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Abstract

We introduce a particular embedding of seven dimensional self-duality membrane equations in C3×R

which breaks G2 invariance down to SU(3). The world-volume membrane instantons define SU(3) spe-

cial lagrangian submanifolds of C3. We discuss in detail solutions for spherical and toroidal topologies

assuming factorization of time. We show that the extra dimensions manifest themselves in the solutions

through the appearance of a non-zero conserved charge which prevents the collapse of the membrane.

We find non-collapsing rotating membrane instantons which contract from infinite size to a finite one

and then they bounce to infinity in finite time. Their motion is periodic. These generalized complex

Nahm equations, in the axially symmetric case, lead to extensions of the continuous Toda equation to

complex space.
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1. Introduction

Some years ago, we introduced the notion of the self-duality for supermembrane in 4 + 1-dimensions

and in the light-cone gauge. The corresponding self-duality (s-d) equations proved to be an integrable

system with an infinite number of conservation laws and particular solutions were found [1, 2] which were

collapsing configurations of membrane instantons to point-like or string-like objects. Similar covariant

self-duality equations have been introduced before for 2 + 1-dimensions [3] and later generalized to 6 + 1

dimensions in [4].

These objects, represent world-volume instantons of the supermembrane. In the light cone gauge, the

world-volume time and the target time are identical, so these configurations are space-time membrane in-

stantons and they provide quantum mechanical tunnelling through the membrane self-interaction potential

moving with velocities bigger than light. Thus, they can travel infinite distances in finite time.

Their equations of motion, which are Nahm’s type equations for the area-preserving diffeomorphism

group of the membrane, lead for axially symmetric configurations to continuous Toda equations relating

thus the membrane instantons with the self-dual Einstein metrics with isometries [5, 6].

The basic ingredients for the study of covariant membrane instantons in higher than (4+1)-dimensions,

were contained in the pioneering paper of ref [4], however this work was until recently overlooked. The

authors in [7] introduced higher dimensional self-duality equations for the light-cone membranes as well as

in the case of the quantized Poisson (i.e. Moyal) bracket. The detailed properties of the octonionic light-

cone membrane instantons where studied in [8, 9], where the invariance of the seven dimensional equations

under the exceptional group G2 was exploited. The invariance under this group has as a consequence one

remaining supersymmetry consistent with the membrane background. In three dimensions there are eight

remaining supersymmetries [10].

In a parallel development, octonionic self-duality for seven and eight dimensional gravity was pro-

posed [11, 12] and explicit seven and eight gravitational instantons which generalize four-dimensional ones

(satisfying first order equations) were found [12, 13]. These higher dimensional gravitational instantons

where among the first few explicitly known self-dual metrics with exceptional holonomies G2 and Spin(7)

which were also lifted in 10 and 11-dimensional supergravity. Recently, exceptional holonomy higher di-

mensional instantons were studied for their rôle in string and M-theory and an important activity around

this subject has been created [14].

In this letter, we introduce the complexified self-duality equations of the membrane in seven dimensions
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and represent them as generalized Nahm equations. We show that the extra dimensions manifest themselves

in the solutions through the appearance of an non-zero conserved charge which prevents the collapse of

the membrane. We integrate completely the three-dimensional complex Nahm’s equations for S2 and T 2

topologies, assuming factorization of time. We find periodic non-collapsing instantons. Starting from

infinite size they contract, with increasing angular velocity, to a minimum size and then they bounce back

to infinity in finite time.

2. The Self-Duality Membrane equations in seven Dimensions.

Choosing fixed values for the 8th and 9th membrane coordinates, the seven-dimensional self-duality

equations [4, 7, 8] become

Ẋi =
1
2
Ψijk{Xj , Xk} (1)

where Ψijk is the completely antisymmetric tensor that defines the multiplications of octonions [15]. The

Gauss law results automatically by making use of the Ψijk cyclic symmetry

{Ẋi, Xi} = 0 (2)

The Euclidean equations of motion are obtained as follows

Ẍi =
1
2
Ψijk

(
{Ẋj, Xk}+ {Xj, Ẋk}

)
(3)

= {Xk, {Xi, Xk}} (4)

where use has been made of the identity

ΨijkΨlmk = δilδjm − δimδjl + φijlm (5)

and of the cyclic property of the symbol φijlm [15].

At this point we would like to make a general remark on the nature of the motion described by (1). These

equations describe the time evolution of the membrane instanton in flat space-times. If the coordinates

Xi, (i = 1, . . . , 7) are periodic functions of the membrane parameters σ1,2, then integrating both sides of

the equations we find that all membrane instantons have their center of mass pinched in a fixed point of

space. This implies spontaneous symmetry breaking of translational invariance. If some of the flat space

dimensions are compactified, then the center of mass moves with the velocity determined by the cross

products of the winding numbers of the membrane in the compactified dimensions. The cross product is

defined through the tensor Ψijk [9].
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In what follows, we proceed to the complexification of the self-duality equations. We embed the seven

dimensional space R7 into C3 ×R in a very specific way which depends on the particular definition of the

octonionic structure constants used in ref [8] which assume the following multiplication table [15]

Ψijk =




1 2 4 3 6 5 7

2 4 3 6 5 7 1

3 6 5 7 1 2 4

(6)

Thus, if we define

z1 = X1 + iX4, z2 = X2 + iX5, z3 = X3 + iX6, a0 = X7

then the self-duality equations become

DtzI =
1
2
εIJK{z∗J , z∗K}, Dta0 = ı

2{zI , z∗I} (7)

where I, J, K take the values 1, 2, 3, whereas Dt is the ‘covariant’ derivative

Dt = ∂t − i{a0, } (8)

These strikingly simple equations of self-duality, break the G2 invariance down to SU(3). The SU(3)

invariance comes from the unique cross product existing in C3 which is a remnant of the octonionic cross

product in seven dimensions. One consequence is that, the three dimensional world-volume manifolds

described by (7) are SU(3) special lagrangian sub-manifolds of C3 [16].

In the next section, we will consider the factorization of time and the restriction to three complex

dimensions of the above first order equations. Before that, we would like to observe that it is possible

to generalize the connection of the three dimensional self-duality equations with the continuous Toda

equations[1, 6, 5]. This is possible if we consider axially symmetric solutions of the above system. Indeed,

the axially symmetric Ansatz,

z1 = R(σ2, t) cos σ1, z2 = R(σ2, t) sin σ1, z3 = z(σ2, t) (9)

where, R, z complex functions, implies ȧ0 = 0 for all times and thus a0 can be fixed to zero by an area

preserving transformation. For the equations (7) we obtain

Ṙ = R∗ z∗σ2
, ż = −R∗ R∗

σ2
. (10)

and the index σ2 refers to the derivative with respect to σ2. This system of equations has as integrability

condition the following non-linear equation which extends the continuous Toda equation to three complex

dimensions.

1
R∗ ∂2

tR − 1
R∗2 ∂tR ∂tR

∗ +
1
2
∂2
σ2

R2 = 0 (11)
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This equation maybe relevant for the higher dimensional self-dual gravity. Setting in (11) R2 = eΨ we

obtain the form

Ψ̈ +
1
2
(Ψ̇− Ψ̇∗) Ψ̇ + e−

1
2 (Ψ̇−Ψ̇∗)∂2

σ2
eΨ = 0 (12)

In the real three dimensional case [1], we have R∗ = R and z = z∗, while the continuous Toda equation for

Ψ = Ψ∗ reads [1, 5, 6],

∂2
tΨ + ∂2

σ2
eψ = 0 (13)

In the next section, among other things we find the complete solution of the above (10) system or of

the generalized continuous Toda equation (11) restricting the functions R, z so that R(σ2, t) = sin σ2ζ(t),

z(σ2, t) = cos σ2 ζ3(t).

3. Membrane instantons in three complex dimensions

As we show below, it is possible to extend the known three dimensional instanton solutions into six

dimensions where, apart from the radial expansion of the instanton, we observe rotational motion in all of

the three planes (X1, X4), (X2, X5), (X3, X6) of the six-dimensional space (which we choose to call them

I,II,III complex planes).

We assume factorization of time which will lead to a coherent motion of all the membrane points. These

solutions are analogous (but for Euclidean time) to the real time solutions of second order equations of

motion for toroidal and spherical membranes recently studied in[17]

zi = ζi(t)fi(σ1, σ2) (14)

where fi are three complex functions on the surface. First we observe that the Poisson bracket {zi, z∗i } = 0,

if the functions fi, f
∗
i are functions of the same combination σ1, σ2. From the equation for a0 we find ȧ0 = 0

and therefore by an appropriate area preserving transformation we may fix a0 to be zero. So we are left

with the three complex Nahm’s equations for zi. We shall examine in detail two topologies, -spherical (S2)

and toroidal (T 2).

Up to now only three-dimensional solutions of the self duality equations are known [1]. In order to

factorize the time dependence we choose for the case of S2 the three functions fi to be

f1 = cosφ sin θ, f2 = sin φ sin θ, f3 = cos θ (15)
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The three functions for the algebra SU(2) under Poisson bracket satisfy

{fi, fj} = − εijkfk, i, j, k = 1, 2, 3 (16)

For the three complex functions of time, we find the complex Euler equations 1

ζ̇i = − 1
2

ε2ijkζ
∗
j ζ

∗
k (17)

In the case of T 2 we choose the following three functions

fi = eı ~ni·~σ, i = 1, 2, 3, (18)

~ni = (ni1, ni2) ∈ Z2 (19)

Now we observe that the factorization of time is implemented for any three ~ni’s such that

~n1 + ~n2 + ~n3 = ~0 (20)

In this case, we obtain for the corresponding ζi(t)

ζ̇i = −n
1
2

ε2ijkζ
∗
j ζ

∗
k (21)

where n = n11n22 − n12n21 ∈ Z.

In both cases (S2 and T 2) the equations for the time evolution are essentially the same. The T 2 case

is obtained from the equations of S2 if we make the replacement t → nt for n integer. Therefore we only

need to investigate the equation (17) which in component form is written

ζ̇1 = −ζ∗2 ζ∗3 , ζ̇2 = −ζ∗3 ζ∗1 , ζ̇3 = −ζ∗1 ζ∗2 (22)

There is an obvious symmetry of the above system

ζk → eıqkζk, (23)

where qk, k = 1, 2, 3 are real and q1 + q2 + q2 = 0. This invariance leads to the conservation of the three

charges

Qi = − ı

2

(
ζ̇iζ

∗
i − ζ̇∗i ζi

)
, i = 1, 2, 3 (24)

On the other hand, the equations of motion (22) imply that all three charges Qi are equal to

Qi ≡ Q = − ı

2
(ζ1ζ2ζ3 − ζ∗1 ζ∗2 ζ∗3 ) (25)

1For the seven dimensional system in another context, see also [19].
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There are two additional constants of motion in analogy with the Euler equations for the rigid body,

cij = |ζi|2 − |ζj |2 (26)

where cij are constants. In polar coordinates

ζk = rk eıφk (27)

we obtain

Q = r1r2r3 sin(φ1 + φ2 + φ3) (28)

φ̇k =
Q

r2
k

(29)

cij = r2
i − r2

j (30)

Theen, equations (22) reduce to

ṙi = rjrk cosφ, (31)

where φ = φ1 + φ2 + φ3. For simplicity we define s1 = r2
1 . We further combine (31) with (28) to obtain

the following differential equation

ṡ1 = −2
√

s1s2s3 −Q2 (32)

After substitutions, the differential equation obtains a unique form in the right-hand side for all si which

is

ṡ2 = 4
[
s(s− a)(s− b)−Q2

]
(33)

where s1 = s s2 = s− a, s3 = s− b, where a = c12, b = c12 + c23.

If we define a new function of time U(t) = s(t)− a+b
3 , the differential equation becomes

U̇ 2 = 4U 3 − g2 U − g3 (34)

which is recognized as the standard form of the Weierstrass equation with solution the (doubly periodic)

Weierstrass function U(t) = P(t; g2, g3), with

g2 =
4
3
(a2 + b2 − ab) (35)

g3 =
4
27

(2b3 + 2a3 − 3a2b− 3ab2) + 4Q2 (36)

Before we proceed to the analysis of the solution, we would like to point out that there is an isomorphism

between the membrane and the matrix model solutions with factorization of time for the spherical and

toroidal topologies. This implies that the above solutions have isomorphic matrix model instanton solutions

similar to those examined recently in ref[18].
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4. Analysis of the non-collapsing instanton solutions

The equation of motion (33) for the membrane radii (r2
1 ≡ s, r2

2 = s− a and r2
3 = s− b), is analogous

to the motion of a particle in a potential V . This is indeed the motion of any point of the Euclidean

membrane:

ṡ2 ≡ V (s, Q) = 4[s(s− a)(s− b)−Q2] (37)

where a, b are positive constants. Without loss of generality we may choose a > b > 0. The left hand side

of the equation (37) is always positive, thus the permitted regions for the variable s are such that V (s, Q)

is also positive. These regions depend on the values of Q. There is a limiting position of the qubic curve

when Q2 = 0 ( V (s, 0) ≡ V0(s)). This is the upper curve shown in figure (1) and the three real roots are

s1 = a, s2 = b and s3 = 0. For all other values of Q2 the curve is below the limiting one and whenever

there are three real roots, they are b > s3 > 0 s2 < b, s1 > a respectively. V (s, Q) possesses extrema at

the values

smax/min =
1
3

(
a + b∓

√
a2 + b2 − ab

)
(38)

There is a critical value Q2 = Q2
c for which the V (s, Q) has a double root which is the smax. Qc is

determined as follows

Q2
c = V0(smax) (39)

In this case we calculate the maximum root to be

sc1 =
1
2

(
a + b + 2

√
a2 + b2 − ab

)
(40)

The physical region is this case is beyond sc1.

When Q2 > Q2
c there are two complex conjugate roots (the maximum of V is below the real axis) the

physical region is s > s1 where s1 is the real root. The three cases described above are presented in figure

(1). In what follows, we proceed in the detailed description of the dynamics of the membrane instanton in

the three cases discussed above (Q = 0, Q 6= 0, Q = Qc).

• When Q = 0 it is possible to redefine the time-independent phases (29) to zero values and the self-

duality equation reduces to the ones of the three dimensional case [1]. Because of the conservation laws we

only need the equation for s = r2
1 which reads

ṡ = −2
√

s(s− a)(s− b) (41)

We distinguish the following cases [1]:
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Figure 1: The ‘Potential’ for three characteristic Q-values: In all cases, the allowed region is beyond the

highest root to the infinity.

• a = b = 0. The solution is a spherical membrane with the radius varied with time as

r =
r0

1 + r0(t− t0)
(42)

There is a critical value tc = t0 − 1/r0 where r →∞, whilst for t →∞ the radius shrinks to zero.

• a = 0, b 6= 0. The equation becomes ṡ = −2s
√

s− b and the solution obtained is

r = r0

1 +
√
b

r0
tan {√b(t− t0)}

1− r0√
b

tan {√b(t− t0)}
(43)

At tc = 1√
b
tan−1

√
b

r0
the membrane has an infinite radius. On the contrary, when tin = − 1√

b
tan−1

√
b

r0

the configuration collapses to a string.

• a > b > 0. This is the most general four-dimensional case. The s-d equation reads

ṡ = −2
√

s(s− a)(s− b)

In order to write it in a more familiar form, we make the transformations x =
√
a
r , k2 = b

a < 1, with

r > a and therefore x < 1√
a
. Then, separating variables we have

t =
1√
a

∫ sinφ

0

d x√
(1− x2) (1− k2 x2)

, −π

2
< φ <

π

2
(44)

The right-hand side is the elliptic integral [20] F(φ, k), and the radius r is given

r =
√

a

sn
√

a t
(45)
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Here, we assumed as initial condition t = 0 and r0 = r(t = 0) = ∞. The positivity of r restricts the

t-range in a half period of the elliptic sn. The real period is the complete elliptic integral, i.e., when

the upper limit of (44) is equal to unity, sinφ = 1,

T

2
=

1√
a

∫ 1

0

d x√
(1 − x2) (1 − k2 x2)

=
1√
a

K(k2 =
b

a
) (46)

With the above initial conditions, at t = 0 the volume of the ellipsoidal membrane is infinite, whereas

at time t = T
4 reaches a minimum value with rmin =

√
a

sn
√
a T

4
and the membrane collapses to an

elliptic disc.

It is worth mentioning that in three dimensions, assuming simple factorization of time, we do not find non-

collapsing membranes. On the other hand we find all possible collapsed configurations for the membrane,

that is, points, strings and discs.

• Now we consider the case Q 6= 0. This case differentiates from the Q = 0 case because it exists only

in dimensions higher than three ( see eq.29).

As we shall see, a remarkable fact is that the dynamics of the membrane in higher dimensions is encoded

in the higher dimensional angular momentum Q which, from the point of view of three dimensions, it

behaves like a charge.

In the case of spherical topology, there are three different geometries, spherical, ellipsoidal with axial

symmetry, and anisotropic ellipsoidal ones. These three cases correspond to the degeneracy of the roots of

the polynomial in the right-hand side of equation (33).

If the degeneracy g is g = 3, we have the spherically symmetric membrane which from any initial

condition it approaches the radius equal to the largest real root of the equation (33) in finite time and it

goes back to infinity.

If g = 2, we have the axially symmetric ellipsoid which from an initial configuration it decreases its

volume until a limiting one which is determined also by the largest real root. The same also happens to the

anisotropic ellipsoidal membrane. The general solution in terms of elliptic Jacobi functions or Weierstrass

function of the equation (34), can be found in a similar way with the case Q2 = 0 in eq (41)

ds√
s(s− a)(s− b)−Q2

=
dx√

x(x − e13)(x− e23)
, (47)

where x = s− e3 and eij = ei − ej .
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Figure 2: The points show the equidistant time-evolution of the coordinates of the ellipsoidal membrane

(45) in the three planes I = (X1, X4), II = (X2, X5) and III = (X3, X6). All of them reach a minimum

size and go back to infinity.

If the topology is toroidal, the radii r1,2,3 of the torus T 3 inside which the T 2 toroidal membrane is

embedded, at any moment of time they are equal to
√

s,
√

s− b,
√

s− a respectively. We note that in this

case there are no non-degenerate solutions below four dimensions.

In the following, we discuss the Q 6= 0 spherical case (a = b = 0). Integrating the equation we find the

solution in terms of the incomplete beta function [20]

t =
1

6Q1/3
Beta(

Q2

r6
;
1
6
,
1
2
) (48)

We assume here the following initial conditions: At t = 0 the spherical membrane has infinite volume and

in finite time T = 1
6Q1/3 Beta(1

6 , 1
2 ) contracts at the minimum permitted radius r0 = Q1/3 and goes back

to infinity. From the angular velocity equation (29), at t = 0 or infinite radius, the angular velocity is zero

and contracting it develops at the limiting time T angular velocity ωT = φ̇ = Q1/3.

The ellipsoidal cases follow similar pattern and we parametrize the solution in terms of the Weierstrass

function [20]:

s(t) = P(t; g2, g3) +
a + b

3
(49)

where g2,3 are functions of a, b given by (35,36) above.

Due to the non-zero angular momentum the brane obtains a minimum size given by the radii squared,

s1, s1−a, s1−b where as discussed in the beginning of this section, s1 stands for the largest root of V (s, Q).
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At this minimum size, there are limiting angular velocities given by

ω1 =
Q

s1
, ω2 =

Q

s1 − a
, ω3 =

Q

s1 − b
. (50)

In the solution (34) we assume initial conditions s(0) = ∞ and s1 is given by s1 = P(T2 ; g2, g3) + a+b
3 ,

where T is the real period of the Weierstrass function. In the special case of Q = Qc, we have a simple

algebraic solution (similar to the Q = 0 case), and s1 = sc1 with sc1 given by (40).

5. Conclusions

Breaking the G2 invariance of the octonionic self-duality equations for the membrane in seven dimensions

down to SU(3), we found explicit solutions of non-collapsing rotating membrane instantons which they

have periodic motion starting at some initial moment from infinite size, shrinking down to a finite one in

a half period and then bouncing back to infinity. The rôle of these instantons for the quantum mechanical

vacuum of the membrane depends on the period which is the inverse temperature in membrane plasma

of finite temperature. In the case of infinite period (zero temperature) the membrane instantons collapse

to point-, string- and disc-like objects which represent the vacua of the quantum mechanical membrane.

Since up to now it is not known how to quantize the supermembrane, we hope that the information we

provided in this work is a step towards this direction.
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