Visual Complex Analysis

Tristan Needham

Department of Mathematics University of San Francisco

CLARENDON PRESS • OXFORD

Contents

1	Geometry and Complex Arithmetic			
	I	Introduction1Historical Sketch2Bombelli's "Wild Thought"3Some Terminology and Notation4Practice5Symbolic and Geometric Arithmetic	1 1 3 6 7 8	
	II	Euler's Formula1Introduction2Moving Particle Argument3Power Series Argument4Sine and Cosine in Terms of Euler's Formula	10 10 10 12 14	
	III	Some Applications1Introduction2Trigonometry3Geometry4Calculus5Algebra6Vectorial Operations	14 14 16 20 22 27	
	IV	 Transformations and Euclidean Geometry* Geometry Through the Eyes of Felix Klein Classifying Motions Three Reflections Theorem Similarities and Complex Arithmetic Spatial Complex Numbers? 	30 30 34 37 39 43	
	V	Exercises	45	
2	Co	mplex Functions as Transformations	55	
	1	Introduction	55	
	II	Polynomials1Positive Integer Powers2Cubics Revisited*3Cassinian Curves*	57 57 59 60	
		Power Series1The Mystery of Real Power Series2The Disc of Convergence	64 64 67	

xvi Contents

		 Approximating a Power Series with a Poiynomial Uniqueness Manipulating Power Series Finding the Radius of Convergence Fourier Series* 	70 71 72 74 77
	IV	The Exponential Function1Power Series Approach2The Geometry of the Mapping3Another Approach	79 79 80 81
	V	Cosine and Sine1Definitions and Identities2Relation to Hyperbolic Functions3The Geometry of the Mapping	84 84 86 88
	VI	Multifunctions1Example: Fractional Powers2Single-Valued Branches of a Multifunction3Relevance to Power Series4An Example with Two Branch Points	90 90 92 95 96
	VII	The Logarithm Function1Inverse of the Exponential Function2The Logarithmic Power Series3General Powers	98 98 100 101
	VIII	Averaging over Circles*1The Centroid2Averaging over Regular Polygons3Averaging over Circles	102 102 105 108
	IX	Exercises	111
3	Möl	bius Transformations and Inversion	122
	Ι	Introduction1Definition of Möbius Transformations2Connection with Einstein's Theory of Relativity*3Decomposition into Simple Transformations	122 122 122 123
	11	Inversion1Preliminary Definitions and Facts2Preservation of Circles3Construction Using Orthogonal Circles4Preservation of Angles5Preservation of Symmetry6Inversion in a Sphere	124 124 126 128 130 133 133
		 Three Illustrative Applications of Inversion A Problem an Touching Circles Quadrilaterals with Orthogonal Diagonals Ptolemy's Theorem 	136 136 137 138

IV The F	Riemann Sphere	139
1	The Point at Infinity	139
2	Transferring Complex Functions to the Sphere	140
4	Behaviour of Functions at Infinity	144
5	Stereographic Formulae*	146
Möb 1 2 3	Dius Transformations: Basic Results Preservation of Circies, Angles, and Symmetry Non-Uniqueness of the Coefficients The Group Property	148 148 149 150
4	Fixed Points	151
5	Fixed Points at Infinity	152
	The closs-ratio	154
1 2 3 4	Evidence of a Link with Linear Algebra The Explanation: Homogeneous Coordinates Eigenvectors and Eigenvalues* Rotations of the Sphere*	150 156 157 158 161
VII Visu	alization and Classification*	162
1	The Main Idea	162
2	Elliptic, Hyperbolic, and Loxodromic types	164
4	Parabolic Transformations	168
5	Computing the Multiplier*	169
6	Eigenvalue Interpretation of the Multiplier*	170
	omposition into 2 or 4 Reflections*	172
1	Introduction	172
2	Elliptic Case Hyperbolic Case	172
4	Parabolic Case	174
5	Summary	175
IX Autom	norphisms of the Unit Disc*	176
1	Counting Degrees of Freedom	176
2	Finding the Formula via the Symmetry Principle	1//
3	Interpreting the Formula Geometrically* Introduction to Riemann's Mapping Theorem	178
X Ever		181
X Exerc	51363	101
4 Different	iation: The Amplitwist Concept	189
l Intro	oduction	189
∥ A Puzz	zling Phenomenon	189
Local I	Description of Mappings in the Plane	191
1	Introduction	191
2	The Jacobian Matrix	192
3	The Amplitwist Concept	193

xviii Contents

	IV	 The Complex Derivative as Amplitwist The Real Derivative Re-examined The Complex Derivative Analytic Functions A Brief Summary 	194 194 195 197 198
	V	Some Simple Examples	199
	VI	Conformal = Analytic1Introduction2Conformality Throughout a Region3Conformality and the Riemann Sphere	200 200 201 203
	VII	Critical Points1Degrees of Crushing2Breakdown of Conformality3Branch Points	204 204 205 206
	VIII	The Cauchy-Riemann Equations	207
		 Introduction The Geometry of Linear Transformations The Cauchy-Riemann Equations 	207 208 209
	IX	Exercises	211
5	Fur	ther Geometry of Differentiation	216
	I	Cauchy-Riemann Revealed Introduction The Cartesian Form The Polar Form	216 216 216 217
	II	An Intimation of Rigidity	219
	Ш	Visual Differentiation of log(z)	222
	IV	Rules of Differentiation1Composition2Inverse Functions3Addition and Multiplication	223 223 224 225
	V	Polynomials, Power Series, and Rational Functions 1 Polynomials 2 Power Series 3 Rational Functions	226 226 227 228
	VI	Visual Differentiation of the Power Function	229
	VII	Visual Differentiation of exp(z)	231
	VIII	Geometric Solution of E' = E	232
	IX	An Application of Higher Derivatives: Curva- ture*	234 234

	2	Analytic Transformation of Curvature	235
	3	Complex Curvature	238
X	Celes 1 2 3 4 5 6	tial Mechanics* Central Force Fields Two Kinds of Elliptical Orbit Changing the First into the Second The Geometry of Force An Explanation The Kasner—Arnol'd Theorem	241 241 243 244 245 246
XI /	Analy	tic Continuation*	247
	1	Introduction	247
	2	Rigidity	249
	3	Uniqueness	250
	4	Preservation of Identities	251
	5	Analytic Continuation via Reflections	252
	Exer	Cises	258
Non	-Eucl	idean Geometry*	267
I	Intro	Dduction	267
	1	The Parallel Axiom	269
	2	Some Facts from Non-Euclidean Geometry	270
	3	Geometry an a Curved Surface	273
	4	Intrinsic versus Extrinsic Geometry	273
	5	Gaussian Curvature	273
	6	Surfaces of Constant Curvature	275
	7	The Connection with Möbius Transformations	277
II	Sph	erical Geometry	278
	1	<i>The</i> Angular Excess of a Spherical Triangle	278
	2	Motions of the Sphere	279
	3	A Conformal Map of the Sphere	283
	4	Spatial Rotations as Möbius Transformations	286
	5	Spatial Rotations and Quaternions	290
III F	Hyper	bolic Geometry	293
	1	The Tractrix and the Pseudosphere	293
	2	The Constant Curvature of the Pseudosphere*	295
	3	A Conformal Map of the Pseudosphere	296
	4	Beltrami's Hyperbolic Plane	298
	5	Hyperbolic Lines and Reflections	301
	6	The Bolyai-Lobachevsky Formula*	305
	7	The Three Types of Direct Motion	306
	8	Decomposition into Two Reflections	311
	9	The Angular Excess of a Hyperbolic Triangle	313
	10	The Poincar6 Disc	315
	11	Motions of the Poincar6 Disc	319
	12	The Hemisphere Model and Hyperbolic Space	322
\mathbf{V}	Exe	rcises	328

6

xx	Contents
~~	Contento

7	Win	iding Numbers and Topology	338
	I	Winding Number1The Definition2What does "inside" mean?3Finding Winding Numbers Quickly	338 338 339 340
	II	Hopf's Degree Theorem1The Result2Loops as Mappings of the Circle*3The Explanation*	341 341 342 343
	III	Polynomials and the Argument Principle	344
	IV	 A Topological Argument Principle* Counting Preimages Algebraically Counting Preimages Geometrically Topological Characteristics of Analyticity A Topological Argument Principle Two Examples 	346 346 347 349 350 352
	V	Rouchö's Theorem1The Result2The Fundamental Theorem of Algebra3Brouwer's Fixed Point Theorem*	353 353 354 354
	VI	Maxima and Minima1Maximum-Modulus Theorem2Related Results	355 355 357
	VII	The Schwarz-Pick Lemma*1Schwarz's Lemma2Liouville's Theorem3Pick's Result	357 357 359 360
	VIII	The Generalized Argument Principle1Rational Functions2Poles and Essential Singularities3The Explanation*	363 363 365 367
	IX	Exercises	369
8	Con	nplex Integration: Cauchy's Theorem	377
	Ι	Introduction	377
	Ι	The Real Integral1The Riemann Sum2The Trapezoidal Rule3Geometric Estimation of Errors	378 378 379 380
	III	The Complex Integral1Complex Riemann Sums2A Visual Technique3A Useful Inequality	383 383 386 386

4 Rules of Integration	387
IV Complex Inversion 1 A Circular Arc 2 General Loops 3 Winding Number	388 388 390 391
V Conjugation 1 Introduction 2 Area Interpretation 3 General Loops	392 392 393 395
VI Power Functions1Integration along a Circular Arc2Complex Inversion as a Limiting Case*3General Contours and the Deformation Theorem4A Further Extension of the Theorem5Residues	395 395 397 397 399 400
VII The Exponential Mapping	401
VIII The Fundamental Theorem1Introd uction2An Example3The Fundamental Theorem4The Integral as Antiderivative5Logarithm as Integral	402 402 403 404 406 408
IX Parametric Evaluation	409
X Cauchy's Theorem 1 Some Preliminaries 2 The Explanation	410 410 412
XI The General Cauchy Theorem1The Result2The Explanation3A Simpler Explanation	414 414 415 417
XII The General Formula of Contour Integration	418
XIII Exercises	420
9 Cauchy's Formula and Its Applications	427
Cauchy's Formula 1 Introduction 2 First Explanation 3 Gauss' Mean Value Theorem 4 General Cauchy Formula	427 427 427 429 429
 Infinite Differentiability and Taylor Series Infinite Differentiability Taylor Series 	431 431 432
III Calculus of Residues	434

		1 2 3 4 5	Laurent Series Centred at a Pole A Formula for Calculating Residues Application to Real Integrals Calculating Residues using Taylor Series Application to Summation of Series	434 435 436 438 439
	IV A	nnula 1 2	ar Laurent Series An Example Laurent's Theorem	442 442 442
	VE	Exerc	ises	446
10	Vec	tor F	ields: Physics and Topology	450
	1	Vecto 1 2 3 4	or Fields Complex Functions as Vector Fields Physical Vector Fields Flows and Force Fields Sources and Sinks	450 450 451 453 454
	11	Winc 1 2 3	Jing Numbers and Vector Fields* The Index of a Singular Point The Index According to Poincarö The Index Theorem	456 456 459 460
	III F	1 2 3	on Closed Surfaces* Formulation of the Poincarö-Hopf Theorem Defining the Index on a Surface An Explanation of the Poincarö-Hopf Theorem	462 462 464 465
	IV B	Exerc	xises	468
11	Vec	tor F	ields and Complex Integration	472
		Flux 1 2 3 4 5	and Work Flux Work Local Flux and Local Work Divergence and Curl in Geometric Form* Divergence-Free and Curl-Free Vector Fields	472 472 474 476 478 479
		Com 1 2 3 4 5 6 7 8 9 10	Iplex Integrat; un in Terms of Vector Fields The Plya Vector Field Cauchy's Theorem Example: Area as Flux Example: Winding Number as Flux Local Behaviour of Vector Fields* Cauchy's Formula Positive Powers Negative Powers and Multipoles Multipoles at Infinity Laurent's Series as a Multipole Expansion	481 483 484 485 486 488 489 490 492 493
	III I	ne Co	omplex Potential	494

1Introduction2The Stream Function3The Gradient Field4The Potential Function5The Complex Potential6Examples	494 494 497 498 500 503	
	505	
12 Flows and Harmonic Functions	508	
Harmonic Duals 1 Dual Flows 2 Harmonic Duals	508 508 511	
 Conformal Invariance Conformal Invariance of Harmonicity Conformal Invariance of the Laplacian The Meaning of the Laplacian 	513 513 515 516	
III A Powerful Computational Tool	517	
IV The Complex Curvature Revisited*1Some Geometry of Harmonic Equipotentials2The Curvature of Harmonic Equipotentials3Further Complex Curvature Calculations4Further Geometry of the Complex Curvature	520 520 520 523 523	
V Flow Around an Obstacle 1 Introduction 2 An Example 3 The Method of Images 4 Mapping One Flow Onto Another	527 527 527 532 538	
VI The Physics of Riemann's Mapping Theorem1Introduction2Exterior Mappings and Flows Round Obstacles3Interior Mappings and Dipoles4Interior Mappings, Vortices, and Sources5An Example: Automorphisms of the Disc6Green's Function	540 540 541 544 546 549 550	
VII Dirichlet's Problem1Introduction2Schwarz's Interpretation3Dirichlet's Problem for the Disc4The Interpretations of Neumann and Böcher5Green's General Formula	554 554 556 558 560 565	
VIII Exercises	570	
References	573	
Index		