
 

 

 

 
 
Available on CMS information server            CMS NOTE 2002/014 

 

August 15, 2002 
 
 

 

Database independent Migration of Objects into an  
 Object-Relational Database 

 
 

Kamran Munir 1, M. Waseem Hassan 1, 2, Arshad Ali 1, R. McClatchey 2 and I. Willers 3 

 
1- National University of Science & Technology (NUST) 

Tamiz Uddin Road, P.O.Box 297, Rawalpindi, Pakistan 
 

2- Centre for Complex Cooperative Systems (CCCS) 
UWE, Bristol BS16 1QY UK 

 
3- European Organization for Nuclear Research (CERN) 

1211 Geneva, Switzerland 
 

 
 
 
 

Abstract 
 
 

CERN’s (European Organization for Nuclear Research) WISDOM project [1] deals with the 

replication of data between homogeneous sources in a Wide Area Network (WAN) using the 

extensible Markup Language (XML). The last phase of the WISDOM (Wide-area, database 

Independent Serialization of Distributed Objects for data Migration) project [2], indicates the future 

directions for this work to be to incorporate heterogeneous sources as compared to homogeneous 

sources as described by [3]. This work will become essential for the CERN community once the need 

to transfer their legacy data to some other source, other then Objectivity [4], arises. Oracle 9i – an 

Object-Relational Database (including support for abstract data types, ADTs) appears to be a potential 

candidate for the physics event store in the CERN CMS experiment as suggested by [4] & [5]. 

Consequently this database has been selected for study. As a result of this work the HEP community 

will get a tool for migrating their data from Objectivity to Oracle9i. 

Mailing address CMS CERN, CH-1211 GENEVA 23, Switzerland 
CMS Conference Report



 

1 

 
1. Introduction  
 
The Compact Muon Solenoid experiment, CMS [1] has a large number of Terabyte sized databases and 
the experiment is due to take its first data in mid 2007 after which a PetaByte of raw event data will be 
generated and stored per year. Until very recently the object-oriented database, Objectivity/DB was the 
first database of choice for the CMS Event Store.  But In July 2001, CMS decided [4] to evaluate the 
Oracle9i database as a potential candidate for its baseline for persistent data storage. This decision was 
mainly motivated by concerns about the trends concerning the market performance of the 
Objectivity/DB, which was the baseline of CMS at that time. So far there is no indication about the 
final decision of the next frontline database of choice in CMS, but there seems to be an inclination in 
the HEP community towards using Oracle9i as part of the next possible solution [5].  
 
If for example the HEP community select Oracle9i or any Object-Relational Database for the event 
store or its metadata then there will arise a need to transfer legacy data from object-oriented databases 
to object-relational databases. In this context, there is a need to find a solution for this activity.  
 
CERN’s WISDOM project [1] deals with the replication of data in a Wide Area Network (WAN) in a 
database independent format i.e. the widely acceptable standard for data exchange – the extensible 
Markup Language (XML) [6]. The WISDOM project, according to [2], [3] & [7], provides tools for 
converting object-oriented data into XML and back i.e. conversion of the XML objects into the 
database (Objectivity/DB).  This means that objects are transferred from one layer of persistence (i.e. 
OODB) to another layer of persistence (i.e. XML). But the difference between the two is that the 
second form has an added feature in addition to persistency i.e. mobility.  
 
The XML generated as a result of serialization [2], can be directly used for migrating objects to yet 
another layer of persistence, e.g. Object-Relational Databases. Here it will also be appropriate to 
highlight one of the features of Oracle9i concerning its support for XML. The Oracle8i/9i understands 
XML data, can store XML documents and also provides a query facility for the XML data. In addition 
to this Oracle9i has also made a breakthrough by facilitating the much-awaited ADT support.   
 
In the light of the above, research has been proposed, and then conducted to exploit the capabilities of 
the tools developed in the WISDOM project and the current rich support provided by Oracle9i, to 
design a mechanism to transport data in a heterogeneous environment consisting of both object-
oriented and object-relational data. The medium for transportation is obviously the database 
independent XML.  This research work can also be referred to as an extension to the work being done 
in the context of the WISDOM project. Since the WISDOM project is a sister project to the CRISTAL 
project [8], so the results of this research can also be exploited in the CRISTAL project. Keeping this in 
mind for real database tests, the CRISTAL databases have been used.  
 
In this paper a detailed study will be reported on the following core issues: 

� Transformation of (all or part of) the data from Oracle database tables or views into XML.  
� Extraction of data from an XML document by using canonical mapping, and insertion of data 

into the appropriate columns/attributes of a table in Oracle Database. 
� Mapping of objects into relational tables 
� Analyzing the structure information of the objects residing in the Objectivity database and 

extracting the schema definition to convert it in a format suitable for designing schema in an 
RDBMS e.g. Oracle.   

� Extraction of objects from the object XML file generated from Objectivity database and to 
migrate them into the Oracle database by making use of the map file, see figure 1. 

 
 
The set of tools developed as a result of this research are the deliverables for this project. Currently 
these tools have been tested with the CRISTAL database.  
 
 
 



 

2 

 
 
 
 
 
 
 
 
 
 
 
Next sections include: 
 

� Mapping OODB schema into RDBMS 
� General factors while mapping objects 
� Issues related to storing data from XML documents to traditional databases. 
� Survey of XML database products and XML databases 
� Oracle XML components 
� Limitations while using Oracle XML component (e.g. XSU) 
� The project scenario 
� Transformation of data between XML documents generated by objectivity and relational 

databases e.g. Oracle. 
� Prototype for transfer XML objects in Oracle database 
� Future directions and conclusion 

 

2. Related work  
 
XML is becoming the Internet standard for information exchange. Businesses need to be able to 
communicate with other businesses and workflow components by using XML. A number of projects 
have mapped XML Schemas to object schemas. Currently there is much effort going on in using XML 
as a means of serializing objects. The following research areas are distinguished:  serialisation and 
deserialisation between XML and an object-relational database, serialisation and deserialisation of pure 
objects into an object-relational database and migration of objects between commercial databases using 
XML [14].  
 
2.1 Serialisation and deserialisation of XML into object-relational DB: 
Object-relational technology provides different methods and tools for importing and exporting XML 
information to and from a database e.g. XSU and XSQL. A number of third party tools are also 
available to support this feature, the most notable being XML_RDB, XMLServlet and XMLShark. A 
detailed analysis of XSU and XSQL has been carried out. 
 
The XML-SQL Utility (XSU) [9] transforms XML into Oracle tables and vice versa. This work is 
relevant to the current work in the context that it addresses the transformation of XML information into 
Oracle tables but in this case the structure of the resultant XML document is fixed i.e. it conforms to a 
particular DTD agreed by the designers of the product. Moreover by using this utility, the schema 
cannot be created dynamically. This contrasts with the current work, which addresses the conversion of 
XML objects from an object source into tables inside Oracle. 
  
2.2 Serialisation and deserialisation of pure objects (XML) into object-relational DB: 
In order to transform objects embedded in an XML document into tables, there is a need to map core 
object-oriented concepts like inheritance, polymorphism etc. into tables. For this purpose different third 
party tools were investigated. Out of the list of these tools XML_DBMS was the most relevant to the 
current research. The functionalities of this tool include extended functionalities which make it one of 
the most powerful. 
  

Fig. 1 

         
        
       
       OBJECTIVITY 

DB 
ORACLE9i 

DB 



 

3 

2.3 Migration of objects between commercial databases using XML: 
Currently there is no work being done in the context of migrating objects (after converting them into 
XML) between different commercially available pure object-oriented and object-relational products. 
The research work reported in this paper address this deficiency by providing a tool, which can convert 
XML information (produced by using tools from [2], [3]) from an object-oriented database (i.e. 
Objectivity/DB) to object-relational database (i.e. Oracle). 
 
3. Object Database vs. Object-Relational Databases.  
 
We need to understand the differences between object database management systems and the object 
relational database management systems (ORDBMSs). 
Relational databases (RDBs) are far more common than OODBs. Relational databases store 
information in tables; a table consists of any number of rows, each row containing several columns of 
information. (Rows are more formally called relations, which is where the term ‘‘relational database’’ 
originates.) 
 
Object databases employ a data model that has object-oriented aspects like class, with attributes and 
methods and integrity constraints; provides object identifiers (OIDs) for any persistent instance of a 
class; supports encapsulation (data and methods); multiple inheritance; and supports abstract data 
types. Object databases combine the elements of object orientation and object-oriented programming 
languages with database capabilities. They provide more than persistent storage of programming 
language objects. Object databases extend the functionality of object programming languages (e.g., 
C++, Smalltalk, Java) to provide full-featured database programming capability.  
 
3.1 Architecture Differences between RDB and ODB 
  
Primarily, RDBMSs have been built around central server architectures, which are much the same as 
mainframe architectures. ODBMSs often assume a network of computers, with processing on the back 
or front end, as well as intermediate tiers, caching on each level, and clustering capabilities 
independent of type. In terms of computation model, although RDBMSs typically confine all 
processing to the SQL language and its operations (SELECT/PROJECT/JOIN and 
INSERT/UPDATE/DELETE), ODBMSs allow the use of host object languages like C++ and Java 
directly on the objects "in the database"; that is, instead of translating back and forth between 
application language structures (COBOL, C, etc.) and database structures (SQL), application 
programmers can simply use the object language to create and access objects through the methods. The 
database system maintains the persistence, integrity, recoverability, and concurrency of those same 
objects.  

 
 
3.2 Database Management System Products by Vendor: 
 
 
 
 
 
 
 
 
 
 
 
 

Vendor ORDBMS 

Oracle Oracle 8.x, 9.x 

Informix Universal Server 

IBM Universal Database 
(DB/2 Extenders) 

UniSQL UniSQL/X 

Unisys OSMOS 

 

Vendor 
ODBMS 

 

Computer Associates 

Jasmine  

 

Gemstone 

Gemstone 



 

4 

3.3 Comparison of Database Management Systems: 
 

Criteria ORDBMS ODBMS  
Defining standard SQL3/4  ODMG-V2.0  

Support for object-oriented 
programming  Limited mostly to new data types Direct and extensive  

Simplicity of use Same as RDBMS, with some 
confusing extensions  

OK for programmers; some SQL 
access for end users  

Simplicity of development  
Provides independence of data from 
application, good for simple 
relationships  

Objects are a natural way to model; 
can accommodate a wide variety of 
types and relationships  

Extensibility and content  Limited mostly to new data types  
Can handle arbitrary complexity; 
users can write methods and on any 
structure  

Complex data relationships  Required much expertise to model  
Can handle arbitrary complexity; 
users can write methods and on any 
structure  

Performance versus 
interoperability  

Level of safety varies with vendor, 
must be traded off; achieving both 
requires extensive testing  

Level of safety varies with vendor; 
most ODBMSs allow programmers 
to extend DBMS functionality by 
defining new classes  

Distribution, replication, and 
federated databases  Extensive Varies with vendor; a few provide 

extensive support  

Product maturity 
Immature; extensions are new, are 
still being defined, and are relatively 
unproven  

Relatively mature 

Legacy people and the 
universality of SQL  

Can take advantages of RDBMS 
tools and developers  

SQL accommodated, but intended 
for object-oriented programmers.  

Software ecosystems Provided by major RDBMS 
companies  

ODBMS vendors beginning to 
emulate RDBMS vendors, but none 
offers large markets to other ISVs  

Vendor viability Expected for the major RDBMS 
vendors; UniSQL is struggling  

Less of an issue than it was; some 
shakeout still expected  

 
 Source: International Data Corporation 

 Strengths Weaknesses 
 
OODB • Good abstraction and modeling 

capabilities 
• Seamless integration of Java and 

database objects 
• Better performance for some 

applications 
• Java Report (OStore, Poet, 

Oracle) 
 

 

• Good Java language skills needed 
up-front 

• Total market share still small 
• Long-term survival/commitment of 

some vendors unknown 
• Many users moving straight to 

Object-Relational 
• Less number of professionals are 

available then relational database 
experts 

 
ORDB 

 

• Better integration with Java than 
Relational 

• Provides smoother upgrade path 
for heavy Relational users 

• Provides fall-back to just 
Relational 

• Leverage existing SQL skills, 

• Proprietary SQLJ extensions 

• Complex structures still flattened for 
storage 

• Generating bulk-load file for 
complex data could be difficult 

 



 

5 

investment 
The ORDBMS vendors are much larger and have huge entrenched marketing infrastructure. By 
comparison, the ODBMS vendors are much smaller. 

4. Object-Relational Mapping 
Mapping Objects to tables is a problem that has been around as long as there has been a need to 
program in an object-oriented language. However, there are increasingly compelling reasons to prefer 
relational databases (or object-relational databases) over object-oriented database for data persistence. 
These reasons include better integration with Java, provision of a smoother upgrade path for legacy 
relational database users, provision of a fall-back philosophy to another relational database, leveraging 
existing SQL skills, investment from major players in the corporate sector etc. In essence, there is a 
requirement to handle the mapping of objects into relational tables and to bridge the gap between the 
two different persistency options i.e. OODBMS and RDBMS. 
 
4.1 Mapping OODB schema into RDBMS 

In order to model the concepts of object orientation into relational table structures, there is a need to 
handle some mapping issues like aggregation, inheritance, polymorphism and associations between 
classes while migrating towards RDBMS from OODB. These issues are covered in the table below: 
 

Single Table 
Aggregation 

Map aggregation to a relational data model by integrating all aggregated 
object’s attributes into a single table. Then the aggregated object's 
attributes into the same table as the aggregating object’s [16].  

Foreign Key 
Aggregation 

Foreign Key Aggregation is the usual way to map 1:n associations. A 
separate table is used for the aggregated type. The Aggregating Object is 
mapped to a table. The Aggregated Object is mapped to another table. 

One Inheritance Tree 
One Table: 

The union of all attributes of all objects in the inheritance hierarchy will 
be used as the columns of a single database table. And Null values to fill 
the unused fields in each record [15]. 

One Class One Table: The attributes of each class are mapped to a separate table. A synthetic 
OID will be inserted into each table to link derived classes rows with 
their parent table's corresponding rows [13]. 

Association Table 
[n:m  
associations]: 

A separate table will be created containing the Object Identifiers (or 
Foreign Keys) of the two object types participating in the association. 
Map the rest of the two object types to tables using any other suitable 
mapping patterns presented in paper [13] [15]. 

 
It should be noted that an abstract class is also mapped to a separate table. 

 
4.2 General factors while mapping objects 
The major factors that should be taken into account while mapping objects to tables are: 
 

Performance: The way objects are mapped to tables has significant influence on 
the number of database accesses that occur in a system. It is 
therefore a good idea to waste a few processor cycles and some 
RAM memory to economize on slow IO [14][16]. 

Read versus write/update 
performance 

To be sure about the frequency of read and write/update operations 
before finalizing a certain table design. 

Flexibility and maintenance 
cost 

Flexibility is more important than performance is schema evolution 
as attributes will be often deleted or inserted, or classes added or 
deleted and class hierarchies restructured. Once the hierarchy and 
classes become stable then it may be desirable to switch to a 
mapping with optimal performance. 

Space consumption versus 
Performance: 

There are mappings that use no surplus database space (e.g. fields 
with null values) and others that leave large portions of a database 
record unused [16].  

Query processing: There are two conflicting purposes; Firstly, data have to serve in an 



 

6 

information system. Secondly, data have to be ready for online 
transaction processing with good performance.  

Finally, we should not forget that objects consist of methods as well as data. Very few databases have 
ever offered the facility to store both methods and data. 
 
5. Survey of XML Database Products   
 
There are various ways to solve the problem of effective, automatic conversion of XML data into and 
out of relational databases. Database vendors such as IBM, Microsoft, Oracle, and Sybase have 
developed tools to assist in converting XML documents into relational tables. 
XML documents fall into two broad categories: data-centric and document-centric. Data-centric 
documents are those where XML is used as a data transport. 
 
For data-centric applications, the following is the list of Commercial XML products that support both 
transfers database to XML and XML to database: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Oracle has provided some Development-only products like XSQL Servlet and XML SQL Utility, 
where XML SQL Utility supports both database to XML and XML to database and XSQL Servlet 
supports only database to XML transfers. 
 
Following are the Open source XML products that support both conversions from database to XML 
and XML to database transfers by the use of mapping. And they support the Rational Database Type.  
 
 
 
 
 
 
 
 
 
5.1 XML Enabled Databases  
To store and retrieve the data in data-centric documents, an XML-enabled database is required that is 
tuned for data storage, similar to a relational or object-oriented database, and some sort of data transfer 
software which might be built into the database (in this case the database is said to be XML-enabled) or 
any third-party middleware can be used. The following is a list of the Relational databases that are 
XML enabled and having commercial License [15]. 
 
 
 
 
 
 
 
 
 

Product Developer 
Attunity Connect Attunity Ltd. 

XML Servlet Cerium Component 

XChainJ Cogent Logic Corp. 

TransVerse Coyote Consultants 

XML Junction, Data Junction Data Junction, Inc. 

jXTransformer DataDirect 
Technologies 

Import/Export Studio Etasoft 

Allora HiT Software 

XMLShark infoShark 

Product Developer 
JaxMe Jochen Wiedmann 

DBIx::XML_RDB Matt Sergeant 

XML-DBMS Ronald Bourret, et al 

 

Product Developer 

Access 2002 Microsoft 

DB2 XML Extender, DB2 Text 
Extender IBM 

Informix IBM 

Microsoft SQL Server 2000 Microsoft 



 

7 

 
 
Objectivity/DB (from Objectivity, Inc.) is an Object Oriented database, which has recently announced 
its XML interface. 
 

6. Middleware Oracle XML components 
In this case middleware, by definition is the software used by the data-centric applications to transfer 
data between XML documents and databases. These are written in a variety of languages and can be 
used with any of these database drivers e.g. ODBC, JDBC, or OLE DB. Most of these middleware 
components can send data across the Internet but if there is a need to access data from remote locations 
then these components should be used integrated within a Web server. Middleware products range 
from homegrown projects to commercial data conversion engines. 
 
6.1 Oracle XML Components  
 
There follows an overview of Oracle’s XML components that can be used to transform XML data to 
and from Oracle. After that the limitations of using these components while migrating Objects from 
Objectivity/DB into Oracle will be elaborated.  
 
In the newest releases of Oracle e.g. Oracle9i - several components, utilities, and interfaces taking 
advantage of XML technology in building Web-based database applications, are provided. The 
selection of a set of components for any required scenario depends on application requirements, 
programming preferences, development and deployment environment. The following XML 
components are provided with Oracle9i and Oracle9i Application Server:  
 
6.1.1 XML Developer’s Kit (for java) 
 

XDK for Java is composed of the following components:  
 �

XML Parser for Java: It creates and parses XML by using industry standard DOM and SAX 
interfaces. It also includes an XSL Transformation (XSLT) processor that transforms XML to 
XML or other text-based formats, such as HTML.  �
XML Schema Processor for Java: It supports simple and complex types and is built on top of 
the Oracle XML Parser for Java version 2.  �
XML Class Generator for Java: It creates source files from an XML DTD or XML Schema 
definition.  �
XSQL Servlet: XSQL Servlet processes SQL queries embedded in an XSQL file e.g. 
“xxx.xsql” which returns results in the XML format by using the XML SQL Utility and XML 
Parser for Java.  �
XML SQL Utility (XSU) for Java: XSU enables us to transform data retrieved from object-
relational database tables or views into XML and similarly to extract data from an XML 
document (details given in section 5.1.2).  �
Storage XML documents in Character Large Objects, CLOBs: If the incoming XML 
documents do not conform to one particular structure, then it might be better to store such 
documents in CLOBs. 

 
6.1.2 XML-SQL Utility (XSU): 
 
XML has rapidly become the format for data interchange; at the same time, a substantial amount of 
business data resides in object-relational databases. It is therefore necessary to have the ability to 
transform this "relational" data into XML.  
 

The XML-SQL Utility (XSU) enables us to do the following things:  �
It can transform data retrieved from object-relational database tables or views into XML.  �
By using XSU, data can be extracted from an XML document and by using a canonical mapping 
this data can be inserted into the appropriate columns/attributes of a table or a view.  �
By using XSU, data can be extracted from a XML document and this data can be applied for 
updating or deleting values of the appropriate columns/attributes.  

 



 

8 

XSU is composed of Java classes and these Java classes can be loaded into a Java-enabled Oracle8i/9i 
database; furthermore, the XSU contains a PL/SQL wrapper that publishes the XSU’s Java API to 
PL/SQL by creating a PL/SQL API. In this way new Java applications can be written that run inside the 
database and which directly access the XSU’s Java API; in addition to this functionality PL/SQL 
applications can also be written that access XSU through its PL/SQL API the XSU’s functionality can 
be accessed directly through SQL. It is noted that to load and run Java code inside the database we 
need a Java-enabled Oracle8i (or later) Server.  
 
The Java programs make use of the XSU through its Java API for the purpose of XML generation in 
the and for integration with different JDBC data sources.  
 
For example, if the query "select * from emp" is specified, the XSU would generate the following 
XML document 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the generated XML, the rows returned by the SQL query are enclosed in a ROWSET tag (Fig. 2(b)) 
to make the <ROWSET> element, which is also the root element of the generated XML document.  
The <ROWSET> element contains one or more <ROW> elements. Each of these <ROW> elements 
contains the data from one of the returned database rows.  
 
6.2 Limitations while using XSU 
 
The current study has revealed the following limitations in using XSU: 
 

� Currently the XML-SQL Utility (XSU) can only store to a single table [12]. 
� Due to a number of limitations of the DTD, XML SQL Utility cannot generate the database 

schema with DTD [12]. 
� If XML files need to be stored as CLOBs in the Oracle database, the maximum file size that can 

be stored is 2 GB [12]. 
 

7. Other Issues 
 
This section discusses a number of issues related to storing data from XML documents to traditional 
databases. Generally, there is no choice about how data transfer software resolves these issues. 
However, it should be noted that these issues exist, as they might help in the selection of the correct 
software. Some of these issues are discussed in the following sections. 
7.1 Data Types 
XML does not support data types in any meaningful sense. Except for unparsed entities, all data in an 
XML document is text, even if it represents another data type, such as a date or an integer.  
 
7.2 Null Data 
In the database world, null data means data that simply isn’t there. This is very different from a value 
of 0 (for numbers) or zero length (for a string). For example, if data has been collected from a weather 
station and if the thermometer is not working, then a null value would be stored in the database rather 
than a 0, which would mean something different altogether. 
 

Fig. 2(a) Fig. 2(b) 

CREATE TABLE emp  
( 
  EMPNO NUMBER,  
   ENAME VARCHAR2(20), 
   JOB VARCHAR2(20), 
   MGR  NUMBER, 
   HIREDATE DATE, 
   SAL NUMBER, 
   DEPTNO NUMBER 
); 

 

<?xml version=’1.0’?> 
<ROWSET> 
<ROW num="1"> 
<EMPNO>7369</EMPNO> 
<ENAME>Smith</ENAME> 
<JOB>CLERK</JOB> 
 <MGR>7902</MGR> 
 <HIREDATE>12/17/1980 0:0:0</HIREDATE> 
<SAL>800</SAL> 
<DEPTNO>20</DEPTNO> 
 </ROW> 
 <!-- additional rows ... --> 
</ROWSET> 



 

9 

7.3 Normalization 
Normalization refers to the process of designing a database schema in which a given piece of data is 
represented only once. Normalization has several obvious advantages, such as reducing disk space and 
eliminating the possibility of inconsistent data, which can occur when a given piece of data is stored in 
more than one place. It is one of the cornerstones of relational technology and is a flashpoint in 
discussions about storing data in native XML databases. 
 

8. The Project Scenario 
 
The methodology that is being followed in the current research in order to transfer data from 
Objectivity to Oracle is presented in the figure below (Fig. 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As noted earlier data from Objectivity can be serialized in XML format by tools provided by [2,3]. The 
produced XML (i.e. objects) include information from the schema and the data from the Objectivity 
Database, such that two XML files are generated [2] for a single database. Out of these, the Schema 
XML file contains information about the schema defined in the Objectivity database for object storage. 
The second one is the Object XML file that contains the tangible data from Objectivity/DB.  
 
In order to design the schema in a relational database, the corresponding schema information is 
required from Objectivity. That schema information can be taken from the Object-XML file (generated 
from the Objectivity database).  
Here two files are required for further processing, namely: 
 

a. SQL script file: It contains information about the Oracle schema 
b. Map file: It contains information about objects which are to be mapped into the Oracle database 

� Table’s information and Map file 

     is generated from Object XML file which  

contains the information of Objects. 

Schema 
XML 

Object 
XML 

 

SQL 

Script 

Object 
XML 

Map 
File 

Database 
Tables 

Map 
File 

Object 
XML 

Fig. 3

Objectivity 

Oracle 



 

10 

 
By using the SQL script file tables can be created in database. After creating tables (by using ODBC 
connection), “ObjXMLfile” (which has tangible data of objectivity in XML format) is then mapped 
into database by using map file (generated from a XML file). 
8.1. DTD used for Serialization (by WISDOM project [1-3]) 
 
The following is the sample DTD proposed by the WISDOM project. (See Fig. 4) 
 
Hierarchical model of the schema structure 
 
The following (Fig. 5) is the model of the schema structure extracted from the DTD shown in Fig. 4. 
 
<?xml version=’1.0’ encoding=’utf-8’ ?> 
<!DOCTYPE Schema  
[<!ELEMENT Schema (TopLevelModule)> 
<!ELEMENT TopLevelModule (Module*,Class*)> 
<!ELEMENT Module (Module*,Class*)> 
<!ELEMENT Class (BaseClass*,Attributes?,Relationships?)> 
<!ELEMENT BaseClass EMPTY> 
<!ELEMENT Attributes (BasicAttribute*,RefAttribute*, 
EmbeddedClassAttribute*,VArrayBasicAttribute*, 
VArrayEmbeddedClassAttribute*,VArrayRefAttribute*)> 
<!ELEMENT BasicAttribute EMPTY> 
<!ELEMENT RefAttribute EMPTY> 
<!ELEMENT EmbeddedClassAttribute EMPTY> 
<!ELEMENT VArrayBasicAttribute EMPTY> 
<!ELEMENT VArrayRefAttribute EMPTY> 
<!ELEMENT VArrayEmbeddedClassAttribute EMPTY> 
<!ELEMENT Relationships (Unidirectional*,Bidirectional*)> 
<!ELEMENT Unidirectional EMPTY> 
<!ELEMENT Bidirectional EMPTY> 
 
<!--Attribute Definitions --> 
<!ATTLIST Module SchemaNumber CDATA #REQUIRED> 
<!ATTLIST Module Name CDATA #REQUIRED> 
(Contd….) 
 
 
 
 
 
 
 
 
 
 
 
8.2 Object-relational mapping 
 
Object-relational mapping is used to map objects to the relational database. For example, firstly 
consider the simple Fig. 6(a) XML document: 

Fig. 4 

<SalesOrder> 
      <Number>1234</Number> 
      <Customer>Gallagher Industries</Customer> 
      <Date>29.10.00</Date> 
      <Line Number="1"> 
         <Part>A-10</Part> 
         <Quantity>12</Quantity> 
         <Price>10.95</Price> 
      </Line> 
      <Line Number="2"> 
         <Part>B-43</Part> 
         <Quantity>600</Quantity> 
         <Price>3.99</Price> 
      </Line> 
   </SalesOrder> 

Fig. 6(a) 

BasicAttribute 

RefAttribute 

EmbeddedClassAttribute 

VArrayBasicAttribute 

VArrayRefAttribute

VArrayEmbeddedClassAttribute 

Schema 

TopLevelModule 

Module Class 

BaseClass Attributes Relationships 

Unidirectional 

Bidirectional 

Fig. 5 



 

11 

 
In Fig. 6(a) there is a simple XML document, when this document is mapped in relational table 
structure then the schema where this information (data in XML file) will be stored is shown in Fig. 
6(b). In Fig. 7(a), 7(b) actual tables are described with data, rows in these tables are linked through a 
primary key or foreign key relationship. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8.3 Mapping of CRISTAL database schema in Relational database 
 
When the hierarchical model of the schema (see Fig. 5) is mapped to a relational database, the ER 
design that is produced is shown in the following figures i.e. Fig. 8. The relationships here are 
described with primary and foreign keys, e.g. as there can be multiple modules in a single schema (see 
Fig. 4) so TOPLEVELMODULE has the master detail relationship with the schema table. Similarly 
CLASS and MODULE has the master detail relationship with TOPLEVELMODULE and so on. 

 
 

<!ELEMENT Schema (TopLevelModule)> 
<!ELEMENT TopLevelModule (Module*,Class*)> 
<!ELEMENT Module (Module*,Class*)> 
<!ELEMENT Class (BaseClass*,Attributes?,Relationships?)> 
<!ELEMENT BaseClass EMPTY> 
<!ELEMENT Attributes 
(BasicAttribute*,RefAttribute*,EmbeddedClassAttribute*,VArrayBasicAttribute*, 
VArrayEmbeddedClassAttribute*,VArrayRefAttribute*)> 
<!ELEMENT BasicAttribute EMPTY> 
<!ELEMENT RefAttribute EMPTY> 
<!ELEMENT EmbeddedClassAttribute EMPTY> 
<!ELEMENT VArrayBasicAttribute EMPTY> 
<!ELEMENT VArrayRefAttribute EMPTY> 
<!ELEMENT VArrayEmbeddedClassAttribute EMPTY> 
<!ELEMENT Relationships (Unidirectional*,Bidirectional*)> 
<!ELEMENT Unidirectional EMPTY> 
<!ELEMENT Bidirectional 
<!ATTLIST Module SchemaNumber CDATA #REQUIRED> 
<!ATTLIST Module Name CDATA #REQUIRED> 
<!ATTLIST Class Name CDATA #REQUIRED> 
……  ……   ……   …… 
……  ……   ……   …… 
CRISTAL Schema in Relational Table Structure 

Fig. 6(b) 

This can be mapped to these objects: 
   
    object SalesOrder { 
         number = 1234; 
         customer = "Gallagher Industries"; 
         date = 29.10.00; 
         lines = {ptrs to Line objects}; 
      }            /               \ 
                 /                    \ 
              /                         \ 
   object Line {               object Line { 
      number = 1;                   number = 2; 
      part = "A-10";                part = "B-43"; 
      quantity = 12;                quantity = 600; 
      price = 10.95;                 price = 3.95; 
   }                         } 

Fig. 7(b) 

Table SaleOrders 
 

Number    Customer                    Date 
1234          Gallagher Industries    29.10.00 

   Fig. 7(a)    
 Table Lines  
 

 SONumber  Line    Part       Quantity       Price 
1234                1        A-10         12             10.95 
1234                2        B-43        600            3.99 
   ...        ...    ...    ...        ... 

    



 

12 

RELATIONSHIPS

RELATIONSHIPSPK : NUMBER
CLASSFK : NUMBER
RELATIONSHIPSORDER : NUMBER

<<RelationalTable>>

SCHEMA

SCHEMAPK : NUMBER
SCHEMAORDER : NUMBER

<<RelationalTable>>

CLASS

CLASSPK : NUMBER
NAME : VARCHAR2
TYPENUMBER : VARCHAR2
MODULEFK : NUMBER
CLASSORDER : NUMBER
TOPLEVELMODULEFK : NUMBER

<<RelationalTable>>

BASECLASS

NAME : VARCHAR2
POSITION : VARCHAR2
CLASSFK : NUMBER
ACCESSKIND : VARCHAR2
BASECLASSORDER : NUMBER

<<RelationalTable>>

MODULE

NAME : VARCHAR2
SCHEMANUMBER : VARCHAR2
MODULEPK : NUMBER
MODULEFK : NUMBER
MODULEORDER : NUMBER
TOPLEVELMODULEFK : NUMBER

<<RelationalTable>>

ATTRIBUTES

CLASSFK : NUMBER
ATTRIBUTESORDER : NUMBER
ATTRIBUTESPK : NUMBER

<<Relationa lTab le>>

T OPLEVELM ODULE

TOPLEVELMODULEORDER : NUMBER
SCHEMAFK : NUMBER
TOPLEVELMODULEPK : NUMBER

<<RelationalTable>>

VARRAYBASICATTRIBUTE

NAME : VARCHAR2
POSITION : VARCHAR2
TYPE : VARCHAR2
VARRAYBASICATTRIBUTEORDER : NUMBER
ARRAYSIZE : VARCHAR2
ATTRIBUTESFK : NUMBER
ACCESSKIND : VARCHAR2

<<RelationalTable>>

.

.

.

.

.

.

.

...

 
9. The transformation of data from XML documents to relational DB 
 
There are several freeware XML products (e.g. JaxMe, XML_RDB and XML-DBMS etc) that can be 
used for XML data transfer into a relational database. Out of these, XML-DBMS has been selected, as 
its works similarly to what has been depicted in the overall project scenario (see section 7) transfering 
data into Oracle using the object map file. 
 
Here we give a detailed description of the aspects of XML-DBMS that it is necessary to know to 
accomplish the most common tasks. 
 
9.1 What is XML-DBMS? 
 
By definition, XML-DBMS is a set of Java packages that are meant for providing and implementing 
mapping rules between objects embedded in the Object XML files and tables inside the relational 
databases. 
 

It preserves the followings 
� The hierarchical structure of an XML document 
� Data (character data and attribute values) in that document. 
� The order in which the children at a given level in the hierarchy appear.  



 

13 

 
To run XML-DBMS, the following software is needed: 

 
• XML-DBMS, which can be downloaded from:  
 http://www.bourret.com/xmldbms/index.htm 
 
• JDK (Java Development Kit) 1.1.x or 1.2.x, which can be downloaded from: 
 http://java.sun.com/products/jdk/1.1/index.html 
 
• The Oracle database, (tests have been carried out with Oracle8i version 8.0.6 and 8.0.7 and 

Oracle9i) 
 
An XML parser is required for XML-DBMS: XML parsers are available from many companies, 
such as Oracle, Sun, IBM, and Microsoft (DataChannel). In addition, Open Source parsers are available 
from many organizations and individuals, such as James Clark [17], OpenXML [18], and Apache [19]. 
For the use cases reported in this paper the Oracle XML parser version 2 has been used. 
 
9.2 How XML-DBMS views an XML document: 
 
XML-DBMS views an XML document as a tree of objects and then uses an object-relational mapping 
to map these objects to a relational database.  
 

In this view, 

• Element types generally correspond to classes and attributes and PCDATA correspond to 
properties.  

• Child element types are generally viewed as pointed-to classes; that is, an interclass relationship 
exists between the classes corresponding to parent and child element types. 

 
9.3 Mapping XML Documents to the Database 
 
The user specifies how element types, attributes, and PCDATA are viewed, as well as how to map this 
view to the database. This information is contained in a Map object, which is created by a map factory. 
 
9.4 The XML-DBMS Mapping Language 
 
The XML-DBMS mapping language is a simple; it is an XML-based language that describes both how 
to construct an object view for an XML document and how to map this view to a relational schema.  
For complete information about the XML-DBMS mapping language, please follow the web link of 
“mapping language DTD” [11]. 
 
9.5 Table and Column Names 
 
Table and column names in the map document must exactly match the names stored in the database. 
This happens because Oracle converts table and column names in a CREATE TABLE statement to all 
upper or all lower case. 
 
For example, suppose the name SALES has been used in a CREATE TABLE statement. The database 
might store this name as SALES, in that case the name SALES must be used in the map file. 
 
9.6 Transferring Data between XML Documents and the Database 
 
XML-DBMS has two classes for transferring data between XML documents and the database: 
DOMToDBMS transfers data from XML documents to the database and DBMSToDOM transfers data 
in the opposite direction. Both classes use DOM trees as intermediate forms of the XML document 
(SAXToDBMS and DBMSToSAX classes are planned for a future release of XML-DBMS. These 
should help solve some of the scalability problems encountered by using DOM trees.) 



 

14 

Transferring Data to the Database: while transferring data the DOMToDBMS class transfers that 
data from a DOM tree to the database according to a given Map.  
 
Key (Object ID) Generators: KeyGeneratorImpl generates unique 4-byte integers based on a value 
stored in a special table. Before using KeyGeneratorImpl, following should be done: 
 

• A table will be created named XMLDBMSKey with a single INTEGER column named 
HighKey.  

• A single row to this table with HighKey set to 0.  
 
 

Transfer

Transfer()
main()

1- Creates Map file and 
SQL script(which 
contains CREATE 
TABLE statements)

2- Transfers the data from 
object XML file into 
database by using MAP 
file.

Keys are used to 
join tables (class 
table-to-class 
table or class 
table- to-property 
table)

Two kind of 
operations are 
performed on XML 
file in order to 
transfer its data into 
Oracle database
1- Map file is 
generated by using 
the class 
GenerateMap.class
2- Objects are 
transfered by using 
class 
Transfer.class

KeyGenerator

generateKey()

MapFactory_DTD

createMap()
createMapFromDTD()
........()

GenerateMap

GenerateMap()
main()

Create a Map 
from a DTD 
object.

 
Fig. 9: shows the higher-level class structure that how data is transformed into Relational database details is are as 
follows. 

 
9.7 GenerateMap 
 
GenerateMap is java class of XML-DBMS that generates a map and a set of CREATE TABLE 
statements from a DTD, an XML document containing or referring to a DTD, or a DDML schema 
document. The map is saved in a file with the .map extension and the CREATE TABLE statements are 
saved in a file with the .sql extension. It shows how to use the MapFactory_DTD and Map classes.  
 
To run GenerateMap the following command is used: 

 
 Java GenerateMap <DTD or XML document> 
 
For example, to generate a map from structure information of the objects residing in the 
Objectivity/DB, use following command: 
 
// CRISTALSCh.xml is DTD based schema file of CRISTAL DB. 
  
 Java GenerateMap CRISTALSCh.xml   



 

15 

 
The GenerateMap application requires an ODBC data source named "xmldbms" and an ODBC driver 
for that database. It does not require that the database contain any tables -- it simply needs to retrieve 
information from the database about how to construct the CREATE TABLE statements.  
 
This application is using Oracle ver.2 XML parser. However, the Xerces and Sun XML parsers can 
also be used. 
 
9.8 MapFactory_DTD  
  
MapFactory_DTD is a Java class that is used to create a Map from a DTD object. MapFactory_DTD 
constructs tables and columns in which the element types and attributes described in the DTD object 
can be stored, and then it creates a Map that maps the element types and attributes to these tables and 
columns. The resulting Map cannot be used immediately with DBMSToDOM or DOMToDBMS 
because it is required to set a connection with the database. Furthermore, it is possible that the tables 
referred to by the map don’t yet exist. However, it can be serialized as a mapping document or used to 
generate CREATE TABLE statements. 
 
For example, the following code creates a map from the DTD document.dtd, creates the tables, sets the 
connection, and then transfers data to the database: 
     
 // Instantiate a new map factory and create a map. 
 
 factory = new MapFactory_DTD();       
 map = factory.createMapFromDTD(src, MapFactory_DTD.DTD_EXTERNAL, true,    null); 
 
/ * Create the tables used by the map. Note that this function calls Map.getCreateTableStrings(), then 
executes each string in a JDBC Statement. */ 
 
 CreateTables(map); 
 
 // Set the database connection, and then transfer the data to the database. 
 map.setConnection(conn);   
 domToDBMS = new DOMToDBMS(map); 
 domToDBMS.storeDocument(doc); 
  
MapFactory_DTD constructs tables and columns. In order to explain here that these tables and columns 
are not actually created in the database; to do this, the current application must retrieve CREATE 
TABLE strings from the resulting Map and execute these in JDBC statements. The reason for this is 
that applications will commonly want to change the table structure predicted by MapFactory_DTD 
before actually creating tables or simply use this factory as a tool for creating Maps, which can be 
serialized with the Map.serialize() method. SQL statements created by MapFactory_DTD can be run in 
the Oracle server directly.  
 

MapFactory_DTD generates SQL statements for creating tables and columns in the following 
context: 
 

� For each element type that has attributes or child elements, a table is generated. Then there is a 
primary key (PK) column, one column for each single-valued attribute, one column for each 
singly-occurring child element type that contains only PCDATA and has no attributes, an 
(optional) order column for each child element type column, and one foreign key (FK) column 
for each parent element type. If the element type has attributes and PCDATA but no child 
element types, then there is also a column for its PCDATA. Note that the PK column appears 
only if needed to link to a child table or if the element type is a potential root element type.  

� If an attribute is multi-valued (IDREFS, NMTOKENS, or ENTITIES), it is stored in a separate 
table, with an element type FK column, a value column, and an (optional) order column.  

� If a child element type that contains only PCDATA and has no attributes can occur multiple 
times in its parent, it is stored in a separate table, with a parent element type FK column, a value 
column, and an (optional) order column.  

� Except as noted above, PCDATA is stored in a separate table with an element type FK column, 



 

16 

a value column, and an (optional) order column.  

� The code also guesses at what the legal root element types are. An element type is considered to 
be a root if it has no parents. If all element types have parents, then all element types are made 
legal roots.  

 
9.9 Transfer 
 
Transfer is a Java application and it is also a part of XML-DBMS and has an important role in data 
transfer. This application accepts a map document name, an XML document name, and (in the case of 
transferring data from the database to an XML document) a table name. It transfers data in the specified 
direction. It shows how to use the MapFactory_MapDocument, DOMToDBMS, DBMSToDOM, and 
Map classes.  
 
When transferring data from an XML document to the database, the following command can be used: 
 
 Java Transfer -todbms CRISTALSCh.map ObjectTest.xml 
 
Where CRISTALSCh.map is map-file and ObjectTest.xml is an xml-file that contains actual data. 
Before using the Transfer, the following things should be done earlier: 
 � An ODBC data source will be created with the name of "xmldbms" and that will points towards 

database.  
� Tables will be created in the database in which data will be inserted 
� A table will be created and then initialized with the name of XMLDBMSKey. 

 
The application “Transfer” is also hard-coded. 
 
10.  Example of Object mapping in Oracle: 
 
Listed example shows the transformation of object in Oracle DB, for the understanding of reader this 
example is showing transformation of a single object. 
 
 
 

<Object id="3-3-3-17" typename="ooMapElem" typnumber="4002"> 

<Database id="3-0-0-0" name="PRESHOWER_Config" typename="ooDBObj" 

 typnumber="1004"/> 

<Container id="3-3-3-1" name="TEST_Cont" typename="ooContObj"/>  

<Attributes> 

<String name="_key" type="ooVString"> 

<StringElement index="0">2</StringElement> 

</String> 

<Ref name="_value" referencedClass="ooRef(ooObj)"><RefElement index="0">3-3-3-15</RefElement></Ref> 

<Ref name="_map" referencedClass="ooShortRef(ooMap)"><RefElement index="0">3-3-3-
2</RefElement></Ref> 

<Ref name="_next" referencedClass="ooRef(ooMapElem)"><RefElement index="0">3-3-3-74</RefElement> 

</Ref> 

</Attributes> 

</Object> 
 
 
 
 
 

Single object 
from XML file 

generated 
from 

Objectivity 
Database 



 

17 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure shows: Object 3-3-3-17 transferred into ORACLE9i DB. 

 

Table Object  

TYPENAME OBJECTPK* ID 

OoMapElem 2488 3-3-3-17 

Table Database 
NAME TYPENAME ID OBJECTFK* 

PRESHOWER_Config ooDBOb 3-0-0-0 2488 

Table Container 
NAME TYPENAME ID ObjectFK* 

TEST_Cont ooContObj 3-3-3-1 2488 

Table Attributes 

ATTRIBUTEPK* OBJECTFK* 

2489 2488 

Table String 

STRINGPK* NAME TYPE ATTRIBUTEFK* 

2493 “_key ooVString 2489 
Table Ref 

NAME REFERENCEDCLASS REFPK* ATTRIBUTESFK* 

“_next ooRef(ooMapElem) 2490 2489 

 

 

 

 

 

 

The data of Object 3-3-3-17 is in  
this Class hierarchy  

.......
. .. .. ..

ObjectList

ContainerDatabase

Object

ToMany ToOne

Relations

BaseClass Id Basic

Attributs

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

StringElement

String

 



 

18 

11. Prototype  
A test bed is provided with this solution (Migration of objects in Oracle database). As a first step (1) 
we have two files generated from objectivity database, i.e. Schema XML and Object XML file, the data 
in the Object XML is to be transferred into Oracle database. To transfer this data two kinds of files are 
required (2). First one is the SQL script file, that will be used to create tables into oracle database, and 
second one is Map file, that will contain the information for mapping of objects into Oracle database 
table columns.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After creating the tables in Oracle the objects in Object XML file will be transferred into oracle tables 
(generated by the SQL create table statements from SQL script file). Moreover we also provided a 
graphical user interface (GUI) to view the migrated objects into Oracle database.  The GUI will also 
help to see the primary foreign key relationship between objects as described in the example (Object 
mapping in Oracle). 

We have tested our proposed solution by transferring an Object XML file into Oracle database. File 
size was 2.64 MB, and the transfer time was 180 seconds on P-III computer. 
12.  Future 
  
At the time when this paper has been submitted XML-DBMS version 1.01 is stable. However, much 

1

2

 
XML MIDDLEWARE 

SOFTWARE FOR 
DATA MIGRATION 

 

Objectivity Database 

Schema 
XML file 

Object 
XML file 

 Schema  
Information Object Data 

 Generate Map and SQL script file 

MAP 
file 

SQL 
Script file 

 

                      + 

Object 
XML file 

MAP 
file 

Create 
Tables 

ORACLE DATABASE SERVER 

        
       
      
 

GUI to view 
objects in Oracle 

DB 

�	��
�

Transfer 

3



 

19 

work is going into XML-DBMS version 2.0, which will have increased functionality. XML-DBMS 2.0 
and 3.0 [10], will have new features such as storing data in multiple databases, Character Encoding, 
Multiple key generators, Mapping multi-valued properties to the parent table etc. 
 
At present a schema file that is DTD-based has been used (to generate schema information and map 
file). In future XML schema can be used for that function. Currently XML-DBMS is providing APIs 
for DOMToDBMS, DBMSToDOM, where as SAXToDBMS and DBMSToSAX classes are planned 
for a future release of XML-DBMS. SAXToDBMS and DBMSToSAX are supposed to be significantly 
faster than DOMToDBMS and DBMSToDOM as long as order is not important 
 
The biggest changes in 2.0 will be ‘changes to Map objects’ this will make XML-DBMS more 
efficient, writing new map  
factories will be easier, and it will be possible to efficiently recombine map fragments. 
 
One feature of object-oriented databases is that they assign object IDs. XML-DBMS does not currently 
assign object IDs to leaf nodes, this is the area that needs to be explored as a future study. 
 

13. Conclusion 
 
In this paper a mechanism to handle the mapping of objects into relational tables and modeling the 
concepts of object oriented programming into relational table structures are investigated. Different 
XML middleware products have been tested (including both freeware and commercial products) 
available for mapping objects to tables. Various test were conducted to discover the strengths and 
limitations of these products and based on the results the products (as mentioned above) have been 
selected, which were close to the project’s design and needs. This was actually done to analyze the 
structure of the objects residing in the objectivity database (at source) and to extract the underlying 
metadata for converting it in a format suitable for designing schema in the RDBMS i.e. Oracle. Finally, 
the task was to pull out the objects from the object XML file generated from Objectivity database (at 
source) to migrate them in the Oracle database by making use of the map file. 
 
14. Acknowledgements 
CERN support in providing data-files for testing the software and verifying the results is acknowledged 
in the current research work. 
 

References: 
 

[1]  WISDOM project, Wide area database Independent Serialization of Distributed Objects data 
Migration. 

[2] M. Waseem Hassan, et al, Object Oriented Database’s Deserialization Using XML with 
Evolving Definitions,CMS NOTE-2002/0xx. 

[3]  R. McClatchey, et al, Object Serialization and Deserialization Using XML, CMS NOTE-
2001/025. 

[4]  Z. Xie, V. Innocente, Evaluation of Oracle9i C++ Call Interface, CMS NOTE-2002/012. 
[5]  Marcin Nowak, Dirk Düllmann et al, Object Persistency for HEP data using an Object 

Relational Database, CERN, IT Database Group, Geneva, Switzerland (http://cern.ch/db) 
[6]  XML, “Extensible Markup Language v 1.0”. Available from  

http://www.xml.com/axml/target.htm 
[7]  A. Afaq, et al, Object Oriented Database Deserialization Using Extensible Markup Language, 

XML, CMS IN-  1999/052 
[8]  The CRISTAL project, CMS Workflow Management, See http://cmsdoc.cern.ch/Cristal. 
[9]  XML SQL Utility (XSU), See 

http://otn.oracle.com/docs/tech/xml/oracle_xsu/doc_library/adx04xsu.html#1013816 
[10] See http://www.rpbourret.com/xmldbms/specs/index.htm 
[11]  See http://www.bourret.com/xmldbms/xmldbms.dtd 
[12 See http://otn.oracle.com/tech/java/sqlj_jdbc/index2.htm?Code&files/advanced/advanced.htm 
[13] Guy M. Lohman et al,  Extensions toStarburst: bjects, Types, Functions, and Rules. CACM 

34(10) pages 94-109 (1991) 
[14] Mark L Fussal, Drik Bartels, “Relational Vs Object Oriented Databases” By FAST 

OBJECTS 
[15] Object Relational Mapping, See http://www.object-relational.com/articles/object-



 

20 

relational_mapping_definition.html 
[16]  Storing XML in Relational Database, See 

http://www.xml.com/pub/a/2001/06/20/databases.html?page=2 
[17]  James Clark: See http://www.jclark.com/ 
[18]  OpenXML: See http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tsqlref/ts_oa-

oz_5c89.asp 
[19]  Apachi: See http://xml.apache.org/



 

i 

Appendix  

 
A. Software requirements / Run pre configured Test Bed 
B. XMLDBMS architecture model 
C. CPU and memory state while transformation of object data into Oracle9i database. 
D. Glossary of Terms: 

______________________________________________________________________________________________ 

 
Appendix A 

 
Software Requirements: 
 

• Oracle8i/9i database server: 
 Install Oracle8i/9i database server version 8.1.7, 9i or higher. 
 
• JDK (Java Development Kit) 1.1.x or 1.2.x: 
 Download: http://java.sun.com/products/jdk/1.1/index.html  
 
• An XML parser written in Java: 

XML parsers are available from many companies, such as Oracle, Sun, IBM, and Microsoft (DataChannel). In 
addition, Open Source parsers are available from many organizations and individuals, such as James Clark, 
OpenXML, and Apache. 

 
• JDBC driver for your database: 
 Most relational databases are shipped with JDBC and ODBC drivers. If you have an ODBC driver but not a 

JDBC driver, you can use an JDBC-ODBC bridge as your JDBC driver. This converts JDBC calls to ODBC 
calls. An experimental (and therefore somewhat buggy) JDBC-ODBC bridge is shipped with the JDK; JDBC-
ODBC bridges are available from other companies as well. Note that the quality of JDBC drivers varies 
considerably, so if one JDBC driver does not work, you can try another. 

CONFIGURATION TO RUN TEST BED 

Steps to use the pre configured test bed that transfers data from XML file into Oracle database. 

We have tested it with a XML file generate form CRISTAL database on windows2000 professional and server, for the 
configuration of that transformation and middleware transformation follow there steps. 

 
Installation Issues 
Pre requirements: 
 

• Oracle8i/9i database server version 8.1.7, 9i or higher 

• JDK (Java Development Kit) 1.1.x, 1.2.x  or higher 
Download JDK: http://java.sun.com/products/jdk/1.1/index.html  

• I order to run GUI provided with this test bed to see the transferred objects in Oracle database you need to 
install Oracle Forms (Run Time) Developer 6i 

 

Steps to run pre configured Test Bed 
 
1. After completing the pre requirements (configuration of oracle and JDK), unzip the provided install.zip file and 

simply place two folders (xmldbms and xerces-J) and  files “xmlparserv2.jar” (which is a XML parser) and other 
files in JDK folder. 



 

ii 

2. Now add these system variables (go in the properties of MyComputer � advanced � system variable and add 
a variable with the name of “classpath” then add following values in it  

C:\jdk1.3\xerces-J\xerces.jar;  

C:\jdk1.3\xerces-J\xercesSamples.jar; 

C:\jdk1.3\xmldbms\xmldbms_jar; 

C:\jdk1.3\xmlparserv2.jar 

3. After completing Oracle user configuration, now enter user name and password in ODBC Driver setup 
(Microsoft ODBC Driver for ORACLE) and enter data source name “xmldbms”. (See fig. on next page) 

 

Here user name is CRISTAL and password is ***** 

 

4. In order to create tables in Oracle database run sql script “CreateTables.sql” provided with this bed or simply 
cut and paste all the text provided in the CreateTables.sql file in your ORACLE SQL prompt. 

5. Now go into the folder xmldbms� Samples and run bath file TransferData.bat file. The ObjectTest.xml file 
will be transferd by using ObjectTest.map file into Oracle database.  

 

GUI to see the migrated data in Oracle: 
After the transformation the data in Oracle can be viewed form SQL prompt or by using the GUI, provided with this 
test bed. To run it just simply place the CRISRAL-GUI.fmx file any where or on c:\ and double click on it (then enter 
user name and passward same as given in ODBC setup). All the information of using the trouble-free GUI can be 
seen by its help, tool tips etc. If the CRISRAL-GUI.fmx will give any error then you can use CRISRAL-GUI.fmb and 
run it from Oracle form developer6i. 

 
 



 

iii 

Appendix B 
 

 
 XML-DBMS Architecture Model: 
 
 

Map
DTD

Relational
Map

Component

CHS
XML
FILE

CHS
XML
DTDMap

File

DOM TO DBMS
Translational
Component

DBMS TO DOM
Translational
Component

Data

DOM
Document

Action
File

Action
DTD

DOM
PARSER

SAX
PARSER

 Persistence
Layer

Could be multiple
Databases

Filter
File

SAX
PARSER

Filter
DTD

Notes:

1.Interfaces not defined, diagram
only exists to show XMLDBMS
Model.
2. Two SAX parsers boxes shown
on diagram are the same SAX
parser

Action File
In

Map File
In Filter File

In

CHS XML
File In/Out

Action Data
Out

Map Data
Out

Relational
Map Data

Out

Filter Data
Out

JDBC

Generation of
SQL

XML

 
 
 Source: XML-DBMS Group [10] 



 

iv 

Appendix C 
 
 
CPU and Memory state before transformation of Objects into Oracle9i database Server. 

 

 
 
 
 
 
CPU and Memory state at the time of Transformation of Objects into Oracle9i database Server. 
 

 



 

v 

Appendix D 
 

Glossary of Terms: 
 

This section describes the key terms that I have used throughout this document. 

 

Aggregation: Represents “is-part-of” relationships. 

Association: Relationships, associations, exist between objects. For example, customers BUY products. 

Associative table: A table in a relational database that is used to maintain a relationship between two or more other 
tables. Associative tables are typically used to resolve many-to-many relationships. 

Client: A single-user PC or workstation that provides presentation services and appropriate computing, connectivity, 
and interfaces relevant to the business need. A client is also commonly referred to as a “frontend.” 

Client/server (C/S) architecture: A computing environment that satisfies the business need by appropriately 
allocating the application processing between the client and the server processes. 

Data dictionary: A repository of information about the layout of a database, the layout of a flat file, the layout of a 
class, and any mappings among the three. 

Database server: A server which has a database installed on it. 

Distributed objects: An object-oriented architecture in which objects running in separate memory spaces (i.e. 
different computers) interact with one another transparently. 

Key: One or more columns in a relational data table that when combined form a unique identifier for each record in the 
table. 

Object identifiers (OIDs): A unique identifier assigned to objects, typically a large integer number. OIDs are the 
object-oriented equivalent of keys in the relational world. 

Pattern: The description of a general solution to a common problem or issue from which a detailed solution to a 
specific problem may be determined. Software development patterns come in many flavors, including 
but not limited to analysis patterns, design patterns, and process patterns. 

Persistence: The issue of how to store objects to permanent storage. Objects need to be persistent if they are to be 
available to you and/or to others the next time your application is run. 

Persistence classes: Persistence classes provide the ability to permanently store objects. By encapsulating the storage 
and retrieval of objects via persistence classes you are able to use various storage technologies interchangeably without 
affecting your applications. 

SQL: Structured Query Language, a standard mechanism used to CRUD records in a relational database. 

SQL statement: A piece of SQL code. 

Transaction: A transaction is a single unit of work performed in a persistence mechanism. A transaction may be one 
or more updates to a persistence mechanism, one or more reads, one or more deletes, or any combination thereof. 

 

 

 

 

 


