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A Unified Description of Quark and Lepton Mass Matrices

in a Universal Seesaw Model
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In the democratic universal seesaw model, the mass matrices are given by fLmLFR +FLmRfR +
F LMF FR (f : quarks and leptons; F : hypothetical heavy fermions), mL and mR are universal for
up- and down-fermions, and MF has a structure (1+bfX) (bf is a flavour-dependent parameter, and
X is a democratic matrix). The model can successfully explain the quark masses and CKM mixing
parameters in terms of the charged lepton masses by adjusting only one parameter, bf . However,
so far, the model has not been able to give the observed bimaximal mixing for the neutrino sector.
In the present paper, we consider that MF in the quark sectors are still “fully” democratic, while
MF in the lepton sectors are partially democratic. Then, the revised model can reasonably give a
nearly bimaximal mixing without spoiling the previous success in the quark sectors.

PACS numbers: 14.60.Pq, 12.15.Ff, 11.30.Hv

I. INTRODUCTION

A. What is the universal seesaw model?

Stimulated by the recent progress of neutrino experi-
ments, there has been considerable interest in a unified
description of the quark and lepton mass matrices. As
one of such unified models, a non-standard model, the so-
called “universal seesaw model” (USM) [1] is well known.
The model describes not only the neutrino mass matrix
Mν but also the quark mass matrices Mu and Md and
the charged lepton mass matrix Me by seesaw-type ma-
trices, universally: the model has hypothetical fermions
Fi (F = U, D, N, E; i = 1, 2, 3) in addition to the conven-
tional quarks and leptons fi (f = u, d, ν, e; i = 1, 2, 3),
and these fermions are assigned to fL = (2, 1), fR =
(1, 2), FL = (1, 1) and FR = (1, 1) of SU(2)L× SU(2)R.
The 6 × 6 mass matrix that is sandwiched between the
fields (fL, FL) and (fR, FR) is given by

M6×6 =

(
0 mL

mR MF

)
, (1.1)

where mL and mR are universal for all fermion sec-
tors (f = u, d, ν, e) and only MF have structures de-
pendent on the fermion sectors F = U, D, N, E. For
ΛL < ΛR ≪ ΛS , where ΛL = O(mL), ΛR = O(mR)
and ΛS = O(MF ), the 3 × 3 mass matrix Mf for the
fermions f is given by the well-known seesaw expression

Mf ≃ −mLM−1
F mR . (1.2)

Thus, the model answers the question why the masses of
quarks (except for top quark) and charged leptons are
so small with respect to the electroweak scale ΛL (∼
102 GeV). On the other hand, the top quark mass en-
hancement is understood from the additional condition
detMF = 0 for the up-quark sector (F = U) [2–4]. Since
the seesaw mechanism does not work for the third fam-
ily fermions, the top quark has a mass of the order of
mL ∼ ΛL.

For the neutrino sector, the mass matrix is given as

(
νL νc

R NL N
c

R

)



0 0 0 mL

0 0 mT
R 0

0 mR ML MN

mT
L 0 MT

N MR







νc
L

νR

N c
L

NR


 ,

(1.3)

where νc
R ≡ (νR)c ≡ CνT

R. Since O(MN ) ∼ O(ML) ∼
O(MR) ≫ O(mR) ≫ O(mL), we obtain the mass matrix
Mν for the active neutrinos: νL

Mν ≃ −mLM−1
R mT

L . (1.4)

If we take the ratio O(mL)/O(mR) suitably small, we
can understand the smallness of the observed neutrino
masses reasonably.

For an embedding of the model into a grand unification
scenario, for example, see Ref. [5], where a possibility of
SO(10)×SO(10) has been discussed.

∗On leave at CERN, Geneva, Switzerland.
†E-mail address: yoshio.koide@cern.ch; koide@u-shizuoka-ken.ac.jp
‡E-mail address: fusaoka@aichi-med-u.ac.jp

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25357569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/hep-ph/0209148v1


B. What is the democratic universal seesaw model?

As an extended version of the USM, the “democratic”
USM [2,3] is also well known. The model has successfully
given the quark masses and the Cabibbo–Kobayashi–
Maskawa (CKM) [6] matrix parameters in terms of the
charged lepton masses. The outline of the model is as
follows:
(i) The mass matrices mL and mR have the same struc-
ture, except for their phase factors

mf
L = mf

R/κ = m0Zf , (1.5)

where κ is a constant with κ ≫ 1 and Zf are given by

Zf = P (δf )Z , (1.6)

P (δf ) = diag(eiδ
f

1 , eiδ
f

2 , eiδ
f

3 ) , (1.7)

Z = diag (z1, z2, z3) , (1.8)

with z2
1 + z2

2 + z2
3 = 1.

(ii) In the basis on which the matrices mf
L and mf

R are
diagonal, the mass matrices MF are given by the form

MF = m0λ(1 + 3bfX), (1.9)

1 =




1 0 0
0 1 0
0 0 1


 , X =

1

3




1 1 1
1 1 1
1 1 1


 . (1.10)

(iii) The parameter bf for the charged lepton sector is
given by be = 0, so that in the limit of κ/λ ≪ 1, the
parameters zi are given by

z1√
me

=
z2√
mµ

=
z3√
mτ

=
1√

me + mµ + mτ

. (1.11)

Then, the up- and down-quark masses are successfully
given [2,3] by the choice of bu = −1/3 and bd = −eiβd

(βd = 18◦), respectively. Here, note that the choice
bu = −1/3 gives detMU = 0, so that the case with
bu = −1/3 gives mt ∼ O(mL). Another motivation for
the choice bu = −1/3 is that the model with be = 0
and bu = −1/3 leads to the successful relation [7,2]
mu/mc ≃ (3/4)(me/mµ), which is almost independent
of the value of the seesaw suppression factor κ/λ. For
the choice of bu = −1/3 and bd = −eiβd (βd = 18◦), the
CKM matrix parameters are successfully given [2,3] by
taking

δu
1 − δd

1 = δu
2 − δd

2 = 0 , δu
3 − δd

3 ≃ π . (1.12)

A more detailed formulation (including the renormal-
ization group equation effects) is found in Ref. [8].

C. What is the problem?

It seems that the model is successful as far as the
quark mass phenomenology is concerned, so that the fu-
ture task is only to give a more reliable theoretical base
to the model. However, the democratic USM has a se-
rious problem in the neutrino phenomenology: In the
previous model, the parameters zi are fixed by the ob-
served charged lepton masses as shown in (1.11), and the
only adjustable parameter is bν defined by (1.9). For
bν ≃ −1/2 (bν ≃ −1), we can obtain the maximal mix-
ing between νµ and ντ (νe and νµ) [9], while we cannot
give the nearly bimaximal mixing, which is suggested by
the observed atmospheric [10] and solar [11,12] neutrino
data.

This suggests that the previous model with the uni-
versal structure of MF is too tight. Therefore, in the
next section, we assume that for the lepton sectors, the
democratic matrix X in (1.9) will be changed by a “par-
tially” democratic matrix, which is given by a rotation
RX from the fully democratic matrix in the quark sector.
Then, we can obtain the observed nearly-bimaximal mix-
ing. However, generally speaking, the success is not so
remarkable because we have three additional parameters
in the rotation matrix RX . The problem is whether the
rotation RX has a physical meaning or not.

In Sec. II, we will investigate a rotation matrix RX that
leads to the observed nearly bimaximal mixing and sug-
gests an interesting relation between quarks and leptons.
In Sec. III, the numerical results are given and neutrino
phenomenology is discussed. In Sec. IV, the mysterious
characteristics of the rotation matrix RX are discussed.
Finally, Sec. V is devoted to the conclusions.

II. S2 SYMMETRY VERSUS S3 SYMMETRY

A. Basic assumption

For the quark sectors, the model is essentially un-
changed from the previous model, i.e. the mass terms
are given by

m0

∑

f=u,d

[
fLZFR + κFLZfR

+λFLP †(δf )(1 + 3bfX)P (δf)FR

]
+ h.c. , (2.1)

where we have changed the place of the phase matrix
P from Z to MF , so that mL and mR are completely
flavour-independent. On this basis the mass matrices
mL and mR are diagonal, the mass matrix MF is invari-
ant under the permutation symmetry S3 except for the
phase factors. As investigated in Refs. [2,3], in order to
give reasonable values of the CKM matrix parameters, it
was required to choose

P (δu)P †(δd) = P (δu − δd) ≃ diag(1, 1,−1) , (2.2)
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although the origin of such a phase inversion is still an
open question. In this paper, we assume

P (δu) = diag(1, 1,−1) , P (δd) = diag(1, 1, 1) . (2.3)

For the lepton sectors, we assume

m0

∑

f=e,ν

[
fLZFR + κFLZfR

+λF
′
LP †(δf )(1 + 3bfX)P (δf)F ′

R

]
+ h.c. , (2.4)

where, for convenience, we have dropped the Majorana
mass terms NLMLN c

L + N
c

RMRNR from the expression
(2.4), since we always assume that the Majorana mass
matrices ML and MR have the same structure as the
Dirac mass matrix MN = λm0P

†(δν)(1 + 3bνX)P (δν).
In (2.4), we have defined

F ′ = RT
XF . (2.5)

Here, we have tacitly assumed symmetries SU(2)
′
L ×

SU(2)
′
R for the heavy fermions FL and FR in addition to

the symmetries SU(2)L × SU(2)R for fL and fR, so that
we have required the same rotation RX for the heavy lep-
tons (Ni, Ei)L (and (Ni, Ei)R). Then, the heavy lepton
mass terms in (2.4) can be rewritten as

m0λ
∑

f=e,ν

FL(1 + 3bfXf )FR + h.c. , (2.6)

where

Xf = RXP †(δf )XP (δf )RT
X . (2.7)

We take the phase matrices in the lepton sectors as

P (δν) = P (δu) = diag(1, 1,−1) ,

P (δe) = P (δd) = diag(1, 1, 1) , (2.8)

corresponding to (2.3). Then, the effective charged lep-
ton and neutrino mass matrices are given by

Me ≃ −m0
κ

λ
ZRX(1 + 3aeX)RT

XZ

≡ me
0Z(1 + 3aeXe)Z , (2.9)

Mν ≃ −m0
1

λ
ZRXP †(δν)(1 + 3aνX)P (δν)RT

XZ

≡ mν
0Z(1 + 3aνXν)Z , (2.10)

where me
0 = −m0(κ/λ), mν

0 = −m0/λ, Xe = RXXRT
X

and Xν = RXP †(δν)XP (δν)RT
X , and we have used

(1 + 3bfX)−1 = 1 + 3afX , (2.11)

af = −bf/(1 + 3bf ) . (2.12)

The rotation RX is between the basis in the quark sec-
tors and that in the lepton sectors. Our interests are
as follows: What rotation RX can give reasonable neu-
trino masses and mixings? What relation does it suggest
between quarks and leptons?

B. A special form of RX

In the heavy down-quark mass matrix MD, we have
considered that the matrix Xd is completely democratic,
i.e. Xd = X defined by (1.10). Hereafter, we define the
“fully” democratic matrix X defined in (1.10) as X3 ≡ X .
The matrix Xf is a rank-1 matrix, which satisfies the re-
lation (Xf )2 = Xf . We suppose that the matrices Xf

(f = e, ν) in the heavy lepton sectors will not be “fully”
democratic, but “partially” democratic. The simplest
expression of the partially democratic matrix is

X2 ≡ 1

2




1 1 0
1 1 0
0 0 0


 . (2.13)

We identify Xe as Xe = X2. The rotation RX , which
transforms X3 into X2, i.e.

RXX3R
T
X = X2 , (2.14)

is given by

RX = R3(−
π

4
) · T · R3(θ) · (−P3) · A , (2.15)

R3(θ) =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 , (2.16)

A =




1√
2

− 1√
2

0
1√
6

1√
6

− 2√
6

1√
3

1√
3

1√
3


 , (2.17)

T =




0 0 1
0 1 0
1 0 0


 , P3 =




1 0 0
0 1 0
0 0 −1


 . (2.18)

The matrix A transforms the fully democratic matrix X3

to the diagonal form

AX3A
T =




0 0 0
0 0 0
0 0 1


 ≡ Z3 . (2.19)
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The matrix Z3 is invariant under the rotation R3(θ) with
an arbitrary θ. The transformation T has been intro-
duced in order to transform Z3 to Z1 ≡ diag(1, 0, 0).
Finally, the rotation R3(−π/4) transforms Z1 to X2. In
the definition of RX , (2.15), we have inserted the matrix
−P3 on the left-hand side of the matrix A. The matrix
−P3 does not have any effect on the matrix Z3. In the
numerical study in the next section, we are interested in
the case where (RX)13 takes a small positive value, so
that the matrix −P3 has been introduced to make the
the numerical search easier.

For further convenience, we express the rotation R3(θ)
by a new angle parameter ε = θ−π/4. Then, the explicit
form of RX is given by

RX =




x3 x2 x1√
2
3 − x3

√
2
3 − x2

√
2
3 − x1√

2
3 (x1 − x2)

√
2
3 (x3 − x1)

√
2
3 (x2 − x3)


 ,

(2.20)
where xi are given by

x1 =
1√
6
− c − s√

6
,

x2 =
1√
6

+
c − s

2
√

6
− c + s

2
√

2
, (2.21)

x3 =
1√
6

+
c − s

2
√

6
+

c + s

2
√

2
,

(s = sin ε and c = cos ε) and they satisfy the relations

x2
1 + x2

2 + x2
3 = 1 , (2.22)

x1 + x2 + x3 =

√
3

2
. (2.23)

Since we have assumed the inversion P (δu), (2.3), the
heavy up-quark mass matrix MU (therefore, the matrix
P †(δu)X3P (δu)) is not invariant under the permutation
symmetry S3, although it is still invariant under the per-
mutation symmetry S2 for the fields u1 and u2, because
of the form

Xu = P †(δu)X3P (δu) =
1

3




1 1 −1
1 1 −1
−1 −1 1


 ≡ X ′

3 .

(2.24)
Since the matrix X ′

3 is not invariant under the permuta-
tion symmetry S3, the neutral heavy lepton mass matrix
MN has a somewhat complicated form: the rank-1 ma-
trix Xν is generally given by

Xν =




y2
1 y1y2 y1y3

y1y2 y2
2 y2y3

y1y3 y2y3 y2
3


 , (2.25)

where yi satisfy the normalization y2
1 + y2

2 + y2
3 = 1. By

comparing the result RXX ′
3R

T
X from (2.20) with the ex-

pression (2.25), we find

y1 =
1

3
√

2
+

√
2

3
(c − s) ,

y2 =
1

3
√

2
−

√
2

3
(c − s) , (2.26)

y3 =
2

3
(c + s) .

In the next section, we will investigate the neutrino
mass matrix (2.10) numerically. The expression (2.25) is
not always S2-invariant. Therefore, in the next section,
we will require the matrix Xν to have also an S2-invariant
form. Then, the parameter ε is fixed, so that the model
can again reduce to a one parameter model with only bν .

III. NUMERICAL STUDY OF THE

NEUTRINO MASS MATRIX

In order to find the numerical study of the neutrino
mass matrix (2.10) without spoiling the previous success
in the quark sectors, we evaluate (2.9) in the limit of
be → 0. Then, the values of the parameters zi are still
given by (1.11). Therefore, the numerical success in the
quark sectors [2,3] is unchanged. The matrix Uν by which
the mass matrix (2.10) is diagonalized as

U †
νMνU∗

ν = Dν ≡ diag(mν
1 , mν

2 , mν
3) , (3.1)

is the so-called Maki–Nakagawa–Sakata–Pontecorvo
(MNSP) [13] matrix. Hereafter, we will simply call Uν

the lepton mixing matrix.
The neutrino mass matrix Mν has two parameters, bν

and ε. First, we try to require that the matrix Xν be
invariant under a permutation symmetry S2. Although,
as suggested from the form Xe = X2 in (2.13), the case
with y1 = y2 is very interesting, regrettably it cannot
give the observed nearly-bimaximal mixing for any value
of bν . Of the possible cases y1 = y2, y2 = y3 and y3 = y1,
only the case y3 = y1 has a solution that gives reasonable
mixing and mass values. The case with y1 = y3 fixes the
parameters xi and ε as

y1 = y3 = 0.6900 , y2 = −0.2186 , (3.2)

x1 = 0.014811 , x2 = 0.23904 , x3 = 0.970890 , (3.3)

ε = 2.043◦ . (3.4)
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As we defined in (2.22) and (2.23), the parameters xi

satisfy the relation

x2
1 + x2

2 + x2
3 =

2

3
(x1 + x2 + x3)

2 . (3.5)

On the other hand, it is well known that the observed
charged lepton masses satisfy the relation [14]

me + mµ + mτ =
2

3

(√
me +

√
mµ +

√
mτ

)2
, (3.6)

i.e.

z2
1 + z2

2 + z2
3 =

2

3
(z1 + z2 + z3)

2 . (3.7)

In fact, from relation (3.6), the observed charged lep-
ton masses me and mµ predict mtheor

τ = 1776.97 MeV,
which is in excellent agreement with the observed value
mobs

τ = 1776.99+0.29
−0.26 MeV, together with the parameter

values of zi for be = 0:

z1 = 0.016473 , z2 = 0.23687 , z3 = 0.97140 , (3.8)

which correspond to

ε = 2.268◦ . (3.9)

It should be noted that the values (3.3) [and (3.4)] are
very near to the values (3.8) [and (3.9)]. We may consider
that the parameters zi are identical with the xi, which
gives y3 = y1 at a unification scale µ = MX .

In the numerical search, the value of the parameter bν

is determined as the prediction R = ∆m2
21/∆m2

32 gives
the observed value [10,12]

Robs ≃ 5.0 × 10−5eV2

2.5 × 10−3eV2
= 2.0 × 10−2 . (3.10)

In Table I, we list the numerical results of bν , mν
i , ∆m2

21,
∆m2

32, sin2 2θ12, sin2 2θ23, and |(Uν)13|2 as Case A. Here,
for simplicity, we have used the values 4|(Uν)11|2|(Uν)12|2
and 4|(Uν)23|2|(Uν)33|2 as the values of sin2 2θ12 and
sin2 2θ23, respectively, because R ≪ 1. For refer-
ence, in Table I, we also list a case with xi = zi =√

me
i /(me + mµ + mτ ) as Case B. In this case, the sce-

nario is that the partially democratic form of Xν with
y3 = y1 is slightly broken at µ = mZ , still keeping
xi = zi. From the numerical point of view, there is no
essential difference between the two cases.

The predicted value of sin2 2θ12 [tan2 θ12],

sin2 2θ12 = 0.80 [tan2 θ12 = 0.38] , (3.11)

is in good agreement with the present best fit value [12]
tan2 θsolar = 0.34 [sin2 2θsolar = 0.76]. It should be noted
that the predicted value (3.11) gives a suitable deviation
from sin2 2θ12 = 1.0, although the Zee-type model can-
not give such a sizeable deviation from sin2 2θ12 = 1.0
[15].

It is also worth while noting that in Table I the value
of bν is very near to bν = −2/3. The results be = 0,
bu = −1/3, bν ≃ −2/3 and bd ≃ −1 may suggest the
existence of some unified rule for bf .

Finally, we must excuse ourselves for taking the pa-
rameter be as be → 0 in the numerical calculations. We
have assumed that the heavy charged lepton mass matrix
ME is given by ME = λm0(1 + 3beX2) on the basis of
F (not F ′), i.e. ME has the partially democratic form.
However, the choice be = 0 makes this assumption non-
sense. We consider that the value of the parameter be

is be ≃ 0, but it is not be = 0. In fact, although the
relation (3.6) has given, for the observed charged lep-
ton mass values me and mµ, the excellent prediction of
the tau lepton mass mτ , however, for the values [16] of
me and mµ at µ = mZ we obtain the predicted value
mτ (mZ) = 1724.99 MeV, which slightly deviates from
the observed value mτ (mZ) = 1746.69+0.30

−0.27 MeV [16].
This deviation can be adjusted by taking a small devia-
tion of be from zero.

IV. MEANINGS OF THE ROTATION RX

In the previous section, we have found that the values
of the parameters xi with the requirement y1 = y3 are
very close to the values of zi, which are evaluated from
the observed charged lepton masses. It should be noted
that only for such a case with xi ≃ zi we obtain a solu-
tion of the value of the parameter bν that gives reason-
able masses and mixings. In other words, even if we do
not require the condition y1 = y3, the phenomenological
two-parameter study with ε and bν can find a reason-
able solution only when xi ≃ zi. This suggests that the
rotation RX has a special meaning not only for the neu-
trino mass matrix, but also for the charged lepton mass
parameter matrix Z. We consider that the coincidence
xi ≃ zi is not accidental.

The rotation RX has the following property:

RX




x3

x2

x1


 =




1
0
0


 , (4.1)

in addition to the property (2.14). Therefore, it means
that the parameters zi can be obtained from the vector
(1, 0, 0) by the following rotation:




z3

z2

z1



 = (RX)T
xi=zi




1
0
0



 . (4.2)

If we define a rotation matrix R̃X as

R̃X = TRXT , (4.3)

where T is defined by (2.18), the relations become more
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intuitive:

R̃XX3R̃
T
X = X̃2 ≡ 1

2




0 0 0
0 1 1
0 1 1


 , (4.4)

(R̃X)xi=zi




z1

z2

z3


 =




0
0
1


 , (4.5)

(R̃X)xi=zi
·Z ·(3X3)·Z ·(R̃X )T

xi=zi
=




0 0 0
0 0 0
0 0 1


 . (4.6)

However, in order to obtain the same numerical re-
sults as those in the previous section, we must change
the assumption Xν = RXP3X3P3R

T
X to the following

assumption

Xν = R̃XP1X3P1R̃
T
X , (4.7)

where

P1 = diag(−1, 1, 1) . (4.8)

Then, the parameters yi in the expression (2.26) are given
by the same relations with the exchange between y1 and
y3. Since we require y1 = y3, the numerical results are
exactly identical with those in the previous section. In
the previous scenario we have assumed, with the rotation
RX , that the heavy up fermions take the same phase ma-

trix P3 = P (δu) = P (δν). In this case with R̃X , we must
assume that P (δu) = P3, but P (δν) = P1. Although the

scenario with R̃X is more intuitive, we cannot at present
answer the question why quarks require the inversion P3

and why leptons require the inversion P1.
In any case, it is essential that the parameter values

(z1, z2, z3) [or (z3, z2, z1)] come from (0, 0, 1) [or (1, 0, 0)]

by the rotation R̃X [or RX ]. Especially, it is noted that
the parameters zi satisfy the relation (2.23) [therefore
(3.7)], which leads to the charged lepton mass relation
(3.6). Thus, the rotation RX has special meanings not
only as a rotation between the heavy quarks (U, D) and
(N, E), but also as a rotation that determines the charged
lepton mass parameters zi.

V. CONCLUSIONS

We have proposed an improved version of the demo-
cratic universal seesaw model in order to extend the suc-
cess of the unified description of the quark and charged
lepton mass matrices to the neutrino mass matrix. In
the original model, the mass matrices mL and mR were
given by a universal structure Z, independently of the
fermion sectors f = u, d, e, ν, and the hypothetical heavy
fermion mass matrices MF have the same structure, “a

unit matrix plus a democratic matrix”, which includes
only one flavour-dependent complex parameter bf . The
constraint was too tight, so that the model could not give
the observed nearly-bimaximal neutrino mixing. In the

improved model, the mass matrices mf
L (also mf

R) are still
flavour-independent, while the heavy fermion mass ma-
trices have different structures between quark and lepton
sectors, i.e. in the quark sectors, MF still have demo-
cratic forms, while in the lepton sector, MF have only
“partially” democratic forms. If we take a special rota-
tion RX , which transforms the 3 × 3 democratic matrix
X3 to the 2×2 democratic matrix X2 as (2.14) and if we
take the parameters xi as xi ≃ zi ∝

√
me

i and bν ≃ −2/3,
we can obtain reasonable values of neutrino masses and
mixings.

For the quark and charged lepton sectors, in the origi-
nal democratic universal seesaw model [2,3], we have al-
ready obtained reasonable values of the masses and mix-
ings by taking be = 0, bu = −1/3, and bd ≃ −1. Those
values of bf are unchanged in the present revised model
and, moreover, in order to explain the observed nearly
bimaximal neutrino mixing, the value bν ≃ −2/3 is re-
quired. What is meaning of these parameter values

be = 0 , bu = −1/3 , bν ≃ −2/3 , bd ≃ −1 ? (5.1)

This is a future task for us.

We have also numerically searched a rotation matrix
R(θ12, θ23, θ31) that can give reasonable values for the
observed neutrino mixings and masses, without requir-
ing the constraint (2.14). We found that the only solu-
tion is the rotation RX with xi ≃ zi (the values zi are
given by (1.11)) for bν ≃ −2/3. The solution RX trans-
forms the “fully” democratic matrix X3 into the partially
democratic matrix X2 and the parameters xi satisfy the
relation (3.5), which leads to the charged lepton mass
formula (3.6). The rotation RX with xi ≃ zi also trans-
forms the matrix X ′

3 (2.24) into a partially democratic
matrix Xν (2.25) with y1 = y3. These mean that the
observed neutrino data require not a mere numerical so-
lution of R(θ12, θ23, θ31), but the special solution RX with
xi = zi. The observed charged lepton masses, which are
proportional to z2

i , are closely related to the rotation RX

with xi = zi, for example as (4.2), (3.7), and so on. These
facts give us a sufficient motivation for the rotation RX

with xi = zi be taken seriously. However, at present, the
theoretical origin of the rotation is not clear. This is also
a future task to us.
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Case A with xi 6= zi Case B with xi = zi

bν −0.680 −0.684

aν −0.654 −0.650

mν
1 (eV) 2.39 × 103 2.43 × 103

mν
2 (eV) 7.46 × 103 7.48 × 103

mν
3 (eV) 5.06 × 102 5.06 × 102

∆m2

21 (eV2) 5.00 × 10−5 5.01 × 10−5

∆m2

32 (eV2) 2.50 × 10−3 2.50 × 10−3

∆m2

21/∆m2

32 2.00 × 10−2 2.00 × 10−2

sin2 2θ12 0.796 0.801
(tan2 θ12) (0.377) (0.383)
sin2 2θ23 0.978 0.979
|(Uν)13|

2 6.65 × 10−3 6.68 × 10−3

TABLE I. Predictions of the neutrino masses and mixing parameters. For the predictions ∆m2

ij and mν
i , we have used the

value ∆m2

32 = 2.5 × 10−3 eV2 from the atmospheric neutrino data [10]. In case A, the values xi are determined from the
requirement y1 = y3, and the values zi are obtained from the relation (3.7) and the observed values of me and mµ. In case B,
the values xi are taken as xi = zi, where zi are obtained as in case A.
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