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The gauge dependence of some fermion bilinear RI/MOM renormalization constants is studied by comparing
data which have been gauge-fixed in two different realizations of the Landau gauge and in a generic covariant
gauge. The very good agreement between the various sets of results and the theory indicates that the numerical
uncertainty induced by the lattice gauge-fixing procedure is below the statistical errors of our data sample which
is of the order of (1÷ 1.5)%.

1. Introduction and Strategy

Non-perturbative renormalization techniques
[1,2] have become a crucial ingredient in lat-
tice computations of fundamental QCD pa-
rameters and hadronic matrix elements. The
RI/MOM non–perturbative renormalization pro-
posed in Refs. [3,1] has been successfully ap-
plied to compute renormalization constants of
composite fermion operators in many lattice
regularizations [3,1,5–7]. The method imposes
renormalization conditions on conveniently de-
fined amputated Green functions computed non-
perturbatively between off-shell quark states at
large virtuality in a fixed gauge:

ZΓ 〈p|OΓ |p〉|p2=µ2 = 〈p|OΓ |p〉0 . (1)

The renormalization constants depend in gen-
eral on the external states and therefore on the
gauge in which the renormalization conditions
∗Talk given at Lattice 2002 by N.T.

have been imposed. For gauge-invariant opera-
tors the coefficients needed to match in a given
gauge-invariant scheme has to cancel these de-
pendences up to higher orders in the continuum
perturbative expansion and up to discretization
errors.

The existence of both continuum and lattice
Gribov copies and the numerical noise that they
can generate (for a recent review see Ref. [8]) is an
unsolved problem of the lattice non-perturbative
gauge fixing. The real concern is, of course,
the influence that these phenomena may have on
the values of the renormalization constants, when
computed using non-gauge-invariant quantities as
in the RI/MOM scheme.

Here we discuss the results of a numerical study
of the systematics induced by the gauge-fixing
procedure on the RI/MOM determinations of the
quark field (Zψ), the axial-vector (ZA) and of the
scalar density (ZS) renormalization constants (for
more details see Ref. [9]). We have done this
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by imposing the standard lattice Landau gauge
and another realization of the Landau condition
(Landau1 gauge). Whereas the two realizations
impose the same gauge-fixing condition in the
naive continuum limit, they are affected by dif-
ferent Gribov ambiguities. By comparing the dif-
ferent sets of results for the renormalization con-
stants, we have found differences which are negli-
gible within our statistical errors (of the order of
(1 ÷ 1.5)%).

An interesting feature of the Landau1 gauge is
that it can be generalized to impose a generic
covariant gauge on the lattice, as proposed in
Ref. [10]. By exploiting this opportunity, we have
performed an exploratory study of the gauge de-
pendence of off-shell Green functions measured in
a generic covariant gauge.

2. Results and Discussion

We have used a sample of 80 SU(3) gauge
configurations retrieved from the repository at
the “Gauge Connection” (http://qcd.nersc.gov/),
which were generated with the Wilson gluonic ac-
tion at β = 6.0 and V × T = 163 × 32. By using
the discretized version (see [10] for details) of the
following functionals:

FA[G] = ||AG||2 =
∫
d4xTr

[
AGµA

G
µ

]
(2)

HA[G] =
∫
d4xTr

[
(∂µAGµ )2

]
(3)

H(A,Λ)[G] =
∫
d4xTr

[
(∂µAGµ − Λ)2

]
, (4)

we have rotated each configuration in the Landau
gauge, in the Landau1 gauge and in the covariant
gauge. The function Λ belongs to the Lie alge-
bra of the group and has been generated with a
gaussian distribution corresponding to the value
ξ = 8 of the bare gauge fixing parameter.

Once the quark propagator S(x, 0) has been
computed for each SU(3) configuration and
gauge and Fourier-transformed, we have deter-
mined the inverse Euclidean bare-quark propa-
gator S−1(pa). We have computed the ampu-
tated Green functions of the local quark bilinears
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Figure 1. The ZA and ZS renormalization constants
are shown as a function of (aµ)2 for the Landau
(crosses) and Landau1 (triangles) gauges. The data
have been slightly displaced in the x-direction and the
error bars for one set only have been shown.

OΓ(x) = ψ̄(x)Γψ(x) in the Fourier space (in what
follows we adopt the conventions of Ref. [11])

ΛΓ(pa) = S−1(pa)GΓ(pa)S−1(pa) , (5)

where

GΓ(p) =
∫
d4xd4y e−ip(x−y)〈ψ(x)OΓ(0)ψ̄(y)〉 (6)

and Γ is a generic Dirac matrix corresponding
to Γ = {A, S} = {γµγ5, 1I}. The renormalization
constant ZRI

Γ (µa, g0), which defines the renormal-
ized operator ÔRI

Γ = ZRI
Γ OΓ, is fixed by imposing

in the chiral limit the renormalization condition

ZRI
Γ (µa)Z−1

ψ (µa)Tr IPΓΛΓ(pa)|p2=µ2 = 1, (7)

where IPΓ is a suitable projector on the tree-
level amputated Green function and where the
RI wave-function renormalization constant Zψ is
defined as

Zψ(µa) = lim
m→0

−i 1
12

Tr
[
∂S−1(pa)

∂/p

]
p2=µ2

. (8)

Even though OA and OS are gauge-
independent operators, their matrix elements
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Figure 2. The behaviour of ZA and ZS is shown as a function of (aµ)2 for the Landau (black dots) and the
covariant gauge (crosses) data. The residual gauge-dependence is of the order of 1.5%

between quark states are gauge dependent. In
Fig. 1, the numerical results for Zψ, ZA and
ZS calculated in the Landau and in the Landau1
gauge as a function of the square lattice momenta,
are shown. Our data are in very good agreement
with the results reported in the literature [11].

The results for all correlators, corresponding
to Landau and Landau1 gauges, coincide within
the statistical errors. As a consequence we can
conclude that the data do not show any resid-
ual effect due to the presence of lattice Gribov’s
copies in the statistical sample of configurations
generated and for the lattice used.

To show our sensitiveness to the choice of the
gauge, we compare the results obtained in the
Landau and in the covariant gauge with the bare
gauge parameter fixed to ξ = 8.

The primary quantities measured on the lat-
tice, Zψ, ΛA and ΛS , show a statistically signifi-
cant gauge dependence (as you can see in Fig. 2
of Ref. [9]) while the renormalization constants
ZA, ZS shown in Fig. 2, obtained by computing
the ratios as indicated in Eq. (7), could have at
most a residual gauge dependence (of the order of
1.5%) which is not detectable within the statisti-
cal precision of our simulation. For these quan-
tities, the fluctuations of the simulation hide the

weak gauge dependence that is expected in per-
turbation theory from the next-to-leading order
terms in αs.

These results indicate an upper limit to the
numerical troubles that can be expected in the
RI/MOM renormalization constants because of
the lattice gauge fixing.
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