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1. Introduction

Four-dimensional string compactifications withN = 1 supersymmetry allowing non-abelian

gauge symmetries and chiral matter contents are phenomenologically appealing. Recently,

D-branes on Calabi-Yau threefolds were studied extensively, partly because one may obtain

N = 1 supersymmetry in four dimensions if the D-branes extend in the dimensions trans-

verse to the Calabi-Yau. However, consistency conditions require either the Calabi-Yau to

be non-compact or the tadpoles to be cancelled by some other objects. In the former case,

we are left with four-dimensional theories where gravity is essentially decoupled. Although

such systems are interesting in their own right, our main concern is the theory in four

dimensions with a finite Newton’s constant. Thus, we need to consider compact inter-

nal spaces. The only known candidates to cancel the tadpoles while maintaining N = 1

supersymmetry are orientifold planes.

Orientifolding means to gauge a parity symmetry of the worldsheet theory. The basic

example is the gauging of the worldsheet orientation reversal Ω of the type-IIB superstring,

resulting in the type-I superstring. One is free, however, to consider more general parity

actions where Ω is combined with some action on space-time with a necessary consistency
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condition that this combination is a symmetry of the underlying theory [1, 2, 3, 4, 5] (see [6]

for a recent review). The fixed-point sets of the space-time action, called orientifold planes,

can carry tension and RR charges opposite to those of D-branes and can be used for tadpole

cancellation. A crosscap state is associated to each parity symmetry, just as a boundary

state is associated with a boundary condition or D-brane [7, 8]. These crosscap states

encode the physical data, such as tension and RR charges of the orientifold planes.

One approach to study orientifolds of Calabi-Yau manifolds is to consider special points

in the moduli space where the worldsheet theory is exactly solvable. One class of such

models are toroidal orbifolds, which have been extensively studied [9, 10, 11]. Another

important class of systems are Gepner models whose basic building blocks are rational

N = 2 superconformal field theories (see [12, 13] for earlier work on orientifolds of Gepner

models). However, general methods to study parity symmetries and orientifolds of such

models are not developed to the same extent as in the case of D-branes.

The purpose of the present paper is to collect and review the known techniques to study

orientifolds of rational conformal field theories (RCFTs) and further develop them. We

present a coherent method to construct parity symmetries and the corresponding crosscap

states in RCFTs and their orbifolds. The method is then applied to two simple examples,

the rational U(1) and the parafermions SU(2)/U(1). This serves as a warm-up to the

N = 2 models, which will be reported in a forthcoming paper [14]. Along the way, we also

find the geometrical interpretation of the parity symmetries of these examples.

In section 2 we describe boundary and crosscap states and the corresponding parities

in RCFTs. We review the construction of a universal crosscap state by Pradisi-Sagnotti-

Stanev (PSS) [15], which applies in any RCFT with the charge conjugation modular in-

variant. The corresponding parities can be combined with the discrete symmetries of the

system, giving rise to the class of crosscap states considered in [16]. These crosscap states,

as well as the rational boundary states constructed by Cardy, preserve the diagonal subal-

gebra A of the full symmetry algebra A⊗A.
We then proceed to study parity symmetries of orbifold models and provide a general

new method to construct the crosscap states. The emerging picture is much cleaner than

the construction of boundary states, which suffers from the fixed-point resolution problem.

Our method can be used to explain the result of an earlier paper [17], which also studied

the same subject (see [18, 19] for earlier work concerning various special cases).

In the last subsection, we consider D-branes and parities preserving the subalgebra

A embedded into the symmetry algebra A ⊗A through an automorphism ω of A: W 7→
A⊗ 1+ 1⊗ω(W ), in particular the mirror automorphism that acts as charge conjugation.

Extending the terminology of the N = 2 supersymmetry algebra [20, 14], we call them

B-branes/B-parities while the ones preserving the ordinary diagonal subalgebra shall be

called A-branes/A-parities. Sometimes, an orbifold model is the mirror of the original

model. In such cases, B-branes and B-parities can be obtained by applying the mirror map

to A-branes/A-parities of the mirror, which are constructed using orbifold techniques.

Sections 3, 4, 5 and 6 are devoted to examples. In section 3 we revisit the free boson

compactified on a circle of arbitrary radius, including an extension of the standard con-

struction [7, 8] to non-involutive parities. We prove that the orientifold corresponding to
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the parity where the target space action consists of a half-period shift of the circle is T-dual

to the orientifold associated to the reflection X → −X of the circle coordinate with one

SO- and one Sp-type orientifold plane (see [6] for a recent related discussion). Section 4 is

concerned with the special case that the radius of the circle is R =
√
k, k a positive integer.

In this case, the theory becomes rational and one can apply the method of section 2. It

is instructive to see how the RCFT data encodes geometrical and physical information of

the orientifolds in this simple case.

Our second example is the parafermion system, which is discussed in sections 5 and 6.

This model has a lagrangian description in terms of a SU(2)k mod U(1)k gauged WZW

model that is particularly well adapted to a study of the geometrical interpretation of

parity actions. Geometrically, the parafermion theory can be understood as a sigma-model

with a disk target space parametrized by a complex coordinate z with |z| ≤ 1. D-branes

in this model have been studied in [21]. A-type parities act as antiholomorphic involutions

of the target geometry, the basic example being z → z̄. It is possible to combine this

with an element of the Zk symmetry of the theory, which acts as a phase multiplication on

the target space coordinate. Accordingly, the corresponding orientifold planes are located

along diameters of the disk. B-type parities act holomorphically on the target space, the

fundamental B-type parity being z → z. This involution leaves the whole disk fixed and

therefore corresponds to an orientifold 2-plane. Combining this with phase rotations leads

generically to non-involutive parities, which we also consider. In the case where the level

k of the parafermion theory is even, there is a second involutive parity, z → −z, which
leaves only the center of the disk fixed and hence describes an orientifold 0-plane. Finally

we discuss the same model purely in terms of rational conformal field theory and give

a detailed map of RCFT results to geometrical properties. The questions discussed in

section 6 have been partially addressed in [22], but we disagree with some of the results in

that paper. In particular, we find that the geometric interpretation of the PSS crosscap

states is different.

2. Crosscaps in RCFT

We begin by describing the construction of boundary and crosscap states of rational con-

formal field theories. A review and extension of previous work in [23, 24, 15, 16, 17,

25, 26, 27, 28] is followed by developing new techniques to construct crosscap states in

orbifolds.

We consider a quantum field theory in 1 + 1 dimensions. Let Hg be the space of

states of the system formulated on a circle with the g-twisted periodic boundary condition,

where g is an internal symmetry. Let Hα1,α2 be the space of states on a segment with the

boundary conditions α1 and α2 at the left and the right ends. We denote by |Bα〉 and |CP 〉
the boundary and crosscap states corresponding to a boundary condition α and a parity

symmetry P = τΩ.1 The cylinder, Klein bottle (KB), and Möbius strip (MS) amplitudes

1τ is an internal transform and Ω is the space coordinate inversion. If the system has fermions, Ω is

assumed to include the exchange of left and right components.
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Figure 1: Cylinder, Klein Bottle and Möbius Strip.

are expressed in two ways

Tr
Hα1,α2

g e−βHo(L) =
g
〈B1| e−LHc(β)|B2〉

g
, (2.1)

Tr
H

P1P
−1
2

P2 e
−βHc(L) = 〈C1| e−

L
2
Hc(2β)|C2〉, (2.2)

Tr
Hα,P (α)

P e−βHo(L) =
P 2
〈Bα| e−

L
2
Hc(2β)|CP 〉. (2.3)

Here Hc(`) and Ho(`) are the hamiltonians of the system on a circle of circumference ` and

segment of length ` respectively. (The Hilbert spaces and boundary/crosscap states also

depend on the lengths which are omitted for notational simplicity.) The subscripts of the

boundary states show the periodicity of the boundary circle. For instance, |B2〉g consists

of elements in Hg. Note that |CP 〉 has a periodicity determined by P 2. (Eq (2.2) makes

sense only if P 2
1 = P 2

2 .) In (2.3), P (α) stands for the P -image of the boundary condition

α. The left and the right hand sides of (2.1)–(2.3) may be referred to as loop channel and

tree channel expressions respectively.

In what follows, we will consider conformally invariant quantum field theories and

study boundary conditions and parity symmetries that preserve the conformal invariance.

In such a theory, one can rescale the lengths (L, β) → (λL, λβ) without changing the

amplitudes. It is customary to choose the circumference of the closed string to be 2π and

the length of the open string to be π. Suppose we choose (L, β) = (π,−2πiτ), (2π,−2πiτ),
(π,−2πiτ) in the loop channel expressions of (2.1), (2.2), (2.3) respectively, where τ is a

complex number on the positive imaginary axis. Then in the tree-channel expressions, we

take (L, β) = (−πi/τ, 2π), (−πi/τ, π), (−πi/2τ, π). In string theory, eqs. (2.1)–(2.3) are

referred to as loop/tree channel duality and have played an important role (see e.g. [9]).

The system we consider. We consider an RCFT based on a chiral algebra A = {W (r)
n }

with a set of representations {Hi}. We primarily consider the model C with the Hilbert

space of states

HC =
⊕

i

Hi ⊗Hı . (2.4)
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where ı is the BPZ conjugate of i. This model has A⊗A symmetry algebra generated by

W (r) = W (r) ⊗ 1 and W̃ (r) = 1 ⊗W (r). For each representation i, we fix an antiunitary

operator U : Hi →Hı such that

UW (r)
n U−1 = (−1)srW (r)

−n
†

∀r , (2.5)

where sr is a spin of the current W (r).

2.1 Symmetry-preserving D-branes/orientifolds

We first study D-branes and orientifolds that preserve a diagonal subalgebra of the A⊗A
symmetry. On the Minkowski worldsheet with time and space coordinates (t, x), “sym-

metry-preserving” means the following: for D-branes the associated boundary conditions

(say, at x = 0) are such that W (r)(t, 0) = W̃ (r)(t, 0), while orientifolds should be associated

with parity symmetries that map W (r)(t, x) to W̃ (r)(t,−x).

2.1.1 Constraints on boundary/crosscap coefficients

A Wick rotation followed by a 90◦ rotation show that the boundary and crosscap states

obey

(W (r)
n − (−1)srW̃ (r)

−n)|B〉 = 0 , (2.6)

(W (r)
n − (−1)sr+nW̃ (r)

−n)|C 〉 = 0 . (2.7)

The basic set of solutions to these equations was found by Ishibashi [24]. Let us denote

by {|i,N〉}N an orthonormal basis of the representation Hi. Equations (2.6) and (2.7) are

solved respectively by

|B, i〉〉 :=
∑

N

|i,N〉 ⊗ U |i,N〉 , (2.8)

|C , i〉〉 := eπi(L0−hi)|B, i〉〉 . (2.9)

It follows from the definition that

〈〈B, i| e2πiτHc |B, j〉〉 = δi,jχi(2τ) , (2.10)

〈〈C , i| e2πiτHc |C , j〉〉 = δi,jχi(2τ) , (2.11)

〈〈B, i| e2πiτHc |C , j〉〉 = δi,jχ̂i(2τ) , (2.12)

where Hc = L0 + L̃0 − c/12 and χ̂i(τ) = e−πi(hi−c/24)χi(τ +
1
2 ). The actual boundary and

crosscap states are linear combinations of these Ishibashi-states:

|Bα〉 =
∑

i

nαi|B, i〉〉 ,

|Cµ〉 =
∑

i

γµi|C , i〉〉 . (2.13)

Here α and µ are the labels for the boundary conditions and parity symmetries. We first

assume that the parity symmetries are involutive P 2
µ = 1. (We will later treat those that
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are not involutive.) A set of constraints on the coefficients nαb and γµb are found by using

the loop/tree channel duality (2.1)–(2.3):

TrHα,β
e2πiτHo = 〈Bα| e−

πi
τ
Hc |Bβ〉 , (2.14)

TrHgµν
Pν e

2πiτHc = 〈Cµ| e−
πi
2τ
Hc |Cν〉 , (2.15)

TrHα,µ(α)
Pµ e

2πiτHo = 〈Bα| e−
πi
4τ
Hc |Cµ〉 , (2.16)

where gµν is the internal symmetry PµP
−1
ν that commutes with the chiral algebra A⊗A,

and µ(α) is the Pµ-image of the boundary condition α.

Since the diagonal symmetry A is preserved by the boundary conditions α and β, open

string states fall into a sum of irreducible representations

Hα,β =
⊕

i

niαβHi (2.17)

on which Ho acts as L0 − c/24, where niαβ are non-negative integers. Using (2.10), (2.14)

is expressed as
∑

i

niαβχi(τ) =
∑

i

n∗αinβiχi

(
−1

τ

)
. (2.18)

For a symmetry g that commutes with the chiral algebra A ⊗ A, the space Hg of

g-twisted closed string states can be decomposed into the representations of A⊗A,

Hg =
⊕

ij

hijg Hi ⊗Hj , (2.19)

where hijg are non-negative integers. Note that Pν transforms the g-twisted boundary con-

dition into the τνg
−1τ−1

ν -twisted boundary condition. Since Pν is a symmetry-preserving

parity, PνW
(r)
n = W̃

(r)
n Pν , it acts on the closed string states essentially by the exchange of

the left and right factors. To be more precise, it maps the subspace hijg Hi ⊗Hj of Hg to

a subspace of Hτνg−1τ
−1
ν

as

Pν : ξ ⊗ u⊗ v ∈ Chijg ⊗Hi ⊗Hj 7→ Kij
ν (g)ξ ⊗ v ⊗ u ∈ C

hji
τνg−1τ

−1
ν ⊗Hj ⊗Hi , (2.20)

where K ij
ν (g) is a matrix acting on the multiplicity space Chijg ∼= C

hji
τνg−1τ

−1
ν . (Note that it

has to be the case that hijg = hji
τνg−1τ

−1
ν

.) P 2
ν = 1 requires Kji

ν (τνg
−1τ−1

ν )Kij
ν (g) = 1. In

particular, K ii
ν (gµν) is a matrix that squares to 1 and therefore its eigenvalues must be ±1.

Thus, using (2.11), (2.15) is expressed as

∑

i

kiµνχi(2τ) =
∑

i

γ∗µiγνiχi

(
− 1

2τ

)
, (2.21)

where kiµν = trK ii
ν (gµν). Since K ii

ν (gµν) squares to 1, the number kiµν must be an integer

such that |kiµν | ≤ hiigµν and kiµν ≡ hiigµν mod 2.

Let us next consider the action of Pµ on open string states. Since it exchanges the left

and right boundaries of the string, the symmetry-preserving condition becomes PµW
(r)
n =

– 7 –
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(−1)nW (r)
n Pµ. It therefore has to transform the subspace H

⊕niαβ
i of Hα,β to a subspace of

Hµ(β),µ(α) as

Pµ : η ⊗ u ∈ Cniαβ ⊗Hi 7→M i
αβ,µη ⊗ eπi(L0−hi)u ∈ Cni

µ(β)µ(α) ⊗Hi ,

where M i
αβ,µ is a matrix acting on Cniαβ . (Note that niαβ must be equal to niµ(β)µ(α) for

any i.) P 2
µ = 1 requires M i

µ(β)µ(α)M
i
αβ,µ = 1. In particular, the eigenvalues of the matrix

M i
αµ(α) have to be ±1. Using this, we can rewrite (2.16) as

∑

i

mi
α,µχ̂i(τ) =

∑

i

n∗αiγµiχ̂i

(
− 1

4τ

)
, (2.22)

where mi
αµ = trM i

αµ(α),µ. For P 2
µ = 1, the number mi

αµ must be an integer such that

±mi
αµ ≤ niαµ(α) and mi

αµ ≡ niαµ(α) mod 2.

We have found the constraints (2.18), (2.21) and (2.22). At this stage, we use the

modular transformation property of characters

χj

(
−1

τ

)
=
∑

i

χi(τ)Sij ,

χj(τ + 1) =
∑

i

χi(τ)Tij ,

χ̂j

(
− 1

4τ

)
=
∑

i

χ̂i(τ)Pij ,

where

P =
√
T ST 2S

√
T , (2.23)

in which
√
T ij = δi,j e

πi(hi− c
24

). Here we are in the standard convention, STS = T −1ST−1.

The three constraints can then be rewritten as

niαβ =
∑

j

n∗αjnβjSij , (2.24)

kiµν =
∑

j

γ∗µjγνjSij , (2.25)

mi
αµ =

∑

j

n∗αjγµjPij , (2.26)

where niαβ, k
i
µν and mi

αµ are integers such that

• niαβ ≥ 0 ,

• − hiigµν ≤ kiµν ≤ hiigµν , kiµν ≡ hiigµν (mod 2) ,

• − niαµ(α) ≤ mi
αµ ≤ niαµ(α) , mi

αµ ≡ niαµ(α) (mod 2) , (2.27)

where hijg is the multiplicity of Hi ⊗Hj in the space Hg of the g-twisted closed string

states.
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2.1.2 Cardy-PSS solution

A simple solution to the above constraints that applies to all RCFTs has been found by

Cardy [23] for boundary states and by Pradisi-Sagnotti-Stanev [15] for a crosscap state.

Cardy’s boundary conditions carry the same labels as the representations {i}. The

coefficients nij and the multiplicities nkij are given in terms of the modular S-matrix and

the fusion coefficients:

nij =
Sij√
S0j

, (2.28)

nkij = Nk
ıj. (2.29)

The constraints (2.24) translate into the Verlinde formula [29].

PSS have found a crosscap state that corresponds to a parity symmetry transforming

the Cardy boundary states as

P0 : i 7→ ı . (2.30)

We label this state by “0” for a reason that will become clear shortly. The coefficients γ0i
and the numbers ki00, m

j
i0 are given by

γ0i =
P0i√
S0i

, (2.31)

ki00 = Y 0
i0 , (2.32)

mj
i0 = Y 

ı0 , (2.33)

where Y k
ij is defined by

Y k
ij =

∑

l

SilPjlP
∗
kl

S0l
. (2.34)

It is straightforward to show that the constraints (2.25) and (2.26) are satisfied for the

PSS crosscap state. To see that they obey (2.27), we first note that g00 = 1 and therefore

hiig00 = hii = δi,ı because H1 = H = ⊕iHi ⊗Hı. The conditions (2.27) therefore require

ki00 = ±δi,ı. Also, since njiP (i) = njiı = N 
ıı, the number mj

i0 must be an integer such that

|mj
i0| ≤ N 

ıı and mj
i0 ≡ N 

ıı (mod 2). These constraints are obeyed by the above solution

because of Bantay’s relation [26].

|Y j
i0| ≤ N j

ii ,

Y j
i0 ≡ N j

ii mod 2 . (2.35)

Indeed the condition on mj
i0 = Y 

ı0 is nothing but Bantay’s relation. The condition on

ki00 = Y 0
i0 also follows from this since N 0

ii = δi,ı.

The number Y 0
i0 (which is ±1 if i = ı and 0 otherwise) is a CFT analog of the Frobenius-

Schur indicator for the theory of group representations.2

2The Frobenius-Schur indicator of an irreducible representation R of a finite group G is defined to be

+1 in the case when R is real, 0 when R is complex and −1 when R is pseudo-real.
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2.1.3 Dressing by discrete symmetries

If an RCFT has a discrete symmetry of a certain type, one can find additional parity

symmetries together with the corresponding crosscap states.

Let G be the finite abelian group generated by the simple currents {g}. We recall

that a simple current g is a representation such that the fusion product of g with any

representation i contains only one representation, which we denote by g(i). Let us introduce

the number

Qg(i) = hi + hg − hg(i) mod 1 . (2.36)

The map g 7→ e2πiQg(i) defines for each i a homomorphism G → U(1) (some of the prop-

erties of Qg(i) are summarized in appendix B). We can thus define a representation of G

on the Hilbert space H in such a way that g acts by the phase multiplication e2πiQg(i)×
on the subspace Hi ⊗Hı. The Cardy state |Bi〉 is mapped by g as

|Bi〉 =
∑

j

Sij√
S0j
|B, j〉〉 g7→

∑

j

Sij√
S0j

e2πiQg(j)|B, j〉〉 =
∑

j

Sg(i)j√
S0j
|B, j〉〉 = |Bg(i)〉 , (2.37)

where we have used Sg(i)j = e2πiQg(j)Sij.

We now find new parity symmetries Pg that act on H as g ◦ P0. It follows from (2.30)

and (2.37), that these parities should map the Cardy branes as

Pg : i 7→ g(ı) . (2.38)

The crosscap coefficients and the numbers kig1g2 , m
j
ig are given by

γgi =
Pgi√
S0i

, (2.39)

kig1g2 = Y g1
ig2
, (2.40)

mj
ig = Y 

ıg . (2.41)

It is easy to show that this solves the constraints (2.25) and (2.26) [15, 16]. The Y-tensors

can be rewritten as

Y g1
ig2

= eπi(Q̂g2 (g
−1
2 g1)−2Qg2 (i))Y

g−12 g1
i0 , Y 

ıg = eπi(Q̂g(g−1())−2Qg(ı))Y
g−1()
ı0 , (2.42)

where Q̂g(i) := hi + hg − hg(i) (not just modulo integers). Since eπi(Q̂g(b)−2Qg(a)) = ±1 if

Y b
a0 6= 0, the integrality of kig1g2 and mj

ig is also satisfied.

In order to show that the last constraint (2.27) is satisfied, we need to find the mul-

tiplicities hiig12 and njiPg(i), where g12 = P1P
−1
2 = g1g

−1
2 and Pg(i) = g(ı) by (2.38). The

space of g-twisted closed string states is given by Hg = ⊕iHi ⊗Hg(ı) (see appendix C.1),

and therefore hiig = δi,g(ı). Thus, (2.27) requires kig1g2 = ±δi,g1g−12 (ı). We note that

N
g−12 g1
ii = N0

ig−11 g2(i)
= δı,g−11 g2(i)

= δi,g1g−12 (ı), and hence Y
g−12 g1
i0 = ±δi,g1g−12 (ı) using Bantay’s

relation (2.35). This indeed shows that kig1g2 = Y g1
ig2

= ±Y g−12 g1
i0 = ±δi,g1g−12 (ı). On the other

hand, the open string multiplicity is njig(ı) = N 
ıg(ı) = N

g−1()
ıı . Then the claimed solution

mi
ig = ±Y

g−1()
ı0 obeys the last condition of (2.27), again due to Bantay’s relation (2.35).
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2.1.4 Summary

We have found D-branes Bi and parity symmetries Pg (g ∈ G ), which preserve the diagonal

symmetry A ⊂ A⊗A. The corresponding boundary and crosscap states are given by

|Bi〉 =
∑

j

Sij√
S0j
|B, j〉〉 , (2.43)

|CPg〉 =
∑

i

Pgj√
S0j
|C , j〉〉 . (2.44)

The cylinder, Klein bottle and Möbius strip amplitudes are given by

TrHi,i′
e2πiτH = 〈Bi| e−

πi
τ
H |Bi′〉 =

∑

j

N 
ıi′χj(τ) , (2.45)

TrHgh−1
Ph e

2πiτH = 〈Cg| e−
πi
2τ
H |Ch〉 =

∑

j

Y g
jhχj(2τ) , (2.46)

TrHi,g(ı)
Pg e

2πiτH = 〈Bi| e−
πi
4τ
H |Cg〉 =

∑

j

Y 
ıgχ̂j(τ) , (2.47)

where a shorthand notation |Cg〉 for |CPg〉 has been used. We can simplify expression (2.45)

by using N 
ıi′ = N i

i′j . Also, taking the complex conjugate of (2.47) and using (Y j
ıg)

∗ = Y g
ij,

we have

TrHg(ı),i
Pg e

2πiτH = 〈Cg| e−
πi
4τ
H |Bi〉 =

∑

j

Y g
ijχ̂j(τ) . (2.48)

This can also be obtained from (2.47) by replacing i → g(ı) and using Y 

g(ı)g
= Y g

ij , which

can be derived by using P ∗
k = Pjk and e−2πiQg(k)Pgk = P ∗

gk.

2.2 Crosscaps in orbifolds

We have constructed parity symmetries together with the crosscap states for the charge-

conjugate modular invariant C. We now turn to the orbifold model C/G where G is a group

of simple currents, G ⊂ G . To define a consistent orbifold theory, G must have a symmetric

bilinear form q(g1, g2) with values in R/Z such that

Qg1(g2) = 2q(g1, g2) mod 1 , (2.49)

and q(g, g) = −hg. The orbifold model we consider has modular invariant partition function

ZC/G =
1

|G|
∑

i,g1,g2

e2πi(Qg2 (i)−q(g2,g1))χi(τ)χg−11 (i)(τ) . (2.50)

We will find |G | symmetry preserving parities/crosscaps in 1-to-1 correspondence to the

number |G | of simple currents, just as in the original model C.
Let us first present the basic idea behind the construction of a crosscap state in the

orbifold model C/G for the parity symmetry that is induced by a parity P of the original
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model C. The twisted partition function with respect to the induced parity, denoted again

by P , is expressed as

TrHC/G Pq
H =

∑

g1∈G
TrHg1



(

1

|G|
∑

g2∈G
g2

)
PqH


 , (2.51)

where the first sum is over the G-twisted spaces and 1
|G|
∑

g2∈G g2 is the projection onto the

subspace of G-invariant states. Let us rearrange the sum as (1/|G|)∑g1,g2
TrHg1

g2Pq
H ,

and make a replacement g1 → g1g
−1
2 . At this point we recall from (2.2) that

TrH
g1g

−1
2

(g2Pq
H) = C〈Cg1P |qHt |Cg2P 〉C ,

where the superscript shows that the state |−〉C is in the theory C. Then, we find

TrHC/G Pq
H =

1

|G|
∑

g1,g2

C〈Cg1P |qHt |Cg2P 〉C . (2.52)

This implies that the crosscap state for the induced parity P is given by

|CP 〉C/G =
1√
|G|

∑

g∈G
|CgP 〉C . (2.53)

2.2.1 PSS parities induced on orbifold models

We would like to apply this construction by identifying P as one of the parity symmetries

of C obtained in the previous section, say the original PSS parity P0. We know that gP0

is equal to Pg at least in the action on the untwisted states HC and we know the crosscap

states for all Pg. Thus, (2.53) appears to be an ideal formula for constructing a crosscap

state in the orbifold theory. However, one has to be careful when identifying P0 as P and

Pg as gP0. The subtleties are:

(i) P may differ from P0 in the action on the twisted Hilbert space Hg by a g dependent

phase.

(ii) Pg and g ◦P0 may differ in the action on the twisted Hilbert space Hg′ by a g and g′

dependent phase.

Let us first examine (ii). Using kig1g2 in (2.40) and the g2-action on Hg1 in (C.8), it is

straightforward to find

Pg2 = eπi(Q̂g2 (g1)−2q(g2,g1))g2P0 on Hg1 . (2.54)

To accommodate the possibility (i) we suppose that P and P0 are related as

P = eπiθ(g)P0 on Hg . (2.55)
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Then the above procedure is modified as follows

TrHC/G Pq
H =

1

|G|
∑

g1,g2

TrHg1
g2Pq

H

=
1

|G|
∑

g1,g2

eπiθ(g1) e−πi(Q̂g2 (g1)−2q(g2,g1)) TrHg1
Pg2q

H

=
1

|G|
∑

g1,g2

eπiθ(g1) e−πi(Q̂g2 (g1)−2q(g2,g1))C〈CPg1g2
|qHt |CPg2

〉C . (2.56)

We would like the phase on the r.h.s. to be of the form e−iωg1g2+iωg2 , so that the partition

function can be expressed as 〈−|qHt |−〉, where

|−〉 = 1√
|G|

∑

g

eiωg |CPg〉C .

Thus, we need to have

eπi(θ(g1)−Q̂g2 (g1)+2q(g2,g1)) = e−iωg1g2+iωg2 .

Setting g2 = 1 we find eπiθ(g) = e−iωg+iω1 . Inserting this relation, we find the constraint

on θ(g):

θ(g1g2) = θ(g1) + θ(g2)− Q̂g2(g1) + 2q(g2, g1) mod 2 . (2.57)

For each solution θ(g) to this constraint, we find the crosscap state

|CP θ〉C/G =
eiω1√
|G|

∑

g∈G
e−πiθ(g)|CPg〉C . (2.58)

Let us count the number of solutions to (2.57). If we find one solution, θ∗(g), the other

solutions take the form θ∗(g) + ∆θ(g), where ∆θ(g) obey the homogeneous equation

∆θ(g1g2) = ∆θ(g1) + ∆θ(g2) mod 2. Note that g → eiπ∆θ(g) defines a representation

of the group G into U(1). Since there are |G| such representations, we find that eq. (2.57)

has |G| solutions.
We could have chosen another P in this construction. In the above, P was equal to P0

when acting on the untwisted Hilbert space. Replacing P0 here by Pg1 does nothing new if

g1 ∈ G, since the average over G will be taken. However, replacing P0 by Pg′ with g
′ ∈ G \G

will make a difference. Repeating the above procedure, we find parity symmetries of the

orbifold theory induced from such a P . There are |G| of them: one for each solution θ(g)

of (2.57) which acts on the states as

P θ
g′ = eπi(θ(g)−Q̂g′ (g))Pg′ on Hg , (2.59)

and has the crosscap state

|CP θ
g′
〉C/G =

eiωg′√
|G|

∑

g∈G
e−πi(θ(g)−Q̂g′ (g))|CPgg′ 〉

C . (2.60)

Again, replacing g′ by g′g1 with g1 ∈ G makes no difference.
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To summarize, for each P we find |G| parities from the choice of solutions to (2.57),

and there are |G /G| choices for P itself. Thus, we have found as many parity symmetries

as

|G| × |G /G| = |G | .

The square of P θ
g′. The parity symmetries obtained this way are not necessarily invo-

lutive. Since Pg′ is involutive, the square of P θ
g′ is given by

(P θ
g′)

2 = e2πi(θ(g)−Qg′ (g)) × on Hg. (2.61)

We note that θ(g) obeys θ(g1g2) = θ(g1) + θ(g2) modulo 1, since Q̂g1(g2) − 2q(g1, g2) is

an integer. Note also that Qg′(g1g2) = Qg′(g1) + Qg′(g2) modulo 1. Thus, we find that

g 7→ e2πi(θ(g)−Qg′ (g)) is a homomorphism of G to U(1), namely a character of G. Therefore,

(P θ
g′)

2 is a quantum symmetry of the orbifold model. In particular, the crosscap state

|CP θ
g′
〉 must be a state on the circle with the boundary condition twisted by this quantum

symmetry. This means, as shown in appendix C.4, that the state must transform under

the action of g as

|CP θ
g′
〉 g7−→ e2πi(θ(g)−Qg′ (g))|CP θ

g′
〉 , (2.62)

which can also be confirmed by a direct computation.

2.2.2 Boundary states in orbifolds

An idea to obtain D-branes in the orbifold model is to pick a D-brane i in the original

system and to take the “average” over the image branes g(i), g ∈ G. The corresponding

boundary states are given by

|B[i]〉C/G =
1√
|G|

∑

g∈G
|Bg(i)〉C . (2.63)

The normalization factor 1/
√
|G| is required for the open string partition function to count

the i-g(i) string just once. (A more careful treatment is required if g(i) = i for some g 6= id,

see below.) Since g|Bi〉 = |Bg(i)〉 (2.37), the state |B[i]〉C/G is G-invariant and belongs to

the Hilbert space HC/G. Obviously the brane B[i] is the same as B[g(i)].

Since the parities P θ
g′ are not involutive, but square to quantum symmetries (2.61), one

is motivated to consider the boundary states on the circle with twisted boundary condition.

Let gρ be the quantum symmetry associated with the character g 7→ e2πiρ(g). We claim

that the gρ-twisted boundary state for the brane B[i] takes the form

|B[i]〉C/Ggρ =
eiλ√
|G|

∑

g∈G
e−2πiρ(g)|Bg(i)〉C . (2.64)

Indeed, g ∈ G transforms it as

|B[i]〉C/Ggρ

g7−→ eiλ√
|G|

∑

g′∈G
e−2πiρ(g′)|Bgg′(i)〉C = e2πiρ(g)|B[i]〉C/Ggρ . (2.65)

As shown in appendix C.4, this means that |B[i]〉C/Ggρ is a state on the gρ-twisted circle.
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As mentioned above, when g(i) 6= i if g 6= 1 for some i, the argument has to be further

refined. This is known as “the fixed-point problem”. Resolved boundary states have been

constructed in [17, 30, 31, 32]. In this paper, we do not try to reproduce a general solution,

but will revisit the resolutions in the concrete models we consider later.

2.2.3 Constraints on discrete torsion

In general, there can be more than one models of orbifold C/G. We have chosen a particular

one with the partition function (2.50), but one could change the model by turning on

a “discrete torsion” [33]. This means adding an extra phase factor e2πie(g2,g1) for each

summand of (2.50), where e(g2, g1) is an antisymmetric bilinear form of G with values in

R/Z such that e(g, g) = 0. Let us see how this modifies the above story.

The discrete torsion shifts the bilinear form q as

q(g2, g1)→ q(g2, g1)− e(g2, g1) .

The argument above goes through without modification until (2.57), at which point one has

to be careful. We note that Q̂g2(g1) = hg2 + hg1 − hg1g2 is symmetric under the exchange

g1 ↔ g2. Thus, (2.57) is possible only if 2(q(g2, g1) − e(g2, g1)) is symmetric (mod 2).

Since q(g2, g1) is already symmetric, we find that 2e(g2, g1) has to be symmetric modulo

2, or e(g2, g1) has to be symmetric modulo 1. Since e(g2, g1) is antisymmetric at the same

time, it may appear that no discrete torsion is allowed. However, since − 1
2 ≡ 1

2 mod Z, a
symmetric form with 0 or 1

2 entries is at the same time antisymmetric modulo 1. Thus,

special types of discrete torsion are indeed allowed. We shall call them Z2 discrete torsions.

Remark 1. In general, choices are involved in finding a symmetric bilinear form q(g1, g2)

such that 2q(g1, g2) = Qg1(g2) mod 1 and q(g, g) = −hg. A different choice corresponds

exactly to the modification by a Z2 discrete torsion.

Remark 2. The restriction on the discrete torsion in orientifold models is not new, if

one recalls that the discrete torsion is a kind of B-field: type-I string theory projects out

the NS-NS B-field modes [35]. Furthermore, it is also known that special kinds of B-fields

(with period π) are allowed [36]. (See also [37])

Remark 3. It may appear natural to relate the Z2 discrete torsions to the group coho-

mology classes α ∈ H2(G,Z2) in the standard way: e2πie(g,h) = α(g, h)α(h, g)−1 . However,

unlike the ordinary case where both e2πie(g,h) and α(g, h) take values in U(1), it is not al-

ways true that the map α 7→ e2πie is one-to-one.3 Thus, just from the above consideration,

one cannot conclude that H2(G,Z2) characterizes the Z2 discrete torsion. However, there

is a claim [38] that this is indeed the case in certain models.

3Let A be an abelian group. Ext(G,A) = {α ∈ H2(G,A)|symmetric}, the kernel of the map α(g, h)→

ε(g, h) = α(g, h)α(h, g)−1, is the set of abelian extensions of G by A. It is trivial for A = U(1) but not

always for other A. For example Z4 and Z2 × Z2 are inequivalent Z2 extensions of Z2. (For a product

G = G1 ×G2× · · · ×Gs, Ext(G,A) ∼=
∏s

i=1Ext(Gi, A) (Cor 3.17 of [34]). Also Ext(Zn, A) = H2(Zn, A) =

A/An (Theorem 3.1 of [34]). Thus, if G has a Zn factor with n even, Ext(G,Z2) cannot be trivial.)
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2.3 New crosscaps from mirror symmetry

2.3.1 Twisting the symmetry by automorphisms

Let ω be an automorphism of the chiral algebra A that acts trivially on the Virasoro

subalgebra {Ln}. The space Hi acted on by A through ω, W : v → ω(W )v, can be viewed

as another representation Hω(i) of A. In other words, there is a unitary isomorphism

Vω : Hi →Hω(i) , (2.66)

such that ω(W ) = V −1
ω WVω.

The algebra A can be embedded into the symmetry algebra A ⊗ A as W 7→ W ⊗
1 + 1 ⊗ ω(W ). We can then consider D-branes and orientifolds that preserve such “ω-

diagonal” subalgebras [28, 39]. They are associated with boundary conditions such that

W (r)(t, 0) = ωW̃ (r)(t, 0) and parity symmetries that map W (r)(t, x) to ωW̃ (r)(t,−x). The

conditions on the corresponding boundary and crosscap states are twisted accordingly:

W̃
(r)
−n in (2.6) and (2.7) are replaced by ω(W̃

(r)
−n). The linear basis of solutions is given by

the “ω-type Ishibashi states”

|B, i〉〉ω = (Vω ⊗ id)|B, ω−1(i)〉〉 , (2.67)

|C , i〉〉ω = (Vω ⊗ id)|C , ω−1(i)〉〉 = eπi(L0−hi)|B, i〉〉ω , (2.68)

which are sums of elements in Hi ⊗H
ω−1(i)

. These states have the same mutual inner-

products as the ordinary Ishibashi states (2.10)–(2.12). Inner products of states with

different ω’s (say ω = 1 and ω 6= 1) are given in terms of so-called “twining characters”.

For instance,

〈〈B, j|qH |B, i〉〉ω =
∑

N,M

〈j,N |VωqL0−
c
24

∣∣ω−1(i),M
〉
〈j,N |qL0− c

24

∣∣ω−1(i),M
〉†

= δi,jδi,ω(i) trHi Vωq
2L0− c

12 = δi,jδi,ω(i)χ
(0)
j (2τ) . (2.69)

Boundary and crosscap states are linear combinations of the ω-type Ishibashi-states.

For boundary states, there is a long list of works that aim at determining the appropriate

linear combinations. For crosscaps, the same amount of investigation has not been done.

Here, we do not attempt to determine the appropriate combinations in full generality.

However, we will find that this can be done in the case where an orbifold is “mirror” to

the original (in the sense described below). The knowledge on the crosscaps for orbifolds

turns out useful here.

2.3.2 Mirror symmetry

An automorphism ω that conjugates the representations ω(i) = ı (any i) is called a mirror

automorphism. Two CFTs of symmetry algebra A⊗A are said to be mirror to each other

when they are equivalent as 2d quantum field theories and the action of W ⊗W ′ ∈ A⊗A
in one theory is mapped to the action of ω(W ) ⊗W ′ ∈ A ⊗ A in the other. Namely, if
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H1 and H2 are the Hilbert spaces of states of the two theories and Ψ is the isomorphism

between them, the following diagram commutes

H1
Ψ−−−→ H2yW⊗W ′

yω(W )⊗W ′

H1
Ψ−−−→ H2

(2.70)

On each A⊗A-irreducible subspace, the isomorphism Ψ acts as V −1
ω ⊗ id times a constant.

The two basic modular invariants — the charge conjugation modular invariant HC =

⊕iHi ⊗Hı and the diagonal modular invariant HD = ⊕iHi ⊗Hi — are mirror to each

other.

A typical example of mirror symmetry is T-duality. The sigma model on the circle

of radius R =
√
k1/k2 and the model of radius 1/R =

√
k2/k1, with k1, k2 integers, are

both RCFTs with chiral algebra U(1)k1k2 . T-duality between them is a mirror symmetry.

Another example is the level k SU(2)/U(1) gauged WZW model, which is the charge-

conjugate modular invariant of the level k parafermion algebra, and its orbifold by a Zk

symmetry group, which is the diagonal modular invariant. These examples will be studied

in detail later in this paper. A related example is the level k SU(2)/U(1) supersymmetric

gauged WZW model (Kazama-Suzuki model), which is the charge-conjugate modular in-

variant of the level k superparafermion algebra, and its orbifold by a Zk+2×Z2 symmetry

group, which is the diagonal modular invariant. This last example will be studied in detail

in [14]. In fact, in this example, the two theories are mirror in the standard sense: the iso-

morphism of the Hilbert spaces acts on the (2, 2) supersymmetry algebra via the standard

mirror automorphism.

2.3.3 A-branes/B-branes and A-parities/B-parities

In what follows, D-branes and parities that preserve the ordinary diagonal symmetry A ⊂
A⊗A shall be referred to as A-branes and A-parities. Cardy branes and PSS parities are

therefore A-branes and A-parities. For a mirror automorphism ω, D-branes and parities

that preserve the ω-diagonal symmetry shall be referred to as B-branes and B-parities. A-

branes and B-branes are exchanged under mirror symmetry, and so are A- and B-parities.

Let Ψ : H1 →H2 be a mirror isomorphism as above. If |B〉2 and |C 〉2 are the boundary and

crosscap states corresponding to an A-brane and an A-parity in “theory 2”, then Ψ−1|B〉2
and Ψ−1|C 〉2 correspond to a B-brane and a B-parity in “theory 1”. (The terminology

of “A-type” and “B-type” is the extension of the one used for N = 2 supersymmetric

theories [20, 14]. Mirror symmetry for orientifolds is used in [40] in that context.)

An RCFT C is sometimes mirror to one of its orbifold models, C/G, as in the three

examples mentioned above — rational U(1), SU(2)/U(1) coset model, and supersymmetric

SU(2)/U(1) model. In such a case, one can construct B-branes/B-parities in the model C
by applying the mirror isomorphism Ψ−1 to the A-branes/A-parities of the orbifold model,

which are in turn obtained by applying the orbifold technique developed in the literature

and in section 2.2.

To be specific, let C be the charge-conjugate modular invariant and C/G be the mirror

diagonal modular invariant. C/G has A-parities P θ
g′ with crosscap (2.60), labelled by the
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solutions θ to (2.57) and g′ ∈ G /G. Thus, C has B-parities P θ,g′

B whose crosscap states are

given by

|C
P θ,g′

B

〉 = Ψ−1|CP θ
g′
〉C/G . (2.71)

(Ψ−1 acts as Vω ⊗ 1, up to a phase multiplication.) B-parities obtained this way are not

in general involutive. We recall from (2.61) that the square of P θ
g′ is the multiplication by

e2πi(θ(g)−Qg′ (g)) on Hg = ⊕iHi ⊗Hg(ı). Since the orbifold model is the diagonal modular

invariant, only the subspaces with g(ı) = i remain in the spectrum of C/G. Thus, (P θ
g′)

2 =

e2πi(θ(g)−Qg′ (g)) on Hi⊗Hi such that g(ı) = i, or on Hı ⊗Hı such that g(i) = ı. Since the

mirror isomorphism Ψ−1 maps Hı ⊗Hı to Hi ⊗Hı, we find

(P θ,g′

B )2 = e2πi(θ(g)−Qg′ (g)) on Hi ⊗Hı ⊂ HC such that g(i) = ı. (2.72)

Here we are assuming that g(i) = ı uniquely fixes g. However, this is not always the case

if there are simple current fixed points. In such a case, we need to trace back in order to

see from which twisted sector comes the subspace Hı ⊗Hı in the orbifold theory.

3. Circle of radius R

The sigma model whose target space is S1 of radius R is described by a periodic scalar

field X ≡ X + 2πR. The algebra of oscillator modes αn and α̃n of X acts on the space of

states

H =
⊕

l,m∈Z
Hl,m , (3.1)

where the labels l andm on the Fock space Hl,m correspond to the momentum and winding

number, respectively. We denote by |l,m〉 ∈ Hl,m the lowest energy state annihilated by

the modes αn and α̃n with n > 0. The energy of this state is 1
2((

l
R )

2+(Rm)2)− 1
12 . There

are two U(1) symmetries

g
∆x

: |l,m〉 7→ e−il∆x/R|l,m〉, g̃
∆a

: |l,m〉 7→ e−imR∆a|l,m〉 . (3.2)

We interpret g
∆x

as the rotation of the circle, X → X +∆x. Under T-duality, the sigma

model on the circle of radius R is mapped to the model on the circle of radius 1/R. The

states and operators are mapped as follows

|l,m〉 → |m, l〉 , αn → −αn , α̃n → α̃n . (3.3)

The operation g̃
∆a

is interpreted as the rotation of the T-dual circle X ′ → X ′ +∆a.

3.1 D-branes

There are two kinds of D-branes — D1-branes and D0-branes associated with the Neumann

and Dirichlet boundary conditions on X respectively. We denote by Na the D1-brane with

Wilson line a, and by Dx the D0-brane located at X = x.

The Heisenberg algebra [αr, αr′ ] = rδr+r′,0 acts on open string states, where r ∈ Z for

N–N and D–D strings and r ∈ Z+ 1
2 for D–N and N–D strings. The Na1–Na2 string states
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are labelled by the momentum l ∈ Z and the state |l〉a1,a2 annihilated by αn>0 has the lowest

energy ( lR+ a2−a1
2π )2− 1

24 . We assume the identification |l〉a1,a2 = |l+p1−p2〉a1+ 2π
R
p1,a2+

2π
R
p2

for integers p1, p2. The Dx1–Dx2 string states are labelled by the winding number m ∈ Z
and the state |m〉x1,x2 annihilated by αn>0 has the lowest energy (Rm+ x2−x1

2π )2 − 1
24 . We

assume the identification |m〉x1,x2 = |m+ q1 − q2〉x1+2πRq1,x2+2πRq2 for q1, q2 ∈ Z.
Computing the partition function and performing the modular transform, we find the

boundary states for these branes:

|Na〉 =
√

R√
2

∑

m∈Z
e−iRam exp

(
−

∞∑

n=1

1

n
α−nα̃−n

)
|0,m〉, (3.4)

|Dx〉 =
√

1

R
√
2

∑

l∈Z
e−i

x
R
l exp

( ∞∑

n=1

1

n
α−nα̃−n

)
|l, 0〉 (3.5)

The D1-brane wrapped on a circle and the D0-brane in the dual circle are mapped to

each other under T-duality (3.3), where the Wilson line of a D1-brane is mapped to the

location of the D0-brane.

The rotation symmetries (3.2) act on the branes and the open string states as

g
∆x

:

{
Na → Na; |l〉a1 ,a2 7→ e−i∆x(

l
R
+

a2−a1
2π

)|l〉a1 ,a2 ,
Dx → Dx+∆x; |m〉x1,x2 7→ |m〉x1+∆x,x2+∆x,

(3.6)

g̃∆a :

{
Na → Na+∆a; |l〉a1 ,a2 7→ |l〉a1+∆a,a2+∆a,
Dx → Dx; |m〉x1,x2 7→ e−i∆a(Rm+

x2−x1
2π

)|m〉x1,x2 .
(3.7)

The extra phases, such as e−i
a2−a1
2π

∆x in (3.7), come from the parallel transport of the open

string boundary. Note that g2πR and g̃ 2π
R

act as the identity on the closed string states,

but not on the open string states for generic values of Wilson lines and positions. As a

consequence, the symmetry group is no longer U(1)×U(1) but R×R.

3.2 Z2 orientifolds

Let us consider the parities

Ω : X(t, σ) → X(t,−σ) , (3.8)

sΩ : X(t, σ) → X(t,−σ) + πR . (3.9)

These act on the states and branes as

Ω :





|l,m〉 → |l,−m〉
Na → N−a; |l〉a1,a2 → |l〉−a2 ,−a1
Dx → Dx ; |m〉x1,x2 → | −m〉x2,x1

(3.10)

sΩ :





|l,m〉 → (−1)l|l,−m〉
Na → N−a; |l〉a1,a2 → e−πi(l+

R(a1+a2)
2π

)|l〉−a2,−a1
Dx → Dx+πR; |m〉x1,x2 → | −m〉x2+πR,x1+πR

(3.11)
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The parity sΩ acts in the same way as gπRΩ on the closed string states as well as the

DD string states, but differs from it by an overall phase e−iRa1 in the action on the NN

string states. This is to make sΩ involutive (note that (gπRΩ)
2 = g2πR 6= 1 on NN string

states). Computing the partition functions and making the modular transform, we find

the following expressions for the crosscap states

|CΩ〉 =
√
R
√
2
∑

m′∈Z
exp

(
−

∞∑

n=1

(−1)n
n

α−nα̃−n

)
|0, 2m′〉 , (3.12)

|CsΩ〉 =
√
R
√
2
∑

m′∈Z
exp

(
−

∞∑

n=1

(−1)n
n

α−nα̃−n

)
|0, 2m′ + 1〉 . (3.13)

Applying T-duality to (3.10), (3.11) and (3.12), (3.13) in the system of radius 1/R, we

find two other parity symmetries

IΩ :





|l,m〉 → | − l,m〉
Na → Na; |l〉a1,a2 → | − l〉a2,a1
Dx → D−x ; |m〉x1,x2 → |m〉−x2,−x1

(3.14)

I ′Ω :





|l,m〉 → (−1)m| − l,m〉
Na → Na+ π

R
; |l〉a1,a2 → | − l〉a2+ π

R
,a1+

π
R

Dx → D−x ; |m〉x1,x2 → e−πi(m+
x1+x2
2πR

)|m〉−x2,−x1
(3.15)

with the crosscap states

|CIΩ〉 =

√√
2

R

∑

l′∈Z
exp

( ∞∑

n=1

(−1)n
n

α−nα̃−n

)
|2l′, 0〉 , (3.16)

|CI′Ω〉 =

√√
2

R

∑

l′∈Z
exp

( ∞∑

n=1

(−1)n
n

α−nα̃−n

)
|2l′ + 1, 0〉 . (3.17)

We see that they both correspond to the involution

X(t, σ)→ −X(t,−σ) . (3.18)

There are two orientifold fixed points of X → −X; one at X = 0 and another one at

X = πR. The difference between IΩ and I ′Ω arises, for instance, in the RP2 diagram:

〈0|CIΩ〉 =
√
R
√
2 whereas 〈0|CI′Ω〉 = 0. In a full string model that contains the circle

as one of the compactified dimensions, taking this overlap corresponds to determining the

total tension of the orientifold planes. The fact that the overlap for I ′Ω vanishes means

that the tensions of the orientifold planes located at the two fixed points have opposite

signs and cancel out. In string theory language, the orientifold located at one of the fixed

points is a O+-plane, the one at the other a O−-plane. For IΩ the tensions add up and

the two orientifold planes are of the same type.

This can be confirmed by comparing the action on the open strings stretched between

D0-branes. We consider D0-branes at the fixed points. The state |0〉0,0 is a state of the
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string ending on the D0-brane at X ≡ 0 without winding, whereas |1〉πR,−πR is a state of

the string ending on the D0-brane at X ≡ πR without winding. The action of the two

parities on these open string states are

IΩ :

{
|0〉0,0 → |0〉0,0,
|1〉πR,−πR → |1〉πR,−πR

I ′Ω :

{
|0〉0,0 → |0〉0,0,
|1〉πR,−πR → −|1〉πR,−πR

(3.19)

We see that the action of IΩ on the two string states is identical, while I ′Ω acts on them

with opposite signs. For IΩ orientifold, the orientifold planes at X = 0 and X = πR are

both of SO-type. For the I ′Ω orientifold, the orientifold plane at X = 0 is of SO-type and

the one at X = πR is of Sp-type.

Since I ′Ω is obtained from T-duality applied to sΩ, we have proved that the sΩ orien-

tifold is T-dual to the orientifold with Sp/SO mixture. This was observed in the context

of superstring theory in [41].

3.3 Combination with rotations I: involutive parities

One can combine the parity symmetries considered above and the rotation symmetries g
∆x

and g̃
∆a

. We first consider the combinations of the form gPg−1. They are involutive so

that the crosscap states belong to the ordinary space of states H. In fact, in order to find

the crosscap state we can use the recipe given in appendix D: g|CP 〉 = |CgPg−1〉.
Let us first consider the parity g

∆x
2

IΩg−1
∆x
2

, which is actually the same as g
∆x
IΩ. The

crosscap state is obtained by applying g
∆x/2

to |CIΩ〉:

|Cg
∆x

IΩ〉 =

√√
2

R

∑

l′∈Z
e−il

′∆x/R exp

( ∞∑

n=1

(−1)n
n

α−nα̃−n

)
|2l′, 0〉 . (3.20)

One can also consider g
∆x
2

I ′Ωg−1
∆x
2

. It is the same as g
∆x
I ′Ω in the action on the closed

string and N–N strings, but differs from it in the action on the D–D strings. We therefore

denote it as g̃
∆x
I ′Ω.

|C ˜g
∆x

I′Ω
〉 =

√√
2

R

∑

l′∈Z
e−i(l

′+ 1
2
)∆x/R exp

( ∞∑

n=1

(−1)n
n

α−nα̃−n

)
|2l′ + 1, 0〉 , (3.21)

Both g
∆x
IΩ and g̃

∆x
I ′Ω act on the free boson as

X(t, σ)→ −X(t,−σ) +∆x .

This action has two fixed points at X = ∆x
2 and X = ∆x

2 + πR. If we move ∆x from 0 to

2πR, under which the two fixed points are exchanged, the crosscap for IΩ comes back to

itself but the one for I ′Ω comes back with a sign flip. This is because the two orientifold

planes are of the same type for IΩ (both SO-type), while they are of the opposite type for

I ′Ω (one is SO-type and the other is Sp-type).
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We next consider the parity symmetries g̃
∆a

Ω = g̃
∆a
2

Ωg̃−1
∆a
2

and ˜̃g
∆a
sΩ := g̃

∆a
2

sΩg̃−1
∆a
2

.

The crosscap states for these parities are

|Cg̃
∆a

Ω〉 =
√
R
√
2
∑

m′∈Z
e−im

′R∆a exp

(
−

∞∑

n=1

(−1)n
n

α−nα̃−n

)
|0, 2m′〉 , (3.22)

|C˜̃g
∆a

sΩ
〉 =

√
R
√
2
∑

m′∈Z
e−i(m

′+ 1
2
)R∆a exp

(
−

∞∑

n=1

(−1)n
n

α−nα̃−n

)
|0, 2m′ + 1〉 . (3.23)

We note that g̃∆aΩ as well as ˜̃g∆asΩ change the Wilson line as a→ −a+∆a.

The symmetry g̃
∆a

commutes with the parities IΩ and I ′Ω, whereas g
∆x

commutes

with Ω and sΩ. Thus, there is no dressing of the form gPg−1 other than the ones considered

above.

3.4 Combination with rotation II: non-involutive parities

We can also consider parities that are not involutive. An example is g
∆x

Ω : X(t, σ) →
X(t,−σ) + ∆x, where (g

∆x
Ω)2 = g

2∆x
. The crosscap states for such a parity P are not

in the ordinary space of states but in the space of states with twisted boundary condition

determined by P 2. We note that the effect of the twisting by g
∆x

and g̃
∆a

is just to shift

the momentum and winding number by −R∆a
2π and − ∆x

2πR :

Hg
∆x

g̃
∆a

=
⊕

l∈Z−R∆a
2π

, m∈Z− ∆x
2πR

Hl,m . (3.24)

The Wilson line of a D1-brane is preserved under the rotation g∆x , while the position of

a D0-brane is preserved by g̃
∆a

. Thus one can consider the g
∆x

-twisted boundary state for

Na and the g̃
∆a

-twisted boundary state for Dx. Computing the twisted partition function

and making the modular transform, we obtain the following expressions for these twisted

boundary states:

|Na〉g
∆x

=

√
R√
2

∑

m∈Z
e−iRam exp

(
−

∞∑

n=1

1

n
α−nα̃−n

)∣∣∣∣0,m−
∆x

2πR

〉
, (3.25)

|Dx〉g̃
∆a

=

√
1

R
√
2

∑

l∈Z
e−i

x
R
l exp

( ∞∑

n=1

1

n
α−nα̃−n

)∣∣∣∣l −
R∆a

2π
, 0

〉
. (3.26)

Note that these states change by a phase under ∆x → ∆x + 2πR and ∆a → ∆a + 2π
R

because of the parallel transport involved in the action of g
∆x

and g̃
∆a

.

The crosscap state for g∆xΩ consists of states in Hg2∆x
and is given by

|Cg
∆x

Ω〉 =
√
R
√
2
∑

m′∈Z
exp

(
−

∞∑

n=1

(−1)n
n

α−nα̃−n

)∣∣∣∣0, 2m
′ − ∆x

πR

〉
. (3.27)

The crosscap state for g̃
∆a
IΩ is a sum of states in Hg̃

2∆a
:

|Cg̃
∆a

IΩ〉 =

√√
2

R

∑

l′∈Z
exp

( ∞∑

n=1

(−1)n
n

α−nα̃−n

)∣∣∣∣2l
′ − R∆a

π
, 0

〉
. (3.28)
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Eq. (3.27) interpolates between the Ω crosscap and the sΩ crosscap. Recall that gπRΩ and

sΩ are the same except for the difference in the action on N–N string states by an overall

phase. The same can be said of (3.28).

One can also consider the parities g∆x g̃∆aΩ or g∆x g̃∆aIΩ. The crosscap states are given

by

|Cg
∆x

g̃
∆a

Ω〉 =
√
R
√
2
∑

m′∈Z
e−iR∆am

′

exp

(
−

∞∑

n=1

(−1)n
n

α−nα̃−n

)∣∣∣∣0, 2m
′ − ∆x

πR

〉
, (3.29)

|Cg
∆x

g̃
∆a

IΩ〉 =

√√
2

R

∑

l′∈Z
e−i

∆x
R
l′ exp

( ∞∑

n=1

(−1)n
n

α−nα̃−n

)∣∣∣∣2l
′ − R∆a

π
, 0

〉
. (3.30)

The crosscap for g∆x g̃∆aΩ is obtained by applying g̃∆a
2

to |Cg
∆x

Ω〉 and multiplying by the

phase e−i
∆a∆x
2π . The application of g̃∆a

2

is because g∆x g̃∆aΩ = g̃∆a
2

g∆xΩg̃
−1
∆a
2

. The extra

phase arises because g̃
∆a
|Na〉g

∆x
is not just |Na+∆a〉g

∆x
but has an extra phase ei

∆a∆x
2π .4

The same can be said of |Cg
∆x

g̃
∆a

IΩ〉.

4. Rational U(1)

Let us consider the case R =
√
k for a positive integer k. We can now use two approaches

to construct D-branes and orientifolds: on the one hand, we can insert the special value

of R in the formulae worked out in the previous section. On the other hand, the boson

at this particular radius is described by a rational conformal theory, so that the methods

developed in section 2 can be applied. Needless to say, the two approaches lead to the

same results.

Let us briefly review the basic structure of the rational conformal field theory descrip-

tion, and in particular collect the ingredients for the construction of section 2. At the radius

R =
√
k, the system has two copies of chiral algebra A = U(1)k. One copy is generated by

the spin 1 and spin k currents

J =
√
k(∂t − ∂σ)X and W± = e±2i

√
kXR ,

while the other copy is generated by

J̃ = −
√
k(∂t + ∂σ)X and W̃± = e∓2i

√
kXL .

SinceW± has J -charge ±2k, the representation of U(1)k is labelled by a modulo 2k integer,

n, and the representation space is denoted by Hn. Note that the state |l,m〉 of momentum

l and winding number m has (J, J̃)-charge (l − km,−l − km). Thus, one may relabel the

states as

|l,m〉 = |l − km〉 ⊗ | − l − km〉 = |n+ 2kp〉 ⊗ | − n− 2kp̃〉 ,
4In fact, g

2∆x
〈Na|q

Hc |Cg
∆x

g̃
∆a

Ω〉 should be the same as g
2∆x

〈Na−∆a
2
|qHc |Cg

∆x
Ω〉. The claimed con-

struction of |Cg
∆x

g̃
∆a

Ω〉 follows because g
2∆x

〈Na−∆a
2
| = e−i

∆a∆x
2π g

2∆x
〈Na|g̃∆a

2

.
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where we have made the reparametrization l = n+ k(p+ p̃) and m = −p+ p̃. If l and m

run over integers, then (n, p, p̃) runs over Z2k⊕Z⊕Z. Thus, the space of states is given by

H =
⊕

l,m

Hl,m =
⊕

n∈Z2k
Hn ⊗H−n .

The primary states are labelled by a mod 2k integer, n ∈ Z2k, and the fusion rules are

simply given by the addition modulo 2k. We choose the range n = −k + 1, . . . , k as a

fundamental domain for Z2k. For any integer n, we denote by n̂ the representative in this

fundamental domain. We also denote the addition of two labels n,m mod 2k by +̂, such

that n+̂m ∈ {−k + 1, . . . , k}. The conformal weight of the primary field with label n is

hn =
n̂2

4k
.

Modular matrices. The modular T and S matrices are

Tnn′ = δn,n′ e
πin2

2k
− iπ
12 , Snn′ =

1√
2k
e−

iπnn′

k . (4.1)

For orientifold constructions one needs in addition the P =
√
TST 2S

√
T and Y matrices.

In order to compute them, it is convenient to introduce related matrices that do not

involve
√
T :

Q = ST 2S (4.2)

and

Ỹ c
ab =

∑

d

SabQbdQ
∗
cd

S0d
=

√
Tc
Tb
Y c
ab . (4.3)

The absence of
√
T makes the computation easier, and we find

Qnn′ =
1√
k
e
πi
12 e−

iπ
4k

(n+n′)2 δ
(2)
n+n′+k ,

Ỹ n′′

nn′ = e−
πi
4k

(−n′′2+n′2) δ(2)n′+n′′

(
δ
(2k)

n+n′−n′′

2

+ (−1)n′+k δ(2k)
n+n′−n′′

2
+k

)
.

The P -matrix and Y -tensor are then found to be

Pnn′ = δ
(2)
k+n+n′

1√
k
e−πi

n̂n̂′

2k , (4.4)

Y n′′

nn′ = δ
(2)
n′+n′′

(
δ
(2k)

n+ n̂′−n̂′′

2

+ (−1)n′+k δ(2k)
n+ n̂′−n̂′′

2
+k

)
. (4.5)

Discrete symmetry. The group of simple currents is the group of primaries itself, G =

Z2k. The charge Qn(n
′) is given by

Qn(n
′) =

n2

4k
+

(n′)2

4k
− (n+ n′)2

4k
= −nn

′

2k
mod 1 .

Thus, we find a discrete symmetry group Z2k generated by an element g that acts on

Hn⊗H−n by phase multiplication e−πi
n
k×. In terms of the symmetries g∆x and g̃∆a, this

generator can be expressed as

g = gπR
k
g̃ π
R
, (4.6)

where R =
√
k is understood. One can also show that among g∆xg̃∆a the symmetries that

commute with the algebra U(1)k ⊗U(1)k are of the form g πRn
k
g̃πn

R
= gn for some n ∈ Z2k.
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T-duality. The T-dual model has radius 1/R = 1/
√
k = R/k, and can actually be

regarded as the orbifold by the groupG = Zk generated by g2πR/k = g2. As a representation

of the U(1)k⊗U(1)k algebra, the space of states is given by the diagonal modular invariant

HT−dual =
⊕

n

Hn ⊗Hn .

T-duality induces the mirror automorphism M : αn → −αn, and the map of states Ψ :

H → HT−dual is given by |l,m〉R 7→ |m, l〉 1
R
, which reads in the RCFT language as

Ψ = VM ⊗ 1 : |q〉 ⊗ |q̃〉 7→ | − q〉 ⊗ |q̃〉 .

4.1 A-parities

A-branes and A-parities correspond to the Cardy states and the PSS crosscaps

|Bn〉 =
1

(2k)
1
4

∑

n′∈Z2k
e−πi

nn′

k |B, n′〉〉 , (4.7)

|Cn〉 =
(2k)

1
4√
k

∑

n′∈Z2k
e−πi

n̂n̂′

2k δ
(2)
n+n′+k|C , n′〉〉 . (4.8)

To find out the geometrical meaning of these branes and parities, we express these

states in terms of the basis |l,m〉 labelled by momentum and winding number. We first

re-express Ishibashi states:

|B, n〉〉 =
∑

p∈Z
e
∑ 1

m
α−mα̃−m |n+ 2kp〉 ⊗ | − n− 2kp〉 =

∑

p∈Z
e
∑ 1

m
α−mα̃−m |n+ 2kp, 0〉 ,

|C , n〉〉 = eπi(L0−hn)|B, n〉〉 = e−πihn
∑

p∈Z
e
∑ (−1)m

m
α−mα̃−m eπi

(n+2kp)2

4k |n+ 2kp, 0〉 .

Then, the Cardy states are expressed as

|Bn〉 =
1

(2k)
1
4

∑

n′∈Z2k
e−πi

nn′

k

∑

p∈Z
e
∑ 1

m
α−mα̃−m |n′ + 2kp, 0〉

=
1

(2k)
1
4

∑

l∈Z
e−πi

nl
k e

∑ 1
m
α−mα̃−m |l, 0〉

= |DπRn
k
〉 . (4.9)

Thus, the n-th Cardy state is identified as the D0-brane located at the point X = 2πR n
2k

of the circle. To express the PSS crosscaps, it is convenient to use the Q-matrices,

|Cn〉 = eπi(hn−
1
12

)
∑

n′

Qnn′√
S0n′

eπiL0 |B, n′〉〉

= eπi(hn−
n2

4k
)

(
2

k

) 1
4 ∑

l′′∈Z
e−πi

n
k
(l′′+n+k

2
) e

∑ (−1)m

m
α−mα̃−m |2l′′ + n+ k, 0〉

=




|CgπRn

k
IΩ〉 (n+ k) even

|C ˜gπRn̂
k

I′Ω
〉 (n+ k) odd

(4.10)
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In the last step, we used the crosscap formulae (3.20) and (3.21) for the parity symmetries

studied in section 3. We see that the PSS parities are associated with reflections of the

circle. The n-th PSS parity has orientifold fixed points at the diametrically opposite

points, X = 2πR n
4k and X = 2πR n

4k + πR. For n even, the location of the orientifold

points coincides with the location of the Cardy branes Bn/2 and Bn/2+k. For n odd, the

fixed points are halfway between possible locations of Cardy branes. Furthermore, the two

orientifold points are both of the same type for n+k even, whereas they are of the opposite

type for n+ k odd.

We will now see how this information is encoded in the Y tensor of the RCFT. Us-

ing (4.5) it is straightforward to write down the A-type Möbius strips:

〈Cn|qHt |Bm〉 =
∑

n′

Y n
mn′ χ̂n′(τ) = ±χ̂n−2m(τ) ;

± =

{
1 if n̂− 2m = n̂− 2m mod 4k

(−1)n+k if n̂− 2m = n̂− 2m+ 2k mod 4k.
(4.11)

Since 〈Bm′ |qHt |Bm〉 =
∑

n′ N
m′

n′mχn′(τ) = χm′−m(τ), we see that the Pn-image of the Cardy

brane Bm is Bn−m. (Actually, this also follows from the general rule (2.38).) In particular,

for n even, the Cardy branes Bn/2 and Bn/2+k are left invariant, confirming that these

branes are located at the orientifold fixed points. The two cases in (4.11) are interchanged

under the shift m→ m+ k. In particular, the amplitude flips its sign under the exchange

Bm ↔ Bm+k if and only if n+ k is odd. We note that the Cardy branes Bm and Bm+k

are located at diametrically opposite points. In this way, the RCFT data encode the fact

that the crosscaps with n + k odd lead to orientifold projections of different types at the

two fixed points, whereas crosscaps for n+ k even give rise to the same projection.

For completeness, let us also write the Klein bottles, which are

〈Cn |Cl〉 =
∑

m

δ
(2)
n+l

(
δ
(2k)

m+n−l
2

+ (−1)k+n δ(2k)
m+n−l

2
+k

)
χm (4.12)

4.2 B-parities

We next study B-parities. To find B-crosscaps in our model, we first find A-crosscaps in

the mirror Zk-orbifold model, and then bring them back by the mirror map.

To find the A-crosscaps in the orbifold model, we apply the method of section 2.2. The

bilinear form q of the group G = Zk is uniquely fixed by the requirement q(n, n) = −hn =

−n2

4k (mod 1) and is given by

q(n,m) = −nm
4k

, n,m even . (4.13)

Note that it is well-defined, namely invariant (mod 1) under 2k shifts of n and m since

both of them are even. Note also that 2q(n,m) = −nm/2k = Qn(m) (mod 1) as required.

To write down the eq. (2.57) for θ, we first note that

−Q̂n(m) + 2q(n,m) = − n̂
2

4k
− m̂2

4k
+

(n+̂m)2

4k
− nm

2k

=
(n+̂m)2

4k
− (n̂+ m̂)2

4k
=
n+̂m

2
− n̂+ m̂

2
mod 2. (4.14)
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Thus, the equation is θ(n+m) = θ(n) + θ(m) + n+̂m
2 − n̂+m̂

2 and the solutions are

θl(n) =
n̂

2
+
nl

k
, l ∈ Z/kZ . (4.15)

Then, the crosscap states (2.58) and (2.60) are given by

|C
P
θl
0

〉 = eiω0√
k

∑

n:even

e−πi(
n̂
2
+nl

k
)|Cn〉 = eiω0(2k)

1
4 |C ,−2l − k〉〉.

|C
P
θl
1

〉 = eiω1√
k

∑

n:even

e−πi(
n̂
2
+nl

k
−Q1(n))|Cn+1〉 = eiω1+πi

̂2l+1+k
2k (2k)

1
4 |C ,−2l − 1− k〉〉 .

In the latter we have chosen n′ = 1 as the representative of the non-trivial element of

G /G = Z2k/Zk = Z2. The phases eiω0 and eiω1 can be tuned so that no phases appear in

front of the Ishibashi states.

B-parities in the original model are obtained from these by the mirror map. We denote

the mirror images of P θl
0 and P θl

1 by P 2l+k
B and P 2l+1+k

B respectively. Since the mirror map

Ψ−1 sends the Ishibashi states |C ,−n〉〉 to B-type Ishibashi states |C , n〉〉B , we find that

the crosscap states are given by

|CPn
B
〉 = (2k)

1
4 |C , n〉〉B . (4.16)

These parities are not necessarily involutive. Applying formula (2.72) we find that

(P n
B)

2 = g2n . (4.17)

The crosscap state (4.16) belongs to the space Hn ⊗Hn. Since n = 2n+ (−n) = g2n(n̄),

Hn⊗Hn = Hn⊗Hg2n(n̄) is a space of states with g2n-twisted boundary condition. Namely,

|CPn
B
〉 is a g2n-twisted state, which is consistent with (4.17).

Next, let us examine the geometrical interpretation of these parity symmetries. To

this end, we express the Ishibashi states in terms of the |l,m〉 basis.

|B, n〉〉B = (VM ⊗ 1)|B,−n〉〉 = (VM ⊗ 1)
∑

p∈Z
e
∑ 1

m
α−mα̃−m | − n+ 2kp〉 ⊗ |n− 2kp〉

=
∑

p∈Z
e−

∑ 1
m
α−mα̃−m |n− 2kp〉 ⊗ |n− 2kp〉 =

∑

p∈Z
e−

∑ 1
m
α−mα̃−m

∣∣∣0, 2p− n

k

〉
,

|C , n〉〉B = eπi(L0−hn)|B, n〉〉B = eπi(
n2

4k
−hn)

∑

p∈Z
e−πi(n+k)p e−

∑ (−1)m

m
α−mα̃−m

∣∣∣0, 2p − n

k

〉
.

Comparing the latter with the formula (3.29), we find that
∣∣∣∣Cg̃π(n+k)

R

gπRn
k

Ω

〉
= e−πi(

n2

4k
−hn)(2k)

1
4 |C , n〉〉B . (4.18)

The crosscap state (4.16) is equal to (4.18), up to an overall sign, which is + if we choose

n = n̂. Thus, we conclude that the RCFT parities are interpreted as

P n
B = gπRn̂

k
g̃π(n̂+k)

R

Ω . (4.19)

– 27 –



J
H
E
P
0
7
(
2
0
0
4
)
0
2
3

If n+ k is even, P n
B is equal to g πRn̂

k
Ω, which is simply the worldsheet orientation reversal

Ω followed by the n/2k rotation of the circle. If n + k is odd, g̃ π(n+k)
R

is non-trivial, and

PB is not just Ω followed by the n/2k rotation, but it acts by extra sign multiplication

on odd-winding states. Note that g πRn
k
g̃π(n+k)

R

= gng̃πk
R

and hence P n
B = gn̂g̃πk

R
Ω. Since

(g̃πk
R
Ω)2 = 1, this also explains (4.17).

4.2.1 Klein bottles

We record here the Klein bottle amplitudes:

TrH P
n
Bq

H = 〈CPn
B
| e− πi

2τ
H |CPn

B
〉 =
√
2kχn(−1/2τ)

=
∑

m

e−πi
mn
k χm(2τ) =

∑

m

e2πiQn(m)χm(2τ) . (4.20)

This indeed shows that P n
B = gnP 0

B on the closed string states. One could also consider

〈CPn+k
B
|qHt |CPn

B
〉, which is interpreted as TrH

gk
P n
Bq

H . This vanishes.

4.2.2 Möbius strips

Let us compute the Möbius strip amplitudes. Since P n
B are not in general involutive (4.17),

we need to find the boundary states on a circle with g2n-twisted boundary condition. They

are obtained via mirror symmetry from the twisted boundary states for the A-branes in

the orbifold model C/G.

To find the A-brane boundary states in the orbifold model, we use the method devel-

oped in section 2.2.2. The symmetry g2n in the original model is mapped to the quan-

tum symmetry in the orbifold model associated with the character ρn of G defined by

ρn(m) = mn/2k (m even). Applying formula (2.64) with i = n′ = 0, 1, we find

|B[n′]〉C/Gρn = eiλ+
πinn′

k

(
k

2

) 1
4

(|B,−n〉〉+ (−1)n′ |B,−n− k〉〉) . (4.21)

We choose the phase λ so that eiλ+
πinn′

k = 1. The (twisted) boundary states for B-branes

in the original model are obtained by applying the mirror map Ψ−1 to these states:

|BB
[n′]〉g2n =

(
k

2

) 1
4

(|B, n〉〉B + (−1)n′ |B, n+ k〉〉B) , n′ = 0, 1 . (4.22)

To find the geometrical meaning, we express them in terms of the |l,m〉 basis. Using

the expression for |B, n〉〉B obtained above, we find

|BB
[0]〉g2n =

√√
k√
2

∑

r∈Z
e−

∑ 1
m
α−mα̃−m |0, r − n

k 〉 = |N0〉g 2πRn
k

, (4.23)

|BB
[1]〉g2n =

√√
k√
2

∑

r∈Z
(−1)r e−

∑ 1
m
α−mα̃−m |0, r − n

k 〉 = |N π
R
〉g 2πRn

k

. (4.24)

Thus, BB
[0] is the D1-brane wrapped on S1 with trivial Wilson line, while BB

[1] is the D1-

brane with Wilson line π along the S1. Using the action of Ω, g∆x and g̃∆a on the D-branes

– 28 –



J
H
E
P
0
7
(
2
0
0
4
)
0
2
3

studied in section 3, we see that P n
B = gπRn̂

k
g̃π(n̂+k)

R

Ω maps the brane Na to N−a+π(n̂+k)
R

. In

particular, the B-branes BB
[0] and BB

[1] are invariant under P n
B with even n+ k, while they

are exchanged with each other under P n
B with odd n+ k.

Let us see how the RCFT data encode this information. It is straightforward to

compute the open string partition function Trab(g
2nqH) = g2n〈BB

[a]|qHt |BB
[b]〉g2n :

Tr00(g
2nqH) = Tr11(g

2nqH) =
∑

m: even

e−πi
mn
k χm(τ)

Tr01(g
2nqH) = Tr10(g

2nqH) =
∑

m: odd

e−πi
mn
k χm(τ) .

This shows that 0–0 and 1–1 string states have even charges under U(1)k and 1-0 and 0-1

string states have odd charges. (Also, g2n acts on the charge m representation as the phase

multiplication by e−πi
nm
k .) On the other hand, the Möbius strip amplitudes are

g2n〈BB
[a]|qHt |CPn

B
〉 =





∑

m: even

e−πi
n̂m̂
2k χ̂m(τ) n+ k even,

∑

m: odd

e−πi
n̂m̂
2k χ̂m(τ) n+ k odd,

(4.25)

for both a = 0, 1. They are to be identified with the twisted open string partition functions

Tr[a],Pn
B [a](P

n
Bq

H). For n + k even, only even charge states propagate, which means that

the brane BB
[a] is preserved under the parity P n

B . For odd n + k, only odd charge states

propagate, which means that BB
[0] is exchanged with BB

[1].

5. Parity symmetry of (gauged) WZW models

In this section, we study Parity symmetry of the WZW model on a group manifold G, and

the G mod H gauged WZW model in which the vectorial rotation g 7→ h−1gh is gauged.

We will focus on the case G = SU(2), the group of 2× 2 unitary matrices of determinant

1, and its diagonal subgroup H = U(1). We denote the Lie algebras of these groups as g

and h.

5.1 The models

Let Σ be a 1 + 1 dimensional worldsheet. The level k WZW action [42] for a map g : Σ→
SU(2) in a background gauge field A ∈ Ω1(Σ, g) is given by

Sk(A, g) =
k

8π

∫

Σ
tr
(
g−1Dµg g−1Dµg

)
d2x+

+
k

12π

∫

B
tr
(
g̃−1dg̃

)3 − k

4π

∫

Σ
tr
{
A(g−1dg + dgg−1) +Ag−1Ag

}
, (5.1)

where B is a 3-manifold bounded by the worldsheet, ∂B = Σ, g̃ is an extension to it, and

g−1Dµg := g−1∂µg + g−1Aµg −Aµ. Let us consider the chiral gauge transformation

g → h−1
1 gh2 ,

A+ → h−1
1 A+h1 + h−1

1 ∂+h1 ,

A− → h−1
2 A−h2 + h−1

2 ∂−h2 , (5.2)
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for any hi with values in G or its complexification Gc. (Here we used the light-cone

coordinate x± = t ± σ, with ∂± = ∂
∂x±

= 1
2 (∂t ± ∂σ).) This changes the action according

to the Polyakov-Wiegmann (PW) identity [43, 44]:

Sk(A, g)→ Sk(A
h1,h2 , h−1

1 gh2) = Sk(A, g) − Sk(A, h1h−1
2 ) . (5.3)

In particular, it is invariant under the vectorial transformations g → h−1gh,A→ h−1Ah+

h−1dh. The action Sk(A, g) can also be defined when A is a connection of a topologically

non-trivial G/ZG-bundle on Σ (where ZG is the center of G) and g is a section of the

associated adjoint bundle, so that the PW-identity still holds [45].

The level kWZWmodel is the theory of the variable g with the action Sk(g) = Sk(0, g).

As a consequence of the PW identity (5.3), the action Sk(g) is invariant under

g → h1(x
−)−1gh2(x

+) . (5.4)

The corresponding currents (X ∈ g),

Jn(X) =
−k
2πi

∫ 2π

0
tr
(
∂−gg

−1X
)
ein(t−σ)dσ , (5.5)

J̃n(X) =
k

2πi

∫ 2π

0
tr
(
g−1∂+gX

)
ein(t+σ)dσ , (5.6)

obey the SU(2) × SU(2) current algebra relations at level k. The Hilbert space of states

decomposes into the irreducible representations of this algebra ĝ⊕ ĝ. Only the integrable

representations V̂j = V̂ G,k
j appear, where the spin j ranges over the set Pk = {0, 12 , 1, . . . , k2}:

HG,k =
⊕

j∈Pk

V̂j ⊗ V̂j . (5.7)

The system is a conformal field theory with c = 3k
k+2 . The spin j ∈ Pk representation Vj of

SU(2) is included in V̂j as the space of Virasoro primary states with hj =
j(j+1)
k+2 , and the

matrix elements of g in Vj are the Virasoro primary fields corresponding to the states in

Vj ⊗ Vj ⊂ V̂j ⊗ V̂j. In particular, for spin 1
2 representation, we have the relation

g =

(
g11 g12
g21 g22

)
↔
(−|12 ,−1

2〉 ⊗ | 12 , 12 〉 −| 12 ,−1
2〉 ⊗ | 12 ,−1

2 〉
|12 , 12〉 ⊗ | 12 , 12〉 |12 , 12 〉 ⊗ | 12 ,−1

2〉

)
, (5.8)

where |j,m〉 is the basis of Vj with σ3/2 = m. The minus signs in (5.8) originate in the

relation va = εabvb defining the isomorphism V 1
2

∼= V ∨
1
2

. The relation for the higher spin

representations can be obtained from this by using the realization Vj = Sym2jV 1
2
.

Gauged WZW models. We next consider the SU(2) mod U(1) gauged WZW model.

This is the model with the action Sk(A, g) where A also varies over U(1) gauge fields. To be

precise, the gauge group H ∼= U(1) is the diagonal subgroup of SU(2) divided by the center

Z2 = {±1}. The model is a conformal field theory with the central charge c = 3k
k+2 − 1,
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which is known as the Zk parafermion system. Let us decompose the representation V̂j of

ĝ into the irreducible representations of the subalgebra ĥ generated by Jn(σ3);

V̂j =
⊕

n

Hj,n ⊗ V̂−n . (5.9)

The sum is over the eigenvalue of −J0(σ3), which are integers such that 2j+n is even. The

space Hj,n can be identified as the subspace of V̂j consisting of states obeying Jm(σ3) = 0,

m ≥ 1, and J0(σ3) = −n. The physical states of the G mod H model are the gauge

invariant states of the WZW model, which satisfy

Jm(v)|phys〉 = J̃m(v)|phys〉 = 0 , m ≥ 1, v ∈ h , (5.10)

(J0(v) + J̃0(v))|phys〉 = 0 , v ∈ h . (5.11)

The subspace of V̂j ⊗ V̂j obeying this condition can be identified as ⊕nHj,n ⊗ Hj,−n.
However, the space of states is not the whole sum of these spaces. Since the gauge group has

a non-trivial fundamental group π1(U(1)) = Z, there are large gauge transformations which

relate the physical states, acting on the labels as (j, n)→ ( k2 −j, n+k)→ (j, n+2k)→ · · ·.
The space of states is found by selecting one member from each orbit,

HG/H,k =
⊕

(j,n)∈PFk

Hj,n ⊗Hj,−n , (5.12)

where the sum is over

PFk =
{(j, n) ∈ Pk × Z; 2j + n even}

π1(U(1))
=
{(j, n) ∈ Pk × Z2k; 2j + n even}

(j, n) ≡ (k2 − j, n+ k)
.

The H-valued chiral rotations g → h1(x
−)−1gh2(x

+) commute with the gauge group

and shift the action according to the PW-identity (5.3):

Sk(A, h
−1
1 (x−)gh2(x

+)) = Sk(A, g) +
k

2π

∫

Σ
tr(FA log(h1h

−1
2 )) , (5.13)

where FA = dA is the curvature of the gauge potential A. For the constant h1, h2 with

h−1
1 = h2 = exp(iασ3/2), the shift is −kα × i

2π

∫
tr(FAσ3). Since tr((σ3/2)σ3) = 1, the

integral i
2π

∫
tr(FAσ3) is an integer on a compact space. Thus, the path-integral weight

eiSk(A,g) is invariant if kα ∈ 2πZ. Therefore, the system has a symmetry generated by

a : g → eπiσ3/kg eπiσ3/k . (5.14)

This is an order k symmetry since ( eπiσ3/k)k = eπiσ3 = −1 acts trivially on g. Thus the

system has an axial Zk symmetry. The “axial anomaly” U(1) → Zk can also be seen in

the operator formulation. The axial rotation g → eiασ3/2g eiασ3/2 acts on the Hj,n⊗Hj,−n
subspace as a multiplication by e−iα(−n)/2 × eiαn/2 = eiαn. However, it is consistent

with the field identification (j, n) ≡ ( k2 − j, n + k) only if αk ∈ 2πZ. The rotation (5.14)

acts on this subspace by multiplication by e2πin/k , which is indeed well-defined. The two

reasonings are of course related since the field identification originates from large gauge

transformations that produce topologically non-trivial gauge field configurations.
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A geometric picture can be given to the model. We parametrize the group element

and the gauge field by

g = ei(φ+t)σ3/2 eiθσ1 ei(φ−t)σ3/2 =

(
eiφ cos θ i eit sin θ,

i e−it sin θ e−iφ cos θ

)
, (5.15)

and A = i
2σ3aµdx

µ. The gauge transformation h = eiλσ3/2 acts on these variables as

t→ t− λ, aµ → aµ + ∂µλ. Integrating out the gauge field aµ, we obtain the sigma model

on the space with metric

ds2 = k
[
(dθ)2 + cot2 θ(dφ)2

]
. (5.16)

In terms of the complex coordinate z = eiφ cos θ, it is the disk |z| ≤ 1 with the metric ds2 =

k|dz|2/(1−|z|2). As discussed in [21], the string coupling appears to diverge at the boundary

|z| = 1, but it is simply because of the choice of variables. The Zk symmetry (5.14) acts

on the coordinates as the shift φ→ φ+ 2π/k, or equivalently z → e2πi/kz — the rotation

of the disk with angle 2π/k.

5.2 Parity symmetry of WZW models

The WZW action Sk(g) is not invariant under the simple Parity transformation

Ω : t→ t , σ → −σ , (5.17)

since the WZ term
∫
B tr(g̃−1dg̃)3 flips its sign. However, if Ω is combined with the trans-

formation

I : g → g−1 , (5.18)

it is invariant because g−1dg → gdg−1 → −g(g−1dg)g−1 yields an extra minus sign to

the WZ term. The kinetic term is of course invariant under both Ω and I. Thus, WZW

model has a Parity symmetry P = IΩ. Under this symmetry, the currents (5.5) and (5.6)

transform as

Jn(X) → J̃n(X) ,

J̃n(X) → Jn(X) . (5.19)

In particular, the right-moving highest weight state of spin j is mapped to a left-moving

highest weight state of spin j, and vice-versa. This shows that the Parity symmetry acts

on the states as the right-left exchange P : u⊗v 7→ ±v⊗u, up to the sign that may depend

on the spin j of the state. To fix the sign, we recall the field-state correspondence (5.8).

Since g → g−1 sends the spin 1
2 matrix elements as g11 ↔ g22, g12 → −g12 and g21 → −g21,

we find that the sign is −1 for j = 1
2 . The sign for higher j is (−1)2j , since Vj is realized as

the symmetric product of 2j copies of V 1
2
. Thus, we find that the action of P is given by

P : u⊗ v ∈ V̂j ⊗ V̂j 7−→ (−1)2jv ⊗ u ∈ V̂j ⊗ V̂j . (5.20)

The partition function with P -twist is

TrH(P e2πiτH) =
∑

j∈Pk

(−1)2jχj(2τ) , (5.21)

where τ is a positive imaginary number.
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Variants of the above involution I can be considered. One is an involution

I− : g → −g−1 . (5.22)

The model is invariant under P− = I−Ω, and the currents transform in the same way

as (5.19). Since P− is the composition of P and multiplication by the center −12, which
is represented as (−1)2j on V̂j , it acts on the states as

P− : u⊗ v ∈ V̂j ⊗ V̂j 7−→ v ⊗ u ∈ V̂j ⊗ V̂j . (5.23)

The P−-twisted partition function is given by

TrH(P
− e2πiτH) =

∑

j∈Pk

χj(2τ) . (5.24)

More general involutions are

I±g0 : g → ±g0g−1g0 , (5.25)

for any element g0 of G. Pg0 = I±g0Ω is also a Parity symmetry of the model. The currents

transform as

Jn(X) → J̃n(g0Xg
−1
0 ) ,

J̃n(X) → Jn(g
−1
0 Xg0) . (5.26)

Since Pg0 is the composition of P± and g → g0gg0 (where P+ := P ), it acts on the states as

P±
g0 : u⊗ v ∈ V̂j ⊗ V̂j 7−→ (∓1)2jg−1

0 v ⊗ g0u ∈ V̂j ⊗ V̂j . (5.27)

The twisted partition function is independent of g0 and reduces to (5.21) for P+
g0 and (5.24)

for P−
g0 .

5.3 Parity symmetry of gauged WZW models

Now, we study Parity symmetries of the SU(2) mod U(1) gauged WZW model.

Under the involution g → g−1, the covariant derivative is transformed as g−1Dµg →
−g(g−1Dµg)g

−1 with the gauge field A fixed. Thus, the kinetic term is invariant under

IA : (A, g) → (A, g−1) . (5.28)

On the other hand, the WZ term — second line of (5.1) — flips its sign under IA. Thus,

PA = IAΩ is a Parity symmetry of the gauged WZW model. Note that Ω exchanges the

± components of the gauge field: (ΩA)±(t, σ) = A∓(t,−σ). Another Parity is PB = IBΩ
where

IB : (A, g)→ (g−1
∗ Ag∗, g

−1
∗ g−1g∗), (5.29)

g∗ := iσ1 =

(
0 i

i 0

)
. (5.30)

Conjugation by g∗ preserves the U(1) subgroup, acting as g−1
∗ hg∗ = h−1. Thus, a U(1)

bundle with connection A is mapped to another U(1) bundle with connection −A. By
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PW-identity (5.3), we have kS(g−1
∗ Ag∗, g−1

∗ gg∗) = kS(A, g). Thus, g∗-conjugation is a

symmetry of the system. The Parity PB is obtained by combining PA with this symmetry.

Note that g∗ can be replaced by g∗h1 for any h1 ∈ H by a gauge transformation. The two

involutions IA and IB act on the disk coordinate z = eiφ cos θ as

IA : z → z , (5.31)

IB : z → z . (5.32)

In fact, up to the Zk axial rotations, these are the only Parity symmetry obtained by

starting from the involutions of SU(2) of the type g → ±g0g−1g0.

These Parity symmetries act on the states as

PA : u⊗ v ∈Hj,n ⊗Hj,−n 7−→ (−1)2jv ⊗ u ∈Hj,−n ⊗Hj,n , (5.33)

PB : u⊗ v ∈Hj,n ⊗Hj,−n 7−→ (−1)2jg∗v ⊗ g∗u ∈Hj,n ⊗Hj,−n . (5.34)

Here g∗u ∈ Hj,−n for u ∈ Hj,n is defined by considering u as an element of V̂j : if u is a

charge n highest weight state with respect to ĥ, then g∗u is a charge −n highest weight

state which can be regarded as an element of Hj,−n.
One can check that (5.33) and (5.34) are consistent with the field identification. Let

us start with PA. The problem is trivial if (j, n) is not equivalent to (j,−n) since one can

choose the phase of the states so that PA is compatible with the field identification. The

cases with (j, n) ≡ (j,−n) consist of (j, n) = (j, 0) and (j, n) = ( k4 ,±k
2 ). The case (j, 0) is

trivial for an obvious reason. Non-trivial is the latter case. Let u± = |k4 ,∓k
4 〉 ∈ V k

4
⊂ V̂ k

4

be the vector representing the primary state of H k
4
,± k

2
. The field identification identifies

the states u+ ⊗ u− ∈H k
4
, k
2
⊗H k

4
,− k

2
and u− ⊗ u+ ∈H k

4
,− k

2
⊗H k

4
, k
2
, up to a constant;

u+ ⊗ u− = εu− ⊗ u+ . (5.35)

Then, PA maps these states as

u+ ⊗ u− 7→ (−1) k2 u− ⊗ u+ = (−1) k2 ε−1u+ ⊗ u− ,
u− ⊗ u+ 7→ (−1) k2 u+ ⊗ u− = (−1) k2 εu− ⊗ u+ . (5.36)

These are indeed the same map, provided ε−1 = ε, or ε = ±1. Let us next consider the

action of PB on the ground state |0, 0〉 ⊗ |0, 0〉 in H0,0 ⊗ H0,0 which is identified with

the state |k2 , k2 〉 ⊗ |k2 ,−k
2 〉 in H k

2
,−k ⊗ H k

2
,k, up to some phase, say c. Now, g∗ sends

|j,m〉 → i2j |j,−m〉. Thus, PB maps these states as

|0, 0〉 ⊗ |0, 0〉 7→ |0, 0〉 ⊗ |0, 0〉 ,

c

∣∣∣∣
k

2
,
k

2

〉
⊗
∣∣∣∣
k

2
,−k

2

〉
7→ c(−1)kik

∣∣∣∣
k

2
,
k

2

〉
⊗ ik

∣∣∣∣
k

2
,−k

2

〉
.

Since (−1)kikik = 1, it is indeed compatible with the field identification.

Using (5.33)–(5.34), one can compute the twisted partition function. For PA, only

representations with (j,−n) ≡ (j, n) contribute. As we have seen above, these are (j, 0)
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with even j and ( k4 ,
k
2 ) (the latter is possible only when k is even). It is then easy to see

that

Tr(PA e2πiτH) =
∑

j:integer

χj,0(2τ) + δ
(2)
k ε(−1) k2χ k

4
, k
2
(2τ) , (5.37)

where ε is the constant that appears in the field identification (5.35), which we learned

to be a sign ±1. For PB , all the representations contribute. The trace on the subspace

Hj,n ⊗Hj,−n is

Trj,n(PB e2πiτH) =
∑

N,M

〈N | ⊗ 〈M |qH(−1)2jg∗|M〉 ⊗ g∗|N〉

=
∑

N,M

qEN (−1)2j〈N |g∗|M〉〈M |g∗|N〉 = TrHj,n
q2(L0−

c
24

)(−1)2jg2∗ ,

where {|N〉} and {|M〉} are the basis vectors of Hj,n and Hj,−n. We note here that g2∗ is

equal to −12 and thus acts on the spin j representation as (−1)2j . Thus, this contribution
is just χj,n(2τ) and the total trace is the sum over (j, n) ∈ PFk.

One could also consider parities combined with the axial rotation symmetry a`. Such

parities map the state u ⊗ v ∈ Hj,n ⊗Hj,−n as a`PA : u ⊗ v 7→ (−1)2j e− 2πi`n
k v ⊗ u and

a`PB : u⊗ v 7→ (−1)2j e 2πi`nk g∗v⊗ g∗u. Note that all a`PA are involutive but a`PB are not;

(a`PA)
2 = 1 , (a`PB)

2 = a2` . (5.38)

For a`PB , only the one with ` = 0 and ` = k
2 are involutive (the latter applies only when k

is even). This can also be understood from the geometrical point of view, a`IA : z → e
2πi`
k z

and a`IB : z → e
2πi`
k z. The twisted partition functions are

Tr(a`PA e2πiτH) =
∑

j:integer

χj,0(2τ) + δ
(2)
k ε(−1) k2 (−1)`χ k

4
, k
2
(2τ) , (5.39)

Tr(a`PB e2πiτH) =
∑

(j,n)∈PFk

e
2πi`n

k χj,n(2τ) . (5.40)

We recall that ε is some sign which has not been determined yet.

6. Parafermions: RCFT versus geometry

In this section, we describe the crosscap states of the SU(2)/U(1) coset model following

the general procedure given in section 2. Comparison with some of the results in section 5

will provide the geometric interpretation of the PSS and other parity symmetries. This is

also confirmed by using localized wave packets.

As a warm-up and for later use, we briefly review orientifolds of SU(2)k [15, 25, 46, 47]

and their geometrical interpretation.

6.1 Orientifolds of SU(2): summary of the RCFT

Following section 2, we collect the basic RCFT data. The S-matrix of the SU(2) theory is

given by the well known expression

Sjj′ =

√
2

k + 2
sinπ

(2j + 1)(2j ′ + 1)

k + 2
. (6.1)
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From this and ∆j =
j(j+1)
k+2 one computes the P -matrix

Pjj′ =
2√
k + 2

sinπ
(2j + 1)(2j ′ + 1)

2(k + 2)
· δ(2)2j+2j′+k (6.2)

With this, k+1 Cardy boundary states can be constructed, labelled by the integral highest

weight representations. It is by now well known [48, 49, 50] that the Cardy boundary state

|BJ〉 corresponds geometrically to a brane wrapping the conjugacy class CJ of SU(2)

containing the group element e2πiJσ3/k.

The simple current group of the model is Z2, and is generated by the sector labelled

k/2. Fusing k/2 with itself yields the identity representation. Hence, one can construct two

different crosscap states, the standard PSS state |C 〉 and a simple current induced state

|C k
2
〉. The geometrical interpretation of those crosscap states has been given in [52, 53, 51]:

the standard PSS crosscap corresponds to the involution I : g → g−1, whereas the simple

current induced crosscap corresponds to I− : g → −g−1.

In terms of the RCFT data, the Klein bottle amplitudes are obtained as

TrH(P e2πiτH) =
∑

j∈Pk

Y 0
j0χj(2τ) =

∑

j∈Pk

(−1)2jχj(2τ)

TrH(P
− e2πiτH) =

∑

j∈Pk

Y
k
2

j k
2

χj(2τ) =
∑

j∈Pk

χj(2τ) (6.3)

where we have used the fact that Y 0
j0 = (−1)2j and that Y

k
2

j k
2

= 1 for all j.

To construct and interpret the Möbius strips, one needs to know that

Y j
J0 = (−1)j(−1)2JN j

JJ and Y j

J k
2

= N j

J k
2
−J . With the help of these identities, one ob-

tains

〈C | e− πi
4τ
H |BJ〉 =

∑

j

Y j
J0χ̂j(τ) =

∑

j

N j
JJ(−1)2J (−1)j χ̂j(τ)

〈C k
2
| e− πi

4τ
H |BJ〉 =

∑

j

Y j

J k
2

χ̂j(τ) =
∑

j

N j

J k
2
−J χ̂j(τ) (6.4)

To make the connection to geometry for the first line, recall that I : g → g−1 acts as the

anti-podal map on the S2 wrapped by the brane. In the classical limit, the primary fields

living on the brane become functions on S2. More precisely, the algebra of functions on

S2 is spanned by the spherical harmonics Yj,m, j ∈ Z. Under reflection they transform

as Yj,m → (−1)jYj,m. This is exactly the action of P that one reads off from the Möbius

amplitude.

For the second line, observe that the spectrum of open string states in the Möbius

amplitude is exactly that of a brane J and its image k
2 − J under I−.

In this way, the CFT data encodes the geometry of the orientifold.
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6.2 Parafermions

We first review some basic facts on the SU(2)/U(1) coset model, as a rational conformal

field theory. The Hilbert space

H =
⊕

(j,n)∈PFk

Hj,n ⊗Hj,−n ,

decomposes into irreducible representations of the parafermion algebra. The conformal

weight of the primary field with label (j, n) is given by

hj,m =
j(j + 1)

(k + 2)
− n2

4k
(6.5)

if (j, n) is in the range j = 0, . . . , k/2 and −2j ≤ n ≤ 2j. We shall call the latter the

standard range (abbreviated by S.R.). Any label (j, n) can be reflected to the standard

range by field identification (j, n)→ ( k2 − j, n+ k).

Modular matrices. The S and T -matrices of the coset model have the factorized form

S(j,n)(j′,n′) = 2 Sjj′ S
∗
nn′ , T(j,n),(j′,n′) = Tjj′T

∗
nn′ , (6.6)

where it is understood that the matrices with pure j labels are those of the SU(2)k WZW

model, and matrices with pure n labels are those of U(1)k. Using this factorization property,

we find

N
(j′′,n′′)

(j,n)(j′,n′) = N j′′

jj′ δ
(2k)
n+n′,n′′ +N

k
2
−j′′

jj′ δ
(2k)
n+n′,n′′+k . (6.7)

We also need to determine P and Y . As a first step, it is useful to consider instead the

quantities Q = ST 2S and Ỹ defined by (4.2) and (4.3). The computation is easy since
√
T

is not involved and one can use the factorization (6.6). The result is

Q(j,n)(j′,n′) = Qjj′Q
∗
nn′ +Q k

2
−j,j′Q

∗
n+k,n′ , (6.8)

Ỹ
(j′′,n′′)
(j,n)(j′,n′)

= Ỹ j
jj′Ỹ

n′′

nn′ + Ỹ
k
2
−j

jj′ Ỹ
n′′+k

nn′ . (6.9)

From this, one can compute P =
√
TQ
√
T and Y c

ab =
√
Tb/TcỸ

c
ab.

Discrete symmetries. The group of simple currents of the model is Zk generated by

(0, 2). The monodromy charge of the field in the representation (j, n) under the simple

current (0, 2`) is

Q(0,2`)(j, n) =
`n

k
. (6.10)

Accordingly, there is a symmetry group Zk acting on the states as

a` : ψ(j,n) → e
2πi`n

k ψ(j,n) for ψ(j,n) ∈Hj,n ⊗Hj,−n , (6.11)

where we denote the generator of the group by a. This is in fact equivalent to the Zk axial

rotation symmetry of the gauged WZW model (5.14).
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Mirror symmetry. The orbifold by the full symmetry group Zk has the Hilbert space

of states

HM =
⊕

(j,n)∈PFk

Hj,n ⊗Hj,n , (6.12)

and can be regarded as the mirror of the original model. The mirror map Ψ : H → HM

acts on states as Ψ = VM ⊗ 1 : |j, n〉 ⊗ |j,−n〉 → |j,−n〉 ⊗ |j,−n〉.

6.3 A-type parities: RCFT and geometry

According to section 2, there are Cardy branes (A-branes) Bj,n labelled by the represen-

tation and PSS parities (A-parities) P` labelled by the simple currents. The branes are

transformed under the parities as (2.38), which reads

P` : Bj,n → Bj,2`−n . (6.13)

The crosscap state for the parity P` is

|C`〉 =
∑

(j,n)∈PFk

P(0,2`)(j,n)√
S(0,0)(j,n)

|C , j, n〉〉 . (6.14)

Explicit expressions for the A-type crosscap states can be found in the appendix. Of

particular interest is the coefficient of the identity (0, 0), since in a full string model this

coefficient would give rise to a contribution to the total tension of the orientifold plane. It

is given by

TOA
`
=





1

[(k+2)k]
1
4

cot
1
2

[
π

2(k+2)

]
k odd

1

[(k+2)k]
1
4

(
cot

1
2

[
π

2(k+2)

]
+ (−1)` tan 12

[
π

2(k+2)

])
k even

. (6.15)

For k odd, it is manifestly independent of ` — all the PSS orientifolds have the same

tension. For k even, there is an additional term that depends on ` mod 2. The latter is

consistent with the action of the Zk generator a on the crosscap states

a : |C`〉 → |C`+2〉 ;

which implies that orientifolds related by symmetry operations have the same mass, as

required. In the geometric limit of infinite k, the ` dependence drops out and we get equal

masses also for orientifolds that are not related by symmetry.

The Cardy formula yields the boundary states

|Bj,n〉 =
∑

(j′,n′)∈PFk

S(j,n)(j′,n′)√
S(0,0)(j′,n′)

|B, (j′, n′)〉〉 . (6.16)

whose tension is

TBj,n
=

√
2

[k(k + 2)]
1
4

sin π(2j+1)
k+2√

sinπ 1
k+2

, (6.17)

which is n-independent.
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6.3.1 The one-loop amplitudes

We next compute the cylinder, MS and KB amplitudes. Details are recorded in ap-

pendix F.3. The cylinder amplitude are

〈Bj1,n1 | e−
πi
τ
H |Bj2,n2〉 =

∑

2j+n even

N j
j1j2

δ
(2k)
n2−n1+nχj,n(τ). (6.18)

The Möbius strip with boundary condition Bj2,n2 is

〈C`| e−
πi
4τ
H |Bj2,n2〉 =

∑

2j+n even

N j
j2j2

δ
(2k)
2n2−2`+nεj,nχ̂j,n(τ) , (6.19)

where εj,n is a sign factor which is (−1) 2j+n2 , 1, (−1)n if (j, n), (k2−j, n+k), (k2−j, n−k) is in
the standard range, respectively. Comparison of (6.19) with (6.18) implies that the image

brane of Bj2,n2 is Bj2,2`−n2 , which is indeed correct (6.13). The Klein bottle amplitudes

are

〈C`1 | e−
πi
2τ
H |C`2〉 =

∑

2j+`1−`2 even
χj,`1−`2(2τ) + δ

(2)
k δ

(2)
`1,`2

(−1)`1χ k
4
, k
2
+`1−`2(2τ) . (6.20)

In particular, for `1 = `2 we have

〈C`| e−
πi
2τ
H |C`〉 =

∑

j integer

χj,0(2τ) + δ
(2)
k (−1)`χ k

4
, k
2
(2τ) . (6.21)

For k odd, this is independent of `, whereas for k even there is an ` dependent term, which

plays only a role at finite k. This behavior was observed before, when we computed the

tensions of the orientifolds.

6.3.2 Geometrical interpretation

As noted in section 5, the model has a σ-model interpretation, where the target space is a

disk |z| ≤ 1. A geometrical interpretation of the Cardy boundary states in that geometry

was provided by [21]. It was found that the Cardy states with j = 0 correspond to D0-

branes distributed at the k symmetric points at the boundary of the disk: B0,n (n even)

is the D0-brane at the boundary point z = e
πin
k . The Zk symmetry rotations act on the

boundary states by shifting n. The branes with higher j are D1 branes stretched between

two special points separated by the angle 4πj/k: Bj,n (2j + n even) is the D1-brane along

the straight line connecting the points z = e
πi
k
(n+2j) and z = e

πi
k
(n−2j). Branes of a given

j are related by Zk symmetry, just as in the case j = 0.

The parity PA found in the gauged WZW model analysis acts on the disk as z → z,

a reflection with respect to the diameter Im(z) = 0. Since it maps the special points

as z = e
πi
k
(n±2j) 7→ e−

πi
k
(n±2j), it transform the Cardy branes as PA : Bj,n → Bj,−n.

Also, the combination with the axial rotation symmetry a` would act on the branes as

a`PA : Bj,n → Bj,2`−n. Comparing with the rule (6.13), we find the relation of gauged

WZW parities to the PSS parities:

P` = a`PA . (6.22)
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Indeed, under this identification, the Klein bottle amplitude (6.21) is consistent with the

partition function (5.39) in the gauged WZW model. The sign ε of the field identification

is now determined to be ε = (−1) k
2 . It would be interesting to examine this using the

functional integral method.

6.3.3 Sketch of a shape computation

We now give an independent argument to determine the location of the orientifold planes.

In [21] the location and geometry of D-branes was tested by scattering graviton wave

packets from the D-branes and taking the classical limit. These computations have been

repeated for orientifolds in [16, 22, 51]. Suitable graviton wave packets are localized δ-

functions, which are written down for parafermions in [21] appendix D. Since closed string

states with j ∼ k are not well-localized, one only uses states with j ¿ k as part of the

test wave function. This means that the shape of the brane is encoded in the couplings

of the brane to bulk fields with j ¿ k. From the above argument, it is expected that the

orientifold planes in the parafermion theory are located along diameters of the disk. On

the other hand, it is known that the D-branes B k
4
,n are also located along diameters. To

compute the shape it is therefore not required to repeat the computation of [21], but to

merely compare the coefficients of the crosscap state with the coefficients of the boundary

states |B k
4
,n〉. If the asymptotic behavior of the boundary and crosscap coefficients is the

same, it can be concluded that their locations coincide. The D-brane couplings of the

Cardy state |B k
4
,n〉 to the ground states |j,m〉 are given by

B( k
4
,n)(j,m) =

√
2

[k(k + 2)]
1
4

(−1)2jδ(2)2j√
sinπ 2j+1

k+2

e
πinm

k (6.23)

and the couplings of the PSS-crosscap state (for k even) are

Γj,m =

√
2

[k(k + 2)]
1
4

δ
(2)
2j

sinπ 2j+1
2(k+2) + (−1)m+2j2 cos π 2j+1

2(k+2)√
sinπ 2j+1

k+2

. (6.24)

In the large k limit, the contribution of the second term is dominant. In that limit, the

orientifold-couplings behave exactly like those of the boundary state
∣∣Bk/4,k/2

〉
and the

conclusion is that the PSS crosscap is located along the same diameter as that brane. This

matches with the earlier conclusion based on the brane transformation rule (6.13). The

other crosscap states differ only in the m-dependence and hence correspond to rotated

diameters.

6.4 B-type parities: RCFT and geometry

As before, we construct B-type crosscap states by constructing A-type crosscaps in the

mirror Zk orbifold followed by an application of the mirror map.

To construct the crosscap states in the orbifold theory, we first need the bilinear form

q for the group G = Zk. It is uniquely fixed by the requirement q(g, g) = −hg and is given
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by

q((0, n), (0,m)) :=
nm

4k
, n, m even . (6.25)

Note that it is well-defined (invariant under 2k shifts of n and m) and obeys 2q(g1, g2) =

Qg1(g2). We also need Q̂g(h) defined modulo 2. For this, we note that

h(0,n) = −
n2

4k
+
|n|
2
, for −k ≤ n ≤ k . (6.26)

Then, we have (for n, m even)

Q̂(0,n)((0,m)) = −n
2

4k
− m2

4k
+

(n+̂m)2

4k
+
|n|
2

+
|m|
2
− |n+̂m|

2

=
n+̂m− |n+̂m|

2
− n− |n|

2
− m− |m|

2
+
nm

2k
=
nm

2k
mod 2 .

In the second step we used (4.14). In the last step we have used that n−|n|
2 is an even

integer if n is even. Thus, we arrive at the conclusion that Q̂ = 2q mod 2. Therefore,

eq. (2.57) is homogeneous, θ(gh) = θ(g) + θ(h), and the general solution is given by

θr(`) = −2
r`

k
, r ∈ Z/kZ . (6.27)

Following the procedure given in section 2, we find B-parities P r
B parametrized by a

mod-k integer r, whose crosscaps are given by

|CB
r 〉 =

1√
k

∑

`

e
2πir`
k (VM ⊗ 1)|C`〉 , (6.28)

where VM : Hj,n → Hj,−n is the map induced from the mirror automorphism. More

explicitly, they are expressed as

∣∣CB
r

〉
=

k
1
4

(k + 2)
1
4

[
∑

j,(j,−2r)∈S.R.
(−1)j+r

√
cot π(2j+1)

2(k+2) |C , (j, 2r)〉〉B +

+
∑

j,(j,−2r)/∈S.R.

√
cot π(2j+1)

2(k+2) |C , (j, 2r)〉〉B
]
. (6.29)

The details of the computation are summarized in appendix F.2. The square of the B-type

involutions P r
B can be computed to be

(P r
B)

2 = a2r . (6.30)

This is consistent with the crosscap |C B
r 〉 being a a2r-twisted state (it belongs to ⊕jHj,2r⊗

Hj,2r, which is a subspace of ⊕j,nHj,n ⊗Hj,4r−n = Ha2r). As before, the tensions of the

orientifold planes can be determined as overlaps with the ground state. They are only

non-vanishing for the involutive crosscaps P 0
B and P

k
2
B (the latter exists only for k even).

The result is

T
CB
0

=
k
1
4

(k + 2)
1
4

cot
1
2

[
π

2(k + 2)

]
(6.31)

T
CB

k
2

=
k
1
4

(k + 2)
1
4

tan
1
2

[
π

2(k + 2)

]
. (6.32)
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Note the different behavior of the tension as k → ∞: the tension of the orientifold plane

forP 0
B becomes infinite, whereas that for P

k
2
B goes to zero.

Boundary states for B-branes. In this section we write down the B-type boundary

states, which are obtained by taking the average over the Zk-orbit of the A-type boundary

states, followed by the action of the mirror map Ψ−1. Since there is only one orbit for each

j, they are parametrized by just j (with the identification j ≡ k
2 − j):

∣∣BB
j

〉
=

1√
k

∑

`

(VM ⊗ 1) |Bj,n+2`〉 = (2k)
1
4

∑

j′ integer

Sjj′√
S0j′
|B, (j′, 0)〉〉B , (6.33)

where n is an arbitrary integer such that 2j + n is even. For j = k
4 , which is possible only

when k is even, the Zk action has a fixed point, ` = k
2 : (k4 , n) 7→ (k4 , n + k) ≡ (k4 , n), and

special care is needed in the construction of the boundary states. In fact, it splits into two

B-branes distinguished by η = ±1 [21], with the boundary states

∣∣∣BB
k
4
,η

〉
=

1

2
(2k)

1
4

∑

j integer

S k
4
j√
S0j
|B, (j, 0)〉〉B +

η

2
[k(k + 2)]

1
4

∣∣∣∣B,
k

4
,
k

2

〉〉

B

(6.34)

Under the symmetry a`, these boundary states are transformed as |BB
j 〉 → |BB

j 〉 and
|BB

k
4
,η
〉 → |BB

k
4
,(−1)`η

〉. Thus, each of the ordinary B-branes BB
j (j 6≡ k

4 ) is invariant under

Zk, but the special B-branes BB
k
4
,+

and BB
k
4
,− are exchanged under odd elements of Zk.

One can also consider boundary states on a circle with Zk twisted boundary conditions,

which can be used, for example, when we compute the Möbius strip amplitudes with respect

to non-involutive parities. The twist adds an appropriate phase factor in the Zk-average,

as explained in section 2.2.2. For an ordinary B-brane BB
j , since it is invariant under any

element of Zk, one can consider the boundary state with any twist ar. The symmetry

ar is mapped under mirror symmetry to the quantum symmetry of the orbifold model,

associated with the character a` → e−
2πir`
k . Therefore, the relevant average is

∣∣BB
j

〉
ar

=
e
πirn
k√
k

∑

`

e
2πir`
k (VM ⊗ 1) |Bj,n+2`〉 = (2k)

1
4

∑

j′ integer

Sjj′√
S0j′
|B, (j′, r)〉〉B . (6.35)

The overall phase e
πirn
k is chosen so that n-dependence disappears in the final expression.

The special ones B k
4
,± are invariant only under even elements a2r. Thus we can only

consider even twists:

∣∣∣BB
k
4
,η

〉
a2r

=
1

2
(2k)

1
4

∑

j integer

S k
4
j√
S0j
|B, (j, 2r)〉〉B+

η

2
[k(k+2)]

1
4

∣∣∣∣B,
(k
4
,
k

2
+ 2r

)〉〉

B

(6.36)

6.4.1 The one loop amplitudes

We present here the cylinder, MS and KB amplitudes. When the average formulae (6.28),

(6.35), etc., are available, the computation is easily done using the results (6.18), (6.19)
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and (6.20) for the A-type amplitudes. In this way we obtain

ar〈BB
j1 | e−

πi
τ
H |BB

j2〉ar =
∑

2j+n even

N j
j1j2

e
πirn
k χj,n(τ) . (6.37)

〈CB
r | e−

πi
4τ
H |BB

j′ 〉a2r =
∑

2j+n even

N j
j′j′ e

πirn
k εj,−nχ̂j,n(τ) . (6.38)

〈CB
r | e−

πi
2τ
H |CB

r 〉 =
∑

(j,n)∈PFk

e
2πirn

k χj,n(2τ) . (6.39)

Those involving the special B-branes may be computed independently.

a2r 〈BB
k
4
,η
| e−πi

τ
H |BB

k
4
,η′
〉a2r =

1

4

∑

2j+n even

δ
(2)
2j (1 + ηη′(−1) 2j−n2 ) e

2πirn
k χj,n

=
∑

(j,n)∈PFk
j integer

1

2
(1 + ηη′(−1) 2j+n2 ) e

2πirn
k χj,n(τ) . (6.40)

The last step would fail if 2r were formally replaced by an odd integer, which is consistent

with the boundary state for B k
4
,η not admitting odd twists. The Möbius strip with special

boundary conditions is

〈CB
r | e−

πi
4τ
H |BB

k
4
,η
〉a2r =

1

2

∑

2j+n even

e
πirn
k εj,−nχ̂j,n(τ)

=
∑

(j,n)6∈S.R.
j integer

1

2

(
1 + (−1)r(−1) 2j+n2

)
e
πirn
k χ̂j,n(τ) . (6.41)

εj,−n are evaluated in the last step.

Let us examine how the B-parities P r
B transform the B-branes. Comparing (6.38)

and (6.37), one realizes that the P r
B-image of BB

j is BB
j itself. Comparing (6.40) and (6.41),

we see that the propagating modes in the loop channel are the same if ηη ′ = (−1)r, namely

if r even and η = η′ or r odd and η = −η′. This means that P r
B with even r preserves each

of the two special branes, BB
k
4
,+

and BB
k
4
,−, while P

r
B with odd r exchanges them.

6.4.2 Geometrical interpretation

To find the geometrical meaning of the parity symmetries, we first look at the Klein bottle

amplitudes (6.39). Comparing this with the result (5.40) in the gauged WZW model, we

find that the B-parities P r
B are identified as

P r
B = arPB . (6.42)

This means that the RCFT parity P r
B is the orientation reversal Ω followed by the rotation

z → e
2πir
k z of the disk.

Let us next see how the Möbius amplitudes fit with this interpretation. The geometrical

interpretation of B-type boundary states has already been given in [21]: the brane BB
j=0

corresponds to a D0 sitting at the center of the disk, and the branes of higher j < k
4 are

D2-branes on a disk whose radius depends on j. Each of these are invariant under the
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rotation z → e
2πir
k z, and hence also by P r

B . This agrees with the conclusion from the

cylinder and MS amplitudes. Moreover, the r-dependence of the MS amplitudes (6.38)

resides only in the phase factor e
πirn
k , which is identified as the effect of the ar-action,

as can be seen from the cylinder amplitude (6.37). This supports the structure of (6.42).

The special B-branes B k
4
,± are interpreted as D2-branes covering the whole disc. How the

two are distinguished is not yet understood in a geometric way, but the boundary states

show that they are exchanged under the unit axial rotation a (or other odd rotations).

The interpretation (6.42) is therefore consistent with the conclusion from the cylinder/MS

comparison that the two are exchanged under P r
B with odd r and preserved under P r

B with

even r.

Finally we examine the tension formulae (6.31) and (6.32) from the geometric point of

view. The orientifold fixed point set of the parity P 0
B is the whole disk. This fits with the

divergence of its tension in the geometric limit. The orientifold fixed point set of the other

involutive parity P
k
2
B (present only for even k) is just one point, the center of the disk. This

is consistent with the fact that it becomes light in the geometric limit.

6.4.3 Sketch of a shape computation

The localized wave packets one uses to determine the shape of branes are naturally elements

of the Hilbert space H (5.12). Hence, the scattering experiment makes sense only for

crosscap states containing Ishibashi states in that space. These are the crosscap states

leading to involutive parities.

From our previous considerations, we already know that the orientifold plane corre-

sponding to P 0
B extends over the whole disk. So does the D-brane B k

4
,η, which exists

for k even. We can therefore independently confirm the location of CP 0B
by comparing

its couplings Γ(j,m) to the closed string sector with the couplings of the brane B k
4
,(j,m).

Explicitly

B k
4
(j,m) =

√
2k

1
4

(k + 2)
1
4

δ(2k)m δ
(2)
2j

(−1)j√
sinπ 2j+1

k+2

(6.43)

Γ(j,m) =

√
2k

1
4

(k + 2)
1
4

δ(2k)m δ
(2)
2j

(−1)j cos π 2j+1
2(k+2)√

sinπ 2j+1
k+2

. (6.44)

In the large k limit, these couplings do indeed agree, confirming that the crosscap and

boundary state are located at the same place.

Similarly, we know that P
k
2
B corresponds to a fixed point set consisting of the center of

the disk. That is exactly the location of the boundary state with J = 0. The closed string

couplings of the boundary and crosscap state are given by

B0,(j,m) =

√
2k

1
4

(k + 2)
1
4

δ(2k)m δ
(2)
2j

sinπ 2j+1
k+2√

sinπ 2j+1
k+2

(6.45)

Γ(j,m) =

√
2k

1
4

(k + 2)
1
4

δ(2k)m δ
(2)
2j

sinπ 2j+1
2(k+2)√

sinπ 2j+1
k+2

. (6.46)
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In the large k limit we can (for small j) replace the sin by the angle, and notice that the two

couplings have the same large k behaviour. This confirms that in this case the orientifold

is located at the center of the disk, just as the boundary state.
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A. Conventions on modular matrices

Here we collect the conventions on the modular matrices that are used throughout the

paper. For a representation Hi of the chiral algebra A we define the character by

χi(τ, u) := TrHi

(
e2πiτ(L0−

c
24

) e2πiJ0(u)
)
, (A.1)

where τ is in the upper half-plane and J0(u) is the zero mode of a spin 1 current (or sum

of commuting spin 1 currents) in A. We note that

χi(τ, u) = χı(τ,−u) , (A.2)

and therefore, i and its conjugate ı can be distinguished by the introduction of u. We also

note χi(τ, u) = χi(−τ ,−u) = χı(−τ , u). The parameter u is usually suppressed in the main

text, but its presence is always borne in mind. We encountered its importance already in

the discussion of D-branes [54].

For an element ( a bc d ) of SL(2,Z), the characters transform as

χi

(
b+ dτ

a+ cτ
,

u

a+ cτ

)
=
∑

j

χj(τ, u)Mji

(
a b

c d

)
. (A.3)

M(a bc d) is τ -independent at u = 0. We define S, T , C as M( a bc d)|u=0 for the SL(2,Z)
elements

S =

(
0 −1
1 0

)
, T =

(
1 1

0 1

)
, C =

(−1 0

0 −1

)
, (A.4)

respectively. S, T and C are all unitary and obey the same algebraic relations as the above

SL(2,Z) elements, such as [S,C] = [T,C] = 0, S2 = C, (ST )3 = C, STS = T−1ST−1. C is

the charge conjugation matrix, Cij = δj,ı, because of relation (A.2). T is a diagonal matrix

Tij = δi,j e
2πi(hi− c

24
) =: δi,jTi. More non-trivial is the fact that S is a symmetric matrix,

Sij = Sji [55].

The modular transformation of the Möbius strip involves

χ̂i

(
− 1

4τ
,
u

2τ

)
=
√
Ti

−1
χi

(
− 1

4τ
+

1

2
,
u

2τ

)

= χi

(
− 1

4τ
− 1

2
,
u

2τ

)√
Ti
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=
∑

k

χk

(
4τ

1 + 2τ
,

2u

1 + 2τ

)
Ski
√
Ti

=
∑

k

χk

(
− 2

1 + 2τ
,

2u

1 + 2τ

)
T 2
kSki

√
Ti

=
∑

k,l

χl

(
τ +

1

2
, u

)
SlkT

2
kSki

√
Ti

=
∑

l

χ̂l(τ, u)
(√

TST 2S
√
T
)
li
.

This introduces the new matrix

P =
√
TST 2S

√
T . (A.5)

Using the properties of S, T and C, we find that P is a unitary, symmetric matrix such

that P 2 = C.

B. Some properties of Qg(i)

A simple current g is a representation of the chiral algebra A such that the fusion product

of g with any representation i is just one representation, which we denote by g(i). The set

of simple currents forms an abelian group G . Let us introduce the number (defined modulo

1)

Qg(i) := hg + hi − hg(i) mod 1 . (B.1)

They obey the following properties:

(i) If N k
ij 6= 0, then Qg(i) +Qg(j) = Qg(k).

(ii) Qg1(i) +Qg2(i) = Qg1g2(i).

(iii) Sg(i)j = e2πiQg(j)Sij.

(iv) g 7→ e2πiQg(i) is a homomorphism G → U(1), as a consequence of (ii).

(v) Qḡ(ı) = Qg(i).

(vi) Qg(ı) = −Qg(i), as a consequence of (ii) and (v).

(vii) e2πiQg(i) = ±1 if i = ı, as a consequence of (vi).

(viii) Qg(g) = −2hg.

(ix) Qg1(g2(i)) −Qg1(i) = Qg1(g2), as a consequence of (i).

(i) follows from the operator product expansion of g, i, and j. Since N
g2(i)
g2i

6= 0 we find

Qg1(g2) + Qg1(i) = Qg1(g2(i)) by (i). This is in fact equivalent to (ii). (iii) is shown

in [56, 57, 58]. (v) is because hı = hi. (viii) is because Qg(g) = −Qg−1(g) = −hg−1 − hg +
h1 = −2hg.
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Let us consider Qg1(g2) = hg1 + hg2 − hg1g2 , which is symmetric under the exchange

g1 ↔ g2. By the property (ii) above, (g1, g2) 7→ Qg1(g2) is a symmetric bilinear form of G

with values in R/Z. There is not always a symmetric bilinear form q(g1, g2) of G such that

Qg1(g2) = 2q(g1, g2) mod 1 . (B.2)

However, for some subgroup G of G , there can be such a symmetric bilinear form. The

existence of such a form is the condition for the existence of an G-orbifold with modular

invariant partition function (see appendix C). For example let us consider a simple current

g of order N , gN = 1. Let us note from (ii) and (viii) that Qgn(g
m) = −2nmhg. For the

group G generated by g, a candidate bilinear form is thus q(gn, gm) = −nmhg. However,

this is well-defined (as a function with values in R/Z) if and only if Nhg is an integer.

Formulae involving S, T and P . We record some formulae involving S, T, P . We first

quote from [56, 57, 58] that

Sg(i),j = e2πiQg(j) Sij , Tg(i) = e2πi(hg−Qg(i)) Ti. (B.3)

One can derive a similar relation for the P -matrix [52, 17]:

Pg2m(i),j = φ(2m, i) e2πimQg (j)Pij , (B.4)

where

φ(2m, i) := eπi(hi−hg2mi−2Qgm (gm(i))) . (B.5)

We are particularly interested in the case that i = 0. In that case, the expression in

brackets in the exponent becomes −hg2m − 2Qgm(gm) = hg2m − 4hgm mod 1. This can be

rewritten as −Qg−m(g
−m) − Qgm(g

−m). Applying property (ii) above, one obtains that

this is 0 mod 1. The conclusion is that φ(2m, 0) is just a sign, and therefore

Pg2m,j = ±e2πimQg(j) P0,j . (B.6)

C. Orbifolds

We consider the model C with the Hilbert space of states HC = ⊕iHi⊗Hı. Simple currents

act on HC by

g : v 7→ e2πiQg(i)v , v ∈Hi ⊗Hı . (C.1)

This is a discrete symmetry of the system. We record and explain some known facts on

orbifold by a group of simple currents.

C.1 g-twisted Hilbert space

Let us quantize the system on the circle x ≡ x + 1 with g-twisted boundary condition.

Namely, we impose the boundary condition φ(x) = gφ(x+1) on the fields. We are interested

in the wavefunctions of such a system, the g-twisted states. We show that the space of

such states is given by

Hg =
⊕

i

Hi ⊗Hg(ı) . (C.2)
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The partition function TrHg q
L0−c/24qL0−c/24 is realized as the path-integral on the

torus (x, y) ≡ (x + 1, y) ≡ (x, y + 1) (with complex coordinate z = x + τy) on which

the fields are periodic in “time”, φ(x, y) = φ(x, y + 1), but obey the g-twisted boundary

condition in “space” φ(x, y) = gφ(x + 1, y). One can switch the role of time and space by

the coordinate transformation (x, y)t = S−1(x′, y′)t where S is the SL(2,Z) matrix (A.4).

Then, we have φ(x′, y′) = φ(x′+1, y′) = gφ(x′, y′+1). Thus, the partition function can be

written as

TrHg q
L0−c/24qL0−c/24 = TrH gq

′L0−c/24q′
L0−c/24

=
∑

i

e2πiQg(i)χi(τ
′)χi(τ ′)

=
∑

ijk

e2πiQg(i)χj(τ)S
−1
ji χk(τ)S

−1
ki

=
∑

ijk

S−1
g−1(j)i

S−1
ki χj(τ)χk(τ),

where we have used Sg−1(j)i = e−2πiQg(i)Sji. Since
∑

i S
−1
g−1(j)i

S−1
ki = δk,g−1(j) we find that

the partition function equals

TrHg q
L0−c/24qL0−c/24 =

∑

j

χj(τ)χg−1(j)(τ). (C.3)

Since g−1(j) = g(), this proves eq. (C.2).

C.2 g action on Hgn

We next show that the discrete symmetry gm acts on Hgn by the phase multiplication

e−2πi(Qgm (gn(ı))+nmhg) × on the subspace Hi ⊗Hgn(ı) . (C.4)

To find the action of g on Hgn we compute the partition function TrHgn
gqL0−c/24×

qL0−c/24. This is realized as the path-integral on the torus with boundary condition

φ(x, y) = gnφ(x + 1, y) = gφ(x, y + 1). Under the change of coordinates (x, y)t =

ST nS−1(x′, y′)t, the boundary condition becomes φ(x′, y′) = φ(x′ + 1, y′) = gφ(x′, y′ + 1).

Thus the partition function can be written as

TrHgn
gqL0−c/24qL0−c/24 = TrH gq

′L0−c/24q′
L0−c/24

=
∑

i

e2πiQg(i)χi(τ
′)χi(τ ′)

=
∑

ijk

e2πiQg(i)χj(τ)(ST
nS−1)jiχk(τ)(ST nS−1)ki

=
∑

jkl

χj(τ)Sjg(l)T
n
g(l)χk(τ)SklT

n
l . (C.5)

We note here that T n
g(l)T

n
l = e2πin(hg(l)−hl) = e2πiQg−n (g(l)) e−2πinhg . Using

Sjg(l) e
2πiQg−n (g(l)) = Sg−n(j)g(l) = e2πiQg(g−n(j))Sg−n(j)l, we find that the partition func-

tion is given by

TrHgn
gqL0−c/24qL0−c/24 =

∑

j

e2πi(Qg(g−n(j))−nhg)χj(τ)χg−n(j)(τ) . (C.6)

This shows the action of g on Hgn . g
m action (C.4) is obtained by iteration.
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Remark. If g is an order N simple current, we find QgN (−) = 0 mod 1, by the property

(ii) in appendix B. Thus, gN acts on Hgn by phase multiplication e−2πinNhg×. If we

want g to be order N also in the action on the twisted states, we need Nhg to be an

integer. This explains why we need Nhg ∈ Z in order to have the orbifold of C by the

group G = {gn}N−1
n=0 .

C.3 g1 action on Hg2

Suppose a groupG of simple currents has a symmetric bilinear form q(g1, g2) ∈ R/Z obeying

Qg1(g2) = 2q(g1, g2) mod 1 such that q(g, g) = −hg. Then, one can define a G-orbifold of

C with the modular-invariant partition function

ZC/G =
1

|G|
∑

i,g1,g2

e2πi(Qg2 (i)−q(g2,g1))χi(τ)χg−11 (i)(τ) . (C.7)

(Note that the phase can also be written as e−2πi(Qg2 (g1(ı))−q(g2,g1)).) This shows that a g2
action on Hg1 (for g1, g2 ∈ G) is given by

e−2πi(Qg2 (g1(ı))−q(g2,g1)) × on the subspace Hi ⊗Hg1(ı) . (C.8)

It is straightforward to show modular invariance of (C.7). Under τ → τ +1, the extra

phase hi − hg−11 (i) = Qg−11
(i) − hg1 appears. At this point, we use hg1 = −q(g1, g1) =

q(g−1
1 , g1). Then, we see that the expression for Z(τ + 1) is the same as (C.7) with g2

replaced by g2g
−1
1 . On the other hand

Z

(
−1

τ

)
=

1

|G|
∑

e2πi(Qg2 (i)−q(g2,g1))χj(τ)Sjiχk(τ)S
−1
kg−11 (i)

. (C.9)

We now use e2πiQg2 (i)Sji = Sg2(j)i and S
−1

kg−11 (i)
= e2πiQg1 (k)S−1

ki , so that the sum over i can

be performed,
∑

i Sg2(j)iS
−1
ki = δk,g2(i). Noting Qg1(g2(j)) − q(g2, g1) = Qg1(j) + q(g1, g2),

we find that it is the same as (C.7) with (g1, g2) replaced by (g−1
2 , g1).

The complete set of all simple current modular invariant partition functions is obtained

in [59]. There are other modular invariants associated with the “discrete torsion” [33].

Addition of a discrete torsion corresponds to shifting q(g2, g1) in (C.8) by an antisymmetric

bilinear form of G with values in R/Z that vanishes on the diagonals (g, g).

C.4 Quantum symmetry

For each character g 7→ e2πiρ(g) of G, there is a symmetry gρ of the orbifold theory C/G
that acts on the g-twisted sector states by the multiplication by the phase e2πiρ(g). This

is called a quantum symmetry. The group of quantum symmetries is the character group

G∨, which is isomorphic to G itself.

Let us find out what the gρ-twisted states are in the orbifold theory. We recall that

the untwisted states of the orbifold model are G-invariant states in ⊕h∈GHh, the states

obeying g = 1, ∀g ∈ G. We claim that the gρ-twisted states are the states in ⊕h∈GHh
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obeying g = e2πiρ(g), ∀g ∈ G. Namely

(HC/G)gρ =
⊕

j,h

Hi ⊗Hh(ı)

∣∣
g=e2πiρ(g), ∀g∈G . (C.10)

Since the action of g on Hi⊗Hh(ı) is given in (C.8), it is the sum of Hi⊗Hh(ı) over those

(i, h) such that e−2πi(Qg(h(ı))−q(g,h)) = e2πiρ(g) for any g ∈ G.

This is shown as in appendix C.1. The partition function on the gρ-twisted circle is

the same as the partition function on the untwisted circle, but with a gρ insertion in the

evolution operator:

ZC/G
ρ =

1

|G|
∑

i,g1,g2

e2πiρ(g1) e2πi(Qg2 (i)−q(g2,g1))χi(τ
′)χg−11 (i)(τ

′) . (C.11)

After a manipulation similar to appendix C.1, we find that it is equal to

1

|G|
∑

j,g1,g2

e2πiρ(g1) e2πi(Qg1 (g2())−q(g2,g1))χj(τ)χg−12 (j)(τ) . (C.12)

This shows the claim.

D. Alternative way of dressing

For a crosscap state |CP 〉 and a symmetry g, what is g|CP 〉? We first note that

〈Bα| e−
L
2
Hc(2β)g|CP 〉 = 〈Bg−1(α)| e−

L
2
Hc(2β)|CP 〉

= TrHg−1(α),Pg−1(α)
P e−βHo(L)

= TrHα,gPg−1(α)
gPg−1 e−βHo(L) . (D.1)

This suggests that g|CP 〉 is the crosscap state for the parity gPg−1. Under this interpreta-

tion, 〈CP ′ |qHcg|CP 〉 can be regarded as 〈CP ′ |qHc |CgPg−1〉 as well as 〈Cg−1P ′g|qHc |CP 〉. The
two indeed agree because

TrHP ′gP−1g−1
gPg−1 e−βHc = TrHg−1P ′gP−1

P e−βHc , (D.2)

where we have used that g maps Hh to Hghg−1 (we have in mind h = g−1P ′gP−1). Thus,

we conclude that

g|CP 〉 = |CgPg−1〉 . (D.3)

If P and gP are both involutive (or more weakly if (gP )2 = P 2), then we find gPg = P

and hence

gPg−1 = g2P . (D.4)

Let us apply this to the case of P = P0 and g the symmetry associated with a simple

current: The crosscap state for the parity P̃g := gP0g
−1 is g|CP0〉 with the coefficients

γ̃gi = e2πiQg(i) P0i√
S0i

. (D.5)
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Since (gP0)
2 = P 2

0 = 1 on H, we find P̃g = g2P0 on H. Since the action of P̃g and Pg2

agree on H, it is a natural question to ask whether they are the same parity symmetry. In

fact, we found in appendix B that

Pg2i = ± e2πiQg(i)P0i , (D.6)

where the sign ± depends only on g but not on i. Thus, we indeed see that the crosscap

states |CPg2
〉 and |C

P̃g
〉 agree up to a sign.

E. Partition functions of the circle sigma model

We record here the cylinder, Klein bottle and Möbius strip amplitudes of the circle sigma

model. This can be used to justify the formula for the boundary and crosscap states used

in section 3. To perform the modular transformation, we will make use of the Poisson

resummation formula
∑

n∈Z
e−παn

2−2πiβn =
1√
α

∑

m∈Z
e−

π
α
(m+β)2 ,

as well as the relations

f1( e
−π/T ) =

√
Tf1( e

−πT ) , f3( e
−π/T ) = f3( e

−πT ) , f2( e
−π/T ) = f4( e

−πT ) ,

among the functions

f1(q) = q
1
12

∞∏

n=1

(1− q2n) , f2(q) =
√
2q

1
12

∞∏

n=1

(1 + q2n) ,

f3(q) = q−
1
24

∞∏

n=1

(1 + q2n−1) , f4(q) = q−
1
24

∞∏

n=1

(1− q2n−1) .

Note that f1(q) = η(q2).

The cylinder amplitudes are (q = e−2πT , qt = e−π/T ):

TrNa1Na2
(qH) =

∑
l q

( l
R
+∆a
2π

)2

η(q)
=

R√
2

∑
m q

1
2
(Rm)2

t e−iR∆am

η(q2t )
= 〈Na1 |qHt |Na2〉 , (E.1)

TrDx1Dx2
(qH) =

∑
m q

(Rm+∆x
2π

)2

η(q)
=

1

R
√
2

∑
l q

1
2
( l
R
)2

t e−i
∆x
R
l

η(q2t )
= 〈Dx1 |qHt |Dx2〉 , (E.2)

TrDN (qH) =
q
1
48

∏∞
n=1(1− qn−

1
2 )

=
1

√
2q

1
12
t

∏∞
n=1(1 + q2nt )

= 〈D|qHt |N〉 . (E.3)

Here ∆a = a2 − a1 and ∆x = x2 − x1.
The Klein bottle amplitudes are (q = e−2πT , qt = e−π/2T ):

TrH(Ωq
H) =

∑
l q

l2

2R2

η(q2)
= R
√
2

∑even
m q

R2m2

2
t

η(q2t )
= 〈CΩ|qHt |CΩ〉 , (E.4)

TrH(sΩq
H) =

∑
l(−1)lq

l2

2R2

η(q2)
= R
√
2

∑odd
m q

R2m2

2
t

η(q2t )
= 〈CsΩ|qHt |CsΩ〉 . (E.5)
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The Möbius strip amplitudes are: (q = e−2πT , qt = e−π/4T )

TrNaN−a(Ωq
H) =

∑
l q

( l
R
+∆a
2π

)2

q
1
24
∏
(1− (−1)nqn)

= R

∑even
m q

1
2
(Rm)2

t e−iR∆am

q
1
12
t

∏
(1− (−1)nq2nt )

= 〈Na|qHt |CΩ〉, (E.6)

TrNaN−a(sΩq
H) =

∑
l(−1)lq(

l
R
+∆a
2π

)2

q
1
24
∏
(1− (−1)nqn)

= R

∑odd
m q

1
2
(Rm)2

t e−iR∆am

q
1
12
t

∏
(1− (−1)nq2nt )

= 〈Na|qHt |CsΩ〉,(E.7)

TrDxDx(Ωq
H) =

1

q
1
24
∏
(1 + (−1)nqn)

=
1

q
1
12
t

∏
(1 + (−1)nq2nt )

= 〈Dx|qHt |CΩ〉, (E.8)

TrDxDx−πR
(sΩqH) = 0 = 〈Dx|qHt |CsΩ〉 . (E.9)

Here ∆a = (−a) − a = −2a. The last partition function vanishes because sΩ maps

|m〉x,x−πR to | −m〉x,x+πR = |1 − m〉x,x−πR, which cannot be the same as |m〉x,x−πR for

integer m.

The cylinder with g∆x-twist is (q = e−2πT , qt = e−π/T )

TrNa1Na2
(g∆xq

H) =

∑
l q

( l
R
+∆a
2π

)2 e−i∆x(
l
R
+∆a
2π

)

η(q)
=

R√
2

∑
m q

1
2
(Rm−∆x

2π
)2

t e−iR∆am

η(q2t )

= g∆x
〈Na1 |qHt |Na2〉g∆x

, (E.10)

where ∆a = a2 − a1. Möbius strip with g∆x-twist is (q = e−2πT , qt = e−π/4T )

TrNaN−a(g∆xq
H) =

∑
l q

( l
R
+ (−2a)

2π
)2 e−i∆x(

l
R
+ (−2a)

2π
)

q
1
24
∏∞

n=1(1− (−1)nqn)
= R

∑even
m q

1
2
(Rm−∆x

π
)2

t eiRam

q
1
12
t

∏∞
n=1(1− (−1)nq2nt )

= g2∆x
〈Na|qHt |Cg∆xΩ〉 . (E.11)

F. Formulae for SU(2)/ U(1)

F.1 A-type crosscaps

We compute the explicit coefficients of the A-type crosscaps

|C`〉 =
∑

(j,n)∈PFk

P(0,2`)(j,n)√
S(0,0)(j,n)

|C , (j, n)〉〉 (F.1)

using the formula

P(j,n)(j′,n′) = T
1
2
j,n

(
Qjj′Q

∗
nn′ +Q k

2
−j,j′Q

∗
n+k,k′

)
T
1
2
j′,n′ . (F.2)

The subtlety is that T
1
2
j,n does not usually factorize as T

1
2
j T

− 1
2

n except in the standard range

(henceforth S.R.) where (6.5) holds. Using

T
1
2
j,n = T

1
2
j T

− 1
2

n , (j, n) ∈ S.R.,

T
1
2
j,n = T

1
2
k
2
−j T

− 1
2

n+k = T
1
2
j T

− 1
2

n (−1) 2j+n2 ,

(
k

2
− j, n+ k

)
∈ S.R. ,

T
1
2
j,n = T

1
2
k
2
−j T

− 1
2

n−k = T
1
2
j T

− 1
2

n (−1) 2j−n2 ,

(
k

2
− j, n− k

)
∈ S.R. , (F.3)
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the required P -matrix elements are computed to be

P(0,2`)(j,n) = (−1)`P SU(2)
0,j

(
P

U(1)
2`,n

)∗
+ P

SU(2)
k
2
,j

(
P

U(1)
2`+k,n

)∗
, (F.4)

for (j, n) in the standard range and ` in the range −k ≤ 2` ≤ k. If (k/2 − j, n ± k) is in

the standard range, one needs the extra sign factor (−1) 2j±n2 . The explicit expression for

the crosscap is

|C`〉 =
1

[k(k + 2)]
1
4

× (F.5)

×
∑

(j,n)∈S.R.
e
πi`n
k

(
δ
(2)
n+k(−1)`

√
tan π(2j+1)

2(k+2) + δ(2)n (−1) 2j+n2
√

cot π(2j+1)
2(k+2)

)
|C , (j, n)〉〉 ,

where, on the r.h.s., we need to bring ` in the range −k ≤ 2` ≤ k.

F.2 B-type crosscaps

We first construct A-type crosscaps in the orbifold, and then apply the mirror map. The

crosscaps of the orbifold are

|CP θr 〉 =
1√
k

∑

`

e−πiθr(`) |C`〉 , (F.6)

where θr(`) = −2r`/k, as explained in the main text. We also have set ω1 = 0. Inserting

the states (F.5), one sees that the following summations over ` are relevant:

∑

`

(−1)` eπi`
k

(2r+n) = kδ
(2k)
2r+n+k,

∑

`

e
πi`
k

(2r+n) = kδ
(2k)
2r+n.

The first sum plays a role when one sums up ` in the first term (∼
√
tan) in the parenthesis

in (F.5), and the second sum is relevant for the second term (∼
√
cot) in the parenthesis.

n is projected on either n = −2r−k or n = −2r. Only one term gives a contribution, since

in (F.5) we are summing over (j,m) in the standard range. This leads to the following

expressions

|CP θr 〉 =
k
1
4

(k + 2)
1
4

[
∑

j,(j,−2r)∈S.R.
(−1)j (−1)r

√
cot

π(2j + 1)

2(k + 2)
|C , (j,−2r)〉〉 +

+
∑

j,(j,−2r)/∈S.R.

√
cot

π(2j + 1)

2(k + 2)
|C , (j,−2r)〉〉

]
. (F.7)

Applying the mirror map, one obtains the B-type crosscaps

∣∣CB
r

〉
=

k
1
4

(k + 2)
1
4

[
∑

j,(j,−2r)∈S.R.
(−1)j (−1)r

√
cot

π(2j + 1)

2(k + 2)
|C , (j, 2r)〉〉B +

+
∑

j,(j,−2r)/∈S.R.

√
cot

π(2j + 1)

2(k + 2)
|C , (j, 2r)〉〉B

]
(F.8)
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For the standard crosscap state with r = 0, only the first term contributes, since all states

(j, 0) are in the standard range. For the state with r = k/2 (k even), only the second term

contributes. The respective crosscap states can be rewritten as

∣∣CB
0

〉
=

k
1
4

(k + 2)
1
4

∑

j integer

(−1)j
√

cot
π(2j + 1)

2(k + 2)
|C , (j, 0)〉〉B , (F.9)

∣∣∣CB
k
2

〉
=

k
1
4

(k + 2)
1
4

∑

j integer

√
tan

π(2j + 1)

2(k + 2)
|C , (j, 0)〉〉B . (F.10)

F.3 Computation of one-loop amplitudes

Here we record some detail of the computation of the one-loop amplitudes (6.18), (6.19),

and (6.20). For (6.18):

〈BJ,M |qHt |BJ ′M ′〉 =
∑

(j,m)∈PFk

N
(j,−m)
(J,−M)(J ′,M ′)χj,m(τ)

=
1

2

∑

2j+m even

N
(j,−m)
(J,−M)(J ′,M ′)χj,m(τ) =

∑

2j+m even

N j
JJ ′δ

(2k)
M ′−M+mχj,m(τ) ,

where we have used (6.7) in the last step. For (6.19), we first note

〈C`|qHt
∣∣B(J,M)

〉
=

∑

(j,m)∈PFk

Y
(0,2`)
(J,M) (j,m)χ̂j,m(τ) =

∑

2j+m even

Ỹ
k
2
JjỸ

2`+k

Mm T
− 1
2

0,2` χj,m

(
τ +

1

2

)
.

Inserting the known Y -tensors from the U(1) theory, we see that this is equal to

∑

2j+m even

Y
k
2
Jjδ

(2)
m+k

(
δ
(2k)

M−`+m−k
2

+ (−1)m+kδ
(2k)

M−`+m+k
2

)
e−πi(hj−

m2

4k
− c
24

)χj,m

(
τ +

1

2

)
=

=
∑

2j+m even

Y
k
2
Jj δ

(2k)
2M−2`−k+m e

−πi(hj−m2

4k
− c
24

)χj,m

(
τ +

1

2

)
.

Replacing (j,m)→ ( k2 − j,m+ k) in the sum, and using Y
k
2

J, k
2
−j = N j

JJ , we find this to be

equal to
∑

2j+m even

N j
JJδ

(2k)
2M−2`+m e

πi(hj,m−h k
2−j

+
(m+k)2

4k
)
χ̂j,m(τ) .

It is straightforward to see that

εj,m := e
πi(hj,m−h k

2−j
+ (m+k)2

4k
)
=





1 (k2 − j,m+ k) ∈ S.R.
(−1) 2j+m2 (j,m) ∈ S.R.
(−1)m (k2 − j,m− k) ∈ S.R.

This shows (6.19). Computation of (6.20) is similarly straightforward. It is convenient to

use Y 0
j0 = (−1)2j and Y

k
2
j0 = N 0

j, k
2
−j = δj, k

2
−j = δj, k

4
(the latter is possible only for k even).
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