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Vortex free energies in SO(3) and SU(2) lattice gauge theory ∗
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Lattice gauge theories with gauge groups SO(3) and SU(2) are compared. The free energy of electric twist, an
order parameter for the confinement-deconfinement transition which does not rely on centre-symmetry breaking,
is measured in both theories. The results are used to calibrate the scale in SO(3).

1. What makes SO(3) interesting

The motivation for a comparison of SO(3) and
SU(2) lattice gauge theory is to clarify an ap-
parent paradox. On one hand, both groups have
the same local structure, SO(3) = SU(2)/Z2, so
the naive continuum limit of both theories is
the same. Universality of the continuum fixed
point suggests that this should be true also non-
perturbatively. On the other hand, the decon-
finement transition is usually associated with the
breakdown of the centre symmetry, which does
not exist in SO(3). If SO(3) has a deconfinement
transition, its characterisation must be different;
and there should also be another order parameter.

Further doubt about universality comes from
the observation [1] that the weak coupling phase
of SO(3) LGT features 2 metastable states: in ad-
dition to the state with positive adjoint Polyakov
loop expected in a deconfined phase, there is a
state with negative adjoint Polyakov loop. This
state has not found a satisfactory explanation so
far.

2. Centre vortices

Even though the centre of SO(3) is trivial, cen-
tre vortices exist both in SU(2) and SO(3). A cen-
tre vortex is a 2-dimensional configuration which
tends to a pure gauge at infinity. In SU(2), the
corresponding gauge function g changes its sign
as one goes around the vortex. In SO(3), the sign
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of the group elements is discarded, so g(ϕ) be-
comes single-valued, but now it is a non-trivial
element of π1[SO(3)]. For general gauge groups
G, the relevant quantity is π1[G/ Centre(G)].

A convenient way to study centre vortices in
SU(2) are twisted boundary conditions on a torus.
These are imposed by introducing a mismatch
in the transition functions along 2 directions,
ΩµΩν = −ΩνΩµ. These boundary conditions
change the number of centre vortices through the
plane with twist from even to odd. Accordingly,
one can define the free energy of an (additional)
centre vortex as the ratio of partition functions
with twisted and periodic boundary conditions

e−βFCV = Ztbc/Zpbc . (1)

For electric twist, this ratio is an order parame-
ter of the deconfinement transition: for large vol-
umes, it tends to 1 in the confined phase while
it is exponentially suppressed in the deconfined
phase [2].

3. Twist in SO(3)

In SO(3), twisted boundary conditions are void
because the sign of the transition functions is
discarded; twist becomes an ordinary topological
quantum number. In order to understand this in
more detail, we invoke the formulation of Wilson
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SU(2) in terms of SO(3) and Z2 variables [3],

ZWilson
SU(2) =

∑
αp=±1

∫
SU(2)

DU e
1
2 β

∑
p αp TrF Up

×
∏

c∈cubes

δ

( 6∏
p∈∂c

αp − 1
)

. (2)

The constraint forbids monopoles in the plaquette
field α. Without the constraint, one obtains the
Villain partition function of SO(3) LGT,

ZVillain
SO(3) =

∑
αp=±1

∫
SU(2)

DU e
1
2β

∑
p αp TrF Up . (3)

The sum over αp makes the action independent
of the sign of each link matrix U , so (3) is really
a redundant formulation of an SO(3) theory.

So far the argument holds for an infinite vol-
ume. On a 4-torus, 6 additional global constraints
are required [4], namely

∏
p∈µν-plane

αp
!= +1 (periodic SU(2)). (4)

Here, the product is over all plaquettes in a fixed
2-dimensional section in µν-direction of the torus.
Equation (4) ensures periodic boundary condi-
tions in SU(2). If the product is negative for some
µ, ν, one obtains twisted boundary conditions in
that direction. For then one Up in each µν-plane
enters the action with a negative sign.

The above relation suggests the following defi-
nition of a “twist” observable in the SO(3) theory
(with monopoles):

zµν ≡ 1
LρLσ

∑
µν-planes

∏
plane

sgnTrF Up . (5)

At weak coupling, sgnTrF Up and αp are strongly
correlated; zµν is a genuine SO(3) observable be-
cause each link appears twice in the product, so
its sign drops out. The average over parallel
planes has been introduced because, in the pres-
ence of monopoles, the twist can vary between
planes. So z in general takes fractional values. It
turns out that it is always close to ±1 above the
bulk phase transition at β ≈ 4.45 below which
monopoles condense. This is illustrated in Fig. 1
by a Monte Carlo history obtained at β = 4.5.
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Figure 1. Monte Carlo history of the 3 electric
twist variables (top) and the adjoint Polyakov
loop (bottom) (44 lattice, β = 4.5).

We also find a simple explanation for the
mysterious phase with negative adjoint Polyakov
loop as a state with electric twist. A classical
ground state in the sector with z01 = −1, say,
can be obtained by setting all links to 1, ex-
cept U1(1, y, z, t) = iσ1 and U4(x, y, z, 1) = iσ2

[5]. The Polyakov loop of this configuration is
TrF P = 0 in the fundamental representation and
TrA P ≡ (TrF P )2 − 1 = −1 in the adjoint rep-
resentation. So we expect a negative TrA P in
sectors with electric twist. Figure 1 shows that
this is indeed the case.

4. Vortex free energies

We use the observable (5) to measure the free
energy of electric twists in the Villain SO(3) the-
ory. The technical difficulty here is that there are
high barriers between the different twist sectors,
so it is very difficult to maintain ergodicity. The
density of states as a function of the 3 twist vari-
ables z0i extends over 12 orders of magnitude [6].
The remedy is a multicanonical algorithm where
the barriers are removed by a bias, which is cor-
rected by reweighting the observables. The bias
depends on 3 variables (z0i) and is represented by
a 3-dimensional table determined iteratively.

In Fig. 2, the free energies of 1, 2 and 3 electric
twists (an additional vortex winding around 1, 2
or 3 directions) obtained at βSO(3) = 4.5 on 43, 63
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and 83 × 4 lattices are compared with results for
SU(2) at various βSU(2). The latter were obtained
with the method of [7]. The SO(3) data can be
reproduced by SU(2) with βSU(2) = 4.12(3). The
good quality of the joint fit (χ2/dof = 1.35) lends
support to the hypothesis of universality of the
continuum limit.
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Figure 2. Comparison of the vortex (electric
twist) free energies between SO(3) at β = 4.5
and SU(2) at various β. Lattice sizes are 83, 63

and 43 × 4 from the top (3 lines each).

Asymptotic scaling suggests that the inverse
lattice spacing at this coupling is about 200 GeV.
As the bulk transition prohibits coarser lattices,
we conclude that lattices larger than about 7004

are needed to simulate confined (Villain) SO(3).
We would like to emphasise that the scale of 200
GeV is in no way related with continuum physics.
It is just due to the bulk phase transition of the
SO(3) lattice gauge theory beyond which lattice
artifacts dominate, and gives a lower bound on
the possible cutoffs one can use. This value can
be shifted by suppressing (or enhancing) lattice
artifacts [8].

The fact that the couplings in SU(2) and SO(3)
are not very different is not a coincidence: since
the actions of the two theories differ only by terms
exponentially small in the coupling, the perturba-
tive scale parameters ΛL are the same for both.

The difference is thus of purely non-perturbative
origin.

5. Conclusions

To conclude, we have recalled that SO(3) fea-
tures twist sectors like SU(2); but unlike SU(2)
they are summed over within periodic boundary
conditions rather than imposed by the boundary
conditions. The vortex free energy can serve as
an order parameter in both theories, so the cen-
tre symmetry – which does not exist in SO(3) –
is not needed. The free energies of spatial centre
vortices are very similar in SO(3) and SU(2) pro-
vided the bare couplings are adjusted. This sup-
ports universality of the continuum limit. How-
ever, one has to keep in mind that the systems
studied here are very small. Because of a bulk
phase transition, one needs lattices larger than
7004 to simulate the confined phase.

The vortex free energy can be defined whenever
π1[G/ Centre(G)] 6= 1, independent of whether
there is a centre or not, i.e. for all simple Lie
groups except G2, F4 and E8. The absence of
a vortex order parameter in the latter prompts
speculations about the nature of the confine-
ment/deconfinement phase transition. The study
of G2 proposed in [9] will be interesting in this
connection.
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