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1. INTRODUCTION

Strongly interacting quantum field theories,
such as QCD, require extensive numerical simu-
lations, to obtain a non-perturbative understand-
ing from first principles. Some regions in param-
eter space might however be amenable to ana-
lytic methods, which can then be used to obtain a
clearer physical picture as well as an independent
check on the Monte Carlo (MC) simulations. Fur-
thermore, since in practice there are upper limits
on computing power, one might combine numer-
ical and analytic methods, to supplement each
other and provide for a sufficient tool in cases
where either method alone would fail.

As a concrete example of this interplay, let us
study the free energy density f (which, in the
thermodynamic limit, equals the negative pres-
sure p) of QCD, at finite temperature T and van-
ishing baryon chemical potential,

e−f(T ) V
T =

∫
D [

Aψ̄ψ
]
e
−

∫ 1/T

0
dτ

∫
d3xLE[Aψ̄ψ],

where LE is the standard QCD Lagrangian. The
free energy can be expected to be a good can-
didate to witness the change of the properties
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of QCD matter around a critical temperature
Tc ∼ 200 MeV. While the low-temperature phase
is governed by bound states, such as mesons, the
high-temperature phase should, due to asymp-
totic freedom, look more like a gas of free quarks
and gluons.

A direct lattice measurement of f can be and
has been performed, see e.g. [1]. The results show
the pressure rising sharply around Tc, to level off
at a few times Tc. At higher temperatures, the di-
rect numerical approach gets increasingly harder,
since ensuring clean continuum as well as thermo-
dynamic limits one is facing a multiscale problem,
a � 1

T � 1
Tc

≈ 1
Λ

MS
≈ 1 fm � Na, where a

and N are the lattice spacing and the number of
lattice sites, respectively.

On the other hand, the temperature being the
only scale in the problem, perturbative methods
are guaranteed to work well at high T , due to
asymptotic freedom. In fact, at vanishing cou-
pling one reaches the ideal-gas limit,

p ideal(T ) =
π2T 4

45

(
N2

c −1 +
7

4
NcNf

)
, (1)

where Nc and Nf denote the number of colours
and flavours, respectively. With decreasing tem-
perature, the value of the effective coupling con-
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stant g(T ) however increases, rendering a pertur-
bative series [2] meaningless below some point.

2. METHOD

Progress can be made by exploiting the scale
hierarchy πT > gT > g2T at high temperatures,
enabling one to use the powerful analytic method
of effectice theories, allowing to reduce numeri-
cal simulations needed for the QCD pressure to
a much less demanding three-dimensional (3d)
bosonic theory [3]. The partition function factor-
izes, and hence the free energy decomposes into
fQCD = fhard + fsoft [4]. The effective theory for
the soft, O(gT ) modes turns out to be dimension-
ally reduced,

e−V fsoft =
∫
D[AiA0]e

−
∫
d3xL3d[AiA0] , (2)

where L3d is a 3d SU(3) + adjoint Higgs theory,

L3d = 1
4 F

2
ij + 1

2 [Di, A0]2 + 1
2m

2
3A

2
0 + 1

4λ3A
4
0. (3)

Its coefficients (g2
3 ,m

2
3,λ3) are functions of T via

perturbative matching [5], e.g.,

y ≡ m2
3

g43
≈ 11

8π2 ln 8.086T
Λ

MS
. (4)

Let us note that for simplicity, this relation refers
to the case of pure 4d SU(3), while the inclusion
of fermions, as well as (small) chemical potentials,
is also possible.

For a more detailed account of the setup, we
refer to [3]. In the following we wish to highlight
the specific role of logarithmic terms in fsoft.

3. 3d LATTICE MEASUREMENTS

Related to the fact that L3d defines a confining
theory, it turns out that fsoft is perturbatively
computable only up to 3-loop level, while all
higher loop orders contribute at the next level [6].
The parametric form of fsoft can however still be
written down for large y,

fsoft(y) = fsoft,pert(y)

+
g6
3

(4π)4
(
c1 ln y + c2 +O(

1
y1/2

)
)
. (5)

The coefficient c1 here can now be accessed
with lattice methods. Indeed, ∂yfsoft is related
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Figure 1. Lattice results for 〈Tr(A0/g3)2〉MS −
〈Tr(A0/g3)2〉pert

MS
as a function of y, βG. Various

continuum extrapolated values are also shown.

to a gauge-invariant condensate,

∂yfsoft(y) = g4
3

〈
TrA2

0

〉
. (6)

If we also subtract the known perturbative part,
we see that

〈
Tr(A0/g3)2

〉− 〈
Tr(A0/g3)2

〉
pert

=
1

(4π)4
(
c1

1
y

+O(
1
y3/2

)
)
. (7)

An additional issue which has to be addressed
is the renormalisation of the condensate. How-
ever, due to the super-renormalisability of L3d,
this problem can be taken care of, with a pertur-
bative 2-loop computation [7,8]. Denoting

βG =
6
ag2

3

, (8)

the result is, schematically, that a lattice mea-
surement can be converted to a continuum regu-
larisation (such as MS) through a relation
〈
TrA2

0

〉
MS

∼ lim
βG→∞

{〈
TrA2

0

〉
L
+βG+lnβG+1

}
. (9)
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Figure 2. Examples of continuum extrapolations
for 〈Tr(A0/g3)2〉MS − 〈Tr(A0/g3)2〉pert

MS
, at a few

selected y. The fits are polynomial.

In Figs. 1, 2 we show measurements of the con-
densate with various finite βG, as well as contin-
uum extrapolations. The (very preliminary) final
result, after the subtraction of the 3-loop pertur-
bative part, is shown in Fig. 3.

We find that the data can indeed be well de-
scribed by the functional form in Eq. (7), with
what appears to be a definite coefficient c1. This
clearly calls for an analytic evaluation of c1.

Previously [3], we have discussed how the non-
perturbative measurement of

〈
TrA2

0

〉
allows to

estimate fsoft(y), and correspondingly fQCD(T ),
down to temperatures of a few times Tc. Once c1
is reliably extracted, it will be interesting to see
how well these results can be reproduced by keep-
ing in the expression only this single logarithm.

Concluding, we have discussed a method that
in principle allows to determine the free energy of
full QCD from the known analytic limit at high
T , down to a few times Tc. A small set of pertur-
bative constants remains to be determined, but
these can already be partly constrained with nu-
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Figure 3. The continuum extrapolated values of
〈Tr(A0/g3)2〉MS − 〈Tr(A0/g3)2〉pert

MS
as a function

of y, together with various fits. A fit linear in y−1

describes the data well in a wide range of y.

merical 3d MC data.

ACKNOWLEDGEMENTS

This work was partly supported by the TMR
network Finite Temperature Phase Transitions in
Particle Physics, EU contract no. FMRX-CT97-
0122, by the RTN network Supersymmetry and
the Early Universe, EU contract no. HPRN-CT-
2000-00152, by the Academy of Finland, contract
no. 77744, and by the DOE, under Cooperative
Agreement no. DF-FC02-94ER40818.

REFERENCES

1. G. Boyd et al, Nucl. Phys. B 469 (1996) 419;
F. Karsch et al, Phys. Lett. B 478 (2000) 447.

2. See, e.g., C. Zhai, B. Kastening, Phys. Rev.
D 52 (1995) 7232, and references therein.

3. K. Kajantie et al, Phys. Rev. Lett. 86 (2001)
10; Nucl. Phys. Proc. Suppl. 106 (2002) 525.

4. E. Braaten and A. Nieto, Phys. Rev. D 53
(1996) 3421.

5. K.Kajantieetal,Nucl. Phys. B 503 (1997) 357.



4

6. A.D. Linde, Phys. Lett. B 96 (1980) 289; D.J.
Gross et al, Rev. Mod. Phys. 53 (1981) 43.

7. K. Farakos et al, Nucl. Phys. B 442 (1995)
317; M. Laine and A. Rajantie, Nucl. Phys.
B 513 (1998) 471.

8. G.D. Moore, Nucl. Phys. B 523 (1998) 569.


