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Symmetry breaking and false vacuum decay after hybrid inflation
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We discuss the onset of symmetry breaking from the false vacuum in generic scenarios in which the mass
squared of the symmetry breakiftgiggs) field depends linearly with time, as it occurs, via the evolution of the
inflaton, in models of hybrid inflation. We show that the Higgs fluctuations evolve from quantum to classical
during the initial stages. This justifies the subsequent use of real-time lattice simulations to describe the fully
nonperturbative and nonlinear process of symmetry breaking. The early distribution of the Higgs field is that of
a smooth classical Gaussian random field, and consists of lumps whose shape and distribution is well under-
stood analytically. The lumps grow with time and develop into “bubbles” which eventually collide among
themselves, thus populating the high momentum modes, in their way towards thermalization at the true
vacuum. With the help of some approximations we are able to provide a quasianalytic understanding of this
process.
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[. INTRODUCTION instantaneous quen¢h4], which can lead to cosmologically
interesting particle productiofl5]. Tachyonic preheating

The problem of symmetry breaking in quantum field was recently studied beyond the quench approximation in
theory (QFT) has been with us for several decades. In theRef.[16].
context of cosmology, it has usually been associated with We will argue that symmetry breaking proceeds through a
thermal phase transitiorji4] and the production of topologi- state in which the relevant degrees of freedom are semiclas-
cal defects[2]. Understanding the way in which the order sical infrared modes, which can be described in a nonpertur-
parameter associated with the breaking of the symmetrpative and nonlinear way with a classical effective field
evolves from a symmetric staféhe false vacuumto a bro-  theory, whose classical equations of motion can be solved
ken statgthe true vacuumis nontrivial[3—7]. Only recently  numerically in the lattice and thus allow us to study the fully
has this problem been addressed in the context of symmetiyonperturbative out of equilibrium process of symmetry
breaking at zero temperature, at the end of a period of hybrithreaking.
inflation[8,9], in the so-called process of tachyonic preheat- The quantum to classical transitions of field Fourier
ing, i.e., spinodal instability, in the context of preheating af-modes have been addressed before in the context of inflation
ter inflation[10]. There,classicalevolution equations have [17-20, where it is mandatory to understand the transition
been solved with real-time lattice simulations, developed foffrom quantum fluctuations of the inflaton field during infla-
studying the problem of preheatin@1-13, which include tion to the classical metric fluctuations on superhorizon
all the nonperturbative and nonlinear character of the phasgcales, since they are believed to be responsible for the ob-
transition. It was found that symmetry breaking occurs typi-served temperature anisotropies in the cosmic microwave
cally in just one oscillation around the true vaculii], background, as well as the scalar density perturbations giv-
most of the false vacuum energy going into gradient modesdng rise to galaxies and large scale structure formation. The
rather than kinetic energy. use of the classical approximation to study the process of

However, the problem of the transition from a fatpgan-  preheating after inflation has been proposed in Réfl, and,
tumvacuum state at zero temperat@as occurs at the end of in a context similar to ours, it has been recently used in Refs.
a period of inflation to the truequantumvacuum state full of [7,14,14.
radiation at a certain temperature has not been fully ad- In this paper we will use such a well developed formalism
dressed yet. Most of the previous approaches refer to th® study the first instances of a generic symmetry breaking
decay from a false vacuum state at finite temperature, relyingrocess, i.e., the conversion of quantum modes of the sym-
on the Hartree or largdl approximation3,4,6,7. Only re-  metry breaking fieldthe QFT order parameter, generically
cently, the zero temperature problem was addressed withicalled the Higgs fieldinto a classical Gaussian random field
the classical approximation but mainly for the case of anwhose subsequent nonlinear evolution equations can be
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solved with lattice simulations. We give here a self-containedspace-time structure of the classical Higgs field is analyzed
presentation of the conditions under which classical behavioin Sec. VI A. Being a Gaussian random field, it can be de-
holds, and apply it to the analysis of the false vacuum deca?cribed_ in a similar way to the matter density field whose
after inflation, with specific initial conditions. luctuations give rise to galaxies and large scale structure via
Our final aim is to study the process of electroweak symdravitational collaps¢26]. The Higgs field is found to pos-

metry breaking, and the possibility of realizing baryogenesi$€SS: &t Symmetry breaking, an inhomogeneous spatial distri-
at the electroweak scale, via the nonequilibrium process ution made of lumps, who_se shape and |n|t|§1l evplutlon can
’ e well understood analytically. The space-time inhomoge-

preheating after inflatiori21-23. Therefore this paper is naq,5 character of symmetry breaking in the Higgs-inflaton
mtend_ed as the first one in a series, in V\_/h|ch we W'"_pro'system has also been reported in R&6] for a one compo-
gressively incorporate more complexity, i.e., gauge fieldspent Higgs model. For the complete nonlinear dynamics of
Chern-Simons,CP violation, etc., into the picture. Of the full Higgs-inflaton system we make use of lattice real-
course, our results are readily generalizable to any othefime evolution methods. The details of our procedure, its
phase transition that may have occurred in the early universeonnection and difference with lattice methods used by other
at the end of a period of hybrid inflation, e.g., at grand uni-authors, and a detailed check of the validity of the approxi-
fied theory(GUT) scales. mations used, are described in Sec. VIB.

The paper is organized as follows. In Sec. Il we describe Finally, in Sec. VII we present the results of this stage of
the initial conditions for spontaneous symmetry breakingthe evolution of the system. The lumps mentioned in the
coming from a hybrid model of inflation. The inflaton acts previous sections grow and, once its center reaches the Higgs
here like a background field whose coupling gives a time~vacuum expectation value, invaginate and create an approxi-
dependent mass to the Higgs. In Sec. Ill we study the quarihately spherically symmetric “bubble” which expands at a
tum evolution of the Higgs field in the linear approximation Very high speed. Meanwhile, the center of the lump bubble
from the bifurcation point. The Fourier modes decouple incontinues to oscillate with decreasing amplitude, leading to
this approximation and can be studied as a quantum mes_econdqry bubbles. All these phenomena_ can be. well under-
chanical ensemble of harmonic oscillators, both in theSto0d with the help of some approximations which reduce

Heisenberg and the Scifiager picture. We then study, with the full nonlinear equations to a one or two dimensional
the use of the Wigner function, the quantum to classiéal tranpartlal differential equation of a single scalar field. This sim-

sition of the Higgs modes. We show that each quantum modé:med picture matches qualitatively aritb a high degree

can be described exactly like a classical Gaussian rando uantitatively the results of the lattice simulations. Eventu-
. ; ctly ) ly, bubbles centered at different points collide and transfer
field, and give a prescription for computing the Weyl-ordered

. , - -most of their potential and kinetic energy to gradient energy,
quantum expectation values of operators in terms of classicg, ;s populating the higher momentum modes. This process

averages over _a'Gaqss!an _random field With'the Wigner funQgads to complete symmetry breaking afuiassical ther-
tion as probability distribution. We then define and characgjization. The whole history of the system is illustrated by
terize when a mode can be called “quasiclassical.” following the evolution of two-dimension&PD) sections of

In Sec. IV we give the exact solutions to the field evolu-a particular configuration. We also show histograms for the
tion equations of the Higgs in the linear approximation infield values of both Higgs and inflaton, which start in the
terms of Airy functions, and show that soon after the bifur-false vacuum and are seen to end up peaked around the true
cation the infrared modes become quasiclassical according imcuum. In Sec. VIII we draw our conclusions and describe
the definition of the previous section. This analysis followsthe future directions in which this work can be extended, first
closely, although in greater detail, what has been studied présy including the production of S@2) gauge fields and after-
viously in the literaturd 16,24,23. In Sec. V we analyze the wards by studying the rate of sphaleron transitions that may
inclusion of the nonlinear terms in the quantum evolutiongive rise to a non-negligible amount of baryons.
within perturbation theory. We give a prescription for treat- We have added three appendixes. In Appendix A we de-
ing the ultraviolet divergences and to renormalize the paramscribe the formalism of squeezed states following Refs.
eters of the theory. This leads to a regular probability distri{18:19, which can be applied to the initial stages of the
bution to be used for a classical field description, whichHiggs evolution in the linear regime, and gives rise to the
matches the renormalized quantum expectation values of tEMiclassical nature of the long wavelength modes. In Ap-
Weyl ordered products. The matching is done at a time irPend'X_ B we compute the Wigner function for the e_v_olved
which the infrared modes have grown sufficiently to be well G2ussian initial vacuum staf@8-20, and show explicitly

described as classical modes. This occurs well before nonlirjfbe squeezing of the infrared modes. We give a definite con-

earities are important, and therefore our Gaussian approxfi't'On for characterizing the moment in which a mode can be

mation is valid, in a similar spirit as that of R&f7]. The treated as quasiclassical. In Appendix C we give the details

quantum ultraviolet modes, on the contrary, can be though?f the perturbative calculations_ of the nonlinear evolution _of
as integrated out, and used to renormalize the parameters gyr system, both at a classical and quantum-mechanical
the classical theory. We might then interpret our Classica|eve|'
field distribution as an effective theory for the long wave-
length modes. We also estimate the time at which symmetry
breaking sets in.

In Sec. VI we describe the methodology to be used to take The precise model of hybrid inflation will not be impor-
care of the full nonlinear evolution of the system. The initial tant for our purposes here. However, for concreteness we

Il. THE HIGGS FIELD AT THE END OF HYBRID
INFLATION
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will implement it in the context of a supersymmetric exten- N s o g° NPT
sion of the standard model in which the radiative corrections V(o x)= Z(|¢| —v9)°+ §|¢| Xt suxs (2
are responsible for the running of the inflaton field during the

few (~5-10) e-folds necessary to cool the universe so thatyhere the parameters in the potential depend on the number
the electroweak symmetry breakii§WSB) occurs at zero ¢ Higgs componentdl, as: A =Xy/N, g2=g2/N. andv?
temperature. The fluctuations responsible for cosmic micro_ 2~ " " o7 BT B S indepe?f]decnt of the
wave backgroundCMB) temperature anisotropies and large numcbg'r of components 0%o

scale structure come from a previous stage of inflation, com- It is the effective .false vacuum  energyo=\o%/4
pletely independent of this. Moreover, since EWSB occurs at_ m22/4 which drives the period of hybrid infl?ation Infla-
low energies, we can, and will in what follows, safely ignore .. ) )

. e ) tion ends when the inflaton homogeneous mage( x),
the rate of expansiortj ~10 ® eV, during symmetry break- slow-rolls below the bifurcation poing= x.=m/g, at which
ing and treat the fields as if they were in Minkowski space. he Hi . | P Xe 9
In particular, one can consider the supersymmetric hybri& € HIggs IS massiess,
model of Dvali, Shafi and Schaefgt7], where the superpo- 2
tential fixes a relation between the coupling$=2\. As we mfﬁ: mZ(X—Z - 1) ) 3)
will see, this choice simplifies some stages of the dynamics Xc
of symmetry breaking after inflatiof28], but is not crucial.

A study of the process of tachyonic preheating after a variet?€/oW the CI’II'[ICB.| point, the H'Qﬁls has a negat_lvlcla mass
of more general supersymmetric models of inflation will be >dua@réd and long wave modes will grow exponentially, driv-

given in Ref.[29]. ing the process of symmetry breakif4]. The process by
The hybrid model we are considering is a simple generVhich the mass squared of the Higgs goes from large and

alization of the standard model symmetry breaking sectorPOSitive to large and negatiye is not_instantaneous, _but de-
. . ) ) 1 Ca _ pends strongly on the velocity of the inflaton at the bifurca-
which consists of the Higgs field = 5 (¢g 1+1¢%7,), with

> . . ; tion point,
7, the Pauli matrices, and an inflatop a singlet under
SU(2). The inflaton couples only to the Higgs, with coupling 1]y
constang. The scalar potential has the usual Higgs term plus V=— |2 . (4)
a coupling to a massive inflaton, MiXely

1 v2\2 Typically the speed of the inflaton is such that the process

£=(D,®) D*d+ 5((?'“)()2_)\( PTp— ?) —g?x*®'®  takes place in less than one Hubble time, a condition known
as the “waterfall” condition[8,9], which ensures the absence

1,, of a second period of inflation after the bifurcation point
THHX oy [30]. The actual value 0¥ depends very much on the model
and the scale of inflation, and we will treat it here as an

_ . . . . arbitrary model parameter. In this case, the effective mass of
wherev =246 GeV is the expectation value of the Higgs in yhe Higgs across the bifurcation point can be written as a
the true vacuumgy is the mass of the inflaton in the false time-dependent mass

vacuum andm=.\ v. We are assuming implicitly that
whenever there is a conFractuI_DTO, we should take the mi(t)z—2Vm3(t—tc)+O[V2(t—tc)2]. (5)
trace over the S(2) matrices, i.e.®Td=Trd'd=1 (43
+¢2p,)=|4|%2. The Higgs mass in the true vacuum is  Note that a similar situation arises in the case of simple
determined by its self-couplingm, = 2\ v, while the  extensions of the standard model Higgs, in which radiative
mass of the inflaton in the true vacuum is givenry=gv corrections(dominated by the large top quark Yukawa cou-
>u. pling) induce the running of the Higgs mass square from
In this paper we will simplify the analysis of the dynamics positive to negative thus providing a mechanism for elec-
by omitting the SW2) gauge field and working with a ge- troweak symmetry breaking. The role of the running scale is
neric Higgs field withN; real components. We anticipate that played here by the inflaton homogeneous mode. Alterna-
the most important conclusions of this paper are not affectetlvely, one can envisage a secondary period of hybrid thermal
by the introduction of the gauge field, and leave for a forth-inflation [31,32 just above the electroweak scale, which
coming publication the symmetry breaking dynamics in thelasted only a fewe-folds and supercooled the false vacuum,
presence of gauge fields. For ease of notation we will dropeaving only the fast rolling inflaton coupled to the Higgs.
the internal indices of the Higgs field whenever all compo-This short second period of inflation would not affect the
nents behave in the same way. The numerical simulation€MB anisotropies, but would provide a natural initial condi-
that will be presented correspond toNa=4 component tion for the growth of quantum fluctuation of the Higgs field,
Higgs field. as they evolve across the bifurcation point, toward symmetry
During hybrid inflation[8] the Higgs field has a large and breaking.
positive effective mass squared due to its coupling to the Let us consider the effective action for the Higgs field
inflaton field, which slow-rolls down its potential valley. The ®(x,t) ignoring the self-coupling.-term (we omit the inter-
potential for the coupled fields is the following: nal indices of the Higgs fie)d
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A. The Heisenberg picture

— 3 1. 2 2 2 2
5= f d thi[((b) ~(V)"=my(t) ¢, ©) In the Heisenberg picture the quantum system is described
by means of the positiog(k,7) and momentum operators
where we have included the time-dependent nt&sgo lin-  p(k,r) corresponding to each oscillator. The canonical
ear order, which is the only effect that the presence of thequal-time commutation relations for the fields=1 here

homogeneous_ mode(t) of the inflaton field induces in the and throughoytin position and momentum space are
evolution of Higgs quantum modes.

We now define a new scaM =(2V)®*m, and thus rede- [y(x,7), p(x',7)]=i83(x—x"),
fine our coordinates as

. [y(k,7), p(k',7)]=i8%k+k"). (13
=M(t—ty)—d=M¢’, (7)
Furthermore, hermiticity of the operators in position space
B _k imply the relations y'(k,7)=y(—k,7) and p'(k,7)
X=Mx—K= . ® gk,

We will assume that at=7,=0, i.e. at the bifurcation
where primes denote derivatives with respectrt@andk is  pointt=t., the state of the system is given by the ground
the wave number associated with the Higgs Fourier modesstate of the Hamiltonian with oscillator frequeney(k,0)
=k. It is then useful to express the position and momentum
operators in terms of creation-annihilation operators at that
time:

d3x _
bk, 7)= f (ZT)MCD(X,T) exp(—ix-k).

From now on, we will usex andk as the normalized position 1

and momentum coordinates, i.e. we will work in units of y(k,To)=ﬁ [a(k, 7o) +a'(—k,70)],
M=1. We will also denote the normalized Higgs quantum
fluctuations byy= ¢/M, for which the effective action is

k
1 p(k,7p)=—i \/; [a(k,ro)—aT(—k,To)].
5= f dxdr5 Ly (Vy)?+ 7y7]. ) (14

We can define the conjugate momentum @s dL/dy’ The quantum operators satisfy the classical equations of
=y’, and thus the corresponding Hamiltonian becomes  motion, which we will write down as a system of coupled
first-order equations

1
H:f d*5[p?+(Vy)?=7y?]. (10) d d (p(k,r))_(o —wz(k,T))<p(k,T)>

—vu(k,7) =+
In momentum space, the Hamiltonian becomes dr driy(k,n)/ \1 0 y(k.7)

1 15
H=J d3k§[p(k,T)PT(k,T)+(k2—T)Y(k,T)yT(k.T)]- -

(11) whose solution can be expressed as

The Euler-Lagrange equations for this field can be written in v(k,7)=M(k,m)v(k, )
terms of the momentum eigenmodes as a series of uncoupled

. o 2
oscillator equations: \/;gkl(T) \/ﬂgkz(T)
y"(k,7)+ (k*= 7)y(k,7)=0. (12 = 5
—\[Efkrz(r) V2Kia(7)

. _ _ o where f,; = Ref, and f,, = Imf,, with f (7) a complex
In this section we will start the description of the quantumsolution of the equation of motion, with initial conditions,
evolution of the system assuming that we can neglect the

v(k,7g), (16

Ill. QUANTUM EVOLUTION IN THE GAUSSIAN
APPROXIMATION

nonlinear terms which are proportional Xo Our goal is to 1
determine the precise conditions under which the system f[<’+(w(k,r)2)fk=0, fr(m9) = —, (17
evolves into a classical one. Our presentation will be general V2k

and applicable to any time dependent harmonic oscillator
system with time-dependent spring constaftk, 7), onlyin  and
the next section we will apply this formalism to our particu-

lar problem[ w?(k,7) =k?— 7]. Our results overlap and co- _ L e _ \ﬁ
incide with Refs[17-19. 9=gatige=if, 970 2 (18
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Note that since the motion is Hamiltoniane. canonical O (1) 1-2iF(7)
the determinant oM (k,7) is detM(k,7)=1, Vr, a condi- Q)= 5 )= I (25
tion that is equivalent to the Wronskian of E@7) being 1 at kAT k
all times,
Fi(r)=1Im(fggw). (26)

P(fi f} = " fl) = 0k + ok fk=2Re(gify) =1. (19)

The previous formulas allow us to compute the expecta- As a consequence of the unit determinanifk, 7) one
tion value of products of fields at any timein terms of the  concludes that the determinant of the symmetea) part of
expectation values of fields at timg. Substituting Eq(14) 3 (k,r,7) is time independent and equal to 1/4. Note that
into the expression for the fields at timewe obtain using Eq.(25) we can rewrite the conjugate momentum as

y(k,7)=f(m)a(k, 7o)+ fr(n)a’(—k, 7o), -
J— k T
p(k,T):—i[gk(f)aw,m)—g:(ﬂa*(—k,m)].( ) Ptk m)=p(k,n)+ 17 opy(ki7) @7
20

The quantum information of the system is encoded in thewith
expectation values of products of fields. For a Gaussian field
the only quantities needed to describe the system are the

two-point expectation values, H(k,r):— ; (I )|2[fk(7')a(k,7'0)_f:(T)aT(_k’TO)]'
(0,70va(k, Tvp(K', 7)]0,70) = S an(k,7,7') 8%(k+K'), KT

(21 a relation that will prove useful in the next section.

where |0,7o) is the initial vacuum state satisfying

a(k,70)|0,70) =0, Vk. The value of this matrix at any pair of B. The Schradinger picture and the classical limit
times can be expressed in terms of the malixand the Let us go now from the Heisenberg to the Sclinger
corresponding expectation values at timeas follows: representation, and compute the initial state vacuum eigen-

function V(7= 7). We will follow here Refs[17-19. In
what follows we will denote operators in the Schimger

The quantum initial condition on the state of the system afépresentation by,=y(k, 7o) andp,=p(k,7o). The initial
time 7, amounts to vacuum stat¢0,7,) is defined through the condition

Sk, 7,7 )=M(K,7)2(K, 79, 70)MT(K,7"). (22

vk, a(k,70)|0,70)= |0,79)=0,

\ﬁA . 1.
— I_
2yk \/ﬂpk

[
2

N =~

E(k,To,To): (23)

1
2k

N —

1 4
Yo+ W_O*lﬁ’o(yﬁ ¥ 70)=0=Wo(yg V¥, 7o)
k

Note that this matrix is Hermitian, but neither real nor sym-

metric, and its determinant vanishes. The imaginary part re-
sults from the equal time commutation relations and does not
depend on the particular state of the system. The real sym-

metric part alone characterlges complgtely the state. . where we have used the position representatigp,
Let us conclude this section by giving the expression of

= Noe_k \YE\Z, (28)

the equal time expectation values at any other time: =Y Px= f'(‘?/ayg*)’ and No gives the corresponding
normalization.
i We will now study the time evolution of this initial wave
lgk(7)|? Fu(n)—5 function using the unitary evolution operatbt=(, 7o),
Sk, 7,7)= _ satisfyinglf’ = —iHU. The state evolves in the Scllinger

picture as|0,7)=U|0,75). We can make use of the result of

! 2
Fil(7)+ 2 ()] the previous section to determine this state. By inverting Eq.

] (20) we find
3 lgk(7)]? —i QF(D[f(n)?
s 2 2
DI ) (ko) =G (DY A HTE (PP, (29
(24)
with which acting on the initial state becomés, V 7,
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f2(7). 1 lyI? ?
y(k,7)+i or( oF (ny Pk | U U07) Wok(Y.P) =z ex| = 2~ 4l p- mzy
Ok
. (34
=|Yiti *( )pk |0,7)=0, A very trivial illustration of this equality is given by the
following symmetrized vacuum expectation value
e—ia 012
:>"‘I, Oa 0*1 = eiﬂk(T)‘yk‘ ’ 1 - Ny !
W) Valf(7)] §<017'|Ykpk'+kak'|0,T>=Fk(7')53(k+k) (35)
(30)
while

with Q,(7) given by Eq.(25). We see that the unitary evo-

lution preserves the Gaussian form of the wave functional.

The wave function(30) is called a two-mode squeezed state. (YkPx')gs= <y'<
The normalized probability distribution, for each mdde

Fu(7) Fu(7)
Pir + RS W<ykyk’>gs
gs

=F (1) 83(k+K’). (36)
W
Po(Yk.Yk*.7)= WGXD< TP (31) Even though only the symmetrized expectation values are
: described by the Gaussian ensemble average, for the Gauss-
is a Gaussian distribution, with dispersion given |y|2. ian ground state of Eq30) quantum expectation values with

This agrees with the result obtained in the previous section i@rPitrary ordering of operators can also be computed. To be
the Heisenberg picture. The phasék,7) cannot be deter- specific, the expectation value of any operady,p), with
mined by this method, but as we have seen it has no effect oany given ordering off andp, can be rewritten as a lineal
the probability distribution nor on the Wigner function, see combination of Weyl-ordered operators with coefficients pro-
below. However, from the Schdinger equationjd, ¥ y(7) portional to the commutator which is a time independent
=HW¥(7), one can deduce that' (k,7)=[2|f,(7)]|*]"*. number; schematically

We can also compute the occupation number,

) 1 k1 (0,71G(y,p)|0,7)=(Go(Y,P))gs™ gl (i5)™(Gn(Y,P))gs:
ni(7)=(0,71a’(k, 7o)a(k, 70)|0,7) =5 |9l *+ 5 |Ful* - @
(32)
where we have introducetl as an expansion parameter to
a quantity that is always positive definite. make explicit the connection with the semiclassical approxi-

We now address the problem of approximating the quanmation. For instance, for the example in E85) we would

tum evolution just described by a classical evolution. Forobtain
that purpose the vacuum expectation values of products of

osition and momentum operators should be recovered as
gnsemble averages of random fields. It is clear that for the (0, T|ykpk’|0 = ( (7)= _) S(k+k"). (38)
noninteracting theoryN=0) that we are considering, such a
classical random field should be Gaussian, with all the inforin this spirit, a quasiclassical state can be defined as a state
mation encoded in the real expectation values of products abr which the leading term in Eq37) dominates, and quan-
two fields. Only the symmetrical part &f(k, 7,7) is real, see  tum averages can be approximated by
Eqg. (24), and thus a natural candidate to be approximated by
the classical Gaussian random field. Notice that this corre- <0,T|G(9,E,)|o,T>N<GO(y,p)>gs_ (39

sponds to matching Weyl-orderédymmetrized iny,, py)
guantum expectation values of operators through, in thghis generically happens when (0,7 f)§/|0,7->w

Schralinger picture, >(0,7|[p,y1/0,7)|, i.e. when the so-called WKB phase,
. F(7) in Eq. (26), verifies|F(7)|>1. For such a quasiclas-
(0,71G(Yic» PO T)W=(G(Yi:PK))gs (33)  sical state the ambiguity in the ordering of operators is quan-

titatively negligible and classicality in the sense of E8Q)
where(0,7/G(yy,p)|0,7)w denotes the quantum average of holds. As an illustration let us compute the following expec-
the Weyl-ordered operator in the state given by the waveation value (for ease of notation we have omitted tke
function (30), and(G(y«,Pk))¢s denotes the classical Gauss- dependence of the operators and the delta fungtions
ian average. The latter is obtained as an average over a

Gaussian ensemble with yy and pd =px 1 a5 _E
—[F(7)!|f(7)|?]yi} independent Gaussian variables with 2<O’TIp V2 +y%p |0.7)= 3FK(T) (40
probability distribution given by the Wigner function in

phase space, see Ref$8,19, Eq. (27) and Appendix B, In the classical approximation we would obtain
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<p2y2>gs:<p2>gs<y2>gs+ 2(pY>Ss Long wavelength quasiclassical modes

Still remains to be computed the time at which fluctua-
tions become classical in the sense of E2f). As we will
see, the field fluctuation modes will become quasiclassical as
their wavelength becomes larger than the only physical scale
in the problem, the time-dependent Higgs mass, A\e.
which reproduces the Weyl ordered part of the quantum re=2/k>2m/ 7. In order to show this, let us take the limit
sult and is a very good approximation as long|Bg(7)| k?< 7 for the long wavelength modes in the exact solutions
>1. (43) and (44),

This approach works as long as the theory is noninteract- . .
ing and the Gaussianity of the quantum state is preserved by '(7)= C1(K)Bi(7)+Ca(K)Ai(7)=Ca(k)w(7),
the evolution. In the problem at hand, we can assume this to . . . . . ,
be the case in the first stages of evolution before nonlineari- 9«(7) =IC1(K)BI"(7) +iCa(K)AI" (7) =iC4(K)W'(7), 49
ties have set in, but not when the self-coupling term starts to (49

be relevant just before symme_try breaking. However, as Iongvhere the functionw(r)=Bi(7)+ 3Ai(7) is the one ap-
ahlek(;) |;>1’ thﬁ state can St'". be a;ljpro_xwrl]atel()j/ desf_cr;(kj)e\(lj\,})earmg in the Appendix A, and we have used the fact that
through the nonlinear stages, via a classical random field. = - o .

will describe below in detail how this classicality follows for SSS%)ZHQS c;g]kc))f |tnh éh:ir;r?:}nlé;o?]é L;sélggRgz]largezzl

our specific problen{see also Appendixes A and B for the ' '

precise formulation of the squeezed states and the Wigner

1
=[fu(n)Plg(7)|*+ 2Fi(n =3FK(7) + 7

(41)

(48)

function formalism, following Refs[18—20). Bi(z) ~ ——z" et @372 Aj(z) ~ Lz‘ Vdg—(213)2%2
T 2\

IV. EXACT SOLUTIONS OF THE FIELD EVOLUTION (50

EQUATIONS Bi'(z) ~2%Bi(z), Ai'(2)~—Z"?Ai(2), (51)

Let us apply now the above formalism to the case of the ] )
quantum fluctuation modes of the Higgs at symmetry breakWe conclude that the first terms in bathandg correspond

ing. This case was studied previously in R¢f,33,24,25%
For w?(k, 7) =k®— r the linear equatiol7) for the quantum
modes of the Higgs field becomes

1
I+ (K= 1)f =0, with fi(ro=0)= = @

Its solution can be given in terms of Airy functiof34]:
f(7)=Cy(K)Bi( 7—k2) + Co(K)Ai(1—k?),  (43)

(1) =iC1(K)Bi' (7—K2) +iCH(K)AI’ (7—K?),
(44)
Ci(K)=— —[AI"(—K2)+ikAI(—K?)], (45
J2k

Co(K)= ——[Bi"(—K2) +ikBi(—k?)], (46)

V2k

which satisfy the Wronskian conditiong,f} +gi f, =1,

where we have used the corresponding Wronskian for the [Fu(7)|= (

Airy functions,

7[Ai(z)Bi’'(z)—Bi(z)Ai'(2)]=1. (47

We can then compute the occupation numbwgr, Eq.
(32) and the imaginary part of the WKB phadg,, see Eq.
(26).

to the growing modes, while the second terms are the decay-
ing modes, and can be ignored soon after the bifurcation
point.

We are now prepared to answer the question of classical-
ity of the modes. The wave function phase shift is given by

w'(7)

w(7)

Fi=Im (f{gi)=|Ca(K)[PW' (1)w(7)= |fil?

1 32
= [Ca(k)[? eI, (52)

which grows faster than exponentially at large time. On the
other hand, the occupation numt@&p) is

’ 2
) e

1
Zk( nk+ 2) |gk| +k |fk| ( W(T)

1
~ frlcl(k)|2;e<4/3>f3’2. (53)
Therefore we have
2kny(7)
w'/w) >1—-E(7)=kn(7)>|m(7)],
(54

that is,|Fy|>1 whenever the energy of the moBgis much

greater than the Higgs mass, computed as the instantaneous
curvature of the Higgs potential.

Notice in particular that under the conditifR,|>1, the
momentum and field eigenmodes are related by
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FIG. 1. We compare the phalg,| with the occupation number FIG. 2. The time for which a given modecan be treated as

for different times, in the whole range of interest in momekta classicalF,(74)|=1 is above the line in this figure. It is clear that
Clearly, for large times>1, the two coincide, as discussed in the long wavelength modes with<Ok<1 become classical very early,
text. Note that, after=2, all long wavelength modes are essen-at ry=2, while there remains, at any given time, a high energy

tially classical,|F,|>1. spectrum of quantum modes, flor1.
CFu(7) guantum field theory, high momentum modes, although
Ok(7) =Qi (1) f (1) =i Wfk( 7). small, do not give negligible contribution to observables. Ac-

tually, naively their contribution is divergent. Nevertheless,

In terms of the G ian random fields. the momentum di we argue that the main contribution of the small quantum
| lerms o7 Ih€ Lsaussian random Telds, the momentum diSg, o oy g picq| high-momentum modes sits in the renormaliza-
tribution of the Wigner function becomes a delta function

S(p—[F(7)/|T2]y}, see Appendix B. tion of the constants to be used in the classical theory.

Kl \ It is possible to partially test this scheme in perturbation
We show in Fig. 1 the exponential growth of the phaseh : e
. i . . Al h h I f inf
F«(7) as a function of momentg for different times. These theory. Already at this stage the problem of infinities and

ot btained using th ¢ Airv functi luti renormalization arisel6]. In this section we will summarily
plots were oblained using the exact Airy function sofu Ions'analyze this issue, relegating the details of the calculations to
Note that in the limit of large wavelengtté< 7, it is indeed

o N ) the Appendix C. As we will see, for the program to be con-
verified thatle(T)|_2knk(T)(W/W )>1, as stat_ed above. sistent one has to allow for a renormalization of the spéed
We can now compute the time for which a single méde

b iclassical in th We h firmed of the inflaton at the bifurcation.
ecomes quasiclassical, in the se(&®. We have confirme In the standard setting, infinities in observables occur

that afterr=2 modes with 6<k< J'7, which, as we will see  h5ugh the contribution of the infinite tower of momentum
later, is the range of interest, have become quasiclassical. Weates, Introducing a cutoff in the problem makes the results
have drawn the line separating classical from quantunynite but cutoff dependent. It turns out, however, that in
modes in Fig. 2, as a function of the mokléThe high energy  yenormalizable theories, the only surviving effects of the cut-
part of the spectrum always remains in the quantum vacuumyt ot scales much smaller than itself are the modification of
as expected. For=2 the line separating classical and quan-the constants of the theory. This allows the process of renor-

tum modes is approximately described by /7. malization in which we recover uniqueness of the theory at
the expense of taking this constants from experiment. We

V. NONLINEAR QUANTUM EVOLUTION will now reexamine this problem for our time-dependent
AND SYMMETRY BREAKING situation. Several research groups have investigated this

problem in the past in different contexts, see RE3s:5,35.
To address the issue of symmetry breaking after inflation Al the physical content of the theory is contained in the
it is essential to incorporate the nonlinear effects proportionaéxpectation values of products of the field operator at equal
to . A full nonperturbative quantum treatment is beyondor different space-time pointsve use the Heisenberg picture

reach. However, we have seen in the previous section thaind expectation values should be understood as taken in the
the dynamics in the absence of nonlinear terms gives rise tgacuum atr= 7,):

a fast growth of the amplitude of the low-lying momenta,

leading to wave functions which are squeetgasiclassical (Y(71,X0) + . Y( T X)) (55)

in our language We argue that even when the interaction is

switched on the dynamics of these modes dominates the ev8y differentiating with respect ta one can obtain expecta-
lution of the systenfat least during the first stagesnd that  tion values of products of and p. If we were to compute
this dynamics is described by classical field theory. The arthese quantities in the Gaussi@mninteracting theory, we
gument does not apply to higher momentum modes which sivould obtain, via Wick’s theorem, a sum over all pairings of
largely in the quantum mechanical ground state. However, im product of factors associated to each pair,
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GO(7, 7" x—x")={yo( 7, X)yo(7',X")) ThusA(7) has a time-independent quadratic divergence and
a linear in time logarithmic divergence.
d3k (') . Before explaining how can one deal with the divergence,
= f (277)39 f(nfi ('), we comment that Eq$57)—(58) coincide precisely with the

calculation of the expectation values of the product of clas-
(56) sical random field to the same order in perturbation theory.
Divergences are hence present in both the quantum and the
classical theory. Details of this calculation are also shown in
Appendix C.
; ) s . _ We now address the problem of infinities that have oc-
The correlation functions at different timése. Wightman ¢ req at this level. In the standard quantum theory the pro-
functions can be computed in perturbation theory by theceqyre is well known. The calculation can be done using
method described in Appendix C. Wightman functions aregome regulator to cut off the contributions of high momenta,
complex and unlike Feynman Green functidtime-ordered ¢ this has to be accompanied by the addition of counter
products depend on the order of the operators. Accordingierms in the interaction Hamiltonian. For the theory to be
with our criterion for the Gaussian case, we will considerenqrmajizable these counter terms should have the same ex-
Weyl-ordered(symmetrized products to make the matching pession as those appearing in the Hamiltortfeee or inter-
with the classical theory. If we now consider the symme-5q(ing put with coefficients which are cutoff dependent and
trized two-point function proportional to some power of. This addition should get
3 rid of infinities. Note that in our case a counter term of the
eik(x—x’)é(k! 7) form
(2m)*

wherey, denotes the Gaussian field flor=0. The Gaussian
two-point function is the Fourier transform &f,,(k,7,7")
and is finite provided# x" and/orr+ 7'.

(YO, )Yy (X', 7"))w= f

Ng+2
57 - SN oY), (62)

we can compute it to first order in. The result is
with §; and 8, appropriately chosen cutoff dependent func-

G(k, 7,7 ) =Re[fi (1) f§ (7')]+2(Ne+2)\ tions, is able to subtract the infinities encounteredh(t).
. Regularising the integrals by introducing a cutoff in mo-
xf dsA(s) Im[f (7)fy(s)] mentak<A we then get
0

XRe[fk(T’)f:(S)]+2(NC+2)7\ Aren(Tva)zAreg(TaA)_51(A1M)_7' d5(A,pm). (63

) To fix the arbitrariness introduced in the theory by the
% fT dsAs) Im[f (7)) (s)] counter term we must impose adequate renormalization con-
0 ditions. As will be argued below, one convenient possibility

is to choose the counter term as
XRe[f (7§ (s)], (58

1
where N denotes the number of components of the Higgs — &;(A,u)+ 78,(A,pu)=5—
field. The quantityA(s) gives the contribution of the tadpole 2m
subdiagram, i.e. the two-point function at equal times and (7= ) 2F (7= w2 64
zero distance, and is given by (7= p)2F(r=p)], €4

" dk LI (7= p?)?
"

whereu denotes the characteristic mass scale of the problem
|fk(7)|2:i2 ﬂ(P(k,T), which for_ a given timeT_ is_ precisely\/?—. We_ will call this _
2 Kk renormalization prescription, the fixed-time subtraction
(599  scheme. Another possibility is a minimal subtraction scheme

) _ (not to be confused with the MS scheme of dimensional
where the power spectrum is defined aB(k,7)  regularization

=k3|f(7)|2. This quantity is ultraviolet divergent. The

d3k
(2m)®

A(1)=GO(7,7,00= f

structure of the divergence can be deduced by analyzing the 1 A
largek behavior of the integrand. Using our previous expres- Ared T.) =Ared T.A) — 53 (A2+ T Iog;). (65
sions (with z=k?— 7) and the asymptotic behavior of Airy
functions[34] we get which differs from the previous one by finite terms of the
; sin(2kr) form a+br. Actually, the renormalized quantity is obtained
[f(7)|2= —[1+ —2< — —) +0(2)|, (60)  only after taking the limitA —co in the subtracted quantity,
2k|7 2k 2k but in practice taking\ sufficiently large is a good approxi-
mation.
P(k, 7) = K| ()2~ k_2+ Ty Sln(2k7')) N (i) The fact that the structure of the counter terfos of the
' K 2 4 2k k) divergence has the same form as the terms already present

(61) in the Hamiltonian, shows that our calculation is consistent
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at least to this order. The infinities are re-absorbed in the  1e+06
values of the constants of the theory. Here, in addition to the
ordinary time-independent subtraction we have a countel
term linear in7, which can be interpreted as a renormaliza- 10000 |
tion of y— x., i.e. of the inflaton velocityV. A different
choice of scheme is compensated by a finite renormalizatior
of the parameters of our model.

Now we look back at the problem of approximating the
result by a classical random field. Since the regularized resul \
to this order is the samior symmetric expectation valuea ez e y
similar subtraction procedure is necessary. There is certainl

P(k,t)/k?
Pﬁpp(kﬂ)/kz ........ ]

100000 £

1000 ¢

k()
]
o

10F

no problem to do so in perturbation theory. However, in 01

practice what we want to do is to be able to match the renor- oo -

malized quantum result by modifying the initial spectrum of Tod ! 10

the classical field to be used as starting point for the classical

evolution. Notice that whernr=7;=pu? the value ofA ., FIG. 3. The power spectrum of the Higgs quantum fluctuations,

obtained with the fixed-time subtraction scheme, @&d), is ~ P(k,7)/k’=k |f,(7)|?, at different times in the evolution. The dot-
exactly reproduced by truncating the initial spectrumuat ted vertic._all lines indicatz_e the value of the cutoff,lat_ J7, where

— \/;I This is a very natural choice from the point of view of the cla_ssmgl spec_trum is tr_uncated. Also shown is the excellent
the classical approximation. As can be seen from Figs. 1 angPProximation(69) in the region of long wave modes.

2, for large enoughr the separation between quantum and

classical modes sits indeedlat \/7. At a given time modes 7, the exact power spectrum cutoff lat \/7| As seen in
with momenta belowy/r have been amplified while those the figure this encompasses almost all the physically relevant
above\/r remain in the vacuum. The amplification proceedslow momentum modes for;=2.

until some time 7y, When ($?(7¢)) gets close to the In Fig. 4 we compare, for several values of
vacuum expectation value? and the field starts oscillating 7i» Ared 7.4 = V7)) in the fixed-time scheme with
around the true vacuum. The dynamics of symmetry breakA cad 7,7;), Obtained from cutting off the power spectrum,
ing is hence expected to be governed by the low momenturR(k,7;) in Fig. 3, atk=\/7,. [37] For 7;=2 the maximal
modes withk?< 74, whose evolution can be described in the difference between them amounts to 2%, rapidly decreasing
classical approximatiorias we will see below for a large as we increase, . A direct comparison between the values of
range of parameters;y, varies only within the valuesy, A enandA ,sfor 7,=2 is also shown. The goodness of the
=5+2). The classical theory can then be seen, in a waypproximation performed by truncating the spectrum is
analogous to what happens at high temperd86e36, as an  clearly evident. We also study the dependencé gf,on the
effective theory where momenta abokg= /74, have been Vvalue of 7; used for the fixed-time renormalization scheme.
integrated out. As far as modes abokg are not highly ~We plot the difference betweeA ., defined atr;=2 and
populated by rescattering and back reaction this effectivg;=3. As it should, it is of the forma+br and it remains
theory is expected to be valid and can be studied within thaery small in all the range of times we are interested in.
classical approximation. It is easy to estimate the timeg, when symmetry break-

In summary, our proposal is to fix our classical field by ing is expected and the amplification of modes ceases to take
matching its correlation functions with the renormalized per-place. We can estimate the time of symmetry breakigdpy
turbative expression at a time= u? such that a sufficiently equating
large number of momentum modes have become classical
but well before non linearities have set in. The initial spec- ) o o i 2
trum of the classical field will be cutoff &=k, = \/7,. This (| $7(750) =MZNA rer( 755, 1= \/7i) =0?=Ncv§.
eliminates the UV infinities of the classical theory. If we
compare now with the calculation at one loop, we realize that
the parameters entering the classical theory are the renormalge have just described how fey=2 a very good approxi-
ized parameters in the fixed-time subtraction sché®e As  mation for A ,, in the fixed-time subtraction scheme, is
we W|_II see in what follows e_1r_1d in Sec. VI B our resul_ts are pbtained by just truncating the power spectrunudt= 7; .
fairly insensitive to the specific choice of within a scaling  we can thus approximate the above expression for the

window below 7. o _ vacuum expectation valugev) by
The validity of this approximation can be partially tested

in perturbation theory. A first check is the form of the power

spectrum(59). We have plotted in Fig. 3 the power spectra o M?N,
P(k,7) divided byk?, for four values of the normalized time (I¢1%)= 22

=2, 3, 4, 5. Clearly, the power spectra grow in time faster

than an exponential, at a very large rate in fact. We take as

initial spectrum of the classical field at a given initial time which can be rewritten as

(66)

f"”dk 13|, 2=02 (67)
0
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0036, . = /7, as a function ofr; . Right:
‘}I' 0034t ° i Difference between two choices
e v * of the initial time 7; for the fixed-
S 0.032} L . time renormalization scheme, Egs.
< : (63) and (64).
v 0.030 | . .
() &
I 0.028 | . .
e .
§ 0.026 | " .
< +
0.024 | .
2 25 3 35 4 45
T T
(ra) jﬁdkp(k ) 272 272 (re) 272 J P (k7o) A(Tgp)
Tsp) = e y T = = . Tsp) = .= e yTsh) ™ =57 -
PLTs o k UANG(2V)ZB N (2V)23 PLTs Ao(2V)23 kil 7s 2B(7gp)
(68) (73

This can be computed exactly using E43)but to give an We have evaluated this functiop(rg,) numerically and
analytic estimate of its dependence on the parameters, weund an excellent fit to it, in the range=1, as, forN,
will use an approximation to the classical power spectrum=4,

(59). In the region of quasiclassical modes it is very well

described by Inp(re) = — 3.5+ [8+ 73523]1/2, (74)
—B(PK2
Papd k,7)=A(7)k%e B, 69 which gives directly the time of symmetry breaking in units
of m™,
A(T)=ABi%(7), B(n)=27-2, (70)
22 2 0.31
which can be obtained froff,|2= |C;(k)|?|Bi|?(z), where Mtg,=(2V)" ¥4 | 3.5+ In )\O(ZV)Z’3) -8 (79
w2(1/3)%3 ) , : . .
k|C4(k)|?= [1+2K2+ O(K4)) = Age We can use this compact expression to estimate the time of
! 2I%(1/3) 0 symmetry breaking for any coupling and any inflaton ve-

(71 locity V at the bifurcation. For example, for,=0.11 and
V=0.003, we findry,=4.6 andmty,=25.3, which agrees

4 4 very well with numerical(lattice) simulations performed for
exp(—z3’2) = exp(— 32_2.[7k2+O(k*) |. (72)  those values of the parameters.
3 3 Note that, as mentioned before, the dependencegpf

with the parametera=\y/N; and V is very mild. In the
We have plotted®,,{k, ) together with the exact spectrum whole range of parametersy(2V)#3c[10 8, 1], the nor-
in Fig. 3. We can see that it is an excellent approximation tamalized time of symmetry breaking only varies within the
the classical power spectrum, in the region of interest. Usingangery,=5%2. Some particular examples can be found in
Papd K, 7) to estimate Eq(68) gives the condition Table 1.
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TABLE I. The time scales of symmetry breaking and the onset(i.e. the power spectrumwhose approximate expression can
of the nonlinear stage for different model parameters. The couplingpe found in Eq(69). This quantity allows the computation of
depends on the number of components of the Higgs fieldas several related quantities that characterize a Gaussian ran-

=N\, dom field, e.g. the spatial correlation function, the density of
peaks above a certain threshold, the shape of the highest

\ No Tl Mty Tsb Mty peaks, etc.

0.003 0.11 278 15.3 4.6 253 Tr_]e first qgantity ;hat we can compu@e is the sp_atial cor-

0.003 0.01 3.76 20.7 5.2 285 rglatlon function, defmed as the two-point correlation func-

0.0003 0.001 401 475 6.0 713 tion between two points separated by a distance

0.00002 0.0001 482  141. 6.8  200.0 M2 N, [=dk sinkr
g(r17)2<¢(r17)¢(017)>_7 fo Tpapp(k:T)?

VI. NONLINEAR EVOLUTION OF THE CLASSICAL 9
SYSTEM —~ M NC A(T) fw dk efB(r)k2 sinkr
2’7T2 r 0

In the previous sections we have argued that the first
stages of the quantum evolution of the systémhen the M2N, A(r)\/; r2 r
nonlinear self-coupling of the Higgs is negligiblérive the =—— ————exp — )er i ,
system into a state with highly populated low momentum 2m” r2BY(7) 4B(7) 2BY4(7)
modes. The evolution of this state can be accounted for by (76)
the evolution of a classicéhpproximately Gaussiamandom

field. This justifies the main assumption of this and remainyhere erfi) is the imaginary error functiof34]. This cor-

ing sections, namely that the subsequent nonlinear dynamigg|ation function determines the average size of the lumps,
of the system is determined by the classical evolution of thi

field. This evolution is deterministic and the random charac-

ter appears in the initial values of the field at time ;. = -

These initial conditions are determined by the exact Gauss- fo(1)=2B"(1)=2V2\r-2, (77)
ian quantum evolution of the system studied in the previous . , , )
section. Thus the initial Higgs field is chosen Gaussian, a?S @ function of normalized time. Note that the time de-
approximation which can be tested by probing the sensitiviyPendence of the correlation length is different than for a
of our results to the value of . As we will see this works dueénch symmetry breaking. While in the latter case, the cor-
very well within the appropriate range of initial times. Some relation qugth grows I|ke§0~2_\/_—r, in our case, it grows like
statistical properties of this initial Gaussian random field carfo™ 212 7 for “large” 7 (still in the linear regimg This

be studied analytically. This is done in Sec. VI A. Theseintroduces some sl!ght differences in the behavior of the field
properties extend to times during which the evolution is es@t Symmetry breaking. _

sentially linear and the field remains approximately Gauss- e can then compute from EG76) the time-dependent
ian. A full nonperturbative treatment of the dynamics candispersion

only be done by numerical methods. We have actually car-

ried this step by lattice simulations. This is described in Sec. ap M \/N_C 72

VI B where a full account of the methodology and the checks o(1)=£"90,7) = dimd 7) :ﬁ p=i(7), (78)
performed to show cutoff independence is described. Results

will be presented in the next section.

which is nothing but the root mean square value of the Higgs
field.
Another quantity which is very useful to characterize the
The statistics of the Higgs spatial distribution can be defield distribution is the number density of peaks of the field
termined from the Gaussian fluctuations that are used tabove a certain threshold., see Refs[26,38
build it up. A detailed description can be found in REf6]

A. Peaks of the Higgs spatial distribution

for the case of the Gaussian density field responsible for 1 [=¢&0n\¥ )
galaxy formation. In fact, the spatial distribution and subse- ~ Mpea 7) = 72 £0,7) (»"=1) exp(—»%/2),
guent dynamical behavior of the Higgs field at the initial (79

stages of symmetry breaking turns out to be not that different

from that of both the linear and nonlinear growth of the

cosmological density fieldalso built up from the Gaussian — (07 (K

random fields of cosmological perturbatipnexcept in the L, S

dynamics of gravitational collapse of the latter. £(0,7) 3 3f (dKK)P(K,7)
The fact that the quantum fluctuations of the Higgs give '

rise to a classical Gaussian random field allows us to study

the statistical properties of this field in terms of a singlewherev=¢./o(7)>1. In our case, the number density of

function, the two-point correlation function in Fourier spacehigh peaks is given by

f (dk/k)P(k, 7)k?

: (80)

103501-12



SYMMETRY BREAKING AND FALSE VACUUM DECAY ...

lattice +—— ]
] analytical -------
A mean Higgs -
i ]
s,
‘E\
E
B,
%,
jﬂ‘!‘l........!-..."!!*§i§§§II
7o 20 30 40 50

mr

FIG. 5. The radial profile of the Higgs peak far=0.11/4 and
V=0.003, at timer=2.54, corresponding tmt= 14, obtained with
our lattice simulatior{with error bars, from averaging over several
realization$, and compared with the analytical res(@). We have .
also included the rms Higgs valiie®) at that time. Note that we are dispersion|f,|? and a random phase. The othgr,with dis-
still in the linear regime, where E¢83) gives a very good approxi-

mation. The higher tail corresponds to an averaging out of severalefine the conjugate momentum through, see Appendix B,

lower peaks.
2 1 2 2
npeal(T)Zm%(V —1) eXF(—V /2) (81)
wn=fe 2T (82

v (2v)%\,

We have evaluated this function for the parametars '
=0.11/4 andv=0.003 at various times and compared with Vanced to guarantee that a large fraction of modes have be-

our

lattice

simulations [for different volumes V
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B. Lattice simulations

The previous analysis falls short of addressing the most
important aspects of symmetry breaking after hybrid infla-
tion since the main effect is nonperturbative, see REf].

As discussed we will incorporate these effects by performing
classical real-time numerical simulations in the lattice. Ge-
nerically this classical approximation would fail to reproduce

the relevant physics but we have just argued that this is in-
deed the correct approximation for the infrared modes of the
Higgs at the time of symmetry breaking.

The usual procedulf89,4(Q is to take as initial conditions
for the lattice simulations Gaussian random fields given by
the distribution(34) with vacuum initial amplitudes corre-
sponding to Egs(17) and(18). We would like to stress here
that the correct description of the quantum linear system in
terms of a Gaussian random field requires the use of two

| independent Gaussian variables, as indicated in (B4).
One of themy in Eq. (34), describes field fluctuations with
2]—1

persion[4 |f (7)| and a random phase, allows us to

—  Fu(7)

p=p+ WY- (84)

Notice that this prescription is valid in order to give initial
conditions atany time during the evolution before nonlin-
earities set in. In particular, as described in Sec. V, we pro-
pose to take as starting point for the lattice simulations the
above Gaussian ensemble at a fixed time sufficiently ad-

come classical, but well before the time when non linearities

= (2m/p,in)? and lattice spacinga]. The results are very become relevant, in a similar spirit as that in R@f]. This
encouraging. If we multiply this density of peaks by the ac-has the advantage of allowing a clear separation between
tual volume of the simulations, we find indeed just a fewinfrared(classical modes which evolve classically and ultra-
peaks above e.gh.=0.02, at the time of symmetry break- Violet (quantum modes that will be absorbed in the renor-

ing.

malization of the constants of the theory. From the previous

In fact, we can compute not only the probability per unit@nalysis, see Fig. 2 and the discussion after(E6), a good
volume to find a peak in the distribution of the Higgs field, choice for the matching time in a wide range of model pa-
but also their radial profil§26],

M+N, [=dk sinkr
p(r.m)= ﬁ;forPEéé(k,r) o
M /N,

1/2 -
L(T)f ﬂ(e*[B(T)/Zlkzsinkr
2 o Kk

2

_M\/N—CAllz(r)hf( r ) .
T oz S\ zBn)"

where erfk) is the error functiorf34]. We have plotted this >
profile function in terms of the radial coordinate, togethery/x.=1—Vmt with conjugate momenturg/y.=—Vm.
with the lattice results in Fig. 5, foh=0.11/4 andV
=0.003, at timer=2.54, corresponding tmt= 14, well be-
fore symmetry breaking, which occurs matty~ 26.

rameters seems to bg=2. See the discussion in the next
section about the onset of the nonlinear regime.

Therefore we propose the following as initial conditions
in our lattice simulations. At a fixed timeg previous to sym-
metry breaking:

(a) Put to zero all the modes that have not become clas-
sical at7; . This includes all the modes of the inflaton but the
homogeneous zero mode, and all large momentum modes of
the Higgs withk> \/7; [replacing the hard cutoff a{'r; by
the approximate power spectrum in E§9), which strongly
dumps ultraviolet modes, does not significantly change the
results even at a quantitative lejel

(b) Set the homogeneous zero mode of the inflaton to

(c) For the Higgs fluctuations, each Fourier component,
with momentum|k|< /7, has an amplitudég,| randomly
generated according to the Rayleigh distribution:

103501-13
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Mtjpi =10 —— 1t pmin=0.1 , ma=0.98
Mt =12 —— pmin=0.1 , ma=1.31 ——
Mtjn =14 —— 7 0.8} pmin=0.1 , ma=1.96 —— 1

0.8}

Kinetic Kinetic

04t Gradient 0.4} Gradient

Potential | Potential | FIG. 6. The time evolution of

{|#]), {x) and energiegnormal-

0.2

0 ol J ized to the initial ong for \
L L L L L L L 1 1 1 1 L =0.11/4 andV=0.003, obtained
19 20 20 40mt =0 o0 70 LA 4?nt o0 o0 LAY with our lattice simulation. Left:
. . . . : . . . : . : : for different choices ofmt;, the
1k J time for matching the quantum
evolution to the classical lattice
0.8} <lol> d simulations. Right: for different
values of the lattice spacinma
0.6 | E =0.98, 1.31, 1.96.
04} L
0.2 J
<x>
o} ]
10 20 30 40 50 60 70 10 20 30 40 50 60 70
mt mt
| b2\ d|i|? db, already become classical and thereafter the evolution is well
P(|¢)d|pldb=expg — - (85  described by our lattice classical simulations.

All the lattice results presented in this paper have been
with dispersion given by2=|f,|>=k 3P(k,7;), and a uni- obtained for a S(2) Higgs doublet coupled to the inflaton
form random phas@ [0,2r]. The conjugate momentum With coupling g?=2\=0.22/4, and inflaton  velocityy
gx=i ¢y is uniquely determined oncgy is known, through = 0.003. Due to the finite volume, the momentknis dis-

the relation cretised in units of a minimal momentum given Ipy,,
=2m/L, with L=Na, where N is the number of lattice
. Fu(m) points, anda the lattice spacing. Our simulations have been
P= [fe(m)]2 P (88)  performed in lattices of sizes 3248%, and 64 with physical

volumes determined bp,,;,=0.1m, 0.075n and 0.05n and

with f (7;) andF,(7;) given by Eqs.(43) and(26), respec- lattice spacings varying frooma=1 to ma=2. The choice
tively, at 7= 7; . This corresponds to the classical limit of Eqg. of lattice volumes and lattice spacings has been performed
(84), an approximation that is well justified far,=2, see such as to avoid lattice spacing and finite volume depen-
Appendix B. dence of the lattice results. Notice that the minimal momen-

(d) Take the masses and couplings used in the simulatiotum has to be small enough that a sufficiently large number
as the physical renormalized ones in the fixed-time subtraosf classical momenta witlk<1 is taken into account. We
tion prescription. have found that fop,,;;;<0.1m this is indeed the case and no

As long as the time chosen for initialisation is sufficiently significant volume dependence is observed.
advanced that a large fraction of modes have become classi- A further essential test of our approach is that it succeeds
cal, we hope that most of the physics responsible for symin taming ultraviolet divergences. On the lattice there is a
metry breaking will be included in the simulations. How ad- maximal momentum determined by the lattice cutoff through
vanced it has to be in a concrete realization can be tested hy,..=2m/a. Naturally, re-scattering and back reaction will
studying in which range the time evolution is insensitive topopulate the high momentum modes at and after symmetry
the choice ofr; . This provides also a check of the validity of breaking. This is certainly a physical effect but if the lattice
our approach. The result of such a test is presented in Fig. @utoff is not chosen large enough population of the high
We compare the time evolution ¢f¢|), (x) and the aver- momentum modes is artificially induced by cutoff effects.
age kinetic, gradient and potential energies obtained fronThe lattice cutoff should then be chosen such as to avoid that
setting the initial conditions atmt=10, 12, 14 this takes place before the relevant dynamics of symmetry
=1.81, 2.18, 2.54) fon=0.11/4 andv=0.003. The agree- breaking. A reasonable value for our choice of parameters is
ment is excellent, corroborating our estimate thatfee2  ma<2, as can be seen from Fig. 6, where we compare the
all the basic relevant modes driving symmetry breaking havéime evolution of(| ¢|), (x) and average energies for several
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values of the lattice cutofina=0.98, 1.31, 1.96. No signifi- lution, mt=23, untill mt=40 above which full symmetry
cant lattice spacing dependence is observed here, while litreaking takes place and the mean Higgs field approaches
becomes clearly appreciable fora>3. Details of the simu- the VEV. As can be seen from the figures, the peak of the
lations and further results will be presented elsewhere. Thedargest Higgs’ lump is the first to break the symmetry, i.e. to
lattice simulations will allow us to test the next stage, thereach|¢|=v, and soon after the center of the lump invagi-

nonlinear approach to symmetry breaking. nates, creating an approximately spherically symmetric
bubble, with “ridges” that remain abovés|=v. Finally,

VIl. RESULTS OF THE NONLINEAR ANALYSIS neighboring bubbles collide and the symmetry gets fully bro-

AND “BUBBLE” FORMATION ken through the generation of higher momentum modes. In

Fig. 9 we show the behavior ¢0#(x,t)| at the center of the

In the previous sections we have developed a formalisnhighest Higgs lump. It oscillates arouhd|=uv with an am-
to describe the linear growth of the Higgs quantum fluctuapjitude that is dumped in time. Oscillations remain coherent
tions and their conversion into a classical Gaussian randofjving rise to concentric bubbles, until the time when bubble
field. As we have argued, in the linear regime there is onlycoliisions break the symmetry.
the homogeneous mode of the inflatgny/x)=1—Vm(t It is possible to get an analytic understanding on how this
—tc), which induces a negative mass squatBg for the  nonlinear process takes place before bubbles start to collide.
Higgs, and thus its spinodal instability towards the truefor the problem we are considering, we can rewrite the com-
vacuum. The quick growth of the quantum fluctuations gen- onents of the Higgs field ag?= ¢ ﬁa (we will use from

erates a Gaussi_an random field with correlation functio ow on the symbob to denote the modulus of the Higgs
(76), and a rms field value, see E@.8), . ~ .
while Q=n-oe SU(2) is an element of the gauge group,

dms  (2V)YBYNN, i with o= (1, i7) with 7, the Pauli matrices. With this the
= 72 pra(7), (87) equations of motion for the coupled inflaton Higgs field can
™ be rewritten as

o(7)=

v

wherep(7) is given by Eq.(68). Eventually, the mean field

¢ will become large and will approach the VEV of its po- d(x,1) = V2h(x,1) + ($*+ x>~ 1) p—|3,n|?$p=0
tential, thus breaking the symmetry. Before that happens, its (90)
coupling to the inflaton will induce a back reaction on the

homogeneous mode of the inflatogp, which will start to ﬂﬂ(qua#ﬁ):_ﬁ ¢2|0#ﬁ|2, (92)

deviate from the linear regime described above. At this stage
the nonperturbative evolution can be studied by numerically
solving the coupled classical equations of motion for the
inflaton and Higgs:

2
KOG = V2006 +5- 620 =0, 92

(1) = V22 (X, ) +[| | 2(x,1) + x2(%,1) = 1]%(X,t)=0  where dots an@ denote derivatives with respect tot and
(88) mx respectively, and the homogeneous modes have been nor-
malized to their VEV's,¢p/v— ¢ and x/ x.— x.

We can take advantage of the fact that, §F=2\, a
solution to the set of coupled equations of motion is given by
, L » o (X )=1—x(xt) [14,28 and 3*($23,n)=0. Numerical
with Gaussian initial conditions as described in the previougesyits corroborate that this is very approximately the solu-
sections. In this section we will present the results of oukjon soon after nonlinearities set in. In Fig. 9 we show, for
numerical simulations and give an approximate analytic ungyyr model with parameteré=0.003 and\ = 0.11/4, ¢ ver-
derstanding of how symmetry breaking takes place. sus 1- y at the location of the highest Higgs lump. Compar-

Although the initial conditions are random, as a result ofing with Fig. 9 we can follow how the Higgs and inflaton
the nonlinear dynamics many of thgialitative features of  eyolve colinearly during all the time of coherent oscillations
the evolution are fairly universal, althougiiantitativelydif- ¢ the peak. In Fig. 10 we show the distribution of field
ferent configurations differ by small shifts in the origin of yaues as a function of time, in the time interval between
times as well as spatially random positions for the center of,t=12 andmt= 60, where most of the action takes place.
the peaks. Therefore we prefer to illustrate our analytic forpyring most of the nonlinear initial stage, through symmetry
mulas by comparing with the results otypical lattice con- breaking and until bubbles collide we havesi(x,t)=1
figuration, e.g. the one displayed in Figs. 6—8. —x(x1), ¥x.

Symmetry breaking in our model is not at all a homoge- “pring the time that inflaton and Higgs evolve colinearly,

neolus prl;)ce(zjss. ,IAIre_adyI in the linear reg:]me, the Hi_gﬁs_ﬁel‘ihe system can be seen as that of a single field with a modi-
evolves by developing lumps in space that grow with time, T . - -
see Eq(83) and Fig. 5. The classical evolution of the Higgs’ fied potentialV(¢), with the minimum aip=1,

lumps, once nonlinearities become relevant, can be followed
in Figs. 7 and 8 where we show some snapshots of the S=§J d3xdt
growth of the Higgs' peaks from the first stages of the evo- 2

2
KGO = V204 $PDX(D =0 (89)

1 , =
5(3,0)2-V(9)|,
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mt=23 mt=24

FIG. 7. Snapshots of the
growth of the Higgs peak in a full
SRS R nonlinear lattice simulation fok
SN G =0.11/4 andv=0.003. Plotted is
Q the value of the Higgs amplitude
¢ in the plane X, y), where thez
coordinate is that of the highest
peak. Note that several peaks ap-
pear in the simulation. Here we
show the first stages of the evolu-
tion, where the highest peak in-
vaginates and forms what we call

the “bubble.”
_ 1 5 . with t,,.x the time at which the field reaches its maximum
V(¢)=5(1-4¢°+347). (93 value:¢(tma) = 4. This time can be rewritten in terms of the

value of the field at any other ting, through

The equation of motion of the scalar fiefgdbecomes a non-

linear partial differential equation M= Mty +

3 9 (@9
bo 4

In particular, at every point, we can takep, as the “initial”

If the gradient terms are much smaller than the nonlinearalue of the Higgs field. This is given by the profile of the

ones, we can as a first approximation neglect them leading t/mp in the linear approximation, EG83), at a timet, at
which the evolution becomes nonlinear and we can no longer

(X)) = V2h(x,t) —242(x,t) +243(x,t)=0.  (94)

d(1)—2¢%(1— ¢)=0, (95) ignore its higher order interactions. In Fig. 11 we show again
the nonlinear growth of the Higgs field at the top of the
which leads to a conserved enerigy- Eo+ & with largest peak in the simulation, and compare it with the ana-

lytical solution(97). The agreement is very good during the
first oscillation although Eq(97) cannot reproduce the sub-

. (96) sequent ones. At these stage we can already understand how
the spherical bubbles arise. Take the spherically symmetric

A solution with E,=0, a very good approximation taking P&ak profile(83) at the nonlinear timé, and let each point
into account that initially both the field and its derivative are €volve like Eq.(97). Points with higher value obo(ty) will

(1) — ¢°

5|
§—¢

1
EOE E

very small, is given by reach first the maximum valuep(,,,= 3) and then decrease.
This generates a spherical wave that propagates from the
12 center of the lump to infinity. The production of bubbles
Pd(t)=1—x(t)= , (97)  associated with symmetry breaking were first described in
9+ 4[Mt—Mtya)? Ref. [14] for the model\ ¢2, which is analogous to our
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RN

FIG. 8. Same as in Fig. 7.
Here we show the late stages, in
which gradients arise from colli-
sions of bubbles and the symme-
try is broken, i.e.p=1.

1.4 T T T T T T T

oV

XXe

L L 1 1 L L 1 0.4 L ) ) L 1 1
0 15 20 25 30 35 40 45 50 . 0 0.2 0.4 0.6 0.8 1 1.2 1.4

mt v

FIG. 9. Left: the time evolution of the modulus of the Higgs, at the location of the highest Higgs peak. Plotted is the Higgs madulus
as a function of time. Note the effect of bubble collisions on the Higgs oscillationsrafted0. Right: collinear evolution of the inflaton
and the Higgs at the location of the highest Higgs peak. Note that the inflaton and Higgs gatisfy y to very good accuracy, until rather
late, when bubbles start to collide.
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ey 1 ey ’ that soon after the initial condition
0.002 | . 5 . and the subsequent nonlinear evo-
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0'003 T T T T T T T 0'003 T T T T T T L] 0-003 T T T T T T = 22_30-
- mt=30 E
0.002 4 0.002 0.002
0.001 4 0.001 0.001
0 1 1 1 L 1 0 0
0 04 08 1.2 0 04 08 1.2

reduced model. The subsequent evolution is of course diffefFor the values of parameters chosers-0.11/4 andV

ent, due to the presence of the inflaton field.
We can evaluate the nonlinear tintg,, by equating

1
x(m)=1- E(ZV)ZBTm: 1= (7).

Using Eqgs.(87) and(74), we can find the nonlinear time,
as the solution of the transcendental equation

=0.003, we findnt,=15.3 and¢,=0.1. That is, soon after
the Higgs field becomes nonlinear, it ceases to grow expo-
nentially like Eg.(87), and starts to grow like Eq(97),
which has a peak anht,=23<mty~=26, see Fig. 11. This
corresponds to a time slightlyarlier that the time of sym-
metry breaking. This is of course natural since, as we have
described, the Higgs field has an inhomogeneous spatial dis-
tribution. The mean fieldcoarse-grained over a horizon-
sized volumegis much lower than a typical peak of the field.
The top of the peak follows very approximately the homo-

—I 35121 2V) s 2—8 o (99  geneous equatiofd5), with solution (97). High peaks will
' \/m reach the symmetry breaking VEV much earlier than the
mean field, and will oscillate around the VEV with a much
4 . . larger amplitude that the avera¢marse-grainedfield.
Higgs peak — Obviously, the phenomenological damping of oscillations

analytical
| w/ gradients

H|gg$ mean

20

40

FIG. 11. The time evolution of the Higgs peak=0) and the
Higgs rms value, obtained with our lattice simulations, as compare

with the analytical result97), and the numerical solution of E
(100), which includes the gradient terms. Also shown is the com-

parison between the Higgs and the inflaton evolution,¢@) and

1—x(1t).

that we have described has to arise from the gradient terms
which we have neglected. Hence we will improve our ap-
proximation by keeping these terms, but assuming spherical
symmetry[ ¢(x,t)— &(r,t)] around the center of the lump
(r=0). Our lattice data support the approximate validity of
this assumption. This will allow us to track the time evolu-
tion of the lump profile as it develops into bubbles. The
two-dimensional partial differential equation far(r,t) be-
comes

H(r,t)—"(r,t)— %(b’(r,t)—2¢2(r,t)+2¢3(r,t)=0.
(100)

We have solved this equation numerically. The initial condi-

éion was fixed at a timent, when the profile matches ex-
q. pression(83). In order to compare with the nonlinear lattice

simulations, we added by hand a tail a long distances, to
match the lattice initial conditions, see Fig. 5. To fix a unique

solution, one has also to fi#(r,t,). Choosing this deriva-
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system, which can be treated exactly, is far from trivial. The
complexity results from the negative time-dependent mass-
square of low-momentum Higgs modes induced by the cou-
pling to the inflaton. This tachyonic dynamics generates a
faster than exponential tachyonic growth of low-lying mo-
mentum modes of the Higgs, giving rise to regions where
\ ¢? is non-negligible and where nonlinearities set in. In this
paper we have shown that the dynamics of the tachyonic
modes is well described by that of a classical Gaussian ran-
dom field, a result that holds even after including perturba-
tive corrections in the coupling, which are still accessible to
exact computation. At this stage important considerations set
R o in through the appearance of ultraviolet divergences. High-
5 3 T T3 o s 30 momentum modes cannot be neglected but their effect can be
mr absorbed in the value of the couplings of the theory. Here, in
addition to the usual standard time-independent renormaliza-
tion, a renormalization of the initial velocity of the inflaton
compared with the numerical solution of the partial differential field is requ're_d to get ,r'd of the t'me'dependent infinities
equation(lines). It is surprising how well the formation of the generated at first Order.ln. the_ _COUpImg
bubble is reproduced with the simple assumption of homogeneity | N€ Previous analysis justifies the next stage of the study

around the peak of the bubble. Of course, the peak solution does n@Tied out in this paper, namely the classical nonlinear evo-
take into account the presence of secondary bubbles, that appear/i#fion of the resulting classical field. This problem can be

¢peak(r:t)

FIG. 12. The time evolution of the Higgs radial profile around
the highest peak, obtained with our lattice simulatipoints, as

the lattice simulation at~ 30. addressed numerically by formulating the problem on a spa-
tial lattice and evolving the system according to the classical
tive equal to zero we have obtained the shae,t) for all ~ real-time evolution equations. The initial conditions on the

times in the region of interest. In Fig. 12 we present theclassical field are determined by the previously computed
result of the comparison of these results with those obtainethon-self-interactingquantum Higgs evolution. Our results
from the full 4D lattice real-time equations of motion. The are independent of all cutoffs introduced by this numerical
general shape is quite properly reproduced. Furthermore, tHgrocedure: the initial time of the simulation, the lattice-
oscillations of the peak height are also recovered, see Fig. 18pacing and the finite lattice volume. This, of course, pro-
As a last remark, note that the bubbles that appear hendded they are taken in the appropriate ranges.
are not vacuum bubbles like those produced in a first order The resulting nonlinear evolution which drives the system
phase transition, since the interior of thermist in the true  towards symmetry breaking is fairly nontrivial. The inhomo-
vacuum. Furthermore, we note also that the ridges of th@eneous Higgs field distribution has lumps in space whose
bubbles are moving very fast and presumably subsequefieight grows with time during the approximately linear evo-
collisions between bubbles formed at different space-timdution phase. This growth continues, although at a slower
points are highly relativistic, and may be responsible for apace, when the nonlinear terms become relevant. The behav-
large density of gravitational waves, which could be seen irior changes again as the highest lumps reach the magnitude
Laser Interferometer Space AntenidSA). of the Higgs vacuum expectation value. Then the lumps
For a typical lattice configuration one can follow the evo-€volve into approximately spherically symmetric bubbles
lution of the Higgs from the formation of the first bubbles to Which expand at a very high speed. It is important not to
the breaking of the symmetry with the.gif file that can beconfuse these bubbles with those appearing in a first order
found in the web page: http://lattice.ft.uam.es/SymBrk/phase transition which separate two different phases. Our
2dHiggs.gif bubbles are rather like spherical shock waves as those ap-
pearing in Ref[14]. These stages of the nonlinear evolution
VIIl. CONCLUSIONS can be qualitatively and quantitatively understood analyti-
cally. The last phase of evolution arises as neighboring
In this paper we have studied the evolution of a hybridbubbles collide and generate higher momentum modes. This
inflation model from the quantum false vacuum state at thephase is harder to tackle analytically but its early stages, at
end of inflation to the broken symmetry true vacuum state. Aeast, seems relatively safe for our lattice numerical proce-
full description of this dynamics amounts to a nonperturba-dure.
tive, nonlinear, real-time evolution of the quantum system, In the early stages of evolution our results resemble those
which looksa priori like a formidable task. The size of non- obtained for a one component Higgs model in R&b|, as
linear effects is given by ¢2, where\ is the coupling con-  expected from the decoupling of the different components of
stant and¢? the square of the typical value of the Higgs the Higgs field in the linear regime. At later times, however,
field. Since initially #> and\ are small, it is reasonable to the comparison is difficult due to the different nature of the
assume that perturbation theory is a good approximation andefects in both theories.
the dynamics is well approximated by the Gaussian Hamil- The authors are presently studying how the previously
tonian. However, the quantum evolution of this Gaussiardescribed processes might be influenced by the coupling to
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gauge fields, and its application to the study of physical phe-
nomena such as baryogenesis. We anticipate that there is r
essential obstruction for incorporating gauge fields, although
the formalism complicates considerably. Furthermore, the
numerical evolution including gauge fields does not change
substantially the gross features of the picture described here
All this will be the subject of a future publication. .
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FIG. 13. The squeezing parameter at different times in the quan-
tum evolution, as a function of wave numberNote that at sym-
metry breakingry~5, the squeezing parameter is of ordgr
~10 for long wavelength modes.

APPENDIX A: THE FORMALISM OF SQUEEZED STATES =2 |m(a: ,3k62ik")=2 |m(U:v:)

In this appendix we will summarize the concept of = —sin2, sinh 2. (A6)
squeezed states so often used in quantum optics, and recently
applied to the study of quantum fluctuations from inflation  \We can invert these expressions to give,(6y, ¢\) as a

[18-20. function ofu, andv,,
The canonical harmonic oscillator systethl) is de-
scribed by two complex functiong(, g,), plus a Wronsk- sinhr = Revi+Imuvs, coshr,=+Reui+Imug,
ian constraint(19), and thus we can describe the system in (A7)
terms of three real functions in the standard parametrization
for squeezed states, _Imu _ Imuoy
tanf,= — Reu,’ tan 6y +2¢,) = Rev,’ (A8)
1
U(7) = —=[kfi (1) +ge(7)]=e"%7 coshr (), Im v Reu,+Im u,Rev,
\/ﬂ tan 2¢,= . (A9)
(Al) ReUkReUk_lm Uklm Uk

Let us now use the squeezing formalism to describe the
; ; . evolution of the wave function. The equations of motion for
* _A* — al O(7) +2i Py (7) . ;
[kfi (1) =g ()] =€ 7 sinhr(7), the squeezing parameters follow from those of the field and
(A2) momentum modes,

1
Uk(T)—E

!

w
wherer is the squeezing paramete, the squeezing angle, r¢= —CO0S 2y, (A10)
and 6, the phase. w

We can also write its relation to the usual Bogoliubov W’
coefficients{ e, By}, b= —k— ~-cotharcsin 2¢y, (A12)
u=ae 7, vi=pBe", (A3) W’
Op=k+ Wtanh 2 sin2¢,, (A12)

which is useful for the adiabatic expansion, and allows one

to write the average number of particles and other quantltleswhere we have replaced the time-dependent r{@ssith the

function w, with
2 2 1 2 Ko 1o
ne=|B*=|vyl :ﬂ|gk| +§|fk| — = =sintfry,

2 W' = 7w, —W(7)=Bi(7)+ 3Ai(7), (A13)
(Ad)
with Ai and Bi the two independent Airy function34],
ov=2Re(a B &2k = 2Re (UFv}) satisfyingw’(0)=0_. _ -
As we can see in Fig. 13, the evolution is driven towards
= Cc0S 2¢p, sinh 2r, (A5)  larger,>1. Thus, in that limit,
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(Ot )’ W’ sin 2¢y 0 APPENDIX B: THE WIGNER FUNCTION
kTP =~ o5 —0,
w sinh 2ry

The Wigner function is the best candidate for a probabil-
ity density of a quantum mechanical system in phase-space
and therefored, + ¢,— const. We can always choose this [41]. Of course, we know from quantum mechanics that such
constant to be zero, so that the real and imaginary compa probability distribution function cannot exist, but the
nents of the field and momentum modes become Wigner function is just a good approximation to that distri-
bution. Furthermore, in the case of a Gaussian state, this
function is positive definite, and can in fact play the role of a

1 1
fiu=—=¢€"kcosgy, fo=——=¢e "ksing,, (Al4) classical probability distribution for the quantum state.
\/ﬂ \/ﬂ Consider a quantum state described by a density madtrix
Then the Wigner function can be written as
k k
0= \/:erkcos¢k, Oko= \ﬁerksinqsk. f f dx; dx, .
2 2 0 ,,0x 0 0%\ __ i(P1X1+P2X2)
(A]_S) W(yk iyk !pk 'pk ) (277)2 €
. . . . . X X
It is clear that, in the limit of large squeezing,{( «), the ><<y— 5:7|P y+ E,T>. (B1)
field mode f,, becomes purely real, while the momentum

modegy becomes pure imaginary. This means that the fields \ye supstitute for the state our vacuum initial conditjon
and momentum operatof&0) become, in that limit, =W )(¥,|, with ¥, given by the Gaussian wave function
(30), we can perform the integration explicitly to obtain

y(k,7)— 2k fkl<r>9<k,ro>} . e
p(k,7)— V2K Ghal )3 (K, 7o) wo<y8,y8*,p2,p8*>:;zexp(—%z—zufklz
k- 22 ), F |2
fra(7) X|p— 53y )

(A16) I

As a consequence of this squeezing, information about the =®(y1,p1)P(y2,P2),

initial momentumf)o distribution is lost, and the positiorier 1 y2
field amplitude$ at different times commute, D(y,,py)= ;exp{ _<@+ 4|fk|2ﬁ> ] ,
- - 1
K, k,75)]—=e ?kcog ¢ ~0. Al7 — Fy
Ly(k, 7)y(k, m2) ] =7 Px (A17) P1=P1= [ 12V (B2)

The last result defines what is known as a quantum NONEowever, at timer= 7y, we haveytl)zll\/ﬂ=|fk(ro)|, pg
demolition (QND) variable, which means that one can per- _ JK2=[2/f (70)|]~L, andF (74) =0, s0 thaIEQ:pg and

form successive measurements of this variable with arbitratherefor AW- describes a svmmetric Gaussian in phase space
precision without modifying the wave function. Note that with the sa(;ne dispersion )i/n bojhandp directionspThe &p '

= 0¢ is the amplitude of fluctuations of the Higgs field after o ’
inflation, so what we have found is: first, that the amplitudeContours of this distribution satisfy
is distributed as a classical Gaussian random field with prob- 2 2 2
ability (31); and second that we can measure its ar_np_litude at y_12+4|fk|262$1_’£ 4 &sl,
any time, and as much as we like, without modifying the |yl ! y9?  pf?
distribution function. (B3)

In a sense, this problem is similar to that of a free nonrel-
ativistic quantum particle, described initially by a minimum which is a circle in phase space. On the other hand, for time
wave packet, with initial expectation valug¢g)o=x, and  7>7g, We have
(pP)o=Ppo, Which becomes broader by its unitary evolution,
and at late timest&mx,/py) this Gaussian state becomes
an exact WKB state, ¥ (x)= Qg2 exp(—¥2), with
ImQ>ReQ (i.e. high squeezing limjit In that limit,
[X, p]=0, and we have lost information about the initial 1 K
position X, (instead of the initial momentum like in our me —e "«~ple ", decaying mode, (B5)
case, X(t)— p(t)t/m=pyt/m and p(t)=p,. Therefore, not k 2

only [f)(tl), p(t)]=0, but also, at late times, sg that the ellips¢B3) becomes highly “squeezed,” see Fig.
[X(ty), X(t5)]~0. 14. Note that Liouville’s theorem implies that the volume of

for 7=,

1
|f4]— ﬁerk ~ype'k, growingmode, (B4

103501-21



GARCIA-BELLIDO, GARCIA PEREZ, AND GONZALEZ-ARROYO

5 T T T T T T T

o

Wigner function 26 contour

FIG. 14. The 2 contour of the Wigner functioriB2) for the
mode k=1, at times r=0, 1, 2, 3. It is clear that, as time
progresses, the ellips@3) becomes more elongatddqueezey

without changing its area, while the main axis rotates counterclock-

wise.

phase space is conserved under Hamiltoriantary) evolu-
tion, so that the area within the ellipse should be conserve

and as a consequence there is no entropy production in this
compresses

process. As the probability distribution
(squeezesalong thep direction, it expands along thgdi-
rection. At late times, the Wigner function is highly concen-
trated around the region

2

2 Fk 1 2.-2r
pr=|p— 2y | <757~ Pge k<1, (B6)
| fil 4lf,

PHYSICAL REVIEW D67, 103501 (2003

Note that the conditioff2>1 is actually a condition be-
tween operators and their commutators/anticommutators.
The Heisenberg uncertainty principle states that

1

for any two Hermitian operator®@bservablesin the Hilbert
space of the wave functiow. In our case, and in Fourier
space, this corresponds to

1
Ayy?(K)Ayp?(k) =Fg(7)+ 7

1 T 2
= (W ILy=), pl(DI)P (B9

with |W)=|0,75) the vacuum wave function. On the other
hand,F, can be written as

1 “ “ N N
Fk=§<‘1’|p(k,T)yT(k,T)+Y(k,T)IOT(|<,T)l‘l’>

i
== 5 (afic—figi) = Im (ficgw), (B10)

where we have used E0)and a(k,7)|¥)=0, Vk. The
above relation just indicates that, for any stdte the con-
dition of classicality £,>1) is satisfied whenever, for that

étate,

(), PNV, pi(DI)=f=1. (B11)
It is this condition which allows one to substitute quantum
averages of arbitrary functiorg of the position and momen-
tum operators by classical ensemble averages of the same
function G, weighted with the Wigner probability distribu-
tion function, or schematically,

We can thus take the above squeezing limit in the Wigne|<qf|G(yk’pk)|w>: f dYid kG (Vi Pr) WYk i) + O(f)

function (B2) and write the exponential term as a Dirac delta

function,
e ly|? Fr
Wo(y,p) — —exp — =20l pP— 5 V|- (B7)
™ |fk| |fk|
In this limit we have
- Fy ~ Ok2(7) -
P = [ (D)= £ (), (89)

so we recover the previous resgi16). This explains why

we can treat the system as a classical Gaussian random field:

the amplitude of the fielg is uncertain with probability dis-
tribution (31), but once a measurementyls performed, we
can automatically assign to itdefinitevalue of the momen-
tum, according to Eq(A16).

(B12)
| Fi(7)
- dykG<yk,Wyk)
x @ Yl (B13)

where we have used E7). As long asF,(7)>1, we can

describe the evolution of our quantum system as that of a
classical Gaussian random field. Note that, in this limit, we
can ignore the normal ordering of the operators in

G(Yi» Pu)-
APPENDIX C: NONLINEAR EVOLUTION
IN PERTURBATION THEORY

In this appendix we will give details of how to perform
perturbative calculations of the nonlinear evolution of our
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guantum system. We will also illustrate the perturbative ex- o 1, 3(8,+8,7) ,

pansion of the correlation functions of a classical random Hi(m)(T):)\f d3X(z¢o(T.X)—T¢o 7,X)
field. To simplify the expressions we will consider the case

of a single component real scal@iiggs) field, but generali- +0(\?) (C8)
zation to the complex or multiple component case is straight-

forward. ) where the second piece is the counter term needed to renor-
Our goal is to compute the expectation values of productg,ajize o this order. Then, substituting the expression of the

of fields at different points: field inside the expectation values, everything reduces to ex-
pectation values of products of interaction representation
(@(71,%1) - D70, Xn)) (€D fields ¢o(r,x). The latter reduce, by Wick's theorem, to

S . . . roducts of two-point functions:
(in this section we will use the symbdl instead ofy for the P P

Higgs field. Here ¢(7,x) denotes the Heisenberg picture ) ) o o
field operator, whose relation to the Sctlimger picture one G™(7, 7" x=X")=(do(T.X) po(7',X"))
¢<(x) is as follows:

>k o,
- [ e e,

G(7,)=U"(7) p(X)U(7) (C2 (2m)*

. . L C9
wherel(7) is the evolution operator, satisfying €9

This can be decomposed into a real and imaginary part. The
real part corresponds to the expectation value of the symme-
. o . trized product, which in the Gaussian theory was chosen to
where the prime stands for derivative with respect emdH match with the correlation function of the classical random

s the full Ha.milltonlan_. Notice that since the Hamiltonian field. The imaginary part is proportional to the commutator
depends explicitly on time, the evolution operator cannot be

written as exp—i7H}. If we set\ to zero we get the qua- Of the fields, which is & number.
. ; {)_ ;- . : g€ qua- We can illustrate the procedure by computing the two-
dratic HamiltonianH, considered in the Gaussian approxi- . . :
X . : ; point function
mation. The corresponding evolution operatai/§g ). Now
we go over to the interaction representation by writing

U (1)=—iHU(7) (C3

3

K | —x")A ’
U(T)=Uo(T)Q(7T) (C4) (d(1.x)(7" X)) = f(zﬂ_)ge'k(x IG(k,7,7")
(C10

whereQ( ) is the characteristic Moller type operator which

satisfies the equation to order\. Substituting the expression of the Heisenberg

, - C1(0) field for the 7> 7' case we get
Q' (7)=—iUg(T)Hinddo(7) 2= —iHj /()2 (CH

whereHi(,?t)(T) is the interaction Hamiltonian in the interac- <T’ exp{i detHi(r?t)(t)} do(X,7)
tion representation. The equation f6k can be solved in 0
terms of the time-ordered exponential: .
xTexp[—i f/dtHﬁ(t))%(x’,r’)

Q(T)zTexp< i det Hi(,‘])t)(t)}. (CH)
0

><Texp[ —i f dtHi(,?t)(t)} > .
0

This can be used to express the Heisenberg representation
fields in terms of the(Gaussiap interaction representation

fields: In caser’ > 7 the factor sitting between the two fields has to
' be replaced by
$(1.0=T' ex;n[i f dt Hﬁ?(t)] bo(T.0T .
0 T exp{ if dtHi(,?t)(t)]. (C11
><exp( —i j dt Hi(,?t)(t)}. (C7)
0 Notice the peculiar time-ordering of the operators which dif-

fers from the customary perturbative evaluation(Beyn-
In the T exponential time grows from right to left and in the man Green functions, which are time-ordered products of
T’ exponential left to right. To obtain the perturbative expan-field operators.
sion one has to expand tieexponential andi%) in powers To do the calculation to ordex it is better to start by
of N\. The latter has the form expressing the Heisenberg field to this order:
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If we now take@(7=0x), and w(7=0x), to be Gaussian
d(7,X)= po(7,X) +i J dH{(s), do( 7.0+ . .. random fields, then the field at any other time becomes a
non-Gaussian random field. The correlation functions of this
field can be computed in perturbation theory by combining
= ¢o(T,X) +iN f dsd’z] ¢o(s,2), bo( 7.%)] the aforementioned expansion involving the retarded propa-
gator and the expectation value of Gaussian random field. To
X[ $3(5,2)— 3(81+ 6,5) do(s,2)]. (C12 match with the quantum calculation at zero ordeiinthis
has to be taken as the symmetrized version of(E) (this
Finally one obtains is just given by the Fourier transform of the symmetric part
. of 3):
Gk, 7,7 )=f (D FE(7")+ 6\ f dSAef(S)
0 ko
G(ggusgf,r',x—x'):f —— e XDRe[f (D) FE ()]

XIm[f (1) (s)]f(s)fg (7) (2m)°
(C16)

+ 6\ jT dsA(S)
0 Notice that terms in the expansion can be associated with

Ik * Feynman-type graphs, with modified rules involving two
ML) (ST (s). (€13 propagators G'9),.:andG o). These, up to factorénclud-
The meaning oA ren(7-) is given in the main text, where one Ing HeaViSidea) coincide with the real and imaginary partS
can also find the symmetrized Green function. Repeating thef the quantum propagator. Indeed, the calculation of the
calculation for a Higgs field wittN, real components one two-point correlation function to ordek matches exactly
gets the same expression for each component replacing 6 Byith the symmetrized quantum two-point function to this

2(Ng+2). order. For that one has to apply exactly the same renormal-
We can compare with the classical evolution. We will useiZation to the classical and quantum theories. _

the same symbol for the classical fiels(7,x). The equa- Differences can arise to higher order. Essentially, the

tions of motion retarded-imaginary propagator in the classical theory cannot

form loops by itself. since it arose from the expansion of the
@" (1, X)=Ad(7,X)+ 7d(7,X)—Np3(7,x) (C1l4 field equations. This need not be the case in the quantum
) ) ] ~_ theory. For example to second orderirthere is a contribu-
can be solved in perturbation theory in The expansion is tjon to the two-point function given by the sunset diagram,
given in terms of tree graphs with lines associated to th&yith three imaginary propagators joining the two vertices.

retarded propagator: However, for low-momenta flowing through the linésnd
large enough timgshe dramatic difference in size of the real
LT d imagi ts df () £ (+') justifies that the classical
Gret(a-,r’,x—x’)z—ze(r—r’)J el k(x—x") and imaginary parts k(_r) x (7") justifies that the classica
(2m)3 approximation would still be reasonably good. A more thor-
ough investigation of these matters is interesting but exceeds
xIm[f (n)fE ()], (C19  the realm of this paper.
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