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NON-SPHERICAL COLLAPSE OF A RADIATING STAR

S. G. GHOSH 1 ∗ and D. W. DESHKAR

Centre for Mathematical Physics, Science College
Congress Nagar Nagpur-440 012, India

1 sgghosh@iucaa.ernet.in

Received (received date)
Revised (revised date)

We study the junction conditions for non-spherical (plane symmetric) collapsing ra-
diating star consisting of a shearing fluid undergoing radial heat flow with outgoing
radiation. Radiation of the system is described by plane symmetric Vaidya solution.
Physical quantities relating to the local conservation of momentum and surface red-shift
are also obtained.

PACS numbers: 04.20.-q, 04.40.Dg, 97.10.Cv

1. Introduction

Gravitational collapse is one of the most thorny and important problem in classical
general relativity. It has many interesting applications in astrophysics where the
formation of compact stellar objects such as white dwarf and neutron star are
usually preceded by a period of radiative collapse. In order to study gravitational
collapse, it is necessary to describe adequately the geometry of interior and exterior
regions and to give conditions which allow matching of them.

The pioneering work on gravitational collapse appeared in the famous paper of
Oppenheimer and Snyder 1 in which they studied collapse of dust with a static
Schwarzschild exterior whereas the interior space-time is represented by Friedman
like solution. Since that time, many authors have added to a more realistic treatment
of the collapse. The case with static exterior was studied by Misner and Sharp 2, for
a perfect fluid in the interior. Outgoing radiation of the collapsing body has been
considered by Vaidya 3. It then become possible to model the radiating star by
matching them to exterior Vaidya space-time 4,5. The inclusion of the dissipation in
the source by allowing radial heat flow while the body undergoes radiating collapse
has been advanced by Santos and collaborators 5,6,7,8,9,10.

These studies were restricted to spherically symmetric space-times. On the
other-hand, non-spherical collapse not so well understood. However, non-spherical
collapse could occur in real astrophysical situation, and it is also important for a
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better understanding of both cosmic censorship conjecture 11 and hoop conjecture
12. In-fact, collapse of cylindrical system led to the formulation of the hoop conjec-
ture 12. The plane symmetric models has also received significant attention owing
to its close resemblance with spherically symmetric one. Exterior solutions to plane
symmetric Einstien’s field equations were obtained by Taub 13, while plane sym-
metric version of Vaidya solution were given by Dutta 14, and Carlson and Safko
15.

In ref. 6 the junction conditions for the spherically symmetric collapse of isotropic
fluid undergoing radial heat flow with outgoing unpolarized radiation has been
studied. The main objective to extend is this work of Santos6 to plane symmetric
solutions. The interior space-time VI is modeled by shearing fluid undergoing radial
heat flow with outgoing radiation in a plane symmetric space-time. The exterior
space-time VE is described by the plane symmetric Vaidya space-time 14,15, which
represent a radial flow of unpolarized radiation. This is done in section III. In this
section we also derive the formula for the total luminosity perceived at infinity and
for the surface red-shift, which are of particular interest since they are observable
quantities. In section II we give the field equations which govern the plane sym-
metric collapse of a radiating star with outgoing radiation. We conclude with some
general remarks.

We have used the units which fix the speed of light and gravitational constant
via 8πG = c = 1.

2. Field Equations in Plane Symmetric Space-time

Let us consider a plane symmetric distribution of fluid undergoing dissipation in the
form of heat flow. While the dissipative fluid collapses, it produces the unpolarized
radiation.

We consider a plane surface with its motion described by a time-like 3-surface
Σ, which divides space-times into interior and exterior manifolds VI and VE . The
interior space-time VI is described by most general plane symmetric metric, which
in comoving coordinates reads:

ds2 = −A(r, t)2dt2 + B(r, t)2dr2 + C(r, t)2(dx2 + dy2) (1)

The exterior space-time is described by plane symmetric Vaidya metric 14,15, which
represents an outgoing unpolarized radiation,

ds2 =
2m(v)

r
dv2 − 2dvdr + r2(dx2 + dy2) (2)

The arbitrary function m(v), represents the mass at retarded time v inside the
boundary surface Σ. We assume that the source of Einstein field equations in the
interior space-time is given by

G−ab = κTab = κ[(ζ + p)uaub + pgab + qaub + qbua] (3)
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where ζ is the energy density of fluid, p denotes the isotropic pressure, ua is 4-
velocity, and qa is radial heat flux satisfying qaua = 0. Since we utilize comoving
coordinates, we shall have

ua =
1
A

δa
0 , qa = qδa

1 (4)

The line element (1), in our plane symmetric case, yields the following Einstein’s
field equations

G−00 = −
(

A

B

)2
[
2
C ′′

C
+
(

C ′

C

)2

− 2
C ′B′

CB

]
+

(
Ċ

C

)2

+ 2
ĊḂ

CB
= κζA2 (5)

G−11 =
(

C ′

C

)2

+ 2
A′C ′

AC
−
(

B

A

)2

2

C̈

C
+

(
Ċ

C

)2

− 2
ȦĊ

AC


 = κpB2 (6)

G−22 =
(

C

B

)2 [A′′
A

+
C ′′

C
+

A′C ′

AC
− C ′B′

CB
− A′B′

AB

]
−
(

C

A

)2

×
[ B̈
B

+
C̈

C
+

ĊḂ

CB
− ȦĊ

AC
− ȦḂ

AB

]
= κpC2 (7)

G2−
2 = G3−

3 (8)

G−01 = 2

[
Ċ ′

C
− ḂC ′

BC
− A′Ċ

AC

]
= κqAB2 (9)

where the dot and the prime stand respectively for differentiation with respect to t

and r.

3. Junction Conditions

To study the junction conditions, we follow the approach of Santos 6. Hence we
have to demand when approaching Σ in VI and VE

(ds2
−)Σ = (ds2

+)Σ = (ds2)Σ (10)

where the subscript Σ means that the quantities are to be evaluated on Σ and let
K±

ij is extrinsic curvature to Σ, defined by

K±
ij = −n±α

∂2χα
±

∂ξi∂ξj
− n±α Γα

βγ

∂χβ
±

∂ξi

∂χγ
±

∂ξj
(11)

and where Γα
βγ are Christoffel symbols, n±α the unit normal vectors to Σ, χα are

the coordinates of the interior and exterior space-time and ξi are the coordinates
that defines Σ.

The intrinsic metric on the hypersurface r = rΣ is given by

ds2 = −dτ2 +R2(τ)(dx2 + dy2) (12)



August 22, 2002 0:34 WSPC/Guidelines psmc

4 S. G. Ghosh and D. W. Deshkar

with coordinates ξa = (τ, x, y).
We use comoving coordinates and consider the interior of the space-time VI is

described by line element (1). In this coordinate the surface Σ, being the boundary
of the matter distribution, will have the equation

f(r, t) = r − rΣ = 0 (13)

where rΣ is a constant. The vector with component ∂f/∂χa
− is orthogonal to Σ.

Consequently the unit normal vector takes the form

n−a = B(rΣ, t)δ1
a (14)

From the junction condition (10) we obtain

dt

dτ
=

1
A(rΣ, t)

(15)

C(rΣ, t) = R(τ) (16)

The non-vanishing components of extrinsic curvature K−
ij of Σ can be calculated as

in the spherical case (for details see Santos6) and the result is

K−
ττ =

[
− A′

AB

]
Σ

(17)

K−
x x =

[
C ′C
B

]
Σ

(18)

K−
y y = K−

x x (19)

The equation for the surface Σ in VE is

f(r, v) = r− rΣ = 0 (20)

therefore
∂f

∂χa
+

=
(
−drΣ

dv
, 1, 0, ..., 0

)
(21)

and unit normal to Σ is

n+
a =

[
−2m(v)

r
+ 2

dr
dv

]−1/2(
−dr

dv
, 1, 0, ..., 0

)
(22)

The first junction condition (10) for the line element (2) and (12) yields the following
relations

rΣ = R(τ) (23)(
dv

dτ

)−2

Σ

=
[
−2m(v)

r
+ 2

dr
dv

]
Σ

(24)

With the help of (24) we can rewrite the normal vector as

n+
a = (−ṙ, v̇, 0, ..., 0) (25)
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The non-vanishing components of extrinsic curvature K+
ij of Σ are given by

K+
ττ =

[
d2v

dτ2

(
dv

dτ

)−1

−
(

dv

dτ

)
m(v)
r2

]
Σ

(26)

K+
x x =

[
r
dr
dτ
− 2m(v)

(
dv

dτ

)]
Σ

(27)

K+
y y = K+

x x (28)

From Eqs. (18) and (27) we have[
−2m(v)

r
+ 2

dr
dv

]
Σ

=
[
CC ′

B

]
Σ

(29)

With the help of Eqs. (15), (16) and (24), we can write Eq. (29) as

m(v) =
r
2

[
Ċ2

A2
− C ′2

B2

]
(30)

which can be interpreted as the total energy entrapped within the surface Σ. This
expression (30) is analogous to well known mass function, in spherically symmetry
case, introduced by Cahill and McVittie 16. From Eqs. (26) and (28), using (15),
we have [

d2v

dτ2

(
dv

dτ

)−1

−
(

dv

dτ

)
m(v)
r2

]
Σ

= −
(

A′

AB

)
Σ

(31)

Substituting Eqs. (15), (16) and (30) into (29), results to

(
dv

dτ

)
Σ

=

[
C ′

B
+

Ċ

A

]−1

Σ

(32)

Differentiating (32) with respect to τ and using Eqs. (30), Eq. (31) can be cast as

1
B2

[
C ′2

C2
+ 2

A′C ′

AC

]
− 1

A2


2

C̈

C
+

(
Ċ

C

)2

− 2
ȦĊ

AC


 =

2
AB

[
Ċ ′

C
− ḂC ′

BC
− A′Ċ

AC

]
(33)

Comparing (33) with (6) and (9), we can finally write

(p)Σ = (qB)Σ (34)

which is equivalent to result obtained by Santos 6 for the spherically symmetry case.
Eq. (34) shows that for a plane symmetric shearing distribution of a collapsing fluid,
undergoing dissipation in the form of heat flow, the isotropic pressure on the surface
of discontinuity Σ can not be zero. Clearly, if the fluid stops dissipation, i.e., qΣ

= 0, the pressure will vanish at the boundary which implies the radiation can not
exist and exterior space-time VE is a Taub space-time 13.
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Differentiating partially (30) with respect to t and utilizing (6) and (9), leads
to (

∂m

∂t

)
Σ

=

[
dm

dv

dv

dτ

(
dt

dτ

)−1
]

Σ

= −
[
r2

2

(
κpĊ + κqAC ′

)]
Σ

(35)

On using (15), (16), (32) and (34), we obtain that[
− 2

r2

dm

dv

(
dv

dτ

)2
]

Σ

= [κp]Σ (36)

Therefore, the total luminosity for an observer at rest at infinity is

L∞ = lim
r→∞

κ

2
r2ε = −

(
dm

dv

)
Σ

=


1

2
κ r2 p

(
Ċ

A
+

C ′

B

)2



Σ

(37)

where dm/dv ≤ 0 since L∞ > 0. Let the observer with 4-velocity is considered to
be on Σ, the radiation energy density that this observer measures on Σ is

εΣ =
2
κ

[
− 1

r2

(
dv

dτ

)2
dm

dv

]
Σ

(38)

Inspection of Eqs (36) and (38), reveals that

εΣ = pΣ (39)

This result is also valid in the analogous study in spherical symmetric system 17 Eq.
(36) expresses the local conservation of momentum if we consider the momentum
of radiation flowing in VE and the energy density as given by (38).

Defining luminosity observed on Σ as

LΣ =
κ

2
r2 εΣ (40)

The boundary red-shift can be used to determine the time of formation of the
horizon. The boundary red-shift zΣ of the radiation emitted by a star is given by

1 + zΣ =
(

dv

dτ

)
Σ

(41)

and thus the total luminosity LΣ perceived by an observer on Σ is related with L∞
by the formula

(1 + zΣ)2 =
LΣ

L∞
(42)

The results are analogous to one obtained previously in spherical case 5,6,7,8.
For completeness we also calculate the shear for the metric (1) giving the ex-

pression of shear scalar as

σ2 =
2

3A2

(
Ḃ

B
− Ċ

C

)2

(43)
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4. Concluding Remarks

To sum up, this extends the previous studies of junctions conditions for a collapsing
radiating star with outgoing radiation in the spherically symmetry to the plane
symmetric one.

The results obtained here may be a necessary ingredient for a study in planer
collapse of a radiating star in plane symmetric space-time.

The physical conditions necessary for a acceptable model of a planer collapse
will be the subject of forthcoming paper.
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