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1 Introduction

Anyons are particles with any statistics that interpolate between bosons and fermions [1, 2, 3].

They exist only in two dimension because the con�guration space of collection of identical par-

ticles has some special topological properties allowing arbitrary statistics. On the other hand

supersymmetry (underlining Z2-graded superalgebras) provided us with an elegant symmetry

between fermions and bosons [4, 5]. Due to this success, there have been many variances to

generalize its structures to incorporate other kinds of statistics. The �rst attempt in this sense

was proposed by Rubakov and Spiridonov by combining bosonic and parafermionic degrees of

freedom leading to the so-called parasupersymmetric quantum mechanics of order 3 [6]. The

3-fractional Rubakov-Spiridonov superalgebra has been extended to an arbitrary order k by

Khare [7] generalizing the Z2 by a Zk-grading. The formalism of parasupersymmetry involves

a bosonic degree of freedom (described by a complex variable) and a parafermionic degree of

freedom (described by a generalized Grassmann variable of order k [8, 9]). In other words, to

pass from a Z2-graded theory to a Zk-graded one, we retain the bosonic variable and replace

the fermionic variable by a parafermionic one. We note that the k-fermionic variables [10, 11]

have also been used to extend the Rubakov-Spiridonov algebra [12]. Fractional supersymmetry

was also developed without any explicit introduction of parafermionic or k-fermionic degrees of

freedom. In this respect, fractional supersymmetry was worked by Quesne and Vansteenkiste

[13] owing to the introduction of the extended Weyl-Heisenberg algebra[14] (also called extended

oscillator algebra).

The connection between anyons and fractional supersymmetry seems apparently two very

distinct subjects and have not been considered previously in the literature. However, as we

will see the statistical parameter of anyons and the order of the fractional supersymmetry are

deeply related. This connection is based on the anyonization of the extended Weyl-Heisenberg

algebra. Then, considering the creation and annihilation anyonic operators (also called anyonic

oscillators), constructed by Lerda and Sciuto on a two dimensional lattice [15], we discuss the

anyonic realization of the extended Weyl-Heisenberg algebra. The latter realization will be the

cornerstone to provide an anyonic realization of the fractional Rubakov-Spiridonov superalgebra.

The present letter is organized as follows. First, we recall basis notions connected with

the Lerda-Sciuto anyonic oscillators on a two dimensional Lattice. In section 3, we show the

usefulness of the anyonic creation and annihilation operators to provide a new realization of the

extended Weyl-Heisenberg algebra involving objects with fractional spin. Section 4 is devoted

to derivation of the fractional Rubakov-Spiridonov superalgebra using the generators of the

Weyl-Heisenberg algebra. In section 5, we show that the anyons can also be used to realize the

superalgebra sl(1=1) which is undeformed in the quantum superalgebra context [16, 17, 18] and
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not fractional in the Rubakov-Spiridonov language.

2 Basics tools: Lerda-Sciuto anyonic oscillators

In this section, we recall necessary minimum of details concerning anyonic oscillators (see

references [15, 16]) on 2d square lattice 
 with spacing a = 1. We give a two-component

fermionic spinor �eld by

S� =

�
s�1 (x)
s�2 (x)

�
; (1)

and its conjugate hermitian by

S+ = (s+1 (x); s
+
2 (x)); (2)

such that the components of these �elds satisfy the following standard anticommutation relations

fs�i (x); s
�
j (y)g = 0

fs+i (x); s
+
j (y)g = 0

fs�i (x); s
+
j (y)g = ÆijÆ(x; y);

(3)

for i; j 2 f1; 2g and x; y 2 
. Here, Æ(x; y) is the conventional lattice Æ-function: Æ(x; y) = 1 if

x = y and vanishes if x 6= y. We use the de�nition of the lattice angle functions ���x(x; y) as

recited in [16] and identi�ed to the angle functions discussed by Lerda and Sciuto in [15], where

�x is the curve associated to each site x 2 
 and the signs � indicate the two kinds of rotation

direction on 
.

The expression of anyonic oscillators is given in terms of fermionic spinors and angle functions

as follows
a�i (x�) = ei��i(x�)s�i (x)

a+i (x�) = s+i (x)e
�i��i(x�):

(4)

The number � appearing in this equation is usually called statistics parameter. The elements

�i(x�) are given by

�i(x�) =
X
y2


s+i (x)���x(x; y)s
�
i (y); (5)

which satisfy the following commutation relations

[�i(x�); s
�
j (y)] = �Æij���x(x; y)s

�
i (y)

[�i(x�); s
+
j (y)] = Æij���x(x; y)s

+
i (y)

[�i(x�); �j(y�)] = 0
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Now, we can show that the anyonic oscillators satisfy the following algebraic relations

[a�i (x�); a
�
i (y�)]�� = 0; x > y

[a�i (x�); a
+
i (y�)]�� = 0; x > y

[a+i (x�); a
�
i (y�)]�� = 0; x > y

[a+i (x�); a
+
i (y�)]�� = 0; x > y

[a�i (x�); a
+
i (x�)] = 1;

[a�i (x�); a
+
j (y�)] = 0; i 6= j

[a+i (x�); a
�
j (y�)] = 0; i 6= j

[a+i (x�); a
+
j (y�)] = 0; i 6= j

[a�i (x�); a
�
j (y+)] = 0; 8i; j

[a�i (x�); a
+
j (y+)] = ÆijÆ(x; y)�

+[
P
z<x

�
P
z>x

]s+
j
(z)s�

j
(z)

;

[a�i (x�); a
+
j (y+)] = ÆijÆ(x; y)�

�[
P
z<x

�
P
z>x

]s+
j
(z)s�

j
(z)

:

(6)

where �� = e�i��, [X;Y ]� = XY +�Y X and

x > y ,

8>>>>><
>>>>>:

x+ > y+ ,

(
x2 > y2

x1 > y1; x2 = x1

x� < y� ,

(
x2 < y2

x1 < y1; x1 = x2

One also obtains

(a�i (x�))
2 = 0; (7)

which is known as the hard core condition.

We would like to stress that despite the many formal analogies, the anyonic oscillators do

not have anything to do with the k-fermions, q-deformed bosons with q = e2�i=k, for several

reasons: (i) the k-fermions can be de�ned in any dimensions whereas the anyons are strictly

two-dimensional objects, (ii) the anyons are non-local contrary to the k-fermions. The latter

objects constitute a mathematical tool, introduced in the context of quantum algebras, which

was used to go beyond the conventional statistics in any dimension and taking into account some

perturbation (deformation) responsible of small deviations from the FD and BE usual statistics

[19, 20].

3 Anyonic realization of the extended Weyl-Heisenberg algebra

For �xed � 2 [0; 1], the extended Weyl-Heisenberg algebra is de�ned as an algebra generated

by the operators a+, a� = (a+)
y, N and K = (Ky)�1 satisfying the following relations [12, 13]

[a�; a+] =

2

�
�1P

s=0
fsPs; [N; a�] = �a�

Ka+ = ei��a+K; Ka� = e�i��a�K

[K;N ] = 0; K
2

� = 1:

(8)
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Here, fs are some real parameters and the admissible values of the statistical parameter is

restricted by the condition 2
� 2 f2; 3; 4:::g. The operators Ps are polynomials in the grading

operator K de�ned by

Ps =
�

2

2

�
�1X

t=0

e�i��stKt; (9)

for s = 0; 1; 2; :::; 2� � 1. One can see that the Ps's operators satisfy the following relations

2

�
�1P

t=0
Ps = 1; PsPt = Æ(s; t)Ps (10)

where Æ is the Kronecker symbol. Furthermore, these operators satisfy

Psa+ = a+Ps�1; a�Ps = Ps�1a�: (11)

Note that equation (9) can be conversed in the form

Kt =

2

�
�1X

s=0

ei��stPs; (12)

with t = 0; 1; :::; 2� � 1. It is clear that the commutation relation between a� and a+ (equations

(8)) can be written as

[a�; a+] =

2

�
�1X

s=0

csK
s (13)

where the cs are related to parameters ft by

ft =

2

�
�1X

s=0

ei��stcs (14)

or conversely by

cs =
�

2

2

�
�1X

t=0

fte
�i��st: (15)

To show that the extended Weyl-Heisenberg algebra can be realized by means of anyonic oscil-

lators of statistics � in a quite direct though non-trivial way, we start by introducing the local

operators
a+(x) = a+1 (x+)a

�
2 (x+)

a�(x) = a+2 (x�)a
�
1 (x�)

(16)

and

N(x) = a+1 (x+)a
�
1 (x+)� a+2 (x+)a

�
2 (x+): (17)

It is not diÆcult to verify, from the commutation relations (6), that

a+(y)a+(x) = ei2��a+(x)a+(y)

a�(y)a�(x) = e�i2��a�(x)a�(y)
(18)

5



for x > y. The latter equation show that the local operators de�ned by (16) have braiding

properties and one has to specify the ordering of the points x and y if we change the braiding

orientation. In the same way, with a straightforward application of equations (6), we get

[N(x); a�(y)] = �a�(x)Æ(x; y);

[a+(x); a�(y)] = 0; x 6= y
(19)

The commutation relation of a+(x) and a�(x) (e. i. at the same point) is slightly more compli-

cated. However, by an adequate use of the commutation relations of the anyonic oscillators, it

is not hard to show that

[a+(x); a�(x)] =
Y
y<x

e�i��N(y)N(x)
Y
z>x

e�i��N(z): (20)

Now, we introduce the global creation, annihilation and number anyonic operators of spin s = �
2

on the lattice in terms of the local anyonic ones. They are de�ned by

a+ =
P
x2


a+1 (x+)a
�
2 (x+)

a� =
P
x2


a+2 (x�)a
�
1 (x�);

(21)

and

N =
X
x2


(a+1 (x�)a
�
1 (x�)� a+2 (x�)a

�
2 (x�)) (22)

The grading operator (also known as the Klein operator) is de�ned by

K = e
[i��
P
x2


(a+
1
(x�)a

�
1
(x�)�a

+

2
(x�)a

�
2
(x�))]

(23)

It is clear that the operator K satis�es

K
2

� = 1 (24)

and we also have

(a+)
y = a�: (25)

The operators N and K are commutating. Furthermore using the structure relations of the

anyonic oscillators on the lattice 
, we have the following commutation relations

[a+; a�] =
P
x2


(
Q
y<x

e[�i��N(y)])N(x)(
Q
z>x

e[�i��N(z)]);

[N; a�] = �a�; Ka� = e�i��a�K:

(26)

To write the commutation relation involving a� and a+ (Eqs (26)), in a form similar to the one

given in equations (8), we show that

P
x2


(
Q
y<x

e[�i��N(y)])N(x)(
Q
z>x

e[�i��N(z)]) = �

2

�
�1P

t=0
ftPt

= �

2

�
�1P

t=0
csK

s

(27)
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where the parameters ft and ct are given by

ft = �
sin(2��t)

sin(��)
(28)

and

cs =

8><
>:

0; s 6= 2; 2� � 2
1

2 sin(��) ; s = 2

� 1
2 sin(��) ; s = 2

� � 2
(29)

To obtain this result, we followed a similar method to the established by Lerda and Sciuto

in [15]. The �rst step of this method is based on the fact that the local operator N(x) admits

only the eigenvalues 0 and +1 for any x 2 
 according to the Pauli exclusion principle for anyon

operators (hard core condition). Then, one can have the identity

N(x) =
sin(��N(x))

sin(��)
(30)

for any site x 2 
. Reducing the lattice 
 to only one site, x0 for instance, we have N = N(x0)

and thus the equality (27) holds thanks to equation (30).

Assuming that equation (27) is valid for a lattice of n sites fxi; i = 1; :::ng, we add an extra

point xn+1. For the lattice with (n+ 1) sites, equation (27) becomes

nX
i=1

(
Y
j<i

e�i��N(xj)N(xi)
Y
k>i

e�i��N(xk))eN(xn+1) + ei��N(xn+1)N(xn+1) =
sin(��N)

sin(��)
(31)

where N =
n+1P
i=1

N(xi). The last equation is easily designed using equations (26) and (30). In

view of the relations (24), (26) and (27), we conclude that the operators a+, a�, N and K close

the extended Weyl-Heisenberg algebra.

The operators a
2

�
�, a

2

�
+ and K

2

� belong to the centre of the extended Weyl-Heisenberg algebra.

It is straightforward to prove also that the operator

C = a�a+ +
sin(��(2N + 1))

2 sin2(��)
(32)

is an invariant of the WH algebra. Then, the extended WH algebra admits �nite-dimensional

representations of dimension 2
� such that

a
2

�
� = �1 2

�
� 2

�
(33)

and

a
2

�
+ = �1 2

�
� 2

�
(34)

where (�; �) 2 C2. Three types of representations can be considered: (i) � = � = 0 (nilpotent

representation), (ii) � = � = 1 (cyclic or periodic representations) and (iii) � = 0 and � 6= 0 or

7



� 6= 0 and � = 0 (semi-periodic representations). In a representation of type (i), the creation

a+ and annihilation a� seems to be similar to ones of (k = 2
� )-fermions [11, 21, 22] which satisfy

the generalized exclusion principle according to which no more than (k� 1) particles can live in

the same quantum state [20].

4 Fractional RS superalgebra through fermionic anyons

In view of the fact that supersymmetry (Models and symmetries with Z2 -grading) provide

symmetry between bosons and fermions, it is natural to enquire if one could generalize these

structures by including the exotic statistics. More than ten years back [6], Rubakov and Spiri-

donov discussed such generalizations. In particular, they constructed a superalgebra de�ned by

the following structure relations

(E�)
3 = 0

[E�;H] = 0

(E�)
2E+ +E�E+E� +E+(E�)

2 = 2E�H

(35)

and the hermitian conjugated relations. The RS superalgebra generated by fE+; E�;Hg was

realized as Z3�graded symmetry between one boson and one parafermion of order 2. The

generalization of RS superalgebra (37) for an arbitrary order k is given by [7].

(E�)
k = 0

[E�;H] = 0

(E�)
k�1E+ + (E�)

k�2E+E� +E+(E�)
k�1 = (k � 1)(E�)

k�2H

(36)

together with their hermitian conjugates. The realization of the RS superalgebra (36) involves

one boson and (k � 1) parafermions. Note that for k = 2, the relations (36) reduces to ones

de�ning the superalgebra sl(1=1). Then the RS superalgebra seems to be a k-fractional exten-

sion of the superalgebra sl(1=1).

In this part of our work, we will discuss how using the generators of extendedWeyl-Heisenberg

algebra (remember that the operators of this algebra are de�ned in terms of anyonic oscillators

living on two-dimensional lattice) one can give an anyonic realization of the so-called Rubakov-

Spiridonov superalgebra. Indeed, by means of the operators Pi's (polynomials in the grading

operatorK) and the creation and annihilation operators a+ and a� (that are de�ned by coupling

two 2d-lattice anyons), we are thus in a position to de�ne the operators

E� = a�(1� Pk�1); E+ = a+(1� P0) (37)

among k possible de�nitions. The (k � 1) other de�nitions can be obtained by a simple permu-

tation of indices 0; 1; 2; 3:::; k�1: Note that the operators E+ and E� are de�ned such that they
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also satisfy

E+ = (E�)
y (38)

As a �rst result, one can show, using the structure relations of the extended Weyl-Heisenberg

algebra introduced in the previous section, that

(E�)
m = (a�)

m[1� Pk�m + Pk�m+1 + :::+ Pk�1]
(E+)

m = (a+)
m[1� P0 + P1 + :::+ Pm�1]

(39)

for m = 1; 2; :::; k � 1. For the particular case m = k, we have

(E�)
k = 0; (E+)

k = 0: (40)

Let us note that for k = 2, we have the nilpotency condition of the sl(1=1) generators E� and

E+. We continue with the construction of the fractional Rubakov-Spiridonov superalgebra. So,

one can obtain also, by some manipulations more or less complicated, the following identity

(E�)
mE+ = (a�)

ma+(P1 + P2 + :::+ Pk�m) (41)

which leads to the relations

(E�)
mE+(E�)

l = (a�)
ma+(a�)

l; m+ l = k � 1; (42)

with m 6= 0; l 6= k � 1 and m 6= k � 1; l 6= 0,

E+(E�)
k�1 = a+(a�)

k�1P0 (43)

(E�)
k�1E+ = (a�)

k�1a+P1: (44)

The equations (42), (43) and (44) are the basic ones to get the multilinear relation which

should be satis�ed by the the generators E� and E+ of the Rubakov-Spiridonov superalgebra.

Indeed, introducing an even operator H, we show that

k�1P
i=0

(E�)
k�1�iE+(E�)

i = (k � 1)(E�)
k�2H; (45)

where H is de�ned by

H =
k�1X
s=0

Hk�sPs (46)

where

Hk = a+a� �
1

k � 1

k�1X
s=2

s�1X
t=1

h(N � t) (47)

and

Hk�s = Hk +
1

k�1

k�2P
t=0

sP
i=1

h(N + i� 1� t); s 6= 0: (48)

The function h is given by

h(N � l) =
sin(��(N � l))

sin(��)
(49)
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The operator H commute with the generators E+ and E�

[H;E�] = 0: (50)

The nilpotency relations (40) together with the multilinear relation (45) and the commuta-

tion relation (50) close the fractional Rubakov-Spiridonov superalgebra. Let us note that this

superalgebra is di�erent from one obtained in the context of quantum superalgebra which is

characterized by the following structure relations [17, 18]

fE+; E�g =
qH�q�H

q�q�1 ;

[E�;H] = 0;
(E+)

2 = 0; (E�)
2 = 0:

(51)

Two limiting cases � = 1 and � = 0 are interesting. In the case where � = 1, it is easy to see

that the Rubakov-Spiridonov superalgebra gives the well known superalgebra sl(1=1). In the

case � = 0, the operator K is equal to unit operator and the projection operators Pi's vanishes.

Then, we have

E+ = a+; E� = a� (52)

where the operators a+ and a� are de�ned in terms of two bosonic oscillators (because in the

limiting case � = 0, the anyons becomes bosons). As a consequence, E+, E� and H generate

the sl(2) algebra. Then, in the limit � = 1, the RS superalgebra reduces to Z2-graded sl(1=1)

superalgebra and for � = 0, we have sl(2) (no graduation).

We note �nally that the structure relations de�ning the RS superalgebra are analogous to

those de�ning the so-called fractional supersymmetric quantum mechanics [6, 7]. So, one can ask

about the physical meaning of the even operator H and if one can interpret it as a hamiltonian

describing a system of two anyons constrained to evolve in a two dimensional lattice. We believe

that this point merits more investigation and can help us to learn more about the physics in low

dimensions.

5 Anyonic realization of the sl(1=1) superalgebra

In this last section, we will draw attention to the fact that the superalgebra sl(1=1) (undeformed

in the quantum superalgebra context and no fractional in the Rubakov-Spiridonov sense) can be

realized by using anyons living on two dimensional lattice. In this order, we de�ne the operators

qi;+ = a+Pk�i

qi;� = Pk�ia�

(53)

and

hi = a�a+Pk�i + a+a�Pk�i+1 (54)
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(for i = 2; 3; :::; k) where the operators a+ and a� are de�ned by (21) in terms of the Lerda-

Sciuto anyonic oscillators. A direct computation shows that operators qi;+, qi;� and hi satisfy

the structure relations
[qi;�; hi] = 0; fqi;�; qi;+g = hi

(qi;+)
2 = 0; (qi;�)

2 = 0
(55)

that are ones de�ning the sl(1=1) superalgebra. This result shows how one can realize the

(undeformed) superalgebra sl(1=1) using the anyonic oscillators. Furthermore, our realization

is new in the sense that it has not been considered previously in the literature and should not

be confused with the result of Frappat et al in [18] (see also references therein) such that the

realizations concern anyonic representations of quantum (deformed) superalgebras.

It is important to note that the odd operators E+ and E� (see Eqs (37)) can be expressed

as sums of the odd operators qi;+ and qi;�, generating (with hi) the superalgebra sl(1=1), as

follows

E+ =
kP

i=2
qi;+; E� =

kP
i=2

qi;� (56)

which are Ladder operators of the fractional Rubakov-Spiridonov superalgebra (see the previous

section).

6 Conclusion

In the present letter, we introduced the anyonic realization of the extended Weyl-Heisenberg

algebra by means of Lerda-Sciuto anyonic oscillators of statistics � on two dimensional lat-

tice. We discussed how the Z�-grading of this algebra leads to the realization of the fractional

Rubakov-Spiridonov superalgebra. We then proved the connection between the fractional spin

of anyons and the order of the RS superalgebra. We showed also that the superalgebra sl(1=1)

can be constructed following an anyonic scheme.

It is clear that there remains many open problems for future study. One of them would

be a better understanding of the physical meaning of the operator H(Eq(46)) and if can it be

related to the hamiltonian describing planar systems evolving under topological Chern-Simon's

interaction. Another would concern anyonic realizations of the fractional analogous of the other

superalgebras (undeformed in the quantum groups language) than sl(1=1). These problems are

under study and we hope to report on them in the near future.
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