are such that no
strong four-fermion interaction is implicitly induced by the initial values; in this case, the system starts to
the left of the first fixed point ε̃∗1 and rather resembles a nonabelian gauged NJL model with PχSB .
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This leads to a decoupling of the fermions, and, consequently, fermion-boson translation
is “switched off”. Also the flow of the Yukawa coupling stops, the scalar and fermion
anomalous dimensions approach zero, and κ runs according to its trivial mass scaling,
κ ∼ 1/k2, so that mf approaches a constant value.

Whereas the qualitative picture is rather independent of the details of the running gauge
coupling, quantitative results are highly sensitive to the flow of the gauge sector. This is
because a finite amount of “RG time” passes from the disappearance of the bound-state
fixed point to the transition into the χSB regime. In between, the running of the gauge
coupling exerts a strong influence on all other couplings which are no longer protected
by any fixed point. A purely perturbative running of the gauge coupling turns out to be
insufficient for the present purpose, since the (unphysical) Landau pole destabilizes the
system in the infrared.

For definiteness, let us consider a running coupling governed by the beta function

∂tg
2 = βg2 = ηFg

2 = −2

(
b0

g4

16π2
+ b1

g6

(16π2)2

)[
1− exp

(
1

α∗
− 1

g2

4π

)]s
, (35)

b0 =
11

3
Nc − 2

3
Nf, b1 =

34

3
N2

c −
38

3
Nf

for our numerical studies. In the UV, this beta function exhibits an accurate two-loop
perturbative behavior, whereas the coupling runs to a fixed point αs ≡ g2/(4π) → α∗ in
the IR for k → 0. In the first place, the infrared fixed point is convenient for numerical
purposes, since it does not lead to artificial IR instabilities. Moreover, an infrared fixed
point for a mass-scale-dependent running coupling is compatible with the expected mass
gap in Yang-Mills theory. Below this mass gap, all gauge field fluctuations decouple from
the flow and can no longer drive the flow of the coupling. Different beta functions with
and without infrared fixed points are studied in Appendix B. It turns out that, though
the infrared properties such as the constituent quark mass depend quantitatively on the
choice of the beta function as expected, the universal features discussed in the following
remain untouched.

In combination with Eq. (35), the system of flow equations is now closed and provides us
with an answer for the (truncated) quantum effective action, once we specify all parameters
and initial values. We have investigated SU(Nc = 3) gauge theory with initial value g(Λ)
chosen such that αs acquires its physical value at the Z-boson mass, αs(MZ) ' 0.117. We
work in the Landau gauge, ξ = 0, which is known to be a fixed point of the renormalization
flow in the gauge sector [12],[13]. If we had an exact flow equation at our disposal this
choice would fix the system completely.

In our truncation, however, we have the parameter Q0
σ, in addition to the Yang-Mills

beta function, which characterizes our ignorance of the exact flow. The quantity Q0
σ mea-

suring the momentum suppression of the four-fermion interaction will be set to Q0
σ = −0.1,

in agreement with our considerations given above. It turns out that the infrared properties
of the system are only weakly dependent on this parameter and on ξ (see below), which
substantiates our truncation. Furthermore, we choose α∗ to be of order 1, but not too close
to g2

D/(4π) in order to avoid pathologies: α∗ = 2.5.
For this concrete scenario, the transition to the χSB regime occurs at kχSB ' 423MeV.

The renormalized scalar mass slightly above kχSB and the VEV of the scalar field below
kχSB are depicted in Fig. 4 (left panel). According to Eq. (34), we find a constituent quark
mass of mf ' 371MeV as shown in Fig. 4 (right panel). Of course, these numbers depend
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Figure 4: Flow of the scalar mass m, the scalar VEV σR, and the constituent quark mass
mf close to and in the χSB regime, using the reference set (33). For the particular choice
for the running of the gauge coupling according to Eq. (35) with α∗ = 2.5, the transition
occurs at kχSB ' 423MeV.

strongly on the details of the Yang-Mills beta function for strong coupling αs ∼ 1; various
other examples are discussed in Appendix B. Finally, the running of λφ, h

2 and the scalar
and fermionic wave function renormalizations is collected in Fig. 5.

Focusing on low-energy QCD-like aspects of our truncated system, it is also remarkable
that (apart form the scalar couplings) the choice ofQ0

σ has little effect on infrared properties
of the system: varying Q0

σ between −0.5 . . . 0.001 changes kχSB or mf only at the level of
less than 10%. This is reassuring and in contrast to the strong Q0

σ-dependence of the
bound-state fixed-point values of ε∗ and h∗. The variations of the infrared properties are
similarly small for changes in the gauge parameter in the interval ξ = 0 . . . 2.

To summarize, a large class of QCD-like theories including a scalar degree of freedom
belong to the QCD universality class owing to an attractive infrared fixed point present
for weak gauge coupling. Even before the gauge coupling becomes strong, all theories
in this universality class are indistinguishable at low energies. They exhibit an identical
approach to χSB which is triggered and quantitatively determined by the increase of the
gauge coupling.

5 Instanton-mediated interactions, axial anomaly

and the fate of the eta boson

Up to now, we have considered only that part of the model which has a global UA(1)
symmetry corresponding to simultaneous axial phase rotations of the scalars and fermions.
In QCD, this symmetry is anomalously broken by the presence of gauge-field configurations
of nontrivial topology. For instance, instantons induce fermion interactions which break
this symmetry. In an instanton–anti-instanton background, the Nf = 1 interaction is mass-
like and can be expressed as [14]

LI+A =

∫ f̄c(k,mf)

0

d%

%5
dNc

0 (%)CE(Nc) (2π2%3)

(
α(1/ρ)

α(µ̄)

)−4/b0

(ψ̄RψL − ψ̄LψR), (36)

dNc
0 (%) :=

4.6 e−1.68Nc

π2(Nc − 1)!(Nc − 2)!

(
2π

αs(1/%)

)2Nc

e−
2π

αs(1/%) ,
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Figure 5: Flow of λφ, h
2, and the wave function renormalizations Zφ and Zψ over the

complete range of scales for the reference set (33). The rapid change of all couplings near
t10 = log10 kχSB /Λ ' −0.5 is visible. Whereas h2, Zφ and Zψ approach fixed points in the
deep infrared owing to decoupling, λφ decreases logarithmically owing to a massless “eta”
in absence of the axial anomaly.

where CE(Nc) is a color factor that arises from averaging over all possible embeddings of
SU(2) into SU(Nc), e.g., CE(2) = 1, CE(3) = 2/3, and µ̄=1GeV is the renormalization
scale for the fermion fields. Note that we introduced an IR cutoff function f̄c(k,mf) in
the upper bound of the instanton radius % integration. This function should cut off the
contribution from all modes with momenta either below k or the generated fermion mass
mf, and thereby implements the renormalization group formulation of this interaction in a
simple manner. The % integration is UV finite for %→ 0 owing to asymptotic freedom, and
the infrared (%→∞) is controlled by the cutoff f̄c and by the increase of the coupling.

In order to incorporate this interaction, we note that Eq. (36) already corresponds to
an integrated flow, LI+A = m̄I+A (ψ̄RψL− ψ̄LψR), where the flow of the induced mass m̄I+A

is given by6

∂tm̄I+A = 2π2Zψ

[
dNc

0 (%)CE(Nc)

(
α(1/ρ)

α(µ̄)

)−4/b0
]
%=f̄c(k,mf)

∂tf̄c(k,mf), (37)

with the initial condition m̄I+A(k = Λ → ∞) → 0. For consistency, we also included
here the fermion wave function renormalization Zψ, which was not taken into account in
Eq. (36) as derived in [14]. Since f̄c has mass dimension -1, an appropriate choice is given
by

f̄c(k,mf) =
1

k
fc(κh

2), with fc(0) = 1, fc(κh
2)
∣∣
κh2→∞→

1√
κh2

, (38)

6A more rigorous treatment of anomalous UA(1) breaking within the flow equation formalism has been
suggested in [15].
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such that f̄c(0, mf) = 1/mf. For our numerical solutions, we will use fc(x) = (1 + x)−1/2

for simplicity. With these definitions, we can rewrite Eq. (37) as

∂tm̄I+A = −2π2Zψ
k

fc
dNc

0 (fc/k)CE(Nc)

(
α(k/fc)

α(µ̄)

)−4/b0 (
1 +

(−f ′c)
fc

∂t(κh
2)

)
, (39)

where fc = fc(κh
2), and the prime denotes a derivative.

Now we could repeat the calculation of the flow equations of Sect.2 including this
fermion mass term in the propagator. In this way, however, we would induce a number of
UA(1) noninvariant fermion-fermion and fermion-scalar couplings which complicate the cal-
culation unnecessarily. Instead, we propose a generalization of the field transformation (23)
which serves to translate the instanton-induced interaction into the scalar sector:

∂tφk(q) = −(ψ̄LψR)(q) ∂tαk(q) + φk(q) ∂tβk(q) + ∂tγk + (φ∗kφk)φk ∂tδk,

∂tφ
∗
k(q) = (ψ̄RψL)(−q) ∂tαk(q) + φ∗k(q) ∂tβk(q) + ∂tγk + (φ∗kφk)φ

∗
k ∂tδk, (40)

with additional a priori arbitrary functions γk and δk, whereas αk and βk are those of
Sect. 2. The term ∼ ∂tγk corresponds to a UA(1) violating shift of the scalar field which
can compensate for the instanton-induced fermion mass. The flow of m̄I+A is now given by

∂tm̄I+A = ∂tm̄I+A

∣∣
φk

+ h̄ ∂tγk − 1

2
ν̄ ∂tαk, (41)

where the second and third terms arise from the transformation of the Yukawa interaction
and the last term in Eq. (6), respectively. Now we can determine γk such that ∂tm̄I+A = 0
holds on all scales. In this way, the instanton interaction does not affect m̄I+A (which
vanishes on all scales), but is translated into the scalar sector and contributes to the
running of ν̄. In the point-like limit (q2 = 0), we find:

∂tν̄ = −2m̄2 ∂tγk + ν̄ ∂tβk. (42)

Introducing the dimensionless renormalized quantity

ν =
ν̄

Z
1/2
φ k3

, ⇒ νR = k3 ν, (43)

where νR denotes the renormalized (dimensionful) value, we finally arrive at

∂tν = −
(
3− ηφ

2

)
ν − 4π2 ε

h
dNc

0 (fc/k)CE(Nc)

(
α(k/fc)

α(µ̄)

)−4/b0 1

fc

(
1 +

(−f ′c)
fc

∂t(κh
2)

)

+
ν

h2

(
1 + (1 + ε)2Qσ

)(
βg

4

λ̄σ
g4 + βh

4

λ̄σ
h4
)
, (44)

which describes the running of the axial anomaly in the instanton approximation.
The shift ∼ ∂tγk induces another UA(1) violating term (φ∗φ)(φ∗ + φ) via the transfor-

mation of the λφ(φ
∗φ)2 term. This can be cancelled by an appropriate choice of the last

transformation function δk in Eq. (40), which has to satisfy

λ̄φ ∂tγk − 1

2
ν̄ ∂tδk = 0. (45)
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Finally, the terms ∼ δk in Eq. (40) influence the running of λφ via the transformation of
the scalar mass term. The modified flow equation for λφ reads:

∂tλφ = ∂tλφ
∣∣
φk

+ 4
λφ
h2

(
1 + 2ε+ (1 + ε)2Qσ

)(
βg

4

λ̄σ
g4 + βh

4

λ̄σ
h4
)

+16π2 ελφ
νh

dNc
0 (fc/k)CE(Nc)

(
α(k/fc)

α(µ̄)

)−4/b0 1

fc

(
1 +

(−f ′c)
fc

∂t(κh
2)

)
. (46)

These equations are valid in the symmetric regime with similar equations for the χSB
regime displayed in appendix C.

Strictly speaking, the system is never in the symmetric regime, since chiral symmetry
is always broken implicitly by a nonzero ν term which induces a nonzero VEV σ0 for
the scalar field. For instance, rotating the VEV into the real component, φ = σ0 = φ∗,
σ0 =

√
ρ0, the location of the minimum obeys

0 = U ′(ρ0) = m̄2 + λ̄φρ0 − ν̄

2
√
ρ0

⇒ 0 = ε+ κλφ − 1

2

ν√
κ
. (47)

Obviously, κ = 0 is not allowed if ν 6= 0, owing to the linear term in φ in Eq. (6). The
running of the minimum can be inferred from

0 = ∂tU
′(ρ0)

∣∣
ρ

= U ′′(ρ0) ∂tρ0 + ∂tU
′(ρ0)

∣∣
ρ0

⇒ ∂tρ0 = − 1

λ̄φ + ν̄
4
ρ
−3/2
0

∂tU
′(ρ0)

∣∣
ρ0
. (48)

Since the instanton-induced terms are exponentially small for the major part of the flow, the
minimum of the potential is actually very close to zero, and the equations for the symmetric
regime of Sect. 2 can be used up to tiny corrections. The solution of the flow equations
is numerically difficult with an exponentially small κ in the broken regime. Therefore, we
decide to solve the flow equations for large enough k in the symmetric-regime formulation.
In this regime, ν evolves according to Eq. (44) with only a subdominant coupling to the
other flow equations via Eq. (46). Then we switch to the broken-regime description at
that scale where the instanton-induced fermion mass mf is of the order of a few MeV; this
procedure induces an error only at the per-mille level and turns out to be insensitive to
the details of the switching scale.

We have analyzed the flow equations including the instanton-mediated interaction nu-
merically and used the reference set of initial conditions as defined in Sect. 4 (see Eq. (33))
for a direct comparison. As expected, most properties of the system are unaffected by
the instantons, while the system is governed by the bound-state fixed point. Here the
instanton-induced effects are exponentially suppressed, since the coupling is small. In par-
ticular, the running of the scalar mass ε and the Yukawa coupling are identical to the ones
displayed in Fig. 3, and the universality properties discussed in Sect. 4 remain unaffected.

The renormalized axial anomaly νR is plotted in Fig. 6 (left panel). It remains exponen-
tially small for a large part of the flow and becomes of order (GeV)3 and larger only in the
strong-gauge-coupling regime. Here, however, it contributes strongly to the VEV of the
scalar field and consequently to the constituent quark mass which leads to the decoupling
of the fermions.

We observe a rather smooth onset of fermion-mass generation. Furthermore, the con-
stituent quark mass is strongly enhanced by the instanton interactions. For the reference
set, we find mf = 1765MeV in the infrared limit k → 0. Again, this number depends
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Figure 6: Left panel: axial anomaly νR in the vicinity of the scale of fermion decoupling.
Right panel: instanton-induced fermion mass. Both plots refer to the reference set (33)
and the particular choice for the running of the gauge coupling according to Eq. (35) with
α∗ = 2.5. Comparison with Fig. 4 shows that the fermion mass is dominated by instanton
effects.

strongly on the precise choice of the running gauge coupling in the infrared, and a number
of other possibilities including instanton effects is listed in Appendix B.

Let us finally discuss the fate of the “would-be” Goldstone boson, which we may call
the eta boson in the style of real QCD. Neglecting the axial anomaly, this boson arises from
spontaneous breakdown of the global UA(1) as a true massless Goldstone boson; its effects
on the scalar sector even after χSB are visible in the logarithmic running of the scalar φ4

coupling λφ as can be seen in Fig. 5. The UA(1) anomaly, however, generates a mass of
the eta boson. In the present formulation, the UA(1) anomaly occurs as the ν̄ term in the
scalar potential (6). Its contribution to the renormalized eta mass can be computed as

m2
η =

νR

2σR
. (49)

Within the above-given framework of instanton-mediated interaction, we find for the eta
boson mass in the QCD universality class a value of mη ' 4440MeV. Of course, this value
also strongly depends on the choice of the running of the gauge coupling and should be used
only for comparison with other masses computed for the same running gauge coupling. In
particular, we find roughly the ratio mη/mf ' 3. This scenario giving rise to a heavy mass
of a would-be Goldstone boson is familiar from three-flavor QCD.

By contrast, the fate of the eta boson is more spectacular if we go beyond the border
of the QCD domain to that of PχSB, corresponding to a choice of m̄2

Λ < m̄2
c in Fig. 1

or ε̃Λ < ε̃∗1 in Fig. 2. Here, the VEV of the scalar field is generically of the order of the
cutoff Λ = 1015GeV. At the same time, the fermions rapidly become massive and decouple
from the flow only a little below Λ. As a consequence, instanton contributions or other
long-distance topological properties have little effect on the fermion sector and thus the
axial anomaly exerts hardly any influence on the scalars. As a result, the contributions to
the eta mass are strongly suppressed – powerlike in the denominator and exponentially in
the numerator. For instance, for the set of initial parameters corresponding to Fig. 1 (right
panel) with m̄2

Λ slightly below m̄2
c , we find an extremely small eta mass, mη ' 2 · 10−30eV.

For smaller m̄2
Λ, the eta mass decreases even further, and larger eta masses require a

tremendous fine-tuning of m̄2
Λ close to m̄2

c .
In this scenario beyond the QCD universality class, we have thus found a mechanism to
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generate extremely small masses without any fine-tuning. From another perspective, this
mechanism exploits the fundamentally different RG properties of scalars and chiral gauge
theories. For systems in the universality class of PχSB , the χSB scale of the scalar sector
is generically of the order of the UV scale, whereas the nonperturbative scale of the gauge
sector can be much smaller. Now the mass of the would-be Goldstone boson is generated
by the nonperturbative sector of the gauge theory which is exponentially suppressed at the
UV scale. This interplay finally leads to the generation of the extremely small mass.

6 Conclusions

In this work, we studied a class of theories involving one-flavor massless QCD and a chiral
color-singlet scalar field. Our model is parametrized by the gauge coupling and a number
of scalar couplings. In this framework, we identified the QCD universality class of theories
which share the same physics at low energies, namely spontaneous breaking of chiral sym-
metry triggered by the strongly interacting gauge sector at the QCD scale. As a remarkable
result, the QCD universality class contains theories with fundamental scalars where the
microscopic scalar potential has its minimum at nonzero field (m̄2

Λ > m̄2
c ∼ −O(Λ2)).

The mechanism that establishes QCD universality is the occurrence of an infrared at-
tractive bound-state fixed point in the scalar couplings which persists over a wide range of
scales as long as the gauge coupling is weak. At this fixed point, the scalar field exhibits
quark-antiquark bound-state behavior and the RG running of the scalar couplings is gov-
erned by the RG behavior of QCD. All memory of the scalar initial conditions is lost by
the system. As a remarkable consequence, the scalar mass is not a relevant operator at this
fixed point. For increasing gauge coupling, the bound-state fixed point is destabilized and
the system runs towards the χSB regime. Here the role of the scalar field changes and it
can characterize (quark) condensates and (mesonic) excitations on top of the condensate.

Beyond the QCD universality class, we find the class of theories exhibiting perturbative
spontaneous chiral symmetry breaking (PχSB). In this class, the system is mainly driven
by the scalar sector, and IR properties such as condensates and generated fermion masses
depend strongly on the initial scalar parameters. The gauge sector exerts hardly any
influence on the fermions in this class unless the scalar parameters are fine-tuned to a high
precision. In the deep IR, pure gluodynamics without dynamical quarks remains. The flow
of the scalar couplings is never in the attractive domain of the bound-state fixed point, but
is governed by a fundamental-particle fixed point. Small deviations from this fixed point
have an infrared unstable component which corresponds to the RG relevant scalar-mass
operator.

In both universality classes, we found interesting implications. Our setup of the QCD
universality class admits a resolution of an old puzzle: whereas QCD has no fine-tuning
problem and is completely determined by fixing the coupling at a certain scale, low-energy
QCD models based on NJL-type fermion self-interactions depend strongly on additional pa-
rameters such as an intrinsic UV cutoff. In the context of partial bosonization, this cutoff-
dependence corresponds to a strong dependence of IR observables on the bosonization scale
(or the value of the scalar mass at this scale). In our approach with scale-dependent field
transformations, partial bosonization occurs at all scales, and no artificial dependence on
unphysical scales is introduced. In our truncation, QCD flows continuously from a high
scale with quarks and gluons as the relevant degrees of freedom to intermediate scales with
quarks, gluons and quark bound states and further to low scales with constituent quarks,
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condensates and mesons.
In the PχSB universality class with one fermion flavor, we identified a natural mecha-

nism for the generation of extremely small scalar masses without fine-tuning. The mech-
anism exploits the fact that the spontaneous breaking of the UA(1) symmetry would lead
to an exactly massless Goldstone boson in absence of the gauge interactions. The axial
anomaly in the gauge sector then endows a small mass to this boson. Owing to the highly
different RG behavior of the scalar and the gauge sector, the scale of PχSB differs gener-
ically from the scale of nonperturbative gauge effects by many orders of magnitude. This
leads to an exponential suppression of the influence of the axial anomaly and thus to an
exponentially small but nonzero scalar mass.

We stress that all of our main conclusions can be drawn from a mere perturbative knowl-
edge of the gauge sector which is well under control. In a broader sense, the pure QCD
sector in our work can be regarded as a particular example for possible other (nonpertur-
batively) renormalizable theories leading to fermionic self-interactions in scalar channels.

Let us finally discuss our findings from a different perspective, concentrating on the
scalar sector. Scalar fields are known to lead to profound problems in quantum field theory
for two reasons: triviality and (un-)naturalness. Triviality tells us that an interacting scalar
theory requires a UV cutoff which cannot be removed without switching off the interaction.
Therefore, whenever we see a scalar quantum field at some low scale, we know that there
must be new physics at a higher scale. The problem of naturalness tells us that it is
difficult to achieve a large separation of scales for models with interacting scalar fields
without fine-tuning.

Our formulation has the potential to solve both problems. A first example can be
given within the QCD universality class. Although from a QCD perspective, the scalar
field could be regarded as purely auxiliary, nothing prevents us from considering it as
fundamental, since the concepts of compositeness and fundamentality are interchangeable
from the viewpoint of our flow equation with field transformations. We showed in detail
that “standard” QCD at low energies is indistinguishable from QCD with a fundamental
scalar, as long as the latter system is in the QCD universality class. In this way, we can
circumvent triviality by starting in the UV from a scalar field theory without self-interaction
and Yukawa coupling for which the continuum limit can be taken trivially. The scalar
interactions are induced by quantum fluctuations. In this construction, the system is always
in the QCD universality class, and therefore inherits the number of relevant and marginal
operators form QCD. In particular, the scalar mass term is not a relevant operator, so that
no naturalness or fine-tuning problems arise in and from the scalar sector. Alternatively,
we could also follow the bound-state fixed point to k →∞, where it presumably becomes
an exact fixed point even beyond our truncation. (The β function for the running gauge
coupling vanishes, owing to asymptotic freedom in this limit.)

Perhaps more interesting is a second possibility in the PχSB class. Let us consider for
k → ∞ a scalar model with Zφ → 0, λφ → 0 and m̄2, h̄ chosen such that ε̃ corresponds
to the fixed point ε̃∗1. This model has an alternative interpretation as a model with four-
fermion interactions (and no scalar field). Both the gauge coupling and the critical four
fermion coupling

λ̄∗σ =
1

2ε̃∗1k2
(50)

vanish for k → ∞. If this fixed point persists beyond our truncation, it defines a nonper-
turbatively renormalizable theory [16]. For lower k a nonzero λφ is generated by the flow
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and we end up with a theory that effectively looks like a model with an interacting funda-
mental scalar field. This scalar field can give mass to the quarks by PχSB independently
of the strong interactions, in analogy to the Higgs scalar. The triviality problem could be
solved in this case – but not the naturalness problem, since we expect a relevant parameter
corresponding to the scalar mass term.

This discussion sheds new light on the continuous transition between the PχSB and
QCD universality classes. In the language of statistical physics, it can be considered as
a type of crossover between the “fundamental fixed point” ε̃∗1 and the “bound-state fixed
point” ε̃∗2. As a particularity, the gauge coupling is a marginal parameter for both fixed
points. The scale where it becomes strong sets the lowest possible scale for the effective
fermion masses.

Quite generally, the existence of a bound-state-like fixed point leads to a mechanism
with a naturally small scalar mass. In a sense, this is a realization of earlier ideas of a
large anomalous mass dimension for the scalar field or “self-organized criticality” [17]. It
would be interesting to know if a similar mechanism could contribute to an understanding
of electroweak symmetry breaking which occurs at a characteristic scale hundreds of times
bigger as compared to QCD.
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Appendix

A Threshold functions

The regularization scheme dependence induced by the cutoff function Rk is carried by the
threshold functions l and m. Let us represent the cutoff functions in the scalar, fermion
and gauge sector by

Rφ
k(q

2) = Zφ,kq
2r(y), Rψ

k (q) = −q/ rF(y),
(
RA
k (q)

)
µν

= q2r(y)

(
gµν −

(
1− 1

ξ

)
qµqν
q2

)
,

(A.1)

where y = q2/k2, and r and rF denote dimensionless cutoff shape functions. Furthermore,
it is useful to introduce the inverse average propagators P (x) = x(1+r(x/k2)) and PF(x) =
x(1 + rF(x/k2))2, where x = q2.

Most of the threshold functions given above are defined in Appendix A of [4]. The ones
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which cannot be found therein are marked with a tilde. These can be defined as follows:

m̃
(FB),d
1,1 (wF, wB; ηψ; ηφ)

= −1

2
k4−d

∫ ∞

0

dx xd/2−1 ∂̃t

[
1 + rF(x/k2)

PF(x) + k2wF

1

P (x) + k2wB

]
, (A.2)

l̃
(FB),d
1,2 (wF, wB; ηψ, ηB)

= −1

2
k6−d

∫ ∞

0

dx xd/2−1 ∂̃t

[
PF(x)

(PF(x) + k2wF)2

1

(P (x) + k2wB)2

]
, (A.3)

l̃
(FBB),d
1,1,1 (wF, wB1, wB2; ηψ, ηB)

= −1

2
k6−d

∫ ∞

0

dx xd/2−1 ∂̃t

[
PF(x)

(PF(x) + k2wF)2

1

P (x) + k2wB1

1

P (x) + k2wB2

]
,(A.4)

where ηB denotes one of the anomalous dimensions of the bosonic propagators under con-
sideration, ηφ or ηF in our case. The derivative ∂̃t acts on the k dependence of the cutoff
function only (for an explicit representation of ∂̃t, see [4]). Some relations among the
threshold functions are given by

l̃
(FBB),d
1,1,1 (wF, wB, wB; ηψ, ηB) ≡ l̃

(FB),d
1,2 (wF, wB; ηψ, ηB),

l̃
(FB),d
1,2 (wF = 0, wB; ηψ, ηB) = l

(FB),d
1,2 (wF = 0, wB; ηψ, ηB). (A.5)

For our numerical computations, we use the linear cutoff functions proposed in [11] (y =
q2/k2),

r(y) =

(
1

y
− 1

)
θ(1− y), rF(y) =

(
1√
y
− 1

)
θ(1− y), (A.6)

for which all integrals listed above can be performed analytically, yielding in the present
context:

m̃
(FB),d
1,1 (wF, 0; ηψ, ηF ) =

2

d− 1

1

1 + wF

[
1

2

(
1 +

d

2
ηψ

)
− ηF
d+ 1

+
(1− d

2
ηψ)

1 + wF

]
, (A.7)

l̃
(FB),d
1,2 (wF, 0; ηψ, ηF ) =

2

d

1

(1 + wF)2

[(
1− 2ηF

d+ 2
+

ηψ
d+ 1

)
+

2

1 + wF

(
1− ηψ

d+ 1

)]
,

l̃
(FBB),d
1,1,1 (wF, w1, w2; ηψ, ηφ) =

2

d

1

(1 + wF)2(1 + w1)(1 + w2)

×
[(

1

1+w1
+

1

1+w2

)(
1− ηφ

d+2

)
+

(
2

1+wF
− 1

)(
1− ηψ

d+1

)]
.

The representations of all other threshold functions for the linear cutoff can be looked up
in [8].

B Nonperturbative running of the gauge coupling

The infrared quantities serving as “physical observables” in the present work, such as the
constituent quark mass or the eta boson mass, depend on the precise choice of the effective
gauge coupling in the nonperturbative domain. In order to gain more insight into this
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dependence, we study different gauge coupling β functions proposed in the literature in
this appendix. Here we focus on theories within the QCD universality class which are
sensitive to the infrared physics of the gauge sector.

In Sect. 4, we used a β function with accurate two-loop behavior and an IR fixed-point
at α∗ = 2.5. We denote this β function defined in Eq. (35) serving as a reference as
βRef in the following. Such β functions with a fixed point of the gauge coupling in the
infrared have a long tradition in the literature and have frequently been discussed from a
phenomenological viewpoint [18]. Furthermore, some theoretical evidence for the existence
of such a fixed point has been collected in certain nonperturbative approximation schemes.
However, due to the lack of a unique nonperturbative definition of the gauge coupling and
due to an inherent regularization scheme dependence of the β function, a comparison of
different theoretical approaches and a connection to phenomenology is difficult to make.
Here we take a pragmatic point of view and use the various running couplings as effective
ones which are implicitly defined by their use in our approach.

Recently, an actual nonperturbative computation of the running coupling has been set
up in the framework of truncated Schwinger-Dyson equations in Landau gauge [19], reveal-
ing an infrared fixed point; these results also receive some support from lattice calculations
[20]. For our purposes, we use the representation given in [21] for the running coupling,

g2
SDE(x) =

4π α∗,SDE

ln(e+ a1xa2 + c1xc2)
, where α∗,SDE = 2.972, (B.8)

and a1 = 5.292GeV−2a2 , a2 = 2.324, c1 = 0.034GeV−2c2, c2 = 3.169. This coupling is also
normalized to the standard value at the Z mass, and we identify x = k2/(GeV)2. The β
function is given by βSDE = ∂tg

2
SDE.

As a second example, we use the running coupling arising from a scheme called “Ana-
lytic Perturbation Theory” [22] that has been devised for enforcing analyticity properties of
the coupling in the time-like and space-like (Euclidean) region. For our numerical routine,
we use the approximate (but two-loop accurate) representation

g2
APT(x) =

(4π)2

b0

(
1

l2(x)
+

1

1− exp[l2(x)]

)
, (B.9)

l2(x) = ln x+
b1
b20

ln
√

ln2 x+ 4π2, (B.10)

where we identify x = k2/(1349MeV)2, so that this coupling is also normalized at the Z
mass. In the infrared k → 0, the coupling tends to the fixed point α∗,APT = 4π

b0
' 1.22 for

Nc = 3 and Nf = 1.
As a third example, we use a calculation of the running coupling based on a truncated

flow equation that also revealed an infrared fixed point α∗,FE [23]. The corresponding
βFE function was obtained as an extensive multiple integral which we will not display
here. Since this result holds for pure gauge theory, we incorporate one quark flavor in a
“quenched” approximation by adding the fermionic part of the two-loop β function to the
pure gauge result. This leads to an infrared fixed-point value of α∗,FE ' 3.43±0.01, where
the theoretical error arises from an incompletely resolved color structure in [23]. We would
like to point out that the definition of the running coupling used in [23] agrees with the
one of the present work.

As a simple example for a running coupling which does not tend to an infrared fixed
point, we employ a class of β functions that correspond to anomalous dimensions of the
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β function mf/MeV mη/MeV mη/mf kχSB /MeV m̃f/MeV

βRef 1765 4438 2.5 423 371
βSDE 1777 4226 2.4 457 427
βAPT 563 1990 3.5 4 3
βFE 903±2 2117±1 2.3 243±2 241±3
βη∗=−0.1 513 1793 3.5 11 8
βη∗=−0.5 1946 4534 2.3 394 395

Table 1: Characteristic masses mf and mη for various nonperturbative β functions for the
strong gauge coupling. The main uncertainty concerns the overall scale, whereas the ratio
mη/mf is relatively robust. We also show the scale of transition to χSB and the fermion
mass m̃f in absence of instanton effects.

gauge field ηF which become constant for k → 0. This is realized by the choice

βη∗ = −2

(
b0

g4

16π2
+ b1

g6

(16π2)2

)[
1− exp

(
−(16π2)2

2b1g4
(−η∗)

)]
, (B.11)

so that in fact ηF = βη∗/g
2 → η∗ for k → 0. For negative η∗, the running coupling increases

∼ (1/k)|η∗| for k → 0. As explicit examples, we choose η∗ = −0.1 and η∗ = −0.5 for the
numerical analysis.

The results of the numerical integration of the flow equations are collected in Tab. B.
For the various β functions denoted in the first column, we listed the transition scale kχSB

into the χSB regime and the generated fermion mass mf in the next two columns. These
results refer to calculations without axial anomaly and instanton-mediated interactions,
similarly to Sect. 4. In the last two columns the fermion mass with instanton contribution
and the mass of the eta boson are given.

Obviously, the quantities kχSB and mf in the calculation without axial anomaly are
roughly correlated. Furthermore, βAPT and βη∗=−0.1 lead to small values for kχSB and
mf, since both approach larger values of the coupling only very slowly. The fermion and
eta boson masses including the axial anomaly are not strictly correlated with the former
quantities. The running of the gauge coupling enters these quantities over a wider range of
scales, since sizable instanton contributions can already arise while the bound-state fixed
point is still present.

Nevertheless, our main observation is that the overall qualitative picture of the approach
to χSB, even in the nonperturbative domain, is rather independent of the details of the
gauge sector. On the one hand, a strong gauge coupling g2 > g2

D is all that is needed to
trigger χSB; on the other hand, fermion decoupling cuts off any strong influence of the
running coupling in the deep infrared. Quantitative results, of course, depend strongly
on the flow of the coupling between the scale at which g2 = g2

D and the scale of fermion
decoupling. This mainly concerns the overall scale, whereas mass ratios like mη/mf turn
out to be more robust.

25



C Flow equations with axial anomaly in the broken

regime

Here we collect the flow equations for the various couplings in the broken regime, including
the contributions arising from the axial anomaly. Let us begin with the scalar and fermion
anomalous dimensions:

ηφ = 4v4 κλ
2
φm

4
2,2(

ν
2
√

κ
, ν

2
√

κ
+ 2κλφ; ηφ)

+4Ncv4 h
2
[
m

(F),4
4 (κh2; ηψ) + κh2m

(F),4
2 (κh2; ηψ)

]
, (C.12)

ηψ = 2C2(Nc)v4 g
2
[
(3− ξ)m

(FB),4
1,2 (κh2, 0; ηψ, ηF)− 3(1− ξ) m̃

(FB),4
1,1 (κh2, 0; ηψ, ηF)

]
+v4 h

2
[
m

(FB),4
1,2 (κh2, ν

2
√

κ
+ 2κλφ; ηψ, ηφ) +m

(FB),4
1,2 (κh2, ν

2
√

κ
; ηψ, ηφ)

]
. (C.13)

Including the appropriately adjusted fermion-boson translation as outlined in Sect. 5, the
flow equations for the minimum of the scalar potential and the scalar self-interaction read:

∂tκ = −(2 + ηφ)κ

+2v4
λφ

λφ + ν
4κ3/2

[
l41(

ν
2
√

κ
; ηφ) + 3l41(

ν
2
√

κ
+ 2κλφ; ηφ)

]− 8Ncv4 h
4 l

(F),4
1 (κh2; ηψ)

+
2(κλφ − ν

2
√
κ
)

(λφ + ν
4κ3/2 )h2

(
1− κλφ +

ν

2
√
κ

)
(C.14)

×
(

1 +

(
1− κλφ +

ν

2
√
κ

)
Qσ

)(
βg

4

λ̄σ
g4 + βh

4

λ̄σ
h4
)
,

∂tλφ = 2ηφ λφ + 2v4 λ
2
φ

[
l42(

ν
2
√

κ
; ηφ) + 9l42(

ν
2
√

κ
+ 2κλφ; ηφ)

]− 8Ncv4 h
4 l

(F),4
2 (κh2; ηψ)

+
4λφ
h2

[
1− 2κλφ +

ν√
κ

+

(
1− κλφ +

ν

2
√
κ

)2

Qσ

] (
βg

4

λ̄σ
g4 + βh

4

λ̄σ
h4
)

(C.15)

+
16π2λφ
νh

(
ν

2
√
κ
−κλφ

)
dNc

0 (fc/k)CE(Nc)

(
α(k/fc)

α(µ̄)

)−4/b0 1

fc

(
1+

(−f ′c)
fc

∂t(κh
2)

)
.

The Yukawa coupling flows in the broken regime according to

∂th
2 = (2ηψ + ηφ) h

2 − 4v4 h
4
[
l
(FB),4
1,1 (κh2, ν

2
√

κ
; ηψ, ηφ)− l

(FB),4
1,1 (κh2, ν

2
√

κ
+ 2κλφ; ηψ, ηφ)

]
−8(3 + ξ)C2(Nc)v4 g

2h2 l
(FB),4
1,1 (κh2, 0; ηψ, ηF), (C.16)

+2

(
1− 2κλφ − ν√

κ
+

(
1− κλφ +

ν

2
√
κ

)2

Qσ

)(
βg

4

λ̄σ
g4 + βh

4

λ̄σ
h4
)
,

and the flow of the axial anomaly is given by

∂tν = −
(
3− νφ

2

)
+ 4π2

κλφ− ν
2
√
κ

h
dNc

0 (fc/k)CE(Nc)

(
α(k/fc)

α(µ̄)

)−4/b0 1

fc

(
1+

(−f ′c)
fc

∂t(κh
2)

)

+
ν

h2

[
1 +

(
1− κλφ +

ν

2
√
κ

)2

Qσ

] (
βg

4

λ̄σ
g4 + βh

4

λ̄σ
h4
)
. (C.17)
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In these equations, the quantity βh
4

λ̄σ
is also modified,

βh
4

λ̄σ
:=

2

Nc
v4 l̃

(FBB),4
1,1,1 (κh2, ν

2
√

κ
, ν

2
√

κ
+ 2κλφ; ηψ, ηφ), (C.18)

whereas βg
4

λ̄σ
remains the same.
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