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Symmetry breaking and false vacuum decay after hybrid inflation
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We discuss the onset of symmetry breaking from the false vacuum in generic scenarios in which the mass
squared of the symmetry breaking~Higgs! field depends linearly with time, as it occurs, via the evolution of the
inflaton, in models of hybrid inflation. We show that the Higgs fluctuations evolve from quantum to classical
during the initial stages. This justifies the subsequent use of real-time lattice simulations to describe the fully
nonperturbative and nonlinear process of symmetry breaking. The early distribution of the Higgs field is that of
a smooth classical Gaussian random field, and consists of lumps whose shape and distribution is well under-
stood analytically. The lumps grow with time and develop into ‘‘bubbles’’ which eventually collide among
themselves, thus populating the high momentum modes, in their way towards thermalization at the true
vacuum. With the help of some approximations we are able to provide a quasianalytic understanding of this
process.
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I. INTRODUCTION

The problem of symmetry breaking in quantum fie
theory ~QFT! has been with us for several decades. In
context of cosmology, it has usually been associated w
thermal phase transitions@1# and the production of topologi
cal defects@2#. Understanding the way in which the ord
parameter associated with the breaking of the symm
evolves from a symmetric state~the false vacuum! to a bro-
ken state~the true vacuum! is nontrivial@3–7#. Only recently
has this problem been addressed in the context of symm
breaking at zero temperature, at the end of a period of hy
inflation @8,9#, in the so-called process of tachyonic prehe
ing, i.e., spinodal instability, in the context of preheating
ter inflation @10#. There,classicalevolution equations have
been solved with real-time lattice simulations, developed
studying the problem of preheating@11–13#, which include
all the nonperturbative and nonlinear character of the ph
transition. It was found that symmetry breaking occurs ty
cally in just one oscillation around the true vacuum@14#,
most of the false vacuum energy going into gradient mod
rather than kinetic energy.

However, the problem of the transition from a falsequan-
tumvacuum state at zero temperature~as occurs at the end o
a period of inflation! to the truequantumvacuum state full of
radiation at a certain temperature has not been fully
dressed yet. Most of the previous approaches refer to
decay from a false vacuum state at finite temperature, rely
on the Hartree or largeN approximation@3,4,6,7#. Only re-
cently, the zero temperature problem was addressed w
the classical approximation but mainly for the case of
0556-2821/2003/67~10!/103501~25!/$20.00 67 1035
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instantaneous quench@14#, which can lead to cosmologically
interesting particle production@15#. Tachyonic preheating
was recently studied beyond the quench approximation
Ref. @16#.

We will argue that symmetry breaking proceeds throug
state in which the relevant degrees of freedom are semic
sical infrared modes, which can be described in a nonper
bative and nonlinear way with a classical effective fie
theory, whose classical equations of motion can be sol
numerically in the lattice and thus allow us to study the fu
nonperturbative out of equilibrium process of symme
breaking.

The quantum to classical transitions of field Four
modes have been addressed before in the context of infla
@17–20#, where it is mandatory to understand the transiti
from quantum fluctuations of the inflaton field during infl
tion to the classical metric fluctuations on superhoriz
scales, since they are believed to be responsible for the
served temperature anisotropies in the cosmic microw
background, as well as the scalar density perturbations
ing rise to galaxies and large scale structure formation. T
use of the classical approximation to study the process
preheating after inflation has been proposed in Ref.@11#, and,
in a context similar to ours, it has been recently used in R
@7,14,16#.

In this paper we will use such a well developed formalis
to study the first instances of a generic symmetry break
process, i.e., the conversion of quantum modes of the s
metry breaking field~the QFT order parameter, generical
called the Higgs field! into a classical Gaussian random fie
whose subsequent nonlinear evolution equations can
©2003 The American Physical Society01-1
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solved with lattice simulations. We give here a self-contain
presentation of the conditions under which classical beha
holds, and apply it to the analysis of the false vacuum de
after inflation, with specific initial conditions.

Our final aim is to study the process of electroweak sy
metry breaking, and the possibility of realizing baryogene
at the electroweak scale, via the nonequilibrium process
preheating after inflation@21–23#. Therefore this paper is
intended as the first one in a series, in which we will p
gressively incorporate more complexity, i.e., gauge fiel
Chern-Simons,CP violation, etc., into the picture. O
course, our results are readily generalizable to any o
phase transition that may have occurred in the early univ
at the end of a period of hybrid inflation, e.g., at grand u
fied theory~GUT! scales.

The paper is organized as follows. In Sec. II we descr
the initial conditions for spontaneous symmetry break
coming from a hybrid model of inflation. The inflaton ac
here like a background field whose coupling gives a tim
dependent mass to the Higgs. In Sec. III we study the qu
tum evolution of the Higgs field in the linear approximatio
from the bifurcation point. The Fourier modes decouple
this approximation and can be studied as a quantum
chanical ensemble of harmonic oscillators, both in
Heisenberg and the Schro¨dinger picture. We then study, wit
the use of the Wigner function, the quantum to classical tr
sition of the Higgs modes. We show that each quantum m
can be described exactly like a classical Gaussian ran
field, and give a prescription for computing the Weyl-order
quantum expectation values of operators in terms of class
averages over a Gaussian random field with the Wigner fu
tion as probability distribution. We then define and char
terize when a mode can be called ‘‘quasiclassical.’’

In Sec. IV we give the exact solutions to the field evo
tion equations of the Higgs in the linear approximation
terms of Airy functions, and show that soon after the bif
cation the infrared modes become quasiclassical accordin
the definition of the previous section. This analysis follo
closely, although in greater detail, what has been studied
viously in the literature@16,24,25#. In Sec. V we analyze the
inclusion of the nonlinear terms in the quantum evoluti
within perturbation theory. We give a prescription for trea
ing the ultraviolet divergences and to renormalize the par
eters of the theory. This leads to a regular probability dis
bution to be used for a classical field description, wh
matches the renormalized quantum expectation values o
Weyl ordered products. The matching is done at a time
which the infrared modes have grown sufficiently to be w
described as classical modes. This occurs well before non
earities are important, and therefore our Gaussian appr
mation is valid, in a similar spirit as that of Ref.@7#. The
quantum ultraviolet modes, on the contrary, can be thou
as integrated out, and used to renormalize the paramete
the classical theory. We might then interpret our class
field distribution as an effective theory for the long wav
length modes. We also estimate the time at which symm
breaking sets in.

In Sec. VI we describe the methodology to be used to t
care of the full nonlinear evolution of the system. The init
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space-time structure of the classical Higgs field is analy
in Sec. VI A. Being a Gaussian random field, it can be d
scribed in a similar way to the matter density field who
fluctuations give rise to galaxies and large scale structure
gravitational collapse@26#. The Higgs field is found to pos
sess, at symmetry breaking, an inhomogeneous spatial d
bution made of lumps, whose shape and initial evolution c
be well understood analytically. The space-time inhomo
neous character of symmetry breaking in the Higgs-infla
system has also been reported in Ref.@16# for a one compo-
nent Higgs model. For the complete nonlinear dynamics
the full Higgs-inflaton system we make use of lattice re
time evolution methods. The details of our procedure,
connection and difference with lattice methods used by ot
authors, and a detailed check of the validity of the appro
mations used, are described in Sec. VI B.

Finally, in Sec. VII we present the results of this stage
the evolution of the system. The lumps mentioned in
previous sections grow and, once its center reaches the H
vacuum expectation value, invaginate and create an appr
mately spherically symmetric ‘‘bubble’’ which expands at
very high speed. Meanwhile, the center of the lump bub
continues to oscillate with decreasing amplitude, leading
secondary bubbles. All these phenomena can be well un
stood with the help of some approximations which redu
the full nonlinear equations to a one or two dimension
partial differential equation of a single scalar field. This sim
plified picture matches qualitatively and~to a high degree!
quantitatively the results of the lattice simulations. Even
ally, bubbles centered at different points collide and trans
most of their potential and kinetic energy to gradient ener
thus populating the higher momentum modes. This proc
leads to complete symmetry breaking and~classical! ther-
malization. The whole history of the system is illustrated
following the evolution of two-dimensional~2D! sections of
a particular configuration. We also show histograms for
field values of both Higgs and inflaton, which start in th
false vacuum and are seen to end up peaked around the
vacuum. In Sec. VIII we draw our conclusions and descr
the future directions in which this work can be extended, fi
by including the production of SU~2! gauge fields and after
wards by studying the rate of sphaleron transitions that m
give rise to a non-negligible amount of baryons.

We have added three appendixes. In Appendix A we
scribe the formalism of squeezed states following Re
@18,19#, which can be applied to the initial stages of th
Higgs evolution in the linear regime, and gives rise to t
semiclassical nature of the long wavelength modes. In A
pendix B we compute the Wigner function for the evolv
Gaussian initial vacuum state@18–20#, and show explicitly
the squeezing of the infrared modes. We give a definite c
dition for characterizing the moment in which a mode can
treated as quasiclassical. In Appendix C we give the det
of the perturbative calculations of the nonlinear evolution
our system, both at a classical and quantum-mechan
level.

II. THE HIGGS FIELD AT THE END OF HYBRID
INFLATION

The precise model of hybrid inflation will not be impo
tant for our purposes here. However, for concreteness
1-2
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will implement it in the context of a supersymmetric exte
sion of the standard model in which the radiative correctio
are responsible for the running of the inflaton field during
few (;5 –10) e-folds necessary to cool the universe so th
the electroweak symmetry breaking~EWSB! occurs at zero
temperature. The fluctuations responsible for cosmic mic
wave background~CMB! temperature anisotropies and lar
scale structure come from a previous stage of inflation, co
pletely independent of this. Moreover, since EWSB occur
low energies, we can, and will in what follows, safely igno
the rate of expansion,H;1025 eV, during symmetry break
ing and treat the fields as if they were in Minkowski spa
In particular, one can consider the supersymmetric hyb
model of Dvali, Shafi and Schaefer@27#, where the superpo
tential fixes a relation between the couplings,g252l. As we
will see, this choice simplifies some stages of the dynam
of symmetry breaking after inflation@28#, but is not crucial.
A study of the process of tachyonic preheating after a var
of more general supersymmetric models of inflation will
given in Ref.@29#.

The hybrid model we are considering is a simple gen
alization of the standard model symmetry breaking sec

which consists of the Higgs field,F5 1
2 (f0 11 ifata), with

ta the Pauli matrices, and an inflatonx, a singlet under
SU~2!. The inflaton couples only to the Higgs, with couplin
constantg. The scalar potential has the usual Higgs term p
a coupling to a massive inflaton,

L5~DmF!† DmF1
1

2
~]mx!22lS F†F2

v2

2 D 2

2g2x2F†F

2
1

2
m2x2, ~1!

wherev5246 GeV is the expectation value of the Higgs
the true vacuum,m is the mass of the inflaton in the fals
vacuum andm[Al v. We are assuming implicitly tha
whenever there is a contractionO†O, we should take the
trace over the SU~2! matrices, i.e.F†F[Tr F†F5 1

2 (f0
2

1fafa)[ufu2/2. The Higgs mass in the true vacuum
determined by its self-coupling:mH [ A2l v, while the
mass of the inflaton in the true vacuum is given bymI[gv
@m.

In this paper we will simplify the analysis of the dynami
by omitting the SU~2! gauge field and working with a ge
neric Higgs field withNc real components. We anticipate th
the most important conclusions of this paper are not affec
by the introduction of the gauge field, and leave for a for
coming publication the symmetry breaking dynamics in
presence of gauge fields. For ease of notation we will d
the internal indices of the Higgs field whenever all comp
nents behave in the same way. The numerical simulat
that will be presented correspond to aNc54 component
Higgs field.

During hybrid inflation@8# the Higgs field has a large an
positive effective mass squared due to its coupling to
inflaton field, which slow-rolls down its potential valley. Th
potential for the coupled fields is the following:
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V~f,x!5
l

4
~ ufu22v2!21

g2

2
ufu2x21

1

2
m2x2, ~2!

where the parameters in the potential depend on the num
of Higgs componentsNc as:l5l0 /Nc , g25g0

2/Nc andv2

5Ncv0
2, with this m25lv25l0v0

2 is independent of the
number of components.

It is the effective false vacuum energyV05lv4/4
[m2v2/4 which drives the period of hybrid inflation. Infla
tion ends when the inflaton homogeneous mode,x[^x&,
slow-rolls below the bifurcation pointx5xc[m/g, at which
the Higgs is massless,

mf
2 5m2S x2

xc
2 21D . ~3!

Below the critical point, the Higgs has a negative ma
squared and long wave modes will grow exponentially, dr
ing the process of symmetry breaking@14#. The process by
which the mass squared of the Higgs goes from large
positive to large and negative is not instantaneous, but
pends strongly on the velocity of the inflaton at the bifurc
tion point,

V[
1

m
U ẋ

xc
U

tc

. ~4!

Typically the speed of the inflaton is such that the proc
takes place in less than one Hubble time, a condition kno
as the ‘‘waterfall’’ condition@8,9#, which ensures the absenc
of a second period of inflation after the bifurcation poi
@30#. The actual value ofV depends very much on the mod
and the scale of inflation, and we will treat it here as
arbitrary model parameter. In this case, the effective mas
the Higgs across the bifurcation point can be written a
time-dependent mass

mf
2 ~ t !522Vm3~ t2tc!1O@V2~ t2tc!

2#. ~5!

Note that a similar situation arises in the case of sim
extensions of the standard model Higgs, in which radiat
corrections~dominated by the large top quark Yukawa co
pling! induce the running of the Higgs mass square fro
positive to negative thus providing a mechanism for el
troweak symmetry breaking. The role of the running scale
played here by the inflaton homogeneous mode. Alter
tively, one can envisage a secondary period of hybrid ther
inflation @31,32# just above the electroweak scale, whic
lasted only a fewe-folds and supercooled the false vacuu
leaving only the fast rolling inflaton coupled to the Higg
This short second period of inflation would not affect t
CMB anisotropies, but would provide a natural initial cond
tion for the growth of quantum fluctuation of the Higgs fiel
as they evolve across the bifurcation point, toward symme
breaking.

Let us consider the effective action for the Higgs fie
F(x,t) ignoring the self-couplingl-term ~we omit the inter-
nal indices of the Higgs field!,
1-3
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S5 E d3x dt
1

2
@~ḟ !22~¹f!22mf

2 ~ t !f2#, ~6!

where we have included the time-dependent mass~5!, to lin-
ear order, which is the only effect that the presence of
homogeneous modex(t) of the inflaton field induces in the
evolution of Higgs quantum modes.

We now define a new scaleM[(2V)1/3m, and thus rede-
fine our coordinates as

t5M ~ t2tc!→ḟ5Mf8, ~7!

X5Mx→K5
k

M
, ~8!

where primes denote derivatives with respect tot, andk is
the wave number associated with the Higgs Fourier mod

F~k,t!5 E d3x

~2p!3/2
F~x,t! exp~2 ix•k!.

From now on, we will usex andk as the normalized position
and momentum coordinates, i.e. we will work in units
M51. We will also denote the normalized Higgs quantu
fluctuations byy5f/M , for which the effective action is

S5 E d3xdt
1

2
@~y8!22~¹y!21ty2#. ~9!

We can define the conjugate momentum asp5]L/]y8
5y8, and thus the corresponding Hamiltonian becomes

H5 E d3x
1

2
@p21~¹y!22ty2#. ~10!

In momentum space, the Hamiltonian becomes

H5 E d3k
1

2
@p~k,t!p†~k,t!1~k22t!y~k,t!y†~k,t!#.

~11!

The Euler-Lagrange equations for this field can be written
terms of the momentum eigenmodes as a series of uncou
oscillator equations:

y9~k,t!1~k22t!y~k,t!50. ~12!

III. QUANTUM EVOLUTION IN THE GAUSSIAN
APPROXIMATION

In this section we will start the description of the quantu
evolution of the system assuming that we can neglect
nonlinear terms which are proportional tol. Our goal is to
determine the precise conditions under which the sys
evolves into a classical one. Our presentation will be gen
and applicable to any time dependent harmonic oscilla
system with time-dependent spring constantv2(k,t), only in
the next section we will apply this formalism to our partic
lar problem@v2(k,t)5k22t#. Our results overlap and co
incide with Refs.@17–19#.
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A. The Heisenberg picture

In the Heisenberg picture the quantum system is descr
by means of the positiony(k,t) and momentum operator
p(k,t) corresponding to each oscillator. The canonic
equal-time commutation relations for the fields (\51 here
and throughout! in position and momentum space are

@y~x,t!, p~x8,t!#5 id3~x2x8!,

@y~k,t!, p~k8,t!#5 id3~k1k8!. ~13!

Furthermore, hermiticity of the operators in position spa
imply the relations y†(k,t)5y(2k,t) and p†(k,t)
5p(2k,t)

We will assume that att5t050, i.e. at the bifurcation
point t5tc , the state of the system is given by the grou
state of the Hamiltonian with oscillator frequencyv(k,0)
5k. It is then useful to express the position and moment
operators in terms of creation-annihilation operators at t
time:

y~k,t0!5
1

A2k
@a~k,t0!1a†~2k,t0!#,

p~k,t0!52 iAk

2
@a~k,t0!2a†~2k,t0!#.

~14!

The quantum operators satisfy the classical equation
motion, which we will write down as a system of couple
first-order equations

d

dt
v~k,t![

d

dt S p~k,t!

y~k,t!
D 5S 0 2v2~k,t!

1 0 D S p~k,t!

y~k,t!
D
~15!

whose solution can be expressed as

v~k,t!5M ~k,t!v~k,t0!

[S A2

k
gk1~t! A2kgk2~t!

2A2

k
f k2~t! A2k fk1~t!

D v~k,t0!, ~16!

where f k1 [ Ref k and f k2 [ Im f k , with f k(t) a complex
solution of the equation of motion, with initial conditions,

f k91„v~k,t!2
…f k50, f k~t0!5

1

A2k
, ~17!

and

gk[gk11 igk25 i f k8 , gk~t0!5Ak

2
. ~18!
1-4
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Note that since the motion is Hamiltonian~i.e. canonical!,
the determinant ofM (k,t) is detM (k,t)51, ;t, a condi-
tion that is equivalent to the Wronskian of Eq.~17! being 1 at
all times,

i ~ f k8 f k* 2 f k8* f k!5gkf k* 1gk* f k52Re~gkf k* !51. ~19!

The previous formulas allow us to compute the expec
tion value of products of fields at any timet in terms of the
expectation values of fields at timet0. Substituting Eq.~14!
into the expression for the fields at timet we obtain

y~k,t!5 f k~t!a~k,t0!1 f k* ~t!a†~2k,t0!,

p~k,t!52 i @gk~t!a~k,t0!2gk* ~t!a†~2k,t0!#.
~20!

The quantum information of the system is encoded in
expectation values of products of fields. For a Gaussian fi
the only quantities needed to describe the system are
two-point expectation values,

^0,t0uva~k,t!vb~k8,t8!u0,t0&5 Sab~k,t,t8! d3~k1k8!,

~21!

where u0,t0& is the initial vacuum state satisfyin
a(k,t0)u0,t0&50,;k. The value of this matrix at any pair o
times can be expressed in terms of the matrixM and the
corresponding expectation values at timet0 as follows:

S~k,t,t8!5M ~k,t!S~k,t0 ,t0!MT~k,t8!. ~22!

The quantum initial condition on the state of the system
time t0 amounts to

S~k,t0 ,t0!5S k

2
2

i

2

i

2

1

2k

D . ~23!

Note that this matrix is Hermitian, but neither real nor sy
metric, and its determinant vanishes. The imaginary part
sults from the equal time commutation relations and does
depend on the particular state of the system. The real s
metric part alone characterizes completely the state.

Let us conclude this section by giving the expression
the equal time expectation values at any other time:

S~k,t,t!5S ugk~t!u2 Fk~t!2
i

2

Fk~t!1
i

2
u f k~t!u2

D
5S ugk~t!u2 2 i Vk* ~t!u f k~t!u2

iVk~t!u f k~t!u2 u f k~t!u2 D
~24!

with
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Vk~t!5
gk* ~t!

f k* ~t!
5

122iF k~t!

2u f k~t!u2 , ~25!

Fk~t!5 Im ~ f k* gk!. ~26!

As a consequence of the unit determinant ofM (k,t) one
concludes that the determinant of the symmetric~real! part of
S(k,t,t) is time independent and equal to 1/4. Note th
using Eq.~25! we can rewrite the conjugate momentum a

p~k,t!5 p̄~k,t!1
Fk~t!

u f k~t!u2
y~k,t! ~27!

with

p̄~k,t!52
i

u f k~t!u2
@ f k~t!a~k,t0!2 f k* ~t!a†~2k,t0!#,

a relation that will prove useful in the next section.

B. The Schrödinger picture and the classical limit

Let us go now from the Heisenberg to the Schro¨dinger
representation, and compute the initial state vacuum eig
function C0(t5t0). We will follow here Refs.@17–19#. In
what follows we will denote operators in the Schro¨dinger
representation byŷk[y(k,t0) and p̂k[p(k,t0). The initial
vacuum stateu0,t0& is defined through the condition

;k, â~k,t0!u0,t0&5FAk

2
ŷk1 i

1

A2k
p̂kG u0,t0&50,

F yk
01

1

k

]

]yk
0* GC0~yk

0 ,yk
0* ,t0!50⇒C0~yk

0 ,yk
0* ,t0!

5N0e2k uyk
0u2, ~28!

where we have used the position representation,ŷk

5yk
0 , p̂k52 i (]/]yk

0* ), and N0 gives the corresponding
normalization.

We will now study the time evolution of this initial wave
function using the unitary evolution operatorU5U(t,t0),
satisfyingU852 iHU. The state evolves in the Schro¨dinger
picture asu0,t&5Uu0,t0&. We can make use of the result o
the previous section to determine this state. By inverting
~20! we find

â~k,t0!5gk* ~t!ŷ~k,t!1 i f k* ~t! p̂~k,t!, ~29!

which acting on the initial state becomes,;k, ;t,
1-5
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UF ŷ~k,t!1 i
f k* ~t!

gk* ~t!
p̂~k,t!GU †Uu0,t0&

5F ŷk1 i
f k* ~t!

gk* ~t!
p̂kG u0,t&50,

⇒C0~yk
0 ,yk

0* ,t!5
e2 ia

Apu f k~t!u
e2Vk(t)uyk

0u2,

~30!

with Vk(t) given by Eq.~25!. We see that the unitary evo
lution preserves the Gaussian form of the wave function
The wave function~30! is called a two-mode squeezed sta
The normalized probability distribution, for each modek,

P0~yk
0 ,yk

0* ,t!5
1

pu f k~t!u2
expS 2

uyk
0u2

u f k~t!u2D , ~31!

is a Gaussian distribution, with dispersion given byu f ku2.
This agrees with the result obtained in the previous sectio
the Heisenberg picture. The phasea(k,t) cannot be deter-
mined by this method, but as we have seen it has no effec
the probability distribution nor on the Wigner function, s
below. However, from the Schro¨dinger equation,i ]tC0(t)
5HC0(t), one can deduce thata8(k,t)5@2u f k(t)u2#21.

We can also compute the occupation number,nk ,

nk~t!5^0,tua†~k,t0!a~k,t0!u0,t&5
1

2k
ugku21

k

2
u f ku22

1

2
,

~32!

a quantity that is always positive definite.
We now address the problem of approximating the qu

tum evolution just described by a classical evolution. F
that purpose the vacuum expectation values of product
position and momentum operators should be recovered
ensemble averages of random fields. It is clear that for
noninteracting theory (l50) that we are considering, such
classical random field should be Gaussian, with all the in
mation encoded in the real expectation values of product
two fields. Only the symmetrical part ofS(k,t,t) is real, see
Eq. ~24!, and thus a natural candidate to be approximated
the classical Gaussian random field. Notice that this co
sponds to matching Weyl-ordered~symmetrized inŷk , p̂k

†)
quantum expectation values of operators through, in
Schrödinger picture,

^0,tuG~ ŷk , p̂k!u0,t&W[^G~yk ,pk!&gs ~33!

where^0,tuG( ŷk ,p̂k)u0,t&W denotes the quantum average
the Weyl-ordered operator in the state given by the w
function ~30!, and^G(yk ,pk)&gs denotes the classical Gaus
ian average. The latter is obtained as an average ov
Gaussian ensemble with yk and p̄k$ [pk
2@Fk(t)/u f k(t)u2#yk% independent Gaussian variables w
probability distribution given by the Wigner function i
phase space, see Refs.@18,19#, Eq. ~27! and Appendix B,
10350
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W0k~y,p!5
1

p2 expS 2
uyu2

u f ku2
24u f ku2Up2

Fk

u f ku2
yU2D .

~34!

A very trivial illustration of this equality is given by the
following symmetrized vacuum expectation value

1

2
^0,tu ŷkp̂k81 p̂kŷk8u0,t&5Fk~t!d3~k1k8! ~35!

while

^ykpk8&gs5 K ykS p̄k81
Fk~t!

u f ku2
yk8D L

gs

5
Fk~t!

u f ku2
^ykyk8&gs

5Fk~t!d3~k1k8!. ~36!

Even though only the symmetrized expectation values
described by the Gaussian ensemble average, for the Ga
ian ground state of Eq.~30! quantum expectation values wit
arbitrary ordering of operators can also be computed. To
specific, the expectation value of any operatorG( ŷ,p̂), with
any given ordering ofŷ and p̂, can be rewritten as a linea
combination of Weyl-ordered operators with coefficients p
portional to the commutator which is a time independenc
number; schematically

^0,tuG~ ŷ,p̂!u0,t&5^G0~y,p!&gs1 (
n>1

~ i\!n^Gn~y,p!&gs,

~37!

where we have introduced\ as an expansion parameter
make explicit the connection with the semiclassical appro
mation. For instance, for the example in Eq.~35! we would
obtain

^0,tu ŷkp̂k8u0,t&5S Fk~t!2
i

2D d3~k1k8!. ~38!

In this spirit, a quasiclassical state can be defined as a s
for which the leading term in Eq.~37! dominates, and quan
tum averages can be approximated by

^0,tuG~ ŷ,p̂!u0,t&'^G0~y,p!&gs. ~39!

This generically happens when ^0,tu p̂ŷu0,t&W

@u^0,tu@ p̂,ŷ#u0,t&u, i.e. when the so-called WKB phase
Fk(t) in Eq. ~26!, verifiesuFk(t)u@1. For such a quasiclas
sical state the ambiguity in the ordering of operators is qu
titatively negligible and classicality in the sense of Eq.~39!
holds. As an illustration let us compute the following expe
tation value ~for ease of notation we have omitted thek
dependence of the operators and the delta functions!:

1

2
^0,tu p̂2ŷ21 ŷ2p̂2u0,t&53Fk

2~t!2
1

4
. ~40!

In the classical approximation we would obtain
1-6
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^p2y2&gs5^p2&gŝ y2&gs12^py&gs
2

5u f k~t!u2ugk~t!u212Fk
2~t!53Fk

2~t!1
1

4

~41!

which reproduces the Weyl ordered part of the quantum
sult and is a very good approximation as long asuFk(t)u
@1.

This approach works as long as the theory is noninter
ing and the Gaussianity of the quantum state is preserve
the evolution. In the problem at hand, we can assume thi
be the case in the first stages of evolution before nonline
ties have set in, but not when the self-coupling term start
be relevant just before symmetry breaking. However, as l
asuFk(t)u@1, the state can still be approximately describ
through the nonlinear stages, via a classical random field.
will describe below in detail how this classicality follows fo
our specific problem~see also Appendixes A and B for th
precise formulation of the squeezed states and the Wig
function formalism, following Refs.@18–20#!.

IV. EXACT SOLUTIONS OF THE FIELD EVOLUTION
EQUATIONS

Let us apply now the above formalism to the case of
quantum fluctuation modes of the Higgs at symmetry bre
ing. This case was studied previously in Refs.@16,33,24,25#.
For v2(k,t)5k22t the linear equation~17! for the quantum
modes of the Higgs field becomes

f k91~k22t! f k50, with f k~t050!5
1

A2k
. ~42!

Its solution can be given in terms of Airy functions@34#:

f k~t!5C1~k!Bi~t2k2!1C2~k!Ai ~t2k2!, ~43!

gk~t!5 iC1~k!Bi8~t2k2!1 iC2~k!Ai 8~t2k2!,
~44!

C1~k!52
p

A2k
@Ai 8~2k2!1 ikAi ~2k2!#, ~45!

C2~k!5
p

A2k
@Bi8~2k2!1 ikBi~2k2!#, ~46!

which satisfy the Wronskian condition,gkf k* 1gk* f k51,
where we have used the corresponding Wronskian for
Airy functions,

p@Ai ~z!Bi8~z!2Bi~z!Ai 8~z!#51. ~47!

We can then compute the occupation number,nk , Eq.
~32! and the imaginary part of the WKB phase,Fk , see Eq.
~26!.
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Long wavelength quasiclassical modes

Still remains to be computed the time at which fluctu
tions become classical in the sense of Eq.~39!. As we will
see, the field fluctuation modes will become quasiclassica
their wavelength becomes larger than the only physical s
in the problem, the time-dependent Higgs mass, i.e.l
52p/k@2p/At. In order to show this, let us take the lim
k2!t for the long wavelength modes in the exact solutio
~43! and ~44!,

f k~t!5C1~k!Bi~t!1C2~k!Ai ~t!.C1~k!w~t!, ~48!

gk~t!5 iC1~k!Bi8~t!1 iC2~k!Ai 8~t!. iC1~k!w8~t!,
~49!

where the functionw(t)5Bi( t)1A3Ai( t) is the one ap-
pearing in the Appendix A, and we have used the fact t
C2(k)5A3C1(k) in the limit k→0. Using the largez*1
approximation of the Airy functions, see Ref.@34#,

Bi~z! ;
1

Ap
z21/4e1(2/3)z3/2

, Ai~z! ;
1

2Ap
z21/4e2(2/3)z3/2

,

~50!

Bi8~z! ;z1/2Bi~z!, Ai8~z!;2z1/2Ai ~z!, ~51!

we conclude that the first terms in bothf k andgk correspond
to the growing modes, while the second terms are the de
ing modes, and can be ignored soon after the bifurca
point.

We are now prepared to answer the question of classi
ity of the modes. The wave function phase shift is given

Fk5 Im ~ f k* gk!.uC1~k!u2w8~t!w~t!.
w8~t!

w~t!
u f ku2

. uC1~k!u2
1

p
e(4/3)t3/2

, ~52!

which grows faster than exponentially at large time. On
other hand, the occupation number~32! is

2kS nk1
1

2D5ugku21k2u f ku2.S w8~t!

w~t! D 2

u f ku2

.AtuC1~k!u2
1

p
e(4/3)t3/2

. ~53!

Therefore we have

uFk~t!u.
2knk~t!

~w8/w!
@1→Ek~t!.knk~t!@um~t!u,

~54!

that is,uFku@1 whenever the energy of the modeEk is much
greater than the Higgs mass, computed as the instantan
curvature of the Higgs potential.

Notice in particular that under the conditionuFku@1, the
momentum and field eigenmodes are related by
1-7
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gk~t!5Vk* ~t! f k~t!→ i
Fk~t!

u f k~t!u2 f k~t!.

In terms of the Gaussian random fields, the momentum
tribution of the Wigner function becomes a delta functio
d$p2@Fk(t)/u f ku2#y%, see Appendix B.

We show in Fig. 1 the exponential growth of the pha
Fk(t) as a function of momentak, for different times. These
plots were obtained using the exact Airy function solutio
Note that in the limit of large wavelengthsk2!t, it is indeed
verified thatuFk(t)u.2knk(t)(w/w8)@1, as stated above.

We can now compute the time for which a single modk
becomes quasiclassical, in the sense~54!. We have confirmed
that aftert.2 modes with 0<k,At, which, as we will see
later, is the range of interest, have become quasiclassical
have drawn the line separating classical from quant
modes in Fig. 2, as a function of the modek. The high energy
part of the spectrum always remains in the quantum vacu
as expected. Fort>2 the line separating classical and qua
tum modes is approximately described byk5At.

V. NONLINEAR QUANTUM EVOLUTION
AND SYMMETRY BREAKING

To address the issue of symmetry breaking after inflat
it is essential to incorporate the nonlinear effects proportio
to l. A full nonperturbative quantum treatment is beyo
reach. However, we have seen in the previous section
the dynamics in the absence of nonlinear terms gives ris
a fast growth of the amplitude of the low-lying moment
leading to wave functions which are squeezed~quasiclassical
in our language!. We argue that even when the interaction
switched on the dynamics of these modes dominates the
lution of the system~at least during the first stages!, and that
this dynamics is described by classical field theory. The
gument does not apply to higher momentum modes which
largely in the quantum mechanical ground state. Howeve

FIG. 1. We compare the phaseuFku with the occupation numbe
for different times, in the whole range of interest in momentak.
Clearly, for large timest@1, the two coincide, as discussed in th
text. Note that, aftert.2, all long wavelength modes are esse
tially classical,uFku@1.
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quantum field theory, high momentum modes, althou
small, do not give negligible contribution to observables. A
tually, naively their contribution is divergent. Nevertheles
we argue that the main contribution of the small quant
mechanical high-momentum modes sits in the renormal
tion of the constants to be used in the classical theory.

It is possible to partially test this scheme in perturbati
theory. Already at this stage the problem of infinities a
renormalization arises@5#. In this section we will summarily
analyze this issue, relegating the details of the calculation
the Appendix C. As we will see, for the program to be co
sistent one has to allow for a renormalization of the speeV
of the inflaton at the bifurcation.

In the standard setting, infinities in observables oc
through the contribution of the infinite tower of momentu
states. Introducing a cutoff in the problem makes the res
finite, but cutoff dependent. It turns out, however, that
renormalizable theories, the only surviving effects of the c
off at scales much smaller than itself are the modification
the constants of the theory. This allows the process of re
malization in which we recover uniqueness of the theory
the expense of taking this constants from experiment.
will now reexamine this problem for our time-depende
situation. Several research groups have investigated
problem in the past in different contexts, see Refs.@3–5,35#.

All the physical content of the theory is contained in t
expectation values of products of the field operator at eq
or different space-time points~we use the Heisenberg pictur
and expectation values should be understood as taken in
vacuum att5t0):

^y~t1 ,x1! . . . y~tn ,xn!&. ~55!

By differentiating with respect tot one can obtain expecta
tion values of products ofy and p. If we were to compute
these quantities in the Gaussian~noninteracting! theory, we
would obtain, via Wick’s theorem, a sum over all pairings
a product of factors associated to each pair,

FIG. 2. The time for which a given modek can be treated as
classicaluFk(tcl)u[1 is above the line in this figure. It is clear tha
long wavelength modes with 0,k&1 become classical very early
at tcl.2, while there remains, at any given time, a high ene
spectrum of quantum modes, fork@1.
1-8
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G(0)~t,t8,x2x8![^y0~t,x!y0~t8,x8!&

5 E d3k

~2p!3
eik(x2x8) f k~t! f k* ~t8!,

~56!

wherey0 denotes the Gaussian field forl50. The Gaussian
two-point function is the Fourier transform ofS22(k,t,t8)
and is finite providedxÞx8 and/ortÞt8.

The correlation functions at different times~i.e. Wightman
functions! can be computed in perturbation theory by t
method described in Appendix C. Wightman functions a
complex and unlike Feynman Green functions~time-ordered
products! depend on the order of the operators. Accord
with our criterion for the Gaussian case, we will consid
Weyl-ordered~symmetrized! products to make the matchin
with the classical theory. If we now consider the symm
trized two-point function

^y~x,t!y~x8,t8!&W5 E d3k

~2p!3
eik(x2x8)Ĝ~k,t,t8!

~57!

we can compute it to first order inl. The result is

Ĝ~k,t,t8!5Re@ f k~t! f k* ~t8!#12~Nc12!l

3E
0

t

dsA~s! Im @ f k~t! f k* ~s!#

3Re@ f k~t8! f k* ~s!#12~Nc12!l

3E
0

t8
dsA~s! Im @ f k~t8! f k* ~s!#

3Re@ f k~t! f k* ~s!#, ~58!

whereNc denotes the number of components of the Hig
field. The quantityA(s) gives the contribution of the tadpol
subdiagram, i.e. the two-point function at equal times a
zero distance, and is given by

A~t![G(0)~t,t,0!5 E d3k

~2p!3
u f k~t!u25

1

2p2 E dk

k
P~k,t!,

~59!

where the power spectrum is defined asP(k,t)
5k3u f k(t)u2. This quantity is ultraviolet divergent. Th
structure of the divergence can be deduced by analyzing
largek behavior of the integrand. Using our previous expr
sions ~with z5k22t) and the asymptotic behavior of Air
functions@34# we get

u f k~t!u2.
1

2k F11
t

2k2 S 12
sin~2kt!

2kt D1O~t2!G , ~60!

P~k,t!5k3u f k~t!u2;
k2

2
1

t

4 S 12
sin~2kt!

2kt D1OS t2

k D .

~61!
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ThusA(t) has a time-independent quadratic divergence
a linear in time logarithmic divergence.

Before explaining how can one deal with the divergen
we comment that Eqs.~57!–~58! coincide precisely with the
calculation of the expectation values of the product of cl
sical random field to the same order in perturbation theo
Divergences are hence present in both the quantum and
classical theory. Details of this calculation are also shown
Appendix C.

We now address the problem of infinities that have o
curred at this level. In the standard quantum theory the p
cedure is well known. The calculation can be done us
some regulator to cut off the contributions of high momen
but this has to be accompanied by the addition of coun
terms in the interaction Hamiltonian. For the theory to
renormalizable these counter terms should have the sam
pression as those appearing in the Hamiltonian~free or inter-
acting! but with coefficients which are cutoff dependent a
proportional to some power ofl. This addition should get
rid of infinities. Note that in our case a counter term of t
form

2
Nc12

2
l@d1~L!1td2~L!#y0

2~x,t!, ~62!

with d1 andd2 appropriately chosen cutoff dependent fun
tions, is able to subtract the infinities encountered inA(t).
Regularising the integrals by introducing a cutoff in m
mentak,L we then get

A ren~t,m!5A reg~t,L!2d1~L,m!2t d2~L,m!. ~63!

To fix the arbitrariness introduced in the theory by t
counter term we must impose adequate renormalization c
ditions. As will be argued below, one convenient possibil
is to choose the counter term as

d1~L,m!1td2~L,m!5
1

2p2 E
m

L

dk k2@ u f k~t5m2!u2

1~t2m2!2F~t5m2!#, ~64!

wherem denotes the characteristic mass scale of the prob
which for a given timet is preciselyAt. We will call this
renormalization prescription, the fixed-time subtracti
scheme. Another possibility is a minimal subtraction sche
~not to be confused with the MS scheme of dimensio
regularization!

A ren~t,m!5A reg~t,L!2
1

8p2 S L21t log
L

m D . ~65!

which differs from the previous one by finite terms of th
form a1bt. Actually, the renormalized quantity is obtaine
only after taking the limitL→` in the subtracted quantity
but in practice takingL sufficiently large is a good approxi
mation.

The fact that the structure of the counter terms~or of the
divergence! has the same form as the terms already pres
in the Hamiltonian, shows that our calculation is consist
1-9
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at least to this order. The infinities are re-absorbed in
values of the constants of the theory. Here, in addition to
ordinary time-independent subtraction we have a cou
term linear int, which can be interpreted as a renormaliz
tion of x2xc , i.e. of the inflaton velocityV. A different
choice of scheme is compensated by a finite renormaliza
of the parameters of our model.

Now we look back at the problem of approximating t
result by a classical random field. Since the regularized re
to this order is the same~for symmetric expectation values! a
similar subtraction procedure is necessary. There is certa
no problem to do so in perturbation theory. However,
practice what we want to do is to be able to match the ren
malized quantum result by modifying the initial spectrum
the classical field to be used as starting point for the class
evolution. Notice that whent5t i5m2 the value ofA ren

obtained with the fixed-time subtraction scheme, Eq.~64!, is
exactly reproduced by truncating the initial spectrum atm
5At i . This is a very natural choice from the point of view
the classical approximation. As can be seen from Figs. 1
2, for large enought the separation between quantum a
classical modes sits indeed atk.At. At a given time modes
with momenta belowAt have been amplified while thos
aboveAt remain in the vacuum. The amplification procee
until some time tsb, when ^f2(tsb)& gets close to the
vacuum expectation valuev2 and the field starts oscillating
around the true vacuum. The dynamics of symmetry bre
ing is hence expected to be governed by the low momen
modes withk2,tsb whose evolution can be described in t
classical approximation~as we will see below for a large
range of parameters,tsb varies only within the valuestsb
5562). The classical theory can then be seen, in a w
analogous to what happens at high temperature@35,36#, as an
effective theory where momenta abovek* 5Atsb have been
integrated out. As far as modes abovek* are not highly
populated by rescattering and back reaction this effec
theory is expected to be valid and can be studied within
classical approximation.

In summary, our proposal is to fix our classical field
matching its correlation functions with the renormalized p
turbative expression at a timet i5m2 such that a sufficiently
large number of momentum modes have become clas
but well before non linearities have set in. The initial spe
trum of the classical field will be cutoff atk5k* 5At i . This
eliminates the UV infinities of the classical theory. If w
compare now with the calculation at one loop, we realize t
the parameters entering the classical theory are the renor
ized parameters in the fixed-time subtraction scheme~64!. As
we will see in what follows and in Sec. VI B our results a
fairly insensitive to the specific choice oft i within a scaling
window belowtsb.

The validity of this approximation can be partially test
in perturbation theory. A first check is the form of the pow
spectrum~59!. We have plotted in Fig. 3 the power spect
P(k,t) divided byk2, for four values of the normalized tim
t52, 3, 4, 5. Clearly, the power spectra grow in time fas
than an exponential, at a very large rate in fact. We take
initial spectrum of the classical field at a given initial tim
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t i , the exact power spectrum cutoff atk5At i . As seen in
the figure this encompasses almost all the physically relev
low momentum modes fort i*2.

In Fig. 4 we compare, for several values
t i , A ren(t,m 5 At i) in the fixed-time scheme with
A clas(t,t i), obtained from cutting off the power spectrum
P(k,t i) in Fig. 3, at k5At i . @37# For t i52 the maximal
difference between them amounts to 2%, rapidly decreas
as we increaset i . A direct comparison between the values
A ren andA clas for t i52 is also shown. The goodness of th
approximation performed by truncating the spectrum
clearly evident. We also study the dependence ofA ren on the
value of t i used for the fixed-time renormalization schem
We plot the difference betweenA ren defined att i52 and
t i53. As it should, it is of the forma1bt and it remains
very small in all the range of times we are interested in.

It is easy to estimate the timetsb when symmetry break-
ing is expected and the amplification of modes ceases to
place. We can estimate the time of symmetry breakingtsb by
equating

^ufu2~tsb!&[M2NcA ren~tsb,m5At i !5v2[Ncv0
2 .

~66!

We have just described how fort i*2 a very good approxi-
mation for A ren, in the fixed-time subtraction scheme,
obtained by just truncating the power spectrum atm25t i .
We can thus approximate the above expression for
vacuum expectation value~vev! by

^ufu2&[
M2Nc

2p2 E
0

At i
dk k3u f ku25v2 ~67!

which can be rewritten as

FIG. 3. The power spectrum of the Higgs quantum fluctuatio
P(k,t)/k2[k u f k(t)u2, at different times in the evolution. The do
ted vertical lines indicate the value of the cutoff, atk5At, where
the classical spectrum is truncated. Also shown is the excel
approximation~69! in the region of long wave modes.
1-10
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FIG. 4. Top: Comparison be-
tweenA ren(t,m 5 At i), Eqs.~63!
and ~64!, andA clas(t,t i), the ap-
proximation obtained by truncat
ing the spectrum atm5At i . Bot-
tom left: Relative error induced by
truncating the spectrum atm
5At i , as a function oft i . Right:
Difference between two choice
of the initial timet i for the fixed-
time renormalization scheme, Eq
~63! and ~64!.
p~tsb!. EAt i dk
P~k,tsb!5

2p2

[
2p2

.

,
um
el

t
in

p~tsb!5
2p2

. E dk
Papp~k,tsb!5

A~tsb!
.

its

e of

e
in
0 k lNc~2V!2/3 l0~2V!2/3

~68!

This can be computed exactly using Eq.~43!but to give an
analytic estimate of its dependence on the parameters
will use an approximation to the classical power spectr
~59!. In the region of quasiclassical modes it is very w
described by

Papp~k,t!5A~t!k2e2B(t)k2
, ~69!

A~t!5A0Bi2~t!, B~t!52At22, ~70!

which can be obtained fromu f ku2. uC1(k)u2uBiu2(z), where

kuC1~k!u2.
p2~1/3!2/3

2G2~1/3!
@112k21O~k4!!.A0e2k2

~71!

expS 4

3
z3/2D5 expS 4

3
t3/222Atk21O~k4! D . ~72!

We have plottedPapp(k,t) together with the exact spectrum
in Fig. 3. We can see that it is an excellent approximation
the classical power spectrum, in the region of interest. Us
Papp(k,t) to estimate Eq.~68! gives the condition
10350
we

l

o
g

l0~2V!2/3 k 2B~tsb!

~73!

We have evaluated this functionp(tsb) numerically and
found an excellent fit to it, in the ranget>1, as, forNc
54,

ln p~tsb!523.51@81tsb
3.23#1/2, ~74!

which gives directly the time of symmetry breaking in un
of m21,

mtsb5~2V!21/3F S 3.51 ln
2p2

l0~2V!2/3D 2

28G 0.31

. ~75!

We can use this compact expression to estimate the tim
symmetry breaking for any couplingl and any inflaton ve-
locity V at the bifurcation. For example, forl050.11 and
V50.003, we findtsb54.6 andmtsb525.3, which agrees
very well with numerical~lattice! simulations performed for
those values of the parameters.

Note that, as mentioned before, the dependence oftsb
with the parametersl[l0 /Nc and V is very mild. In the
whole range of parameters,l0(2V)2/3P@1028, 1#, the nor-
malized time of symmetry breaking only varies within th
rangetsb5562. Some particular examples can be found
Table I.
1-11
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VI. NONLINEAR EVOLUTION OF THE CLASSICAL
SYSTEM

In the previous sections we have argued that the
stages of the quantum evolution of the system~when the
nonlinear self-coupling of the Higgs is negligible! drive the
system into a state with highly populated low momentu
modes. The evolution of this state can be accounted fo
the evolution of a classical~approximately Gaussian! random
field. This justifies the main assumption of this and rema
ing sections, namely that the subsequent nonlinear dyna
of the system is determined by the classical evolution of
field. This evolution is deterministic and the random char
ter appears in the initial values of the field at timet5t i .
These initial conditions are determined by the exact Gau
ian quantum evolution of the system studied in the previ
section. Thus the initial Higgs field is chosen Gaussian,
approximation which can be tested by probing the sensiti
of our results to the value oft i . As we will see this works
very well within the appropriate range of initial times. Som
statistical properties of this initial Gaussian random field c
be studied analytically. This is done in Sec. VI A. The
properties extend to times during which the evolution is
sentially linear and the field remains approximately Gau
ian. A full nonperturbative treatment of the dynamics c
only be done by numerical methods. We have actually c
ried this step by lattice simulations. This is described in S
VI B where a full account of the methodology and the chec
performed to show cutoff independence is described. Res
will be presented in the next section.

A. Peaks of the Higgs spatial distribution

The statistics of the Higgs spatial distribution can be
termined from the Gaussian fluctuations that are used
build it up. A detailed description can be found in Ref.@26#
for the case of the Gaussian density field responsible
galaxy formation. In fact, the spatial distribution and sub
quent dynamical behavior of the Higgs field at the init
stages of symmetry breaking turns out to be not that differ
from that of both the linear and nonlinear growth of t
cosmological density field~also built up from the Gaussia
random fields of cosmological perturbations!, except in the
dynamics of gravitational collapse of the latter.

The fact that the quantum fluctuations of the Higgs g
rise to a classical Gaussian random field allows us to st
the statistical properties of this field in terms of a sing
function, the two-point correlation function in Fourier spa

TABLE I. The time scales of symmetry breaking and the on
of the nonlinear stage for different model parameters. The coup
depends on the number of components of the Higgs field asl0

5Ncl.

V l0 tnl mtnl tsb mtsb

0.003 0.11 2.78 15.3 4.6 25.3
0.003 0.01 3.76 20.7 5.2 28.5
0.0003 0.001 4.01 47.5 6.0 71.3
0.00002 0.0001 4.82 141. 6.8 200.0
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~i.e. the power spectrum!, whose approximate expression ca
be found in Eq.~69!. This quantity allows the computation o
several related quantities that characterize a Gaussian
dom field, e.g. the spatial correlation function, the density
peaks above a certain threshold, the shape of the hig
peaks, etc.

The first quantity that we can compute is the spatial c
relation function, defined as the two-point correlation fun
tion between two points separated by a distancer,

j~r ,t![^f~r ,t!f~0,t!&5
M2 Nc

2p2 E
0

` dk

k
Papp~k,t!

sinkr

kr

.
M2Nc

2p2

A~t!

r E
0

`

dk e2B(t)k2
sinkr

5
M2Nc

2p2

A~t!Ap

r2B1/2~t!
expS 2

r 2

4B~t! DerfiS r

2B1/2~t!
D ,

~76!

where erfi(x) is the imaginary error function@34#. This cor-
relation function determines the average size of the lum
j0,

j0~t!.2B1/2~t!.2A2At22, ~77!

as a function of normalized timet. Note that the time de-
pendence of the correlation length is different than for
quench symmetry breaking. While in the latter case, the c
relation length grows likej0;2At, in our case, it grows like
j0;2A2 t1/4 for ‘‘large’’ t ~still in the linear regime!. This
introduces some slight differences in the behavior of the fi
at symmetry breaking.

We can then compute from Eq.~76! the time-dependen
dispersion

s~t![j1/2~0,t!5f rms~t!5
MANc

A2 p
p1/2~t!, ~78!

which is nothing but the root mean square value of the Hig
field.

Another quantity which is very useful to characterize t
field distribution is the number density of peaks of the fie
above a certain thresholdfc , see Refs.@26,38#

npeak~t!5
1

4p2 S 2j9~0,t!

j~0,t! D 3/2

~n221! exp~2n2/2!,

~79!

2j9~0,t!

j~0,t!
5

^k2&
3

5

E ~dk/k!P~k,t!k2

3E ~dk/k!P~k,t!

, ~80!

wheren5fc /s(t).1. In our case, the number density
high peaks is given by

t
g
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npeak~t!5
2

3A3p2

1

j0
3~t!

~n221! exp~2n2/2! ~81!

n~t!5
fc

v

A2 p

~2V!1/3Al0

p21/2~t!. ~82!

We have evaluated this function for the parametersl
50.11/4 andV50.003 at various times and compared w
our lattice simulations @for different volumes V
5(2p/pmin)

3 and lattice spacingsa]. The results are very
encouraging. If we multiply this density of peaks by the a
tual volume of the simulations, we find indeed just a fe
peaks above e.g.fc50.02v, at the time of symmetry break
ing.

In fact, we can compute not only the probability per u
volume to find a peak in the distribution of the Higgs fiel
but also their radial profile@26#,

r~r ,t!5
MANc

A2 p
E

0

` dk

k
Preg

1/2~k,t!
sinkr

kr

.
MANcA

1/2~t!

A2pr
E

0

` dk

k
e2[B(t)/2]k2

sinkr

5
MANcA

1/2~t!

2A2r
erfS r

A2B~t!
D , ~83!

where erf(x) is the error function@34#. We have plotted this
profile function in terms of the radial coordinate, togeth
with the lattice results in Fig. 5, forl50.11/4 andV
50.003, at timet52.54, corresponding tomt514, well be-
fore symmetry breaking, which occurs atmtsb.26.

FIG. 5. The radial profile of the Higgs peak forl50.11/4 and
V50.003, at timet52.54, corresponding tomt514, obtained with
our lattice simulation~with error bars, from averaging over sever
realizations!, and compared with the analytical result~83!. We have
also included the rms Higgs value~78! at that time. Note that we are
still in the linear regime, where Eq.~83! gives a very good approxi
mation. The higher tail corresponds to an averaging out of sev
lower peaks.
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B. Lattice simulations

The previous analysis falls short of addressing the m
important aspects of symmetry breaking after hybrid infl
tion since the main effect is nonperturbative, see Ref.@14#.
As discussed we will incorporate these effects by perform
classical real-time numerical simulations in the lattice. G
nerically this classical approximation would fail to reprodu
the relevant physics but we have just argued that this is
deed the correct approximation for the infrared modes of
Higgs at the time of symmetry breaking.

The usual procedure@39,40# is to take as initial conditions
for the lattice simulations Gaussian random fields given
the distribution~34! with vacuum initial amplitudes corre
sponding to Eqs.~17! and~18!. We would like to stress here
that the correct description of the quantum linear system
terms of a Gaussian random field requires the use of
independent Gaussian variables, as indicated in Eq.~34!.
One of them,y in Eq. ~34!, describes field fluctuations with

dispersionu f ku2 and a random phase. The other,p̄, with dis-
persion @4 u f k(t)u2#21 and a random phase, allows us
define the conjugate momentum through, see Appendix

p5 p̄1
Fk~t!

u f k~t!u2
y. ~84!

Notice that this prescription is valid in order to give initia
conditions atany time during the evolution before nonlin
earities set in. In particular, as described in Sec. V, we p
pose to take as starting point for the lattice simulations
above Gaussian ensemble at a fixed time sufficiently
vanced to guarantee that a large fraction of modes have
come classical, but well before the time when non linearit
become relevant, in a similar spirit as that in Ref.@7#. This
has the advantage of allowing a clear separation betw
infrared~classical! modes which evolve classically and ultra
violet ~quantum! modes that will be absorbed in the reno
malization of the constants of the theory. From the previo
analysis, see Fig. 2 and the discussion after Eq.~75!, a good
choice for the matching time in a wide range of model p
rameters seems to bet i.2. See the discussion in the ne
section about the onset of the nonlinear regime.

Therefore we propose the following as initial conditio
in our lattice simulations. At a fixed timet i previous to sym-
metry breaking:

~a! Put to zero all the modes that have not become c
sical att i . This includes all the modes of the inflaton but th
homogeneous zero mode, and all large momentum mode
the Higgs withk.At i @replacing the hard cutoff atAt i by
the approximate power spectrum in Eq.~69!, which strongly
dumps ultraviolet modes, does not significantly change
results even at a quantitative level#.

~b! Set the homogeneous zero mode of the inflaton
x/xc512Vmti with conjugate momentumẋ/xc52Vm.

~c! For the Higgs fluctuations, each Fourier compone
with momentumuku<At i , has an amplitudeufku randomly
generated according to the Rayleigh distribution:

al
1-13
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FIG. 6. The time evolution of
^ufu&, ^x& and energies~normal-
ized to the initial one! for l
50.11/4 andV50.003, obtained
with our lattice simulation. Left:
for different choices ofmti , the
time for matching the quantum
evolution to the classical lattice
simulations. Right: for different
values of the lattice spacingma
50.98, 1.31, 1.96.
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P~ ufku!dufkuduk5expS 2
ufku2

sk
2 D dufku2

sk
2

duk

2p
, ~85!

with dispersion given bysk
25u f ku25k23P(k,t i), and a uni-

form random phaseukP@0,2p#. The conjugate momentum
gk5 ifk8 is uniquely determined oncefk is known, through
the relation

fk85
Fk~t i !

u f k~t i !u2 fk , ~86!

with f k(t i) andFk(t i) given by Eqs.~43! and ~26!, respec-
tively, att5t i . This corresponds to the classical limit of E
~84!, an approximation that is well justified fort i*2, see
Appendix B.

~d! Take the masses and couplings used in the simula
as the physical renormalized ones in the fixed-time subt
tion prescription.

As long as the time chosen for initialisation is sufficien
advanced that a large fraction of modes have become cl
cal, we hope that most of the physics responsible for sy
metry breaking will be included in the simulations. How a
vanced it has to be in a concrete realization can be teste
studying in which range the time evolution is insensitive
the choice oft i . This provides also a check of the validity o
our approach. The result of such a test is presented in Fi
We compare the time evolution of^ufu&, ^x& and the aver-
age kinetic, gradient and potential energies obtained fr
setting the initial conditions atmti510, 12, 14 (t i
51.81, 2.18, 2.54) forl50.11/4 andV50.003. The agree
ment is excellent, corroborating our estimate that fort i.2
all the basic relevant modes driving symmetry breaking h
10350
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already become classical and thereafter the evolution is
described by our lattice classical simulations.

All the lattice results presented in this paper have be
obtained for a SU~2! Higgs doublet coupled to the inflato
with coupling g252l50.22/4, and inflaton velocityV
50.003. Due to the finite volume, the momentumk is dis-
cretised in units of a minimal momentum given bypmin

52p/L, with L5Na, where N is the number of lattice
points, anda the lattice spacing. Our simulations have be
performed in lattices of sizes 323, 483, and 643 with physical
volumes determined bypmin50.1m, 0.075m and 0.05m and
lattice spacings varying fromma.1 to ma.2. The choice
of lattice volumes and lattice spacings has been perform
such as to avoid lattice spacing and finite volume dep
dence of the lattice results. Notice that the minimal mom
tum has to be small enough that a sufficiently large num
of classical momenta withk&1 is taken into account. We
have found that forpmin<0.1m this is indeed the case and n
significant volume dependence is observed.

A further essential test of our approach is that it succe
in taming ultraviolet divergences. On the lattice there is
maximal momentum determined by the lattice cutoff throu
pmax52p/a. Naturally, re-scattering and back reaction w
populate the high momentum modes at and after symm
breaking. This is certainly a physical effect but if the latti
cutoff is not chosen large enough population of the h
momentum modes is artificially induced by cutoff effec
The lattice cutoff should then be chosen such as to avoid
this takes place before the relevant dynamics of symm
breaking. A reasonable value for our choice of parameter
ma,2, as can be seen from Fig. 6, where we compare
time evolution of̂ ufu&, ^x& and average energies for sever
1-14
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values of the lattice cutoffma50.98, 1.31, 1.96. No signifi-
cant lattice spacing dependence is observed here, whi
becomes clearly appreciable forma.3. Details of the simu-
lations and further results will be presented elsewhere. Th
lattice simulations will allow us to test the next stage, t
nonlinear approach to symmetry breaking.

VII. RESULTS OF THE NONLINEAR ANALYSIS
AND ‘‘BUBBLE’’ FORMATION

In the previous sections we have developed a formal
to describe the linear growth of the Higgs quantum fluct
tions and their conversion into a classical Gaussian rand
field. As we have argued, in the linear regime there is o
the homogeneous mode of the inflaton,^x/xc&512Vm(t
2tc), which induces a negative mass squared~5! for the
Higgs, and thus its spinodal instability towards the tr
vacuum. The quick growth of the quantum fluctuations g
erates a Gaussian random field with correlation funct
~76!, and a rms field value, see Eq.~78!,

f~t![
f rms

v
5

~2V!1/3AlNc

A2p
p1/2~t!, ~87!

wherep(t) is given by Eq.~68!. Eventually, the mean field
f will become large and will approach the VEV of its po
tential, thus breaking the symmetry. Before that happens
coupling to the inflaton will induce a back reaction on t
homogeneous mode of the inflaton,x, which will start to
deviate from the linear regime described above. At this st
the nonperturbative evolution can be studied by numeric
solving the coupled classical equations of motion for
inflaton and Higgs:

f̈a~x,t !2¹2fa~x,t !1@ ufu2~x,t !1x2~x,t !21#fa~x,t !50
~88!

ẍ~x,t !2¹2x~x,t !1
g2

l
ufu2~x,t !x~x,t !50 ~89!

with Gaussian initial conditions as described in the previo
sections. In this section we will present the results of o
numerical simulations and give an approximate analytic
derstanding of how symmetry breaking takes place.

Although the initial conditions are random, as a result
the nonlinear dynamics many of thequalitative features of
the evolution are fairly universal, althoughquantitativelydif-
ferent configurations differ by small shifts in the origin
times as well as spatially random positions for the cente
the peaks. Therefore we prefer to illustrate our analytic f
mulas by comparing with the results of atypical lattice con-
figuration, e.g. the one displayed in Figs. 6–8.

Symmetry breaking in our model is not at all a homog
neous process. Already in the linear regime, the Higgs fi
evolves by developing lumps in space that grow with tim
see Eq.~83! and Fig. 5. The classical evolution of the Higg
lumps, once nonlinearities become relevant, can be follow
in Figs. 7 and 8 where we show some snapshots of
growth of the Higgs’ peaks from the first stages of the e
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lution, mt523, untill mt540 above which full symmetry
breaking takes place and the mean Higgs field approac
the VEV. As can be seen from the figures, the peak of
largest Higgs’ lump is the first to break the symmetry, i.e.
reachufu5v, and soon after the center of the lump invag
nates, creating an approximately spherically symme
bubble, with ‘‘ridges’’ that remain aboveufu5v. Finally,
neighboring bubbles collide and the symmetry gets fully b
ken through the generation of higher momentum modes
Fig. 9 we show the behavior ofuf(x,t)u at the center of the
highest Higgs lump. It oscillates aroundufu5v with an am-
plitude that is dumped in time. Oscillations remain coher
giving rise to concentric bubbles, until the time when bubb
collisions break the symmetry.

It is possible to get an analytic understanding on how t
nonlinear process takes place before bubbles start to col
For the problem we are considering, we can rewrite the co
ponents of the Higgs field asfa[f n̂a ~we will use from
now on the symbolf to denote the modulus of the Higgs!

while V5n̂•sP SU~2! is an element of the gauge grou
with s5(1, i tW ) with ta the Pauli matrices. With this the
equations of motion for the coupled inflaton Higgs field c
be rewritten as

f̈~x,t !2¹2f~x,t !1~f21x221!f2u]mn̂u2f50
~90!

]m~f2]mn̂!52n̂ f2u]mn̂u2, ~91!

ẍ~x,t !2¹2x~x,t !1
g2

l
f2x50, ~92!

where dots and¹ denote derivatives with respect tomt and
mx respectively, and the homogeneous modes have been
malized to their VEV’s,f/v→f andx/xc→x.

We can take advantage of the fact that, forg252l, a
solution to the set of coupled equations of motion is given
f(x,t)512x(x,t) @14,28# and ]m(f2]mn̂)50. Numerical
results corroborate that this is very approximately the so
tion soon after nonlinearities set in. In Fig. 9 we show, f
our model with parametersV50.003 andl50.11/4,f ver-
sus 12x at the location of the highest Higgs lump. Compa
ing with Fig. 9 we can follow how the Higgs and inflato
evolve colinearly during all the time of coherent oscillatio
of the peak. In Fig. 10 we show the distribution of fie
values as a function of time, in the time interval betwe
mt512 andmt560, where most of the action takes plac
During most of the nonlinear initial stage, through symme
breaking and until bubbles collide we have:f(x,t)51
2x(x,t), ;x.

During the time that inflaton and Higgs evolve colinear
the system can be seen as that of a single field with a m
fied potentialV̄(f), with the minimum atf51,

S5
3

2 E d3xdtF1

2
~]mf!22V̄~f!G ,
1-15
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FIG. 7. Snapshots of the
growth of the Higgs peak in a full
nonlinear lattice simulation forl
50.11/4 andV50.003. Plotted is
the value of the Higgs amplitude
f in the plane (x, y), where thez
coordinate is that of the highes
peak. Note that several peaks a
pear in the simulation. Here we
show the first stages of the evolu
tion, where the highest peak in
vaginates and forms what we ca
the ‘‘bubble.’’
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V̄~f!5
1

6
~124f313f4!. ~93!

The equation of motion of the scalar fieldf becomes a non
linear partial differential equation

f̈~x,t !2¹2f~x,t !22f2~x,t !12f3~x,t !50. ~94!

If the gradient terms are much smaller than the nonlin
ones, we can as a first approximation neglect them leadin

f̈~ t !22f2~12f!50, ~95!

which leads to a conserved energyE5E01 1
6 with

E0[
1

2 F ḟ2~ t !2f3S 4

3
2f D G . ~96!

A solution with E050, a very good approximation takin
into account that initially both the field and its derivative a
very small, is given by

f~ t !512x~ t !5
12

914@mt2mtmax#
2

, ~97!
10350
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with tmax the time at which the field reaches its maximu
value:f(tmax)5 4

3 . This time can be rewritten in terms of th
value of the field at any other timetnl through

mtmax5mtnl1A 3

f0
2

9

4
. ~98!

In particular, at every pointx, we can takef0 as the ‘‘initial’’
value of the Higgs field. This is given by the profile of th
lump in the linear approximation, Eq.~83!, at a timetnl at
which the evolution becomes nonlinear and we can no lon
ignore its higher order interactions. In Fig. 11 we show ag
the nonlinear growth of the Higgs field at the top of th
largest peak in the simulation, and compare it with the a
lytical solution ~97!. The agreement is very good during th
first oscillation although Eq.~97! cannot reproduce the sub
sequent ones. At these stage we can already understand
the spherical bubbles arise. Take the spherically symme
peak profile~83! at the nonlinear timetnl and let each pointx
evolve like Eq.~97!. Points with higher value off0(tnl) will
reach first the maximum value (fmax5

4
3 ) and then decrease

This generates a spherical wave that propagates from
center of the lump to infinity. The production of bubble
associated with symmetry breaking were first described
Ref. @14# for the modellf3, which is analogous to ou
1-16
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FIG. 8. Same as in Fig. 7
Here we show the late stages,
which gradients arise from colli-
sions of bubbles and the symme
try is broken, i.e.f.1.

FIG. 9. Left: the time evolution of the modulus of the Higgs, at the location of the highest Higgs peak. Plotted is the Higgs moduf/v
as a function of time. Note the effect of bubble collisions on the Higgs oscillations aftermt540. Right: collinear evolution of the inflaton
and the Higgs at the location of the highest Higgs peak. Note that the inflaton and Higgs satisfyf512x to very good accuracy, until rathe
late, when bubbles start to collide.
103501-17
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FIG. 10. The histogram of
field values for the Higgs modulus
f and the co-inflaton 12x. Note
that soon after the initial condition
and the subsequent nonlinear ev
lution, the two coincide very pre-
cisely. Note that a few oscillations
can be observed during symmetr
breaking, i.e. during timesmt
522–30.
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reduced model. The subsequent evolution is of course di
ent, due to the presence of the inflaton field.

We can evaluate the nonlinear time,tnl , by equating

x~tnl!512
1

2
~2V!2/3tnl512f~tnl!.

Using Eqs.~87! and~74!, we can find the nonlinear timetnl
as the solution of the transcendental equation

t5F S 3.512 ln
p~2V!1/3t

A2lNc
D 2

28G 0.31

. ~99!

FIG. 11. The time evolution of the Higgs peak (r 50) and the
Higgs rms value, obtained with our lattice simulations, as compa
with the analytical result~97!, and the numerical solution of Eq
~100!, which includes the gradient terms. Also shown is the co
parison between the Higgs and the inflaton evolution, i.e.f(t) and
12x(t).
10350
r-For the values of parameters chosen,l50.11/4 andV
50.003, we findmtnl515.3 andf050.1. That is, soon after
the Higgs field becomes nonlinear, it ceases to grow ex
nentially like Eq. ~87!, and starts to grow like Eq.~97!,
which has a peak atmts.23&mtsb.26, see Fig. 11. This
corresponds to a time slightlyearlier that the time of sym-
metry breaking. This is of course natural since, as we h
described, the Higgs field has an inhomogeneous spatial
tribution. The mean field~coarse-grained over a horizon
sized volume! is much lower than a typical peak of the field
The top of the peak follows very approximately the hom
geneous equation~95!, with solution ~97!. High peaks will
reach the symmetry breaking VEV much earlier than
mean field, and will oscillate around the VEV with a muc
larger amplitude that the average~coarse-grained! field.

Obviously, the phenomenological damping of oscillatio
that we have described has to arise from the gradient te
which we have neglected. Hence we will improve our a
proximation by keeping these terms, but assuming spher
symmetry@f(x,t)→f(r ,t)# around the center of the lum
(r 50). Our lattice data support the approximate validity
this assumption. This will allow us to track the time evol
tion of the lump profile as it develops into bubbles. T
two-dimensional partial differential equation forf(r ,t) be-
comes

f̈~r ,t !2f9~r ,t !2
2

r
f8~r ,t !22f2~r ,t !12f3~r ,t !50.

~100!

We have solved this equation numerically. The initial con
tion was fixed at a timemtnl when the profile matches ex
pression~83!. In order to compare with the nonlinear lattic
simulations, we added by hand a tail a long distances
match the lattice initial conditions, see Fig. 5. To fix a uniq
solution, one has also to fixḟ(r ,tnl). Choosing this deriva-
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tive equal to zero we have obtained the shapef(r ,t) for all
times in the region of interest. In Fig. 12 we present
result of the comparison of these results with those obtai
from the full 4D lattice real-time equations of motion. Th
general shape is quite properly reproduced. Furthermore
oscillations of the peak height are also recovered, see Fig

As a last remark, note that the bubbles that appear h
arenot vacuum bubbles like those produced in a first ord
phase transition, since the interior of them isnot in the true
vacuum. Furthermore, we note also that the ridges of
bubbles are moving very fast and presumably subseq
collisions between bubbles formed at different space-t
points are highly relativistic, and may be responsible fo
large density of gravitational waves, which could be seen
Laser Interferometer Space Antenna~LISA!.

For a typical lattice configuration one can follow the ev
lution of the Higgs from the formation of the first bubbles
the breaking of the symmetry with the.gif file that can
found in the web page: http://lattice.ft.uam.es/SymB
2dHiggs.gif

VIII. CONCLUSIONS

In this paper we have studied the evolution of a hyb
inflation model from the quantum false vacuum state at
end of inflation to the broken symmetry true vacuum state
full description of this dynamics amounts to a nonpertur
tive, nonlinear, real-time evolution of the quantum syste
which looksa priori like a formidable task. The size of non
linear effects is given bylf2, wherel is the coupling con-
stant andf2 the square of the typical value of the Higg
field. Since initiallyf2 and l are small, it is reasonable t
assume that perturbation theory is a good approximation
the dynamics is well approximated by the Gaussian Ham
tonian. However, the quantum evolution of this Gauss

FIG. 12. The time evolution of the Higgs radial profile arou
the highest peak, obtained with our lattice simulation~points!, as
compared with the numerical solution of the partial different
equation ~lines!. It is surprising how well the formation of the
bubble is reproduced with the simple assumption of homogen
around the peak of the bubble. Of course, the peak solution doe
take into account the presence of secondary bubbles, that appe
the lattice simulation atr;30.
10350
e
d

he
1.
re
r

e
nt
e
a
n

/

e
A
-
,

nd
l-
n

system, which can be treated exactly, is far from trivial. T
complexity results from the negative time-dependent ma
square of low-momentum Higgs modes induced by the c
pling to the inflaton. This tachyonic dynamics generate
faster than exponential tachyonic growth of low-lying m
mentum modes of the Higgs, giving rise to regions whe
lf2 is non-negligible and where nonlinearities set in. In th
paper we have shown that the dynamics of the tachyo
modes is well described by that of a classical Gaussian
dom field, a result that holds even after including perturb
tive corrections in the coupling, which are still accessible
exact computation. At this stage important considerations
in through the appearance of ultraviolet divergences. Hi
momentum modes cannot be neglected but their effect ca
absorbed in the value of the couplings of the theory. Here
addition to the usual standard time-independent renorma
tion, a renormalization of the initial velocity of the inflato
field is required to get rid of the time-dependent infiniti
generated at first order in the couplingl.

The previous analysis justifies the next stage of the st
carried out in this paper, namely the classical nonlinear e
lution of the resulting classical field. This problem can
addressed numerically by formulating the problem on a s
tial lattice and evolving the system according to the class
real-time evolution equations. The initial conditions on t
classical field are determined by the previously compu
~non-self-interacting! quantum Higgs evolution. Our result
are independent of all cutoffs introduced by this numeri
procedure: the initial time of the simulation, the lattic
spacing and the finite lattice volume. This, of course, p
vided they are taken in the appropriate ranges.

The resulting nonlinear evolution which drives the syste
towards symmetry breaking is fairly nontrivial. The inhom
geneous Higgs field distribution has lumps in space wh
height grows with time during the approximately linear ev
lution phase. This growth continues, although at a slow
pace, when the nonlinear terms become relevant. The be
ior changes again as the highest lumps reach the magn
of the Higgs vacuum expectation value. Then the lum
evolve into approximately spherically symmetric bubbl
which expand at a very high speed. It is important not
confuse these bubbles with those appearing in a first o
phase transition which separate two different phases.
bubbles are rather like spherical shock waves as those
pearing in Ref.@14#. These stages of the nonlinear evolutio
can be qualitatively and quantitatively understood anal
cally. The last phase of evolution arises as neighbor
bubbles collide and generate higher momentum modes.
phase is harder to tackle analytically but its early stages
least, seems relatively safe for our lattice numerical pro
dure.

In the early stages of evolution our results resemble th
obtained for a one component Higgs model in Ref.@16#, as
expected from the decoupling of the different components
the Higgs field in the linear regime. At later times, howev
the comparison is difficult due to the different nature of t
defects in both theories.

The authors are presently studying how the previou
described processes might be influenced by the couplin
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GARCÍA-BELLIDO, GARCÍA PÉREZ, AND GONZÁLEZ-ARROYO PHYSICAL REVIEW D67, 103501 ~2003!
gauge fields, and its application to the study of physical p
nomena such as baryogenesis. We anticipate that there
essential obstruction for incorporating gauge fields, altho
the formalism complicates considerably. Furthermore,
numerical evolution including gauge fields does not cha
substantially the gross features of the picture described h
All this will be the subject of a future publication.
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APPENDIX A: THE FORMALISM OF SQUEEZED STATES

In this appendix we will summarize the concept
squeezed states so often used in quantum optics, and rec
applied to the study of quantum fluctuations from inflati
@18–20#.

The canonical harmonic oscillator system~11! is de-
scribed by two complex functions (f k , gk), plus a Wronsk-
ian constraint~19!, and thus we can describe the system
terms of three real functions in the standard parametriza
for squeezed states,

uk~t!5
1

A2k
@k fk~t!1gk~t!#5e2 iuk(t) coshr k~t!,

~A1!

vk~t!5
1

A2k
@k fk* ~t!2gk* ~t!#5eiuk(t)12ifk(t) sinhr k~t!,

~A2!

wherer k is the squeezing parameter,fk the squeezing angle
anduk the phase.

We can also write its relation to the usual Bogoliub
coefficients,$ak , bk%,

uk5ake
2 ikt, vk* 5bke

ikt, ~A3!

which is useful for the adiabatic expansion, and allows o
to write the average number of particles and other quantit

nk5ubku25uvku25
1

2k
ugku21

k

2
u f ku22

1

2
5 sinh2 r k ,

~A4!

sk52Re~ak* bke
2ikt!52Re ~uk* vk* !

5 cos 2fk sinh 2r k , ~A5!
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tk52 Im ~ak* bke
2ikt!52 Im ~uk* vk* !

52sin 2fk sinh 2r k . ~A6!

We can invert these expressions to give (r k , uk , fk) as a
function of uk andvk ,

sinhr k5ARevk
21Im vk

2, coshr k5AReuk
21Im uk

2,
~A7!

tanuk52
Im uk

Reuk
, tan~uk12fk!5

Im vk

Revk
, ~A8!

tan 2fk5
Im vkReuk1Im ukRevk

RevkReuk2Im ukIm vk
. ~A9!

Let us now use the squeezing formalism to describe
evolution of the wave function. The equations of motion f
the squeezing parameters follow from those of the field a
momentum modes,

r k85
w8

w
cos 2fk , ~A10!

fk852k2
w8

w
coth2r k sin 2fk , ~A11!

uk85k1
w8

w
tanh 2r k sin 2fk , ~A12!

where we have replaced the time-dependent mass~5!with the
function w, with

w95tw,→w~t!5Bi~t!1A3Ai~t!, ~A13!

with Ai and Bi the two independent Airy functions@34#,
satisfyingw8(0)50.

As we can see in Fig. 13, the evolution is driven towar
large r k@1. Thus, in that limit,

FIG. 13. The squeezing parameter at different times in the qu
tum evolution, as a function of wave numberk. Note that at sym-
metry breakingtsb.5, the squeezing parameter is of orderr k

;10 for long wavelength modes.
1-20
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~uk1fk!852
w8

w

sin 2fk

sinh 2r k
→0,

and thereforeuk1fk→const. We can always choose th
constant to be zero, so that the real and imaginary com
nents of the field and momentum modes become

f k15
1

A2k
er k cosfk , f k25

1

A2k
e2r k sinfk , ~A14!

gk15Ak

2
e2r k cosfk , gk25Ak

2
er k sinfk .

~A15!

It is clear that, in the limit of large squeezing (r k→`), the
field mode f k becomes purely real, while the momentu
modegk becomes pure imaginary. This means that the fi
and momentum operators~20! become, in that limit,

ŷ~k,t!→A2k fk1~t!ŷ~k,t0!

p̂~k,t!→A2k gk2~t!ŷ~k,t0!
J

⇒ p̂~k,t!→gk2~t!

f k1~t!
ŷ~k,t!.

~A16!

As a consequence of this squeezing, information about
initial momentump̂0 distribution is lost, and the positions~or
field amplitudes! at different times commute,

@ ŷ~k,t1!ŷ~k,t2!#→1

2
e22r k cos2 fk'0. ~A17!

The last result defines what is known as a quantum n
demolition ~QND! variable, which means that one can pe
form successive measurements of this variable with arbit
precision without modifying the wave function. Note thaty
5df is the amplitude of fluctuations of the Higgs field aft
inflation, so what we have found is: first, that the amplitu
is distributed as a classical Gaussian random field with pr
ability ~31!; and second that we can measure its amplitud
any time, and as much as we like, without modifying t
distribution function.

In a sense, this problem is similar to that of a free nonr
ativistic quantum particle, described initially by a minimu
wave packet, with initial expectation values^x&05x0 and
^p&05p0, which becomes broader by its unitary evolutio
and at late times (t@mx0 /p0) this Gaussian state becom
an exact WKB state,C(x)5VR

21/2exp(2Vx2/2), with
Im V@ReV ~i.e. high squeezing limit!. In that limit,

@ x̂, p̂#'0, and we have lost information about the initi
position x0 ~instead of the initial momentum like in ou
case!, x̂(t)→ p̂(t)t/m5p0t/m and p̂(t)5p0. Therefore, not
only @ p̂(t1), p̂(t2)#50, but also, at late times

@ x̂(t1), x̂(t2)#'0.
10350
o-

d

e

n-
-
ry

b-
at

l-

,

APPENDIX B: THE WIGNER FUNCTION

The Wigner function is the best candidate for a probab
ity density of a quantum mechanical system in phase-sp
@41#. Of course, we know from quantum mechanics that su
a probability distribution function cannot exist, but th
Wigner function is just a good approximation to that dist
bution. Furthermore, in the case of a Gaussian state,
function is positive definite, and can in fact play the role o
classical probability distribution for the quantum state.

Consider a quantum state described by a density matrir.
Then the Wigner function can be written as

W~yk
0 ,yk

0* ,pk
0 ,pk

0* !5 E E dx1 dx2

~2p!2 e2 i (p1x11p2x2)

3 K y2
x

2
,tUrUy1

x

2
,t L . ~B1!

If we substitute for the state our vacuum initial conditionr
5uC0&^C0u, with C0 given by the Gaussian wave functio
~30!, we can perform the integration explicitly to obtain

W0~yk
0 ,yk

0* ,pk
0 ,pk

0* !5
1

p2 expS 2
uyu2

u f ku2
24u f ku2

3Up2
Fk

u f ku2
yU2D

[F~y1 ,p1!F~y2 ,p2!,

F~y1 ,p1!5
1

p
expH 2S y1

2

u f ku2
14u f ku2p̄1

2D J ,

p̄1[p12
Fk

u f ku2
y1 . ~B2!

However, at timet5t0, we havey1
051/A2k5u f k(t0)u, p1

0

5Ak/25@2u f k(t0)u#21, andFk(t0)50, so thatp̄1
05p1

0, and
thereforeW0 describes a symmetric Gaussian in phase sp
with the same dispersion in bothy andp directions. The 2s
contours of this distribution satisfy

y1
2

u f ku2
14u f ku2p̄1

2<1→
y1

2

y1
02

1
p1

2

p1
02

<1, for t5t0 ,

~B3!

which is a circle in phase space. On the other hand, for t
t@t0, we have

u f ku→
1

A2k
er k ;yk

0er k, growing mode, ~B4!

1

2u f ku
→Ak

2
e2r k ;pk

0e2r k, decaying mode, ~B5!

so that the ellipse~B3! becomes highly ‘‘squeezed,’’ see Fig
14. Note that Liouville’s theorem implies that the volume
1-21
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phase space is conserved under Hamiltonian~unitary! evolu-
tion, so that the area within the ellipse should be conserv
and as a consequence there is no entropy production in
process. As the probability distribution compress
~squeezes! along thep direction, it expands along they di-
rection. At late times, the Wigner function is highly conce
trated around the region

p̄25S p2
Fk

u f ku2 yD 2

,
1

4u f ku2
;p0

2e22r k!1. ~B6!

We can thus take the above squeezing limit in the Wig
function ~B2! and write the exponential term as a Dirac de
function,

W0~y,p! →
r k→` 1

p2 expH 2
uyu2

u f ku2
J dS p2

Fk

u f ku2
yD . ~B7!

In this limit we have

p̂k~t!5
Fk

u f ku2
ŷk~t!→ gk2~t!

f k1~t!
ŷk~t!, ~B8!

so we recover the previous result~A16!. This explains why
we can treat the system as a classical Gaussian random
the amplitude of the fieldy is uncertain with probability dis-
tribution ~31!, but once a measurement ofy is performed, we
can automatically assign to it adefinitevalue of the momen-
tum, according to Eq.~A16!.

FIG. 14. The 2s contour of the Wigner function~B2! for the
mode k51, at times t50, 1, 2, 3. It is clear that, as time
progresses, the ellipse~B3! becomes more elongated~squeezed!,
without changing its area, while the main axis rotates counterclo
wise.
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Note that the conditionFk
2@1 is actually a condition be-

tween operators and their commutators/anticommutat
The Heisenberg uncertainty principle states that

DCADCB>
1

2
u^Cu@A, B#uC&u,

for any two Hermitian operators~observables! in the Hilbert
space of the wave functionC. In our case, and in Fourie
space, this corresponds to

DCy2~k!DCp2~k!5Fk
2~t!1

1

4

>
1

4
u^Cu@yk~t!, pk

†~t!#uC&u2, ~B9!

with uC&5u0,t0& the vacuum wave function. On the othe
hand,Fk can be written as

Fk5
1

2
^Cu p̂~k,t!ŷ†~k,t!1 ŷ~k,t!p̂†~k,t!uC&

52
i

2
~gkf k* 2 f kgk* !5 Im ~ f k* gk!, ~B10!

where we have used Eq.~20!and a(k,t0)uC&50, ;k. The
above relation just indicates that, for any stateC, the con-
dition of classicality (Fk@1) is satisfied whenever, for tha
state,

^$ ŷk~t!, p̂k
†~t!%&@^u@ ŷk~t!, p̂k

†~t!#u&5\[1. ~B11!

It is this condition which allows one to substitute quantu
averages of arbitrary functionsG of the position and momen
tum operators by classical ensemble averages of the s
function G, weighted with the Wigner probability distribu
tion function, or schematically,

^CuG~ ŷk ,p̂k!uC&5 E dykdpkG~yk ,pk!W0~yk ,pk!1O~\!

~B12!

→
r k→` 1

p2 E dykGS yk ,
Fk~t!

u f ku2
ykD

3e2yk
2/u f k(t)u2, ~B13!

where we have used Eq.~B7!. As long asFk(t)@1, we can
describe the evolution of our quantum system as that o
classical Gaussian random field. Note that, in this limit,
can ignore the normal ordering of the operators
G( ŷk , p̂k).

APPENDIX C: NONLINEAR EVOLUTION
IN PERTURBATION THEORY

In this appendix we will give details of how to perform
perturbative calculations of the nonlinear evolution of o

k-
1-22
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quantum system. We will also illustrate the perturbative
pansion of the correlation functions of a classical rand
field. To simplify the expressions we will consider the ca
of a single component real scalar~Higgs! field, but generali-
zation to the complex or multiple component case is straig
forward.

Our goal is to compute the expectation values of produ
of fields at different points:

^f~t1 ,x1! . . . f~tn ,xn!& ~C1!

~in this section we will use the symbolf instead ofy for the
Higgs field!. Here f(t,x) denotes the Heisenberg pictu
field operator, whose relation to the Schro¨dinger picture one
fs(x) is as follows:

f~t,x!5U †~t!fs~x!U~t! ~C2!

whereU(t) is the evolution operator, satisfying

U8~t!52 iHU~t! ~C3!

where the prime stands for derivative with respect tot andH
is the full Hamiltonian. Notice that since the Hamiltonia
depends explicitly on time, the evolution operator cannot
written as exp$2itH%. If we setl to zero we get the qua
dratic HamiltonianH0 considered in the Gaussian approx
mation. The corresponding evolution operator isU0(t). Now
we go over to the interaction representation by writing

U~t!5U0~t!V~t! ~C4!

whereV(t) is the characteristic Moller type operator whic
satisfies the equation

V8~t!52 iU 0
†~t!H intU0~t!V52 iH int

(0)~t!V ~C5!

whereH int
(0)(t) is the interaction Hamiltonian in the interac

tion representation. The equation forV can be solved in
terms of the time-ordered exponential:

V~t!5T expH 2 i E
0

t

dt H int
(0)~ t !J . ~C6!

This can be used to express the Heisenberg represent
fields in terms of the~Gaussian! interaction representatio
fields:

f~t,x!5T8 expH i E
0

t

dt H int
(0)~ t !J f0~t,x!T

3expH 2 i E
0

t

dt H int
(0)~ t !J . ~C7!

In the T exponential time grows from right to left and in th
T8 exponential left to right. To obtain the perturbative expa
sion one has to expand theT exponential andH int

(0) in powers
of l. The latter has the form
10350
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H int
(0)~t!5l E d3xS 1

4
f0

4~t,x!2
3~d11d2t!

2
f0

2~t,x! D
1O~l2! ~C8!

where the second piece is the counter term needed to re
malize to this order. Then, substituting the expression of
field inside the expectation values, everything reduces to
pectation values of products of interaction representa
fields f0(t,x). The latter reduce, by Wick’s theorem, t
products of two-point functions:

G(0)~t,t8,x2x8![^f0~t,x!f0~t8,x8!&

5 E d3k

~2p!3
eik(x2x8) f k~t! f k* ~t8!.

~C9!

This can be decomposed into a real and imaginary part.
real part corresponds to the expectation value of the sym
trized product, which in the Gaussian theory was chosen
match with the correlation function of the classical rando
field. The imaginary part is proportional to the commuta
of the fields, which is ac number.

We can illustrate the procedure by computing the tw
point function

^f~t,x!f~t8,x8!&5 E d3k

~2p!3
eik(x2x8)Ĝ~k,t,t8!

~C10!

to order l. Substituting the expression of the Heisenbe
field for thet.t8 case we get

K T8 expH i E
0

t

dtH int
(0)~ t !J f0~x,t!

3T expH 2 i E
t8

t

dtH int
(0)~ t !J f0~x8,t8!

3T expH 2 i E
0

t8
dtH int

(0)~ t !J L .

In caset8.t the factor sitting between the two fields has
be replaced by

T8 expH i E
t

t8
dtH int

(0)~ t !J . ~C11!

Notice the peculiar time-ordering of the operators which d
fers from the customary perturbative evaluation of~Feyn-
man! Green functions, which are time-ordered products
field operators.

To do the calculation to orderl it is better to start by
expressing the Heisenberg field to this order:
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f~t,x!5f0~t,x!1 i E ds@H int
(0)~s!,f0~t,x!#1 . . .

5f0~t,x!1 il E dsd3z@f0~s,z!,f0~t,x!#

3@f0
3~s,z!23~d11d2s!f0~s,z!#. ~C12!

Finally one obtains

Ĝ~k,t,t8!5 f k~t! f k* ~t8!16l E
0

t

dsAren~s!

3Im @ f k~t! f k* ~s!# f k~s! f k* ~t8!

16l E
0

t8
dsAren~s!

3Im @ f k~t8! f k* ~s!# f k~t! f k* ~s!. ~C13!

The meaning ofA ren(t) is given in the main text, where on
can also find the symmetrized Green function. Repeating
calculation for a Higgs field withNc real components one
gets the same expression for each component replacing
2(Nc12).

We can compare with the classical evolution. We will u
the same symbol for the classical fieldf(t,x). The equa-
tions of motion

f9~t,x!5Df~t,x!1tf~t,x!2lf3~t,x! ~C14!

can be solved in perturbation theory inl. The expansion is
given in terms of tree graphs with lines associated to
retarded propagator:

G ret~t,t8,x2x8!522u~t2t8! E d3k

~2p!3
eik(x2x8)

3Im @ f k~t! f k* ~t8!#. ~C15!
D
.

try
D

.
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If we now takef(t50,x), andp(t50,x), to be Gaussian
random fields, then the field at any other time become
non-Gaussian random field. The correlation functions of t
field can be computed in perturbation theory by combin
the aforementioned expansion involving the retarded pro
gator and the expectation value of Gaussian random field
match with the quantum calculation at zero order inl, this
has to be taken as the symmetrized version of Eq.~C9! ~this
is just given by the Fourier transform of the symmetric p
of S):

G gauss
(0) ~t,t8,x2x8!5E d3k

~2p!3
eik(x2x8)Re@ f k~t! f k* ~t8!#.

~C16!

Notice that terms in the expansion can be associated
Feynman-type graphs, with modified rules involving tw
propagators (G gauss

(0) andG ret). These, up to factors~includ-
ing Heavisideu) coincide with the real and imaginary par
of the quantum propagator. Indeed, the calculation of
two-point correlation function to orderl matches exactly
with the symmetrized quantum two-point function to th
order. For that one has to apply exactly the same renorm
ization to the classical and quantum theories.

Differences can arise to higher order. Essentially,
retarded-imaginary propagator in the classical theory can
form loops by itself. since it arose from the expansion of t
field equations. This need not be the case in the quan
theory. For example to second order inl there is a contribu-
tion to the two-point function given by the sunset diagra
with three imaginary propagators joining the two vertice
However, for low-momenta flowing through the lines~and
large enough times! the dramatic difference in size of the re
and imaginary parts off k(t) f k* (t8) justifies that the classica
approximation would still be reasonably good. A more th
ough investigation of these matters is interesting but exce
the realm of this paper.
a-
rse
7;

tt.
@1# D. A. Kirzhnits, JETP Lett.15, 529 ~1972!; D. A. Kirzhnits
and A. D. Linde, Phys. Lett.42B, 471~1972!; Sov. Phys. JETP
40, 628 ~1974!; Ann. Phys.~N.Y.! 101, 195 ~1976!; S. Wein-
berg, Phys. Rev. D9, 3320 ~1974!; L. Dolan and R. Jackiw,
ibid. 9, 3357 ~1974!; D. A. Kirzhnits and A. D. Linde, Ann.
Phys.~N.Y.! 101, 195 ~1976!.

@2# T. W. Kibble, J. Phys. A9, 1387~1976!; M. B. Hindmarsh and
T. W. Kibble, Rep. Prog. Phys.58, 477 ~1995!; W. H. Zurek,
Nature~London! 317, 505~1985!; Phys. Rep.276, 177~1996!.

@3# F. Cooper, S. Habib, Y. Kluger, and E. Mottola, Phys. Rev.
55, 6471~1997!; F. Cooper, S. Habib, Y. Kluger, E. Mottola, J
P. Paz, and P. R. Anderson,ibid. 50, 2848~1994!.

@4# D. Boyanovsky and H. J. de Vega, ‘‘Dynamics of symme
breaking out of equilibrium: From condensed matter to QC
and the early universe,’’ hep-ph/9909372; Phys. Rev. D61,
105014~2000!; D. Boyanovsky, D. Cormier, H. J. de Vega, R
Holman, A. Singh, and M. Srednicki,ibid. 56, 1939~1997!; D.
Boyanovsky, H. J. de Vega, R. Holman, and J. Salgado,ibid.
59, 125009~1999!.

@5# J. Baacke, K. Heitmann, and C. Patzold, Phys. Rev. D55, 2320
~1997!; ibid. 55, 7815~1997!; 56, 6556~1997!; J. Baacke and
S. Michalski,ibid. 65, 065019~2002!.

@6# G. Aarts and J. Berges, Phys. Rev. Lett.88, 041603~2002!.
@7# J. Smit, J. C. Vink, and M. Salle, in Proceedings of Intern

tional Workshop on Particle Physics and the Early Unive
~COSMO-01!, Rovaniemi, Finland, 2001, hep-ph/011205
Nucl. Phys. B~Proc. Suppl.! 106, 540 ~2002!.

@8# A. D. Linde, Phys. Lett. B259, 38 ~1991!; Phys. Rev. D49,
748 ~1994!.

@9# J. Garcı´a-Bellido and A. D. Linde, Phys. Rev. D57, 6075
~1998!.

@10# L. Kofman, A. Linde, and A. A. Starobinsky, Phys. Rev. Le
73, 3195~1994!; Phys. Rev. D56, 3258~1997!; P. B. Greene,
L. Kofman, A. Linde, and A. A. Starobinsky,ibid. 56, 6175
~1997!.
1-24



.

d.

cl
rs

.

.

al
0
:/

ro-

d

D

l

i-

he

s.

r
e,’’

s

SYMMETRY BREAKING AND FALSE VACUUM DECAY . . . PHYSICAL REVIEW D 67, 103501 ~2003!
@11# S. Yu. Khlebnikov and I. I. Tkachev, Phys. Rev. Lett.77, 219
~1996!; ibid. 79, 1607~1997!.

@12# T. Prokopec and T. G. Roos, Phys. Rev. D55, 3768~1997!.
@13# G. Felder and L. Kofman, Phys. Rev. D63, 103503~2001!.
@14# G. N. Felder, J. Garcı´a-Bellido, P. B. Greene, L. Kofman, A. D

Linde, and I. Tkachev, Phys. Rev. Lett.87, 011601~2001!; G.
N. Felder, L. Kofman, and A. D. Linde, Phys. Rev. D64,
123517~2001!.

@15# J. Garcı´a-Bellido and E. Ruiz Morales, Phys. Lett. B536, 193
~2002!.

@16# E. J. Copeland, S. Pascoli, and A. Rajantie, Phys. Rev. D65,
103517~2002!.

@17# A. H. Guth and S. Y. Pi, Phys. Rev. D32, 1899~1985!.
@18# D. Polarski and A. A. Starobinsky, Class. Quantum Grav.13,

377 ~1996!.
@19# C. Kiefer, D. Polarski, and A. A. Starobinsky, Int. J. Mo

Phys. D7, 455 ~1998!.
@20# J. Lesgourgues, D. Polarski, and A. A. Starobinsky, Nu

Phys.B497, 479 ~1997!; J. Lesgourgues, Ph.D. thesis, Tou
University, France, 1998.

@21# J. Garcı´a-Bellido, D. Y. Grigoriev, A. Kusenko, and M. E
Shaposhnikov, Phys. Rev. D60, 123504~1999!.

@22# L. M. Krauss and M. Trodden, Phys. Rev. Lett.83, 1502
~1999!.

@23# A. Rajantie, P. M. Saffin, and E. J. Copeland, Phys. Rev. D63,
123512~2001!; E. J. Copeland, D. Lyth, A. Rajantie, and M
Trodden,ibid. 64, 043506~2001!.

@24# T. Asaka, W. Buchmuller, and L. Covi, Phys. Lett. B510, 271
~2001!.

@25# J. Garcı´a-Bellido, Plenary talk at COSMO-01, Internation
Workshop on Particle Physics and the Early Uuniverse, 20
Rovaniemi, Finland. For a transcript of the talk see http
10350
.

1,
/

www.physics.helsinki.fi/cosmo_01/friday/Garcia-Bellido.pdf
@26# J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay, Ast

phys. J.304, 15 ~1986!.
@27# G. R. Dvali, Q. Shafi, and R. Schaefer, Phys. Rev. Lett.73,

1886 ~1994!.
@28# M. Bastero-Gil, S. F. King, and J. Sanderson, Phys. Rev. D60,

103517~1999!.
@29# G. N. Felder, J. Garcı´a-Bellido, P. B. Greene, L. Kofman, an

A. D. Linde ~unpublished!.
@30# J. Garcı´a-Bellido, A. D. Linde, and D. Wands, Phys. Rev.

54, 6040~1996!.
@31# D. H. Lyth and E. D. Stewart, Phys. Rev. D53, 1784~1996!.
@32# D. H. Lyth and A. Riotto, Phys. Rep.314, 1 ~1999!.
@33# M. J. Bowick and A. Momen, Phys. Rev. D58, 085014~1998!.
@34# M. Abramowitz and I. A. Stegun,Handbook of Mathematica

Functions~Dover, New York, 1970!.
@35# G. Aarts and J. Smit, Phys. Lett. B393, 395 ~1997!; G. Aarts

and J. Smit, Nucl. Phys.B511, 451 ~1998!.
@36# D. Y. Grigoriev and V. A. Rubakov, Nucl. Phys.B299, 67

~1988!; D. Y. Grigoriev, V. A. Rubakov, and M. E. Shaposhn
kov, ibid. B326, 737 ~1989!; K. Kajantie, M. Laine, K. Rum-
mukainen, and M. E. Shaposhnikov,ibid. B458, 90 ~1996!.

@37# Note that in the linear approximation the truncation of t
spectrum atm5At i is preserved by the time evolution.

@38# A. J. S. Hamilton, J. R. Gott, III, and D. Weinberg, Astrophy
J. 309, 1 ~1986!.

@39# G. Felder and I. I. Tkachev, ‘‘LATTICEEASY: A program fo
lattice simulations of scalar fields in an expanding Univers
hep-ph/0011159.

@40# See also Refs.@11,12,14–16,23#, where the same or analogou
initial conditions have been used.

@41# E. P. Wigner, Phys. Rev.40, 749 ~1932!.
1-25


