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Abstract

Magnetic moments of the charm baryons of the sextet and of the 3�-plet are re-evaluated

in the framework of Heavy Hadron Chiral Perturbation Theory (HHCPT). NRQM and broken

SU(4) unitary symmetry model are used to obtain tree-level magnetic moments. Calculations of

a unitary symmetry part of one-loop contributions to magnetic moments of the charm baryons

are performed in detail in terms of the SU(4) couplings of charm baryons to Goldstone bosons.

The relations between the magnetic moments of the sextet 1/2 baryons with the one-loop cor-

rections are shown to coincide with the NRQM relations. The correspondence between HHCPT

results and those of NRQM and unitary symmetry model is discussed. It is shown that one-loop

corrections can e�ectively be absorbed into the tree-level formulae for the magnetic moments of

the charm baryons in the broken SU(4) unitary symmetry model and partially in the NRQM.
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1 Introduction

Magnetic moments of charm baryons were �rst described in the quark model with four avors

[1] and SU(4)f unitary symmetry model and its extension to SU(8) � U(4)f �SU(2) [2]. Later,
when a speci�c role of heavy quark inside heavy hadron were realized [3, 4, 5] in an approach

based on the heavy quark e�ective theory and chiral perturbation theory, leading long-distance

contribution to magnetic moments of the charm antitriplet were computed in [6]. Recently in a

similar approach magnetic moments of heavy baryons were analyzed [7]. One-loop corrections

were calculated and relations are obtained between magnetic moments of sextet charm and

beauty baryons [7]. These relations, as we shall see, are those of a simple quark model [1] even

in the presence of one-loop corrections of order O(1=�2�) where �� is a chiral symmetry breaking

scale. As this is not the case for the magnetic moments of octet baryons and in order to make

a more direct comparison of magnetic moments of the charm baryons with those of the octet

baryons I re-evaluate here magnetic moments of the charm baryons following the approach of

[8, 9, 10] for the octet and decuplet baryons and taking into account one-loop corrections in

the framework of the HHCPT in terms of SU(4) coupling constants for charm baryons and

Goldstone bosons.

Magnetic moments at the tree level can be taken either from a quark model (see, e.g., [1])

or from a unitary symmetry model (see, e.g., [2]). These models could be put in a form which

corresponds e�ectively to a description of the tree-level magnetic moments in the framework of

the HHCPT as the sum of the terms of order O(1=��) arising due to light quark contributions,

and the terms of order O(1=mc) arising due to a charm quark contribution.

All masses of the charm 1/2 and 3/2 baryons are taken to be degenerated.

The plan of the paper is the following. First I write the necessary elements of the HHCPT.

Then tree-level contributions are written in the frameworks of the NRQM and SU(4)f unitary

symmetry model. In the 4th section one-loop contributions into the charm baryon magnetic

moments are evaluated one by one and the corresponding Feynman diagrams are presented.

Results are compared with those of [7]. In the 5th section relations between the charm baryon

magnetic moments are given and discussed.

2 Elements of the HHCPT Formalism

I write the necessary elements of the Heavy Hadron Chiral Perturbation Theory (HHCPT),

basing mainly on the works of [7, 8, 9, 10]. In its framework a chiral expansion of the heavy

(charm in our case) baryon Lagrangian is written in terms of the velocity-dependent �elds Bv(x)

constructed in order to remove free momentum dependence in Dirac equation,

Bv(x) = exp(iMB v̂v
:x)B(x):
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Here B(x) is a charm baryon 1/2 �eld with central mass MB . It would be more convenient

for us to work not with the 6- and 3�-plets of the charm baryons as in [7] but instead with

the whole SU(4)f 2004-plet. The 20
0
4-plet Bv(x) is given by the 3rd-rang tensor B�

� �; �;  =

1; 2; 3; 4 (B�
� = �B�

�, B
�
�� = 0). Usually one can make a reduction of the baryon 2004-plet to

the multiplets of the SU(3)f -group with the de�nite value of the charm quantum number as

2004 = 83 + 63 + 3�3 + 33. The ordinary octet 83 with C = 0 is:

Bv =

0
BB@

1p
2
�0
v +

1p
6
�0v �+

v pv

��v � 1p
2
�0
v +

1p
6
�0v nv

��v �0v � 2p
6
�0v

1
CCA : (1)

Charm baryons of the sextet 63 and antitriplet 3�3 with C = 1 are given by the tensors Ba
bc and

B4
b4, a; b; c = 1; 2; 3 2. Note that in the quark model the 63-plet charm baryons are all �-like

ones with two light quarks in a symmetrical state and the charm quark apart:

�++
c (uu; c) = B1

23; �0
c(dd; c) = B2

13; 
0
c(ss; c) = B3

12;

p
2�+

c (ud; c) = B1
13 �B2

23;
p
2�0+c (us; c) = B1

12 �B3
32; :

p
2�00c (ds; c) = B2

12 �B3
13:

Instead 3�3-plet charm baryons are all �-like ones:

B4
14 =

2p
6
�0c(csd); B4

24 =
2p
6
�+c (csu); B4

34 =
2p
6
�+c (cud):

The 3/2 63-plet charm baryons T ab4
� , a; b = 1; 2; 3, are a part of the SU(4)f 20-plet (204 =

103 + 63 + 33 + 13. ) and in the quark model all have quarks in a symmetrical state:

��++c (uuc) = T 114;
p
2��+c (udc) = T 124; ��0c (ddc) = T 224;

p
2��+c (usc) = T 134;

p
2��0c (dsc) = T 2

234; 
�0c (ssc) = T 334:

Goldstone bosons appearing in the limit of chiral symmetry are identi�ed with the pseudoscalar

octet and are parametrized as follows

P =
1p
2

0
BB@

1p
2
�0 + 1p

6
� �+ K+

�� � 1p
2
�0 + 1p

6
� K0

K� �K0 � 2p
6
�

1
CCA : (2)

This pseudoscalar octet couples to the baryon �elds via the vector and axial vector currents

V � =
1

2
(�@��y + �y@��); A� =

i

2
(�@��y � �y@��);

where � = exp(iP=f) and � ! L�Ry; with L;R 2 SU(3)L;R and f = f� � 93MeV being the

pseudoscalar decay constant in the chiral limit.

2While using tensor notation here I omit the subscript v.

3



The lowest order Lagrangian (in notations of [8, 9, 10]) reads

L = L1=2 + L3=2!1=2 + L3=2 +
f2�
4
Tr(@��y@��)

with � = exp(2iP=f) � �2 and L1=2; L3=2!1=2; L3=2 written below. As it was said it

would be convenient for us to write formally vector and axial-vector baryon currents and their

couplings to the Goldstone bosons in terms of the SU(4) unitary symmetry model and only

then to reduce formulae to the case of the SU(3) Goldstone bosons, given by the familiar octet

of the pseudoscalar mesons �;K and �. It would also be convenient in what follows to write the

corresponding Lagrangian of the electromagnetic interaction of the baryons through the SU(4)

electromagnetic baryon currents and then to extract charm baryon piece.

As the pseudoscalar octet is a part of the SU(4)f 154-plet (154 = 83 + 3�3 + 33 + 13) I write

formally the interaction of the latter with the baryons of the 2004-plet through a SU(4) invariant

Lagrangian

L1=2 = iT r(Bv v � D Bv) + 2(�F +D)(B
��
v  S�v A�

� � B
v ��) +

2(F +D)(B
��
v � S

�
v B

v ��) A
�
�  ; D� Bv = @�Bv + [V�; Bv]; (3)

and then take the part corresponding to the interaction of the charm baryons with the light

Goldstone bosons P a
b , a; b = 1; 2; 3. In the same way transition current between the charm

6-plet 3/2 and the charm 6-plet 1/2 can be written �rst in terms of the 2004-plet 1/2 and the

204-plet 3/2 (204 = 103 + 63 + 33 + 13) which interacts with the 154-plet Goldstone bosons

through a Lagrangian:

L3=2!1=2 = C(���a �B�
v � T � ���

v AÆ
� � + ���Æ �Tv � ��� B�

v � A� �
Æ ) (4)

Then we take the part corresponding to the interaction of the charm 6-plets with the light

Goldstone bosons P a
b , a; b = 1; 2; 3. Similarly I also write SU(4) invariant Lagrangian for the

interaction of the 204-plet formally with the 154-plet Goldstone bosons:

L3=2 = �T �
v ��� v � D T��Æ

v � + 2H �T �
v ��� Sv � A

� Æ
� T���

v � ;

D�T��Æ
v � = @�T��Æ

v � + (V �)��T
��Æ
v � + (V �)��T

��Æ
v � + (V �)Æ�T

���
v � ; (5)

and then take the part corresponding to the interaction of the charm 6-plet 3/2 from 204-plet

with the light Goldstone bosons P a
b , a; b = 1; 2; 3.

Extracting from Eqs.(3,4,5) the SU(3) symmetry part with octet baryons (1), one arrives at

the e�ective Lagrangians used in [9] for the one-loop correction calculations for the octet and

decuplet magnetic moments with the same constants F;D; C;H.
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3 Tree-level magnetic moments

Nonrelativistic quark model

Let us now briey discuss tree-level magnetic moments beginning from the quark model.

In the 4-avor nonrelativistic quark model all the moments can be expressed in terms of the 4

quark magnetons �q; q = u; d; s; c. The 6-plet charm baryon magnetic moments are [1]:

��++
c

=
4

3
�u �

1

3
�c; ��+

c

=
2

3
�u +

2

3
�d �

1

3
�c

��0
c

=
4

3
�d �

1

3
�c; �
0

c

=
4

3
�s � 1

3
�c;

��0+
c

=
2

3
�u +

2

3
�s �

1

3
�c; ��00

c

=
2

3
�d +

2

3
�s �

1

3
�c: (6)

In the HHPCT a natural scale of the leading order contributions to the magnetic moments would

be O(1=��) for �u;d;s and O(1=mc) for �c [7, 10]. Formally with �u = �2�d = �2�s = cs=3��

and �c = �1=6mc we arrive at the �rst two terms of Eq.(15) in [7] in their notations and their

Table 1 taken into account.

The following relations are valid in NRQM:

��++
c

+ ��0
c

= 2��+
c

;

��++
c

+ �
0
c

= 2��0+
c

; (7)

��++
c

+ 2��00
c

= ��0
c

+ 2��0+
c

:

We shall see later that the same relations are valid also with the one-loop corrections included.

The 3�-plet charm baryon magnetic moments in NRQM are all equal [1]:

��+
c

= ��+
c

= ��0
c

= �c: (8)

In the HHPCT a natural scale for leading order contribution would be O(1=mc). Formally the

quark model result can be related to that of HHPCT in [7]. It coincides with the �rst term of

Eq.(33) in [7] with �c = �1=6mc. It is valid up to the order O(1=��) as non-zero corrections

begin only at the order O(1=mc��) [7].

Unitary symmetry model

Magnetic moments of the charm baryons at the tree level can be evaluated in the framework

of the SU(4)f unitary symmetry model [2]. Electromagnetic baryon current transforms under

the reducible group representation 15+1, and we choose to introduce symmetry breaking terms

due to strangeness and charm. Then magnetic moments would be given by the current :

Jel�mag
� = (g1B

1�
 �B


1� + g01B

4�
 �B


4� + h1B

3�
 �B


3�) +

1

2
(g2B

��
1 �B

1
�� + g02B

��
4 �B

4
�� + h2B

��
3 �B

3
��)�

1

3
(g1 + g2 + g01 � 2g0 � 3h1)Sp( �B�B) (9)
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With g1 = g01 = �1
2�x, g2 = g02 = �1

2�y, h1 = h2 = 0 one returns to the SU(4)f -symmetric

electromagnetic current given in [2]. With g1 = ��F + �D, g2 = �F + �D, h1 = ��sF + �sD,

h2 = �sF + �sD, g0 = �g01 one arrives at the SU(3)f formulae for the octet baryon magnetic

moments with corrections due to strangeness in terms of the constants �F , �D , �sF , �
s
D (similar

to those written in [12]):

�p = �F +
1

3
�D; �n = �

2

3
�D;

��+ =
4

3
�F +

1

3
(�sD � �sF ); ��� = �2

3
�F +

1

3
(�sD � �sF );

��0 =
4

3
�sF +

1

3
(�D � �F ); ��� = �2

3
�sF +

1

3
(�D � �F );

�� =
1

3
(�F �

2

3
�D)�

1

3
(�sF +

1

3
�sD): (10)

Disregarding superscript 0s 0, one obtains known SU(3)f results [11]. The 6-plet magnetic

moments are given by (! means SU(4)f limit):

��++
c

=
4

3
�F +

2

3
(�cF � �cD)! 2�F �

2

3
�D;

��+
c

=
1

3
�F +

2

3
(�cF � �cD)! �F �

2

3
�D;

��0
c

= �2

3
�F +

2

3
(�cF � �cD)! �2

3
�D;

��0+
c

=
2

3
�F �

1

3
�sF +

2

3
(�cF � �cD)! �F �

2

3
�D;

��00
c

= �1

3
�F �

1

3
�sF +

2

3
(�cF � �cD)! �2

3
�D;

�
0
c

= �2

3
�sF +

2

3
(�cF � �cD)! �2

3
�D; (11)

with

g01 =
1

3
g1 +

2

3
gc1; g02 =

1

3
g2 +

2

3
gc2; (12)

gc1 = ��cF + �cD; gc2 = �cF + �cD

The 3�-plet magnetic moments are given instead by :

��0
c

= �1

3
(�F � 2

3
�D)� 1

3
(�sF �

2

3
�sD) +

2

3
(�cF +

1

3
�cD)!

2

3
�D;

��+
c

=
2

3
(�F �

2

3
�D)�

1

3
(�sF �

2

3
�sD) +

2

3
(�cF +

1

3
�cD)! �F ;

��+
c

=
1

3
(�F � 2

3
�D) +

2

3
(�cF +

1

3
�cD)! �F (13)

In the HHPT a natural scale of the leading order contributions to the magnetic moments would

be O(1=��) for �F , �D, �
s
F , �

s
D and O(1=mc) for �

c
F , �

c
D. Formally with �F = �sF = cs=3��

and (�cF ��cD) = 1=12mc we arrive at the �rst two terms of Eq.(15) in [7] in their notations and

their Table I taken into account. Instead with

(�cF +
1

3
�cD) = �

1

4
mc; (�F � 2

3
�D) = (�sF �

2

3
�sD) =

cT
3mc��
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one obtains the �rst two terms of Eq.(33) in [7] in their notations and their Table IV taken into

account.

Results of the broken SU(4) symmetry for the magnetic moments of the charm sextet as

given by Eq.(9) can be matched to those of the quark model with four avors as given in [1].

Really, upon using relations

�F =
2

3
(�u � �d); �sF =

2

3
(�u + 2�d � 3�s);

2(�cF � �cD) =
4

3
�u +

8

3
�d � �c; (14)

one obtains from Eq.(11) the relations of Eq.(6). It seems to be a nontrivial result as,e.g., there

are no similar relations for charm antitriplet magnetic moments as well as for octet baryon ones.

New formulae for the tree-level magnetic moments

New formulae for the magnetic moments can be written in terms of the quark charges and

�F 's and �D's constants.

A magnetic moment of any hyperon with the �(qq0; q�)-like quark wave function containing

two quarks q; q0 in a biquark state and a single quark q� would have the form, in obvious notation:

��(qq0;q�) = eq�F + eq0�
0
F + eq�(�

�
F � ��D):

For the �-like baryons of the octet, that is for all of them but � hyperon with q; q0; q� = u; d; s

and ��F = �F ; ��D = �D one reproduces immediately Eq.(10). For the sextet charm baryons

(which are all �-like ones) with q; q0 = u; d; s, q� = c and ��F = �cF , �
�
D = �cD, one reproduces

the results given by Eq.(9) and quoted in Eq.(11).

One can write a formula for the magnetic moments of the �-like antitriplet charm hyperons

containing two light quarks q; q0 and one heavy quark q� as

��(qq0q�) = eq(�F �
2

3
�D) + eq0(�

0
F �

2

3
�0D) + eq�(�

�
F +

1

3
��D):

With q; q0 = u; d; s, q� = c and ��F = �cF ; �
�
D = �cD one arrives at the result given by Eq.(9) and

quoted in Eq.(13)

This formula is valid also for the octet � magnetic moment. Taking eq� = es = �1
3 and

�F = ��F , �D = ��D one obtains the corresponding formula of the Eq.(10), namely, �� = ��D=3.

4 One-loop corrections to the charm baryon magnetic moments

in HHCPT

An expression for the charm baryon magnetic moments in the HHCPT includes the tree-level

formulae (with the corresponding counter terms) and the non-analytic corrections arising from

the one-loop diagrams, involving � andK loops with 6-plet 1/2, 3�-plet 1/2 and 6-plet 3/2 charm

baryon insertions. One-loop corrections were evaluated in [6, 7] through e�ective Lagrangians
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involving directly sextet 1/2, 3/2 and 3� 1/2 charm baryon �elds. But in order to be able to

relate it to the case of the octet baryons it is more convenient for us to treat 1/2 and 3/2 spinors

separately [8, 9, 10]. Also while considering couplings of the Goldstone bosons to baryons we

use formally the SU(4) symmetric Lagrangians Eqs.(3,4,5) and then extract the part containing

couplings of the charm baryons to the light Goldstone bosons. Thus magnetic moments of the

charm baryons can be written in the form similar to those of the octet baryons [8, 9, 10]

�B = �0B +
�

�2�

X
X=�;K

(�XB + ~�XB )mX � �0B + U(B); (15)

where �0B are tree-level magnetic moments of the order O(1=��) and/or O(1=mc), discussed in

the previous section.

The ��;KB and ~��;KB are the contributions from the pion and kaon loops with the photon line

attached to the meson with intermediate baryon 1/2 and 3/2 states, respectively [8] . One-loop

contributions into the charm baryon magnetic moments would be evaluated one by one and the

corresponding Feynman diagrams would be presented similar to that done for the octet baryons

[13].

The 6-plet charm baryon magnetic moments

1.1. Contribution into �++
c magnetic moment

There are 6 diagrams, two of them with the 6(1/2)-plet baryons in the loop, two more

diagrams with the 6(3/2)-baryons in the loop and two last diagrams with the 3�(1=2)-plet

baryons in the loop:

�++
c

�+

�+
c ;�

�+
c�++

c



�++
c

K+

�0+c ;��+c�++
c



�++
c

�+

�+c�++
c



�++
c

K+

�+c�++
c



Fig.1.1

The coupling constants of the Goldstone bosons to the charm baryons in these diagrams are

given by the Lagrangians (3) and (4) . The corresponding contribution upon taking account

8



of the factors arriving from integration (see [8, 9, 10]) (that is a factor (-1) in front of the 1/2

contribution and a factor 1/3 in front of the 3/2 one) is written as 3:

U(�++
c ) =

�

�2�

X
X=�;K

(�X
�++
c

+ ~�X
�++
c

)mX) =

�

�2�
[[�(

p
2F )2 +

1

3
(
1

6
C2)]m�+

[�(
p
2F )2 +

1

3
(
1

6
C2)]mK � (

r
2

3
D)2m� � (

r
2

3
D)2mK ] =

�

�2�
[�2F 2 � 2

3
D2 +

2

36
C2](m� +mK)) �4

3

�

�2�
(m� +mK)D

2

1.2. Contribution to �+
c magnetic moment

There are 7 diagrams, three of them with the 6(1/2)-plet baryons in the loop, three more

diagrams with the 6(3/2)-baryons in the loop and the last one with the 3�(1=2)-plet baryons in

the loop:

�+
c

��

�++
c ;��++c�+

c



�+
c

�+

�0;��0�+
c



�+
c

K+

�00c ;�
�0
c�+

c



�+
c

K+

�0c�+
c



Fig.1.2

The contribution of these diagrams is calculated using the Lagrangians Eqs.(3) and (4):

U(�+
c ) =

�

�2�
[[(
p
2F )2 � 1

3
(
1

6
C2)]m� + [�(

p
2F )2 +

1

3
(
1

6
C2)]m�+

[�F 2 +
1

3
(
1

12
C2)]mK � (

r
1

3
D)2mK ] =

�

�2�
[�F 2 � 1

3
D2 +

1

36
C2]mK ) �2

3

�

�2�
mKD

2:

3
) means throughout the paper that the QM limit F = 2=3D; C = �2D; H = �3D is taken
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1.3. Contribution into �0
c magnetic moment

There are only 3 diagrams, with the 6(1/2)-plet baryon, the 6(3/2)-baryon in the loop and

the last one with the 3�(1=2)-plet baryon in the �-loop:

�0
c

��

�+
c ;�

�+
c�0

c



�0
c

��

�+c�0
c



Fig.1.3

Upon using Eqs.(3) and (4):

U(�0
c) =

�

�2�
[[(
p
2F )2 � 1

3
(
1

6
C2) + (�

r
2

3
D)2]m� =

�

�2�
[2F 2 +

2

3
D2 � 2

36
C2]m� ) 4

3

�

�2�
m�D

2:

1.4. Contribution into �0+c magnetic moment

There are 7 diagrams, three of them with the 6(1/2)-plet baryons in the loop, three more

diagrams with the 6(3/2)-baryons in the loop and the last one with the 3�(1=2)-plet baryons in

the loop:

�0+c

�+

�00c ;�
�0
c�0+c



�0+c

K�

�++
c ;��++c�0+c



�0+c

K+


0
c ;


�0
c ;�0+c



�0+c

�+

�0c�0+c



Fig.1.4

Upon using Eqs.(3) and (4):
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U(�0+c ) =
�

�2�
[[�F 2 +

1

3
(
1

6
C2)]m� + [(

p
2F )2 � 1

3
(
1

12
C2)]mK+

[�
p
2F )2 +

1

3
(
1

12
C2)]mK � (

r
1

3
D)2m�] =

�

�2�
[�F 2 � 1

3
D2 +

1

36
C2]m� ) �2

3

�

�2�
m�D

2:

1.5. Contribution into �00c magnetic moment

Similar to the case of the �++
c contribution there are 6 diagrams, two of them with the

6(1/2)-plet baryons in the loop, two more diagrams with the 6(3/2)-baryons in the loop and two

last diagrams with the 3�(1=2)-plet baryons in the loop:

�00c

��

�0+c ;��+c�00c



�00c

K�

�+
c ;�

�+
c�00c



�00c

��

�+c�00c



�00c

K�

�+c�00c



Fig.1.5

Upon using Eqs.(3) and (4):

U(�00c ) =
�

�2�
[[F 2 � 1

3
(
1

12
C2)]m�+

[F 2 � 1

3
(
1

12
C2)]mK + (

r
1

3
D)2m� + (

r
1

3
D)2mK ] =

�

�2�
[F 2 +

1

3
D2 � 1

36
C2](m� +mK))

2

3

�

�2�
(m� +mK)D

2

1.6. Contribution into 
0
c magnetic moment

There are only 3 diagrams, with the 6(1/2)-plet baryon, the 6(3/2)-baryon and the last one

with the 3�(1=2)-plet baryon in the K-loop:

11




0
c

K�

�0+c ;��+c
0
c




0
c

K�

�+c
0
c



Fig.1.6

Upon using Eqs.(3) and (4):

U(
0
c) =

�

�2�
[[(
p
2F )2 � 1

3
(
1

6
C2) + (

r
�2

3
D)2]mK =

�

�2�
[2F 2 +

2

3
D2 � 2

36
C2]mK ) 4

3

�

�2�
mKD

2:

The 3�-plet charm baryon magnetic moments

2.1. Contribution into �+c magnetic moment

There are 7 diagrams, three of them with the 6(1/2)-plet baryons in the loop, three more

diagrams with the 6(3/2)-baryons in the loop and the last one with the 3�(1=2)-plet baryons in

the loop:

�+c

��

�++
c ;��++c�+c



�+c

�+

�0;��0�+c



�+c

K+

�00c ;�
�0
c�+c



�+c

K+

�0c�+c



Fig.2.1

Upon using Eqs.(3) and (4):

U(�+c ) =
�

�2�
[[(

r
1

3
D)2 � 1

3
(
1

4
C2)]m� + [�(

r
1

3
D)2 +

1

3
(
1

4
C2)]m�+

[�(
r
1

3
D)2 +

1

3
(
1

4
C2)]mK � (F � 2

3
D)2mK ] =

12



�

�2�
[�1

3
D2 � (F � 2

3
D)2 +

1

12
C2]mK ) 0

There is a non-zero contribution of the diagram with the �0c-insertion proportional to the factor

(F � 2
3D)2 which disappears in the quark model limit with F = 2

3D. The remaining part of the

one-loop contribution also disappears in this limit, but only because degenerated masses of the

3� 1/2 and sextet baryons are taken here. These diagrams give a non-zero contribution with

nondegenerate masses [6, 7].

2.2. Contribution into �+c magnetic moment

There are 7 diagrams, three of them with the 6(1/2)-plet baryons in the loop, three more

diagrams with the 6(3/2)-baryons in the loop and the last one with the 3�(1=2)-plet baryons in

the loop:

�+c

��

�00c ;�
�0
c�+c



�+c

K�

�++
c ;��++c�+c



�+c

K+


0
c ;


�0
c ;�+c



�+c

�+

�0c�+c



Fig.2.2

Upon using Eqs.(3) and (4):

U(�+c ) =
�

�2�
[[�(
r
1

3
D)2 +

1

3
(
1

4
C2)]m� + [(

r
1

3
D)2 � 1

3
(
1

4
C2)]mK+

[�(
r
1

3
D)2 +

1

3
(
1

4
C2)]mK � (F � 2

3
D)2m�] =

�

�2�
[�1

3
D2 � (F � 2

3
D)2 +

1

12
C2]m� ) 0

There is also a non-zero contribution of the diagram with the �0c-insertion proportional to the

factor (F � 2
3D)2 which disappears in the quark model limit with F = 2

3D. Also here the

remaining part of the one-loop contribution disappears in this limit.

2.3. Contribution into �0c magnetic moment
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Similar to the cases of the �++
c and �00c contributions there are 6 diagrams, two of them with

the 6(1/2)-plet baryons in the loop, two more diagrams with the 6(3/2)-baryons in the loop and

two last diagrams with the 3�(1=2)-plet baryons in the loop:

�0c

��

�0+c ;��+c�0c



�0c

K�

�+
c ;�

�+
c�0c



�0c

��

�+c�0c



�0c

K�

�+c�0c



Fig.2.3

Upon using Eqs.(3) and (4):

U(�0c) =
�

�2�
[[(

r
1

3
D)2 � 1

3
(
1

4
C2)]m�+

[

r
1

3
D)2 � 1

3
(
1

4
C2)]mK + (F � 2

3
D)2m� + (F � 1

3
D)2mK ] =

�

�2�
[
1

3
D2 + (F � 2

3
D)2 � 1

12
C2](m� +mK)) 0

There is a non-zero contribution of the diagram with the �+c -insertion proportional to the factor

(F � 2
3D)2 which disappears in the quark model limit with F = 2

3D. Also here the remaining

part of the one-loop contribution disappears in this limit.

5 Results and discussion

Finally one-loop contributions lead to the following expressions for the magnetic moments of

the sextet 1/2:

��++
c

= �0
�++c

+ 2�(m� +mK);

��+
c

= �0
�+
c

+ �mK ; ��0
c

= �0�0
c

� 2�m�;

��0+
c

= �0
�0+
c

+ �m�; ��00
c

= �0�00
c

� �(m� +mK);

�
0
c

= �0
0
c

� 2�mK ;
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where

� =
�

�2�
[�F 2 � 1

3
D2 +

1

36
C2]! �2

3

�

�2�
:

One-loop contributions considered in [7] and in this work do not change the relations of Eq.(8):

��++
c

+ ��0
c

= 2��+
c

;

��++
c

+ �
0
c

= 2��0+
c

;

��++
c

+ 2��00
c

= ��0
c

+ 2��0+
c

:

The formulae for the magnetic moments of the sextet charm baryons in the quark model (see

Eq.(6)) remain essentially the same with the account of the one-loop corrections considered if

one renormalizes e�ectively the light quark magnetic moments in the following way:

�u ! �u �
3

2
�(m� +mK);

�d ! �d +
3

2
�m�; �s ! �s +

3

2
�mK :

An analogous conclusion is valid for the magnetic moments of the charm baryons obtained in [7].

One can proceed in a similar way in the unitary symmetry model, renormalizing �D;F 's upon

using Eq.(14). One-loop contributions yield the following expressions for the magnetic moments

of antitriplet 1/2:

��+
c

= �0
�+
c

+ �mK ;

��+
c

= �0
�+
c

+ �m�; ��0
c

= �0�0
c

� �(m� +mK); (16)

where

� = � �

�2�
[
1

3
D2 + (F � 2

3
D)2 � 1

12
C2]

The one-loop contributions given by the diagrams of the Figs.2.1-3 disappear in the quark model

limit (F = 2
3D, C = �2D). But in the case of a large unitary symmetry breaking, naturally

expected for models with more than 3 avors, they would give non-zero contribution and break

the NRQM prediction of [1] (see Eq.(8)) at the level inferior to that considered in [6, 7].

Instead in the unitary symmetry model the one-loop corrections can be hidden into the

constants �D;F , �
s;c
D;F of Eq.(13) by a renormalization procedure

(�F � 2

3
�D)! (�F � 2

3
�D)� �(2m� +mK);

(�sF �
2

3
�sD)! (�sF �

2

3
�sD) + �(m� � 4mK)

(�cF +
1

3
�cD)! (�cF +

1

3
�cD) + �(m� �mK):

Really, applying it to Eq.(16) one just rederives Eq.(13).
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Thus for the magnetic moments of the sextet 1/2 baryons with the one-loop corrections the

old-fashion NRQM picture or that of the broken unitary symmetry model e�ectively emerges.

The one-to-one correspondence between HHCPT results and those of NRQM proved here

is a rather unexpected result. For example, one-loop contributions to the magnetic moments

of the octet baryons [8, 9, 10] do not reveal structure either of the NRQM or of the unitary

symmetry model. So while analysing the magnetic moments of the sextet 1/2 charm baryons it

would be diÆcult to distinguish between the tree-level contributions and those of the one-loop

corrections.

As for the magnetic moments of the 3� 1/2 charm baryons an eventual deviation from the

quark model prediction [1] could be connected either with the unitary symmetry breaking terms

or with the high-order corrections, as those considered in [6] or [7].

Only a more general picture which embraces octet and eventually decuplet baryon magnetic

moments would be able to answer the question on relative importance of the one-loop corrections

to the magnetic moments of the charm baryons in the framework of the chiral perturbation

theory.
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