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Abstract

We present simulations of particle beam channeling in carbon nanotubes and evaluate the 
possibilities for experimental observation of channeling effect in straight and bent nanotubes 
at IHEP and LNF. Different particle species are considered: protons of 1.3 and 70 GeV, and 
positrons of 0.5 GeV. Predictions are made for the experiments, with analysis of 
requirements on the quality of nanosamples and resolution of the experimental set-up. Based 
on Monte Carlo simulations, the capabilities of nanotube channeling technique for particle 
beam steering are discussed.

Introduction

Channeling of particle beams in crystal lattices finds many applications in accelerator world 
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[1] from TeV [2] down to MeV [3] energies. In accelerator ring, bent crystals serve for beam 
deflection, e.g. in extraction systems in IHEP-Protvino [4] and in collimation system of 
Relativistic Heavy Ion Collider of BNL [5]. This technique can be quite efficient. In IHEP, a 
tiny 2-mm Si crystal did extract 70-GeV protons out of the ring with efficiency 85%, even 
when all the beam stored in the machine was dumped onto the crystal, at intensity well over 
1012 p/s [6].

For channeling, silicon crystals are commonly used due to high perfection of their lattice and 
availability. Germanium crystals were also demonstrated as efficient deflectors of high-
energy beams [7]. There is an interest in using also low-Z and high-Z crystals for beam 
steering [8]; bent diamond crystals have been produced [9], and there is an effort to produce 
tungsten crystals of a quality sufficient for beam steering applications [10].

In recent years, with creation of nanotubes, there has been a substantial interest in 
channeling in nanostructures[11-13]. Since 1991 [14], there has been a lot of study on 
carbon nanotubes to understand their formation and properties. Carbon nanotubes stick out 
in the field of nanostructures, owing to their exceptional mechanical, capillarity, electronic 
transport and superconducting properties [15-17]. They are cylindrical molecules with a 
diameter of order 1 nm and a length of many microns [18]. They are made of carbon atoms 
and can be thought of as a graphene sheet rolled around a cylinder [19]. Nanotubes can be 
made of different diameter, length, and even material other than carbon [20]. Creation of 
suitable channeling structures, from single crystals to nanotubes, of sufficient quality would 
make a strong impact onto accelerator world. 

A particle beam channeled in nanotube could be efficiently steered (deflected, focused, 
undulated, extracted from accelerator, etc.) in the way quite similar to crystal channeling. 
Compared to bent crystal technique, however, nanotubes offer unique characteristics like 
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bigger angular acceptance and potentially bigger dechanneling lengths. This may be used to 
create a very elegant technique of beam handling at accelerators. All advantages of the 
crystal technique application at accelerators, like low cost, low size, minimal “septum 
width” of crystal deflectors, remain the same also for nanotube technique. Besides their 
usage as beam deflectors in extraction or collimation systems (potentially at Large Hadron 
Collider or at medical accelerators), nanotubes can boost new applications like very small 
nano-beams for biological studies and medical therapy. This would depend strongly on the 
capabilities of nanotechnology to produce required structures for beam steering.

Nanotube channeling

The feasibility of channeling in nanotubes has been earlier proposed, e.g., in refs. [11-13]. It 
was shown [13] that a bent carbon nanotube of 1.4 nm diameter has a significant effective 
potential well Ueff even for bendings equivalent to ≅ 300 Tesla or pv/R≥ 1 GeV/cm (the 
beam momentum ratio to curvature radius), so there exists an opportunity to steer particle 
beams by nanotubes, similarly to bent crystal channeling technique. 

We have performed computer simulations [21] of nanotube channeling to evaluate the 
achievable performance of a nanotube as a steering device. In simulations, we used so-called 
standard potential introduced by Lindhard [22]. When averaged over the longitudinal 
coordinate and azimuth angle (ϕ , z), the potential of nanotube is described by [11]:

Here Z1e, Z2e are the charges of the incident particle and the nanotube nuclei respectively, N 
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is the number of elementary periods along the tube perimeter, a=0.142 nm is the carbon 
bond length; dimensionless parameters are

the nanotube radius is

The screening distance aS is related to the Bohr radius aB by 

In a tube bent along the x direction, the motion of a particle is described by the equations

where ρ 2=x2+y2. This takes into account only the nanotube potential and the centrifugal 
potential. Any particle within close distance, order of aS, from the wall (where density of the 
nuclei is significant) is also strongly affected by the nuclear scattering. 
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In our simulations, we firstly were interested in the persistence of channeling in bent 
nanotubes, for two major reasons: (a) we need nanotubes to steer and bend particle beams, 
and (b) real nanotubes are never exactly straight. Figure 1 shows the results of our 
simulations for the number of channeled protons as a function of the nanotube curvature 
pv/R for tubes of different diameter (0.55, 1.1, and 11 nm). For comparison, also shown is 
the same function for Si(110) crystal. These results are obtained for a parallel incident beam 
and a uniformly bent channel (without straight part). 

One can see from Figure 1 that nanotubes should be sufficiently narrow in order to steer 
efficiently the particle beams; the preferred diameter is in the order of 0.5-2 nm. Wider 
nanotubes, like 10-50 nm, appear rather useless for channeling purpose because of their high 
sensitivity to channel curvature. When compared to bent crystals as elements of beam 
steering technique, bent nanotubes show in simulations good efficiency of beam bending, 
similar to that of crystals. The Monte Carlo code used here for simulation of nanotube 
channeling has been adapted from the CATCH code [23], and is described in some detail 
elsewhere [21].

Optimisation of the experiment

The purpose of the present work is to propose an experiment for observation of nanotube 
channeling of particle beam and to find an experimental arrangement most suitable for 
observation of channeling in straight and bent nanotubes. As the typical nanotubes are 
limited in the length at present (to order of 50 µ m), this limits their use at higher energies 
like 70 GeV where most of the IHEP experimental research in crystal channeling has been 
done so far. Therefore, two approaches to experimental verification of the channeling effect 
are considered. 
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The first one is based on the observation of coherent scattering of particles off the potential 
of straight nanotubes aligned to the incident beam. If we minimize any extra material in the 
beam such as substrate, the coherent scattering appears much stronger than the usual 
multiple scattering and it should be seen only within the angular range of about the critical 
channeling angle as we rotate the nano-sample (plus the divergence of the nanotube 
alignment at the sample entrance).

The second approach assumes that nanotubes trap and channel part of the incident beam. By 
giving to nanotubes a controlled bending of a few milliradian, we can deflect the channeled 
particles out of the incident beam (same as in bent crystal channeling). The deflected beam 
could be easily observed; like in the previous case, it shows up only for aligned sample. This 
approach seems easier for observation, however it requires more skills in engineering and 
production of the sample.

Accordingly, two sorts of sample have to be designed, simulated, produced, and tested.

Straight nanotubes

In simulations, we take what we believe is our best for the parameters of the beam and the 
experimental set-up. The full width of the incident beam of 70 GeV protons is taken 0.1 mm 
(one microstrip), the divergence ±0.040 mrad full width (0.023 mrad rms) both horizontally 
and vertically. After interaction with a nano-sample, the particles are to be detected by a 
microstrip detector (0.1 mm strips) positioned 8 m downstream. Most of this 8 m is vacuum; 
the Mylar windows and some air gaps are equivalent in total to 1 m of air. The multiple 
scattering on this 1 m of air is taken into account in simulations, as well as the multiple 
scattering on C atoms in nano-sample.

Figure 2 shows an example of the beam distribution as observed at the microstrip detector 
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when the sample is misaligned to the beam; the starting distribution is just widened by 
multiple scattering and by beam divergence. To observe the effects of coherent scattering off 
the potential of nanotubes with sufficient clarity, we must carefully choose the best length of 
the nanotubes. The angular kick as provided by the nanotube field to the particles depends 
on the particle entrance coordinate with respect to the tube axis, but also depends on the 
distance traveled along the tube. This distance is somewhat related to the oscillation 
wavelength of a particle channeled in the nanotube. Obviously, the largest kick would be if 
the tube were as long as about ¼ of a wavelength. Unlike in crystal channeling where planar 
potentials are close to harmonic, in nanotube channeling the oscillation wavelengths are 
quite dependent on the particle starting point. We have done the optimisation for the length 
of nanotubes (with the tube diameter fixed at 1.1 nm) in Monte Carlo simulations.

 

Figure 2 shows also an example of the beam distribution at the microstrip detector when the 
sample of 30-•m long nanotubes is perfectly aligned to the above-defined 70-GeV beam. 
Notably, the distribution becomes factor of three broader than with misaligned sample, 
giving a clear signature of the coherent scattering off the nanotube potential. When the 
sample is slightly tilted with respect to the beam, the distribution remains broad but also 
obtains a clear asymmetry as illustrated by Figure 3 for the same sample angled at 0.040 
mrad with respect to the beam. This asymmetry, depending on the sign and magnitude of the 
tilt, is another good signature for the coherent effects in nanotubes.

The dependence of the distribution broadening and asymmetry on the nanotube length is 
shown in Fig.4. Precisely, the left part of Fig.4 shows the rms size of the distribution for 
aligned sample, normalised to the same quantity for misaligned sample. The right part in 
Fig.4 shows the change in the mean value of the distribution when sample is angled at 0.040 
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mrad to the beam. 

For the aligned sample, the broadening of the distribution is the largest for the nanotubes 25-
50 micron long; outside of this range, it is less pronounced. For the sample aligned at 0.040 
mrad with respect to the beam, the particles are best scattered with nanotubes of 20-50 
micron length; the asymmetry is the largest for nanotubes of 25-40 micron. The coherent 
effects are clearly seen within the angular range of about 0.150 mrad (full width); outside of 
this range of the nanosample orientation, there is little to see. 

 

To summarise, we find the best length to be 30 micron in our set-up. The amorphous 
substance in the sample is not so dangerous. The multiple scattering over even 100 micron 
of carbon is yet small at 70 GeV. On the other hand, the angular divergence of the tubes is 
important. If the tubes in the sample are diverging over much more than 0.150 mrad, we 
shall see significantly lesser signal. The solution might be to have nanotubes in a corset, 
inside a porous material. The amount of the substrate or holder is not so important, but the 
divergence is important at 70 GeV. The tubes can be capped by substrate on both ends if 
necessary to ensure their parallelism. Another experimental factor is the density of the tubes 
in the sample. In the above simulation the tubes cross-section was 78% of the total (the 
densest pack would make it 91%). Then, about 1/2 of the beam was "channeled", i.e. found 
outside of the central three strips of the detector. If the density of the tubes would be 10 
times smaller (i.e. 8% of the sample cross-section), we would observe only 5% of the beam 
out of the center 3 strips, accordingly. Let us take this consideration in a more general way: 
we are interested in the density of parallel nanotubes; one can have more tubes in the sample 
- but if they are misaligned, they do not contribute.
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Bent nanotubes

To bend a channeled beam with a nanotube, we should use a curvature no greater than pv/R≤1 
GeV/cm. This means using either long enough nanotubes or lower energy of the particles. In 
the experiment, we will be limited by the nanotube length of about 60 micron. Therefore, we 
consider experiments with protons of 1.3 GeV kinetic energy and positrons of 0.5 GeV. 
Then, 60 micron is enough to give particles a deflection of a few milliradian. 

The experiment with 1.3 GeV protons might have been done with the beam circulating in 
the main ring of U70 accelerator. The incident particles would have then quite low 
divergence at the incidence on the nanotube deflector. We have done simulations with the 
particles incident at different angles at a 60-•m long nanotube bent 2 mrad, for 1.3 GeV 
protons and 0.5 GeV positrons, observing the angular distribution of particles downstream 
of the nanotube. If the incident particles are well aligned to the nanotube axis at the 
entrance, a substantial amount of particles is deflected the full angle of bending. Figure 5 
shows the simulated distribution of 1.3-GeV protons at the detector (a hodoscope with 1.25-
mm strips as used in the previous channeling experiments [6] with 1.3 GeV protons) placed 
20 m downstream of the bent nanotube. The peak seen is the channeled protons; the 
background from the multiply scattered nonchanneled protons circulating in the ring, 
expected to appear at the edge of the detector on the most-left strips, is not fully simulated 
here. An experimentally observed distribution in the same set-up but with a silicon crystal 
can be seen in Ref. [6].

In order to understand the requirements for orientation match between the nanotubes and the 
incident particles, we varied the tube orientation in simulations and present the results in 
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Figure 6. The channeling effects are seen within the angular range of about 0.6 mrad (full 
width) for 1.3 GeV protons and about 0.8 mrad for 0.5 GeV positrons. This limits the 
allowed divergence of particles in the incident beam or of the nanotubes within the sample 
to the above-said level in order to have a sizeable effect in the experiment.

Summary

As shown in computer simulations, nanotubes can efficiently channel particle beams thus 
making a basis for a new technique of beam steering at accelerators. The most critical factor 
in implementation of this technique is the alignment of nanotubes within the sample, and to 
some extent the divergence of the particle beam. From physics standpoint, this is an 
excellent technique, however it is challenging technologically. It is of high interest for 
channeling research as it looks that nanostructures can be engineered to fit researcher the 
most, with wide choice of material, lattice design, etc. 
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Figure 1 The number of channeled protons shown as a function of the nanotube curvature 
pv/R for tubes of different diameter (0.55, 1.1, and 11 nm). For comparison, also shown is 
the same function for Si(110) crystal.
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Figure 2 Beam distribution at the microstrip detector for the misaligned sample (narrow 
peak), and for the sample perfectly aligned to the beam (broad peak).
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Figure 3 Beam distribution at the microstrip detector for the sample aligned at +0.04 mrad 
to the beam (solid line), and at -0.04 mrad (dashed line).
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Figure 4 Left figure: the rms size of the distribution for aligned sample, normalised to the 
same quantity for misaligned sample (top line, solid), and the same for the sample aligned at 
0.04 mrad to the beam (bottom line). Right figure: the displacement (•m) of the distribution 
mean value for the sample aligned at 0.04 mrad to the beam, as a function of the nanotube 
length (•m).

 f i l e : / / / D | /���>�8  �4�>�:�C�<�5�=�B�K / B i r y u k / C O S I . h t m   ( 1 5   è ç   1 7 )   [ 2 3 . 0 8 . 0 2   1 2 : 4 8 : 1 0 ]



CHANNELING OF HIGH ENERGY BEAMS IN NANOTUBES

 

 

Figure 5 Simulated distribution of 1.3-GeV protons at the detector downstream of a bent 
nanotube.
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Figure 6 The dependence of the channeled beam intensity on the orientation angle of the 
nanotube with respect to the beam of 0.5 GeV positrons (top, solid) and 1.3 GeV protons 
(bottom, dashed).
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