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1 Introduction

The Jaynes-Cummings (JC) model [1] which is extensively used in quantum optics describes,

in its simplest version, the interaction of a cavity mode with two-level system

HJC = !(a+a� +
1

2
)�0 +

!0
2
�3 + �(a+�� + a��+); (1)

where a+ and a� are the photon creation and annihilation operators, �� = 1
2 (�1 � �2), with

�1, �2 and �3 are the Pauli matrices and �0 is the identity matrix. Moreover, � is a coupling

constant, ! is the radiatif �eld [1] mode frequency and !0 the atomic frequency. The interest of

this model, its solvability and its applications, has long been discussed [1, 2, 3]. Over the last two

decades, there has been intensive study [4 and references quoted therein] on the solvable Jaynes-

Cummings model and its various extensions, such as intensity depending coupling constants, two

photons or multiphoton transitions and two or three cavity modes for three-level atoms. These

models have found their applications in laser trapping and cooling atoms [5] and quantum non-

demolition measurements [6]. Furthermore, the Jaynes-Cummings model constitutes now the

basis for a vast array of the current experiments on foundations of quantum mechanics involv-

ing entangled states [7, and references therein]. On the other hand, the supergroup theoretical

approach to Jaynes-Cummings model has opened the way to relate the exact solvability of this

model and representation theory of superalgebras. Indeed the Hamiltonian HJC is an element

of the u(1=1) superalgebra [8]. In the absence of coupling (� = 0) and for exact resonance

(! = !0), the u(1=1) dynamical superalgebra reduces to a superalgebra sl(1=1) and the JC

model coincides with the supersymmetric harmonic oscillator. More recently, the investigations

of a class of shape-invariant bound state problem, which represents two-level system, leads to

the generalized Jaynes-Cummings model [9, 10, 11]. In the case of the simplest shape-invariant

system, namely the harmonic oscillator, the generalized Jaynes-Cummings model reduces to

standard one.

In this paper we shall address the generalization and quantum characteristics of the Jaynes-

Cummings model. Besides the eigenvalues and eigenvectors, we give the supercoherent states

of the related model. It is found that the generalized Jaynes-Cummings model is governed by a

nonlinear superalgebra u(1=1) which reduces to the well-known u(1=1) occurring in the standard

(JC) model [12, 13]. We compute the total number of photons and the energy. We �nd that the

atomic inversion exhibits Rabi oscillations.

The paper is organized as follows: In Section 2, we introduce the generalized supersymmetric

quantum oscillator and we construct the corresponding supercoherent states. Exact spectrum of

the generalized Jaynes-Cummings model is given in section 3. Section 4 is devoted to nonlinear

dynamical superalgebra u(1=1) of the (GJC) model which is useful to construct the supercoher-

ent states adapted in our model (Section 5). Using the latter set of super-states, we compute in
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section 6 some relevant physical quantities. The last section concerns the conclusion of this work.

2 Generalized Supersymmetric Quantum Oscillators

We begin by introducing the generalized supersymmetric quantum oscillators. Let us consider

a Hamiltonian H with a discrete spectrum which is bound below and has been adjusted so that

H � 0. We assume that the eigenstates of H are non-degenerate. The eigenstates j	ni of H
are orthonormal vectors and they satisfy

Hj	ni = enj	ni: (2)

In a general setting, we also assume that the energies e0; e1; e2; ::: are positive and verify en+1 >

en. The ground state energy is e0 = 0. We de�ne the creation and the annihilation operators

A+ and A�, respectively, such that the Hamiltonian can be factorized as

H = A+A�: (3)

The action of the operators A+ and A� on the states j	ni are given by

A+j	ni = (en+1)
1
2 j	n+1i

A�j	ni = (en)
1
2 j	n�1i

(4)

implemented by the action of A� on the gound state j	0i

A�j	0i = 0: (5)

The commutator of A+ and A� is de�ned by

[A�; A+] = G(N); (6)

where the operator G(N) is de�ned through this action on j	ni

G(N)j	ni = (en+1 � en)j	ni: (7)

We de�ne the number operator N as

N j	ni = nj	ni; (8)

N is in general di�erent from the product A+A� (=H). We can see that the number operator

satis�es
[A+; N ] = A+

[A�; N ] = �A�: (9)

Here, we consider two generalized oscillators systems which have been extensively studied in

the literature. The �rst one concerns the so-called generalized deformed oscillator [14] and the

second one is the x4-anharmonic oscillator [15]. The physical interests of these two systems
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have been extensively enumerated [see the references quoted in [14, 15]]. Here, we recall their

eigenstates and eigenvalues to construct the supersymmetric generalized quantum oscillator and

the corresponding supercoherent states.

To introduce the generalized deformed oscillator, the procedure of [14] requires the existence

of a map from the usual harmonic oscillator algebra generated by annihilation and creation

operators a�and a+ satisfying the standard canonical commutation relations, to the new one

generated by A� and A+

A� = a�f(N) A+ = f(N)a+ (10)

N being the number operator N = a+a� and the function f is given by

f(N) = N +m (11)

The Hamiltonian of the obtained generalized harmonic oscillator is then given by

H = A+A� = N(N +m) (12)

with eigenvalues

en = n(n+m) (13)

The Fock states j	ni � jn;mi are labelled by the integers m and n = 0; 1; 2; :::.

It is clear that the operator G(N) (7), in this case is given by

G(N) = 2N +m+ 1: (14)

Then, the operators A+; A� and G(N) satisfy the relations (6) and (9). Note that other choices

of the function f are possible. We remark also that when f(N) = 1, we have the ordinary

harmonic oscillator.

The other nonlinear oscillator that we consider is the x4-anharmonic oscillator. The Hamil-

tonian, describing this system, is

H = a+a� +
�

4
(a� + a+)4 � Æ (15)

where a+ and a� are the creation and annihilation operators for the harmonic oscillator. The

quantity Æ is given by

Æ =
3

4
�� 21

8
�2 (16)

which vanishes when � = 0 and H reduces in this limit to the standard harmonic oscillator

Hamiltonian. The Hamiltonian H can be factorized in the following form [15]

H = A+A� (17)

in terms of A+ and A� which are expressed as some functions of a+ and a� (for the expressions

of these functions see[15]). The energy levels are given by

en = n+ 3
2�(n

2 + n); n = 0; 1; 2; ::: (18)
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The positive parameter � can be seen as one taking into account some non linearity of the radiatif

�eld arising from some perturbative e�ects occurring in experimental situations. Note that we

keep terms only up to � which is the standard �rst-order perturbation result. The Hilbert space

of this system is easily constructed in the same way as the standard harmonic oscillator. It is

spanned by the states jn; �i, n = 0; 1; 2; ::: which is generated by the action of A+ on the ground

state j0; �i. The operator G(N) is

G(N) = 1 + 3�(n+ 1) (19)

Here, again one can verify that the relations (6) and (9) are satis�ed by the creation and

annihilation operators corresponding to the x4-anharmonic system.

In supersymmetric quantummechanics, one can consider the so-called supersymmetric Hamil-

tonian which is de�ned by

Hsusy =

�
A�A+ 0

0 A+A�

�
=

�
H+ 0
0 H�

�
; (20)

where H+ = A�A+ and H� = A+A� = H are the so-called supersymmetric partner Hamilto-

nians.

Working in the Hilbert space

h = hb 
 hf =

�
j	n;�i =

�
0

j	ni
�
; j	n;+i =

� j	ni
0

�
;n = 0; 1; 2; :::

�
; (21)

the eigenstates are

j�0i =
�

0
j	0i

�
;

j�n>0i = c+n

� j	n�1i
0

�
+ c�n

�
0

j	ni
�
; jc+n j2 + jc�n j2 = 1;

(22)

with the energies E0 = 0 and En>0 = en. Because, we are interested by generalized quantum

oscillator, the states j	ni are jn;mi for the generalized deformed oscillator and j	ni are jn; �i
for the x4-anharmonic oscillator. As we have mentioned previously these two quantum systems

will be used to extend the JC model and we will compute some relevant physical quantities,

like the mean values of the total number operators, the energy and the atomic inversion, over

the coherent states of the (GJC) model. The latter will be obtained from the supercoherent

states corresponding the generalized supersymmetric oscillator. So for Hsusy, we consider the

supercoherent states (linear combination of the fundamental coherent states)

jz; �i = cos
�

2

�
0
jzi
�
+ sin

�

2
ei�

� jzi
0

�
; (23)

with � = �
2e

i� and jzi are the coherent states, corresponding to H�, de�ned by [16, 17, 18, 19]

jzi = @(jzj)
1X
n=0

zn

(e(n))
1
2

j	ni; (24)
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where e(n) = e1:::en for n = 1; 2; ::: and we set e(0) = 1. The normalization constant @(jzj) is
calculated from the normalization condition hzjzi = 1 and it is given by

(@(jzj))�2 =
1X
n=0

jzj2n
e(n)

: (25)

Let us mention that the coherent states for x4-anharmonic oscillator has been studied in [19].

They are given by

jzi = a(jzj)
1X
n=0

(
2n

(3�)n�(n+ 1)�(n+ 2 + 2
3�)

)
1
2 znjn; �i; (26)

with

a(jzj) = (�(2 + 2
3�))

1

2

(0F1(2 +
2
3� ;

2
3� jzj2))

1
2

: (27)

For the deformed generalized harmonic oscillator, we construct the coherent states in the

same way that one Barut-Girardello coherent states of the su(1; 1) algebra was given [20].

Note that the algebra generated by fA+; A�; G(N) = 2N +m+ 1g is isomorphic to su(1; 1) �
sl(2; (R)) � so(2; 1). Indeed, the creation A+ and annihilationA� operators satisfy the following

commutation relations

[A�; A+] = G(N); [A�; G(N)] = �A�: (28)

A more familiar basis for su(1; 1) algebra is given by

J� = 1p
2
A�; J+ = 1p

2
A+; J12 =

1
2G(N); (29)

with the following commutation relations

[J�; J+] = J12; [J�; J12] = �J�: (30)

Barut and Girardello introduced the su(1; 1) coherent states as eigenvectors of J� [20]

J�jzi = zjzi
jzi = b(jzj)

1P
n=0

(
p
2z)n

(n!�(n+m+1))
1
2

jn;mi: (31)

The normalization constant is given by

b(jzj) = (�(m+ 1))
1
2

(0F1(m+ 1; 2jzj2)) 12
(32)

where the 0F1(m+1; 2jzj2) is the hypergeometric function. The coherent states (26) (for the x4-

anharmonic oscillator) and (31) (for the generalized deformed oscillator) can be obtained simply

from equation (24) by replacing in the expressions of e(n) the energies by their corresponding

values for each considered system. Note that the coherent states (26) and (31) will be useful to

build up ones of (GJC) model (see section 5). Remark also that the resolution to identity such

states has not been discussed here. However, the measures with respect of the previous sets of

coherent states can be computed in a very easy way following the approach developed in [13, 17].
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3 Eigenstates and Eigenvalues

To generalize the JC model, let us consider the Hamiltonian

HGJC =
1

2
!fA�; A+g+ 1

2
!0[A

�; A+]�3 + �(A+�� +A��+): (33)

This last expression generalizes the ordinary JC Hamiltonian. In fact, when the creation and the

annihilation operators are those associated with the harmonic oscillator, the above Hamiltonian

reduces to the well-known JC model (Eq.(1)). We also note that the Hamiltonian HGJC is

supersymmetric when ! = !0 (exact resonance) and � = 0 (absence of coupling)

HGJC(� = 0; ! = !0) = fQ�; Q+g; (34)

where the supercharge operators are de�ned by

Q� = i
p
!a+��; Q+ = �ip!a��+; (35)

and satisfy the relations

(Q�)2 = 0; (Q+)2 = 0; [Q�;H] = 0: (36)

We note that the generalized Hamiltonian of JC model (33) is di�erent from the ones considered

in the references [21, 22, 23]. The main purpose of this section is to show that the generalized

JC model can be solved analytically.

The diagonalization of the Hamiltonian HGJC is easily carried out (in the same way as the

standard JC model) and leads to the eigenstates

jE�0 i = j	0;�i
jE+

n i = 1
P (n+1) [S(n+ 1)j	n;+i �Q(n+ 1)j	n+1;�i]

jE�n+1i = 1
P (n+1) [Q(n+ 1)j	n;+i+ S(n+ 1)j	n+1;�i];

(37)

where
Q(n+ 1) = �(en+1)

1
2

S(n+ 1) = �(en+1 +
�
�

2�2 (
en+2�en

2 )2)
1
2 + �

�

2
en+2�en

2 ;

P (n) = ((S(n))2 + (Q(n))2)
1
2

(38)

with �� = ! � !0.

The corresponding eigenvalues are given by

E+
n = �+

2 en+1 +
�
�

4 (en+2 + en)� (�2en+1 +
�2
�

4 ( en+2�en2 )2)
1

2

E�n+1 = �+

2 en+1 +
�
�

4 (en+2 + en) + (�2en+1 +
�2
�

4 ( en+2�en2 )2)
1
2 ;

(39)

where �+ = ! + !0:
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Interesting particular cases arise from the former results. We start with the exact resonance

(�� = 0). In this case, the Hamiltonian HGJC takes the form

HGJC(�� = 0) =
1

2
!fA�; A+g+ 1

2
![A�; A+]�3 + �(A+�� +A��+): (40)

The eigenstates of the resonant generalized JC model are then

jE+
n i = 1p

2
[j	n;+i � j	n+1;�i]

jE�n+1i = 1p
2
[j	n;+i+ j	n+1;�i]: (41)

and the corresponding eigenvalues are

E+
n = !en+1 � �

p
en+1

E�n+1 = !en+1 + �
p
en+1:

(42)

The resonant generalized JC model is reduced to supersymmetric Hamiltonian when the coupling

constant � vanishes

Hsusy = HGJC(�� = 0 = �) = !

�
A�A+ 0

0 A+A�

�
: (43)

Finally, we remark that when en = n (spectrum of the quantized radiatif �eld), the eigen-

states and eigenvalues (37) and (39) coincide with ones corresponding to the standard JC model

[12] (see also [13]).

4 Dynamical Superalgebra

Like the standard JC model [12], the generalized JC model can be written as a linear com-

bination of two even operators N1 and N2 and two odd operators Q� and Q+;

HGJC =
�+

2
N1 � ��

2
N2 +

i�p
!
(Q+ �Q�); (44)

where

N1 =

�
A�A+ 0

0 A+A�

�
; N2 =

��A+A� 0
0 �A�A+

�

Q� = i
p
!A+��; Q+ = �ip!A��+:

(45)

These operators satisfy the following relations

[N1; N2] = 0; [N1; Q
�] = [N1; Q

+] = 0;
[N2; Q

+] = (Q+gN + gNQ
+); [N2; Q

�] = �(Q�gN + gNQ
�);

fQ�; Q+g = !N1; (Q�)2 = (Q+)2 = 0;
(46)

where the even operator gN is de�ned by

gN = G(N)�0: (47)

The algebra generated by fN1; N2; Q
�; Q+g can be seen as a nonlinear (or deformed) version of

the superalgebra u(1=1). Indeed, when G(N) = 1 (a situation which occurs in the ordinary JC
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model), we have the u(1=1) superalgebra. In the presence of an exact resonance w = w0, the

generalized JC model is written as

HGJC = !N1 +
i�p
!
(Q+ �Q�); (48)

in terms of the operators N1, Q
+ and Q� which satisfy the structural relations of the superal-

gebra sl(1=1). It is also easy to see that for ! = !0 and � = 0, we have

HGJC = !N1 = fQ+; Q�g;
[Q�;HGJC ] = 0; (Q�)2 = (Q+)2 = 0:

(49)

5 Supercoherent states for HGJC

To construct the supercoherent states for HGJC , we start by looking for an unitary op-

erator U which connects the Hamiltonians HD (diagonal in the fundamental space of states

fj	n;+i; j	n;�ig) and HGJC

HD = U+HGJCU =

�
H+ 0
0 H�

�
; (50)

where

H+ = �+

2 g(N + 1) + �
�

4 (g(N + 2) + g(N))� (�2g(N + 1) + �
�

4 (g(N+2)�g(N)
2 )2)

1
2

H� = �+

2 g(N) + �
�

4 (g(N + 1) + g(N � 1)) + (�2g(N) + �
�

4 (g(N+2)�g(N)
2 )2)

1

2 :
(51)

The operators g(N + k) (k = �1; 0; 1; 2) are de�ned by

g(N + k)j	ni = en+kj	ni: (52)

The operator U takes the following form

U =

 
1

P (N+1)S(N + 1) �
P (N+1)A

�

�A+ �
P (N+1)

1
P (N)S(N)

!
; (53)

where

S(N) =
��
2

g(N + 1)� g(N � 1)

2
+ �(g(N) +

��
2�

(
g(N + 1)� g(N � 1)

2
))

1
2 ; (54)

and

P (N) = (S(N)2 + �2g(N))
1
2 : (55)

The operator U can be written as follows

U = e�Z ; (56)

with

Z = A+h(N + 1)�� � h(N + 1)A��+: (57)

Developing e�Z and using the following identities of the Hermitian skew operator Z,

Z2p = (�1)p(h(N + 1))2p(g(N + 1))p�+�� + (�1)p(h(N))2p(g(N))p���+ (58)
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and

Z2p+1 = (�1)p+1(h(N+1))2p+1(g(N+1))pA��++(�1)pA+(h(N+1))2p+1(g(N+1))p��: (59)

It becomes that U is given

U =

0
B@ cos(h(N + 1)(g(N + 1))

1
2 ) �1

(g(N+1))
1
2

sin(h(N + 1) 1

(g(N+1))
1
2

)A�

A+ 1

(g(N+1))
1
2

sin(h(N + 1)(g(N + 1))
1
2 ) cos(h(N)(g(N))

1
2 )

1
CA ; (60)

where h(N) = �1p
g(N)

arctan(�

p
g(N)

S(N) ). Of course, for g(N) = N (standard JC model), we re-

cover the results obtained in [12].

Using the unitary operator U , we introduce the coherent states for generalized JC Hamilto-

nian as follows

jz; �iGJC = U jz; �i
= @(jzj)

1P
n=0

znp
e(n)

(sin �
2e

i�jE+
n i+ cos �2 jE�n i):

(61)

To compute some relevant physical quantities of the generalized JC model, we consider the time

evolution of states (61)

jz; �; tiGJC = e�itHGJC jz; �i: (62)

We get

jz; �; tiGJC = @(jzj)
1X
n=0

zn

(e(n))
1

2

(sin
�

2
ei�e�itE

+
n jE+

n i+ cos
�

2
e�itE

�

n jE�n i): (63)

Using the latter states, we will compute the average value of the total value of photons, energy

and atomic inversion.

6 Total number of photons, energy and atomic inversion

6.1 Total number of particules

The mean values of the operator N over the states (63) is given by

hNi = @(jzj)2
1X
n=0

jzj2n
e(n)

(sin2
�

2
hE+

n jN̂ jE+
n i+ cos2

�

2
hE�n jN̂ jE�n i): (64)

A direct computation of matrix elements occurring in the last expression gives

hNi = @(jzj)2
1X
n=0

jzj2n
e(n)

(sin2
�

2
en+1 + cos2

�

2
en): (65)

where the energies en are given (13) (resp.(18)) for the generalized deformed oscillator (resp. for

the x4-anharmonic system).
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6.2 Energy

The energy in coherent states (63) is, simply, given by

hHGJCi = @(jzj)2
1X
n=0

jzj2n
e(n)

(sin2
�

2
E+
n + cos2

�

2
E�n ): (66)

The En
+ and En

� are given by Eqs (39).

6.3 Atomic inversion

First, if we start with supercoherent states (61), we see that the average value of the third

component of the spin is time independent. However, as it is well known, if the radiatif �eld is

prepared in a coherent state, the atomic inversion consists of Rabi oscillations. The temporal

dependence of h�3i appears when we use the generalized supercoherent states (63). Indeed, we

get

h�3i = h�3i++ + h�3i�� + h�3i+� + h�3i�+; (67)

with

h�3i++ = 1
2(1� cos �)@(jzj)2

1P
n=0

jzj2n
e(n) q(n+ 1)

h�3i�� = �1
2(1 + cos �)@(jzj)2

1P
n=0

jzj2n
e(n) q(n)

h�3i+� = 1
2 sin �@(jzj)2

1P
n=0

jzj2n+1
e(n) eit(2�s(n+1)+���) 1

s(n+1)

h�3i�+ = 1
2 sin �@(jzj)2

1P
n=0

jzj2n+1
e(n) e�it(2�s(n+1)+���) 1

s(n+1) ;

(68)

where

q(n+ 1) =
�
�

4�
(en+2�en)q

en+1+(
�
�

4�
)2(en+2�en)2

; q(0) = 1

s(n+ 1) = 1q
en+1+(

�
�

4�
)2(en+2�en)2

; s(0) = 1

� = arctan z; :

(69)

The result of the computation of h�3i shows that the time dependence comes from the value

h�3i+� + h�3i�+ and we obtain

h�3i+� + h�3i�+ = @(jzj)2
1X
n=0

jzj2n+1
e(n)

(
sin � cos(t(2�s(n+ 1) + �� �))

s(n+ 1)
): (70)

This expression has an oscillating behaviour that characterizes the atomic inversion in the gen-

eralized JC model.

7 Conclusion

In this work, we developed the generalization of the Jaynes-Cummings model where the

radiatif �eld is replaced by generalized harmonic oscillators. We showed the exact solvability of

the model. The role of the nonlinear dynamical superalgebra u(1=1), governing the evolution of

the related model, is important in the construction of the supercoherent states over which we
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compute the energy, average number of photons and the atomic inversion. These states have

been constructed using the unitary transformations expressed in terms of the generators of the

u(1=1) superalgebra. Furthermore, it is shown that the time dependent supercoherent states

have the advantage in obtaining the Rabi oscillations.

Finally, we note that the importance of the generalized Jaynes-Cummings model is due not

only to its exact solvability but also arises from its quantum e�ects such as revival of atomic

inversion. In our opinion the generalization and results presented here can be used to give a

realistic description of the nonlinear process of the interaction of an atom and radiation �eld.

Clearly, only a confrontation with experimental measures can validate the results of this work.
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