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BCS . . . . . . . . . . . . . . . . . Bardeen Cooper Schrieffer
HF . . . . . . . . . . . . . . . . . . Hartree-Fock
HFBCS. . . . . . . . . . . . . . Hartree-Fock Bardeen Cooper Schrieffer
RMF . . . . . . . . . . . . . . . . Relativistic Mean-Field
DHF . . . . . . . . . . . . . . . . Deformed Hartree-Fock
GCM. . . . . . . . . . . . . . . . Generator Coordinate Model
RMF . . . . . . . . . . . . . . . . Relativistic Mean Field
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Chapter 1

Introduction

About 25 years ago the possibilities and advantages of using collinear laser fast beam spec-

troscopy for the investigation of unstable isotopes were realized [Ott77, Neu77]. Since

then this method has become a prolific source of information on electromagnetic ground

state properties of nuclei far from stability [Neu88]. The method is especially suited for

on-line experiments with mass-separated beams of many chemical elements and nuclei.

The collinear geometry involves narrow linewidths which are due to a compression of the

spread of longitudinal velocity components occurring by the acceleration of ions from an ion

source [Duf76, Win76, Ant78]. This compression reduces the residual longitudinal Doppler

linewidth by several orders of magnitude compared to the thermal Doppler linewidth. Thus,

it is possible to study nuclear properties reflected in the atomic spectra by measuring the

hyperfine structure and isotope shift with high resolution.

The Mainz-ISOLDE collinear laser spectroscopy group has a long tradition of experiments

at the on-line mass separator ISOLDE at CERN, Geneva (see e.g. [Neu81]). Over about

20 years the technique was improved in detection efficiency and resolution, which made it

possible to explore large regions of the nuclear chart. The most important developments were

two non-optical detection techniques – the detection of optical resonances by state selective

collisional ionization and the use of β-NMR techniques in combination with optically polarized

beams.

In recent years the experimental investigation of the light mass region of the nuclear

chart was in the focus of interest. The experiments were concentrated on nuclei in the p

and sd shells, namely on argon isotopes [Kle96], which were investigated by collinear laser

spectroscopy with state selective collisional ionization detection. Furthermore the magnetic

and quadrupole moment of 11Li [Arn87, Arn92, Arn94], the quadruple moments of sodium

isotopes [Kei00], and the magnetic moment of the one-neutron halo nucleus 11Be [Gei00] were

investigated by the use of β-NMR. So far sodium has been the lightest element for which

laser spectroscopy methods were applied successfully to short-lived isotopes by the Orsay

laser spectroscopy group [Hub78] for the study of nuclear charge radii from the isotope shifts.

1.1 Theoretical Background

The topic of this thesis is the study of neon isotopes in the mass region of 17 ≤ A ≤ 30.

The interest in the low-A region of the nuclear chart was mainly initiated by the progress
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of nuclear theory, especially of the nuclear shell model in the last 20 years (see e.g. [Bro88b,

Bro98a, Bro98b, Bro01a]). The shell model enabled a coherent description of the nuclei up

to the sd shell (Z,N ≤ 20) [Bro88a], and partly in the fp shell (20 ≤ Z,N ≤ 40) [Ric91] by

the use of semi-empirical interactions. This model was able to explain interesting phenomena

in the sd shell. As an example may be mentioned the experimentally observed breakdown of

the N = 20 shell closure in the region of magnesium and sodium [Thi75, Det79, Gui84], the

so-called ”island of inversion”. The masses and energy levels of nuclei in this region clearly

show deformation phenomena. This could be explained by the intrusion of an fp-shell state

(2p − 2h states across the shell gap), which leads to a quenching of the spherical 0+ − 2+

energy gap, and thus deforms the nuclear system. Predictions for neon isotopes show similar

effects near N = 20 [Pov94, Cau98, Cau01]. γ-ray studies in this region [Pri99] indicate an

onset of this intrusion mechanism already for 28Ne which is expected to be within the range

of the laser spectroscopy experiments.

The framework of the shell model is also used to investigate the occurrence of a new magic

number N = 16 for drip-line nuclei around 24O. This discussion came up from experiments

at RIKEN [Oza00, Tan01] that revealed a kink in neutron separation energy Sn and in the

interaction cross sections σI for nitrogen, oxygen, and fluorine. The neon isotopes do not

show such a behavior, thus apparently being outside the region of this new magic number.

Nevertheless, it is interesting to study the properties of 26Ne with this discussion in mind.

The shell model describes the single-particle properties of exotic nuclei. Global proper-

ties can be modelled by microscopic theories which are based on relativistic mean field and

Hartree-Fock methods [Lal99, Sii99, Gor01] using an effective nucleon-nucleon force. These

methods are especially suited for the calculation of collective properties of nuclei like defor-

mation and nuclear charge radii. Laser spectroscopy data to be compared to these theoretical

predictions include the quadrupole moments and the isotope shifts.

A fascinating aspect of studying the neutron deficient neon isotopes is connected to the fact

that the proton drip line with the lightest bound isotope 17Ne can be reached experimentally.

What ”exotic” behavior can be expected for these proton drip-line nuclei? As the weakly

bound outermost valence nucleons move in a shallow nuclear potential their wave function can

spread out far beyond the core, a phenomenon which is widely known as ”nuclear halo” (see

e.g. [Fed93, Jen01]). The prime example of a neutron-halo nucleus is 11Li (see e.g. [Han87,

Zhu93]) where the halo is formed by a neutron pair outside the 9Li core. The typical example

for a one-neutron halo nucleus is 11Be [Tan90, Fuk91] where the halo neutron is in a 2s1/2

state. The pairing force plays an important role in three-body halo systems, leading to

a ”Borromean” structure, where the subsystems are unstable if one of the constituents is

removed (see e.g. [Jon01]).

Neutron-halo systems are nowadays well established. However, it is an open question

whether similar phenomena exist for the weakly bound protons of very proton-rich systems,

and if so, which nuclei are likely to develop a proton halo [Jon01]. Due to the proton charge

the Coulomb barrier of the nucleus plays an important role in the possible formation of

proton-halo systems, probably preventing the occurrence of proton halos for Z > 10 [Jon01].

The discussion on halo properties of 17Ne goes back to a measurement of interaction cross

sections of high energy radioactive beams with different targets [Oza94]. The low two-proton
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separation energy of S2p = 0.96 MeV identifies 17Ne as a halo candidate. The authors

conclude from their cross-section measurements that 17Ne has a two-proton halo structure.

Some theoretical studies support this conclusion [Zhu95, Kit97], interpreting the enhanced

interaction cross section as an indication for an s-wave proton halo.

Nevertheless, the discussion of the 17Ne case is not unidirectional. Hansen et al. [Han95]

give a handy condition for the occurrence of s-wave halos. The binding energy has to fulfill

the condition

S2p ·A2/3 < 2 − 4 MeV (1.1)

which is not the case for 17Ne, where S2p ·A2/3 = 6.2 MeV. As well other theoretical calcula-

tions [Tim96, For01] disagree with the picture of a halo-like structure of 17Ne. They predict

a dominance of (πd5/2)
2 in the wave function of the weakly bound proton pair, whereas a

halo requires (πs1/2)
2. The observables laser spectroscopy is able to provide – the magnetic

moment and the mean square charge radius with respect to other isotopes – should both be

sensitive to proton-halo properties, and should thus give valuable information on the puzzling

structure of 17Ne.

1.2 Key Aspects of This Work

The task of this work was to measure the isotope shift and the hyperfine structure of a

suitable atomic transition along the neon isotope chain. Some properties of neon isotopes

in the region of interest are collected in table 1.1. Collinear laser spectroscopy experiments

on neon, aiming at a resolution of the effects of differences in mean square nuclear charge

radii δ〈r2〉 in the isotope shift and at measuring hyperfine structure splittings, involve several

experimental challenges. First to mention is the precision needed in the measurement of

the isotope shift δνIS . This quantity is connected to differences in the mean square nuclear

charge radii by

δνA,A′

IS = δνA,A′

MS + δνA,A′

FS

= δνA,A′

MS + Fel × δ〈r2〉A,A′
,

where the first term is the so-called ”mass shift” δνMS and the second the ”field shift” δνFS .

The field shift increases with the nuclear charge Z, whereas the mass shift decreases. The

order of magnitude of the field shift can be estimated [Kle95]. For neon, for transitions

from the metastable [2p5 (2P 0
3/2) 3s]2 state, one obtains δνA,A+1

FS ≈ 10 MHz in a total isotope

shift of about δνA,A+1
IS ≈ 800 MHz between two adjacent isotopes. At ISOLDE the ions are

accelerated to a kinetic energy of 60 keV. The corresponding beam velocity causes a Doppler

shift of the transition frequency, which is a function of the acceleration voltage and of the

atomic mass of the isotope. The magnitude of the Doppler shift between neon isotopes of

different mass is of the order of 30 GHz/u. This Doppler shift has to be measured with an

accuracy of well below 3 × 10−4 to resolve δνFS . In earlier works the uncertainty of the ion

beam energy was conservatively estimated to about 30 eV if plasma ion sources were used,

which is the case for noble gases (see e.g. [Kei95, Kle96]). Hence, one goal of this work was

to limit the uncertainty of the ion-beam energy to less than 3 × 10−5, corresponding to 2 V.
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Table 1.1: Ground state properties of the known neon isotopes. The fields marked with a ”?” show
unknown properties. The beam intensities were measured using the β-detection used in
the collinear laser spectroscopy experiments, and are not corrected for beam transport
losses and detection efficiency.

A mass spin T1/2 µI Qs beam int.

[u] [µN ] [mb] per proton pulse

17 17.017698(54) 1/2 109.2 ms ? 3.6 × 103

18 18.005697(2) 0 1.67 s 2.5 × 105

19 19.001879839(641) 1/2 17.34 s -1.88542(8) 2 × 106

20 19.992440176(2) 0 stable

21 20.993846744(43) 3/2 stable -0.661797(5) +103(8)

22 21.991385510(232) 0 stable

23 22.994467337(265) 5/2 37.24 s -1.08(1) ? 3 × 106

24 23.993615(11) 0 3.38 min 3.5 × 105

25 24.99779(5) 1/2,3/2 602 ms ? ? 7 × 104

26 26.00046(6) 0 197 ms 3.2 × 104

27 27.0076(1) ? 32 ms ? ? 100

28 28.0121(1) 0 17 ms 50

29 29.0193(3) ? 200(100) ms ? ? ?

30 30.0239(9) 0 ? ?

Thus, the problem to be solved was to develop a method to measure the beam energy with

the desired accuracy, which is not possible with standard voltage measuring equipment.

Low production yields of isotopes far from stability are the second challenge envisaged.

Especially the heavy isotopes with very short half-lives are obtained with extremely small

yields from the ISOLDE target (see Tab. 1.1). To be able to extend the measurements as far

as possible from the valley of stability, new limits of sensitivity and selectivity of detection

were required.

The experimental technique used for the measurements on neon is the highly sensitive non-

optical detection technique based on state-selective collisional ionization and ion counting.

A change of the atomic state is achieved by optically pumping the atoms from the excited

metastable to the ground state. The technique and the setup were developed before for mea-

surements on short-lived xenon, krypton and argon isotopes [Neu86, Bor89b, Lie96, Kle96].

The detection of the ions produced by collisional ionization experienced several improvements

to increase the sensitivity. The main limitation of this method is given by isobaric beam con-

taminations which give a background in the ion count rate. The most recent detection setup

uses β-particle counting for the radioactive isotopes, thus suppressing all stable and long-lived

contaminants [Kle96]. On the experimental foundation of the predecessor works this scheme

had to be improved for the experiments on neon. For example an earlier limitation was due

to non-statistical intensity fluctuations of the primary ion beam from the mass separator. By

measuring the primary beam intensity it becomes possible to normalize the ion signal.
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1.3 Structure of the Thesis

This thesis consists of in three major parts. Chapters 1-4 are devoted to the details of the

experiment, and special attention is given to a new method to calibrate the beam energy. In

chapter 5 the analysis of the experimental data and the extraction of the important nuclear

physics observables is presented. Finally in chapter 6 and 7 the experimental results are

interpreted in the framework of nuclear model and compared with the predictions and results

of advanced microscopic calculations.
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Chapter 2

Nuclear Properties from Atomic
Spectra

The aim of this work was to investigate the nuclear ground state properties unstable neon

isotopes. Collinear laser spectroscopy gives access to atomic spectral lines, specifically the

hyperfine structure and the isotope shift. From these quantities the nuclear parameters have

to be deduced.

The hyperfine structure is caused by the electromagnetic interaction of the electrons with

the multipole moments of the nucleus and scales with the hyperfine-structure parameters

A and B, which are proportional to the nuclear magnetic dipole moment and the nuclear

electric quadrupole moment respectively. The isotope shift is due to the finite mass and the

finite size of the nucleus. The part of the isotope shift which is related to the finite size

of the nucleus, the so-called field shift, is proportional to the difference between the mean

square charge radii (δ〈r2〉) between two isotopes. This chapter is devoted to the theoretical

description of these nucleus-electron interactions.

2.1 The Hyperfine Structure

In an atom with an ideal point-like nucleus the coulomb potential caused by the central charge

has spherical symmetry. The fine-structure terms produced by LS-coupling are degenerate

with respect to the total angular momentum F = I + J in this idealized picture. The

interaction between the electromagnetic multipole moments of the nucleus and the electron

shell breaks up this degeneracy. For atoms with nuclear spin I ≥ 1/2 and fine-structure levels

with angular momentum J ≥ 1/2 this gives rise to new levels with small energy splittings,

known as the hyperfine structure (HFS).

The hyperfine interaction can be described as a perturbation which is expanded in a series

of multipole terms [Sch55], where the first two terms are relevant for optical spectroscopy. The

first term represents the interaction of the nuclear magnetic moment µI with the magnetic

field generated by the electrons at the site of the nucleus, 〈H0〉 = 〈JJ |Ĥ(0)|JJ〉. The

second term of the expansion is due to the interaction of the nuclear spectroscopic quadrupole

momentQs with the electric field gradient generated by the electrons at the site of the nucleus,

〈Vzz(0)〉 = 〈JJ |V̂zz(0)|JJ〉. This quadrupole interaction only exists for nuclei with spin I ≥ 1

and for fine structure (FS) levels with J ≥ 1.
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In first order the energy shift for an atomic level can be written as (see e.g. [Bra83], p.245)

∆EHFS =
A

2
K +

B

4
×

3
2K(K + 1) − 2I(I + 1)J(J + 1)

I(2I − 1)J(2J − 1)
, (2.1)

where K = F (F + 1) − J(J + 1) − I(I + 1). In this equation the parameter A is related to

the magnetic dipole interaction, the parameter B to the electric quadrupole interaction.

2.1.1 HFS Parameters of Two-Electron Configurations

In the simplest case of an atomic configuration only a single valence electron contributes

to the hyperfine interaction. The neon ground-state configuration consists of a closed p

shell. The transition under investigation takes place between two excited states of a single

valence electron above a core configuration having one hole in the p shell. In the hyperfine

interaction this hole behaves like a second valence electron and has to be taken into account

in the description of the hyperfine structure. An approach to describe the hyperfine structure

of two-electron configurations was formulated by Breit and Wills [Bre33].

General Considerations

In the central-field approximation of multi-electron atoms only electrons outside closed elec-

tron shells contribute to the hyperfine splitting. Electrons in closed shells couple to a ”core”

of angular momentum J = 0, and don’t contribute to the multipole interaction of order k ≥ 1.

For excited states of neon a one-electron configuration in the valence shell with a hole in

the p-shell core has to be considered. To generalize, consider an electron carrying an angular

momentum ` is missing in the shell. With respect to the magnetic dipole interaction this

configuration behaves like a valence electron having the same angular momentum `. For

electrons in states with higher angular momentum (p, d, ...) the single electron a-factor

becomes

an`j = a`±1/2 = hcR∞α
2a3

0

`(`+ 1)

j(j + 1)
〈r−3〉n` Fr(j, Zi)(1 − εBR)(1 − εBW )

µI

I µB
, (2.2)

where (1 − εBW ) accounts for the Bohr-Weisskopf effect, and (1 − εBR) is the Breit-

Rosenthal [Ros32]/Crawford-Schawlow [Cra49] correction.

Additionally the transition in neon under investigation involves a valence electron in the

3s state. The non-relativistic A-factor of a valence s-electron (hole) is given by (see e.g.

Kopfermann [Kop58], p.131)

ans =
8π

3
h cR∞α

2a3
0 |Ψ(0)|2ns Fr(j, Zi)(1 − εBR)(1 − εBW )

µI

I µB
. (2.3)

|Ψ(0)|2ns is the probability density of the s-electron at the nucleus, R∞ is the Rydberg constant

in cm−1, a0 is the Bohr radius, µB the Bohr magneton and α is the fine-structure constant,

given by [Moh98]

α−1 = 137.03599976(50) .

Zi denotes the effective nuclear charge seen by the valence electron of a multi-electron atom,

when it is found inside the core of the other electrons. From empirical information usually

Zi = Z for s-electrons and Zi = Z − 4 for p-electrons is used.
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〈r−3〉n` is the radial integral of an electron with ` > 0, which will be discussed below.

Bohr and Weisskopf [Boh50] point out, that the correction εBW can be approximated by:

εBW ≈ Z r0
a0

×
(

a0

2Zr0

)2(1−σ)〈r2

r20

〉

. (2.4)

If a magnetization distributed uniformly over the nucleus is assumed, the expectation value

becomes 〈r2/r20〉 = 3/5 [Kop58]. With this assumption the magnitude of the Bohr-Weisskopf

effect for neon is found to be

εBW ≈ 1.4 × 10−4 , (2.5)

which is substantially below the experimental resolution.

εBR can be approximated by ([Kop58], p.129)

εBR ≈ 2(1 − σ)σ(2σ + 1)

(2σ − 1)Γ2(2σ + 1)

(
2Z r0
a0

)2(σ−1)

. (2.6)

εBR can be estimated to be smaller than 2 × 10−3 [Kin84] and isotopic changes of εBR are

much smaller. Hence, both corrections can be neglected in the present case.

2.1.2 Determination of the Radial Integral

The problem of determining the nuclear magnetic moment and the nuclear quadrupole mo-

ment from the hyperfine structure of electrons with ` ≥ 1 boils down to the determination of

the radial integral 〈r−3〉 in equation (2.2). There are two commonly used empirical methods

to determine this integral. Either it is calculated from the fine-structure energy-splitting, or

from the hyperfine structure with the known magnetic moment.

Radial Integral from Fine-Structure Splitting

The radial integral can be estimated with the help of semi-empirical calculations from the

fine-structure splitting ([Kop58], p.125ff)

〈
r−3
〉

n`
=

δν̃fs

a3
0R∞α2 (`+ 1/2)ZiHr(`, Zi)

. (2.7)

The fine-structure splitting δν̃fs was obtained from the tables of Moore [Moo71], which are

available as updated version on the internet [NIS99]:

δν̃fs = ν̃([2p5 (2P 0
1/2) 3s]1) − ν̃([2p5 (2P 0

3/2) 3s]2) = 776.8 cm−1 (2.8)

Hr(j, Zi) belongs to a set of relativistic correction factors given by:

Hr(j, Zi) =
2`(`+ 1)

α2Z2
i

(σ′ − σ′′ − 1) , (2.9)

Fr(j, Zi) =
4j(j + 1/2)(j + 1)

(σ(4σ2 − 1))
, (2.10)

Rr(j, zi) =
`(`+ 1)(2`+ 1)

σ(σ2 − 1)(4σ2 − 1)
[3k(k + 1) − σ2 + 1] , (2.11)

where k = `± 1 , for j = `± 1/2 ,

Gr(`, Zi) =
2`(`+ 1) sin[π(σ′ − σ′′ − 1)]

πα2Z2
i

, (2.12)

with σ =
√

(j + 1/2)2 − Z2
i α

2 . (2.13)
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The expressions σ′ and σ′′ refer to the doublet term with j = `+1/2 and j = `−1/2, respec-

tively. All the relativistic corrections are tabulated in Kopfermann ([Kop58] p.445, Tab. 8).

In the case of neon, the effective charge Zi = Z − 4 = 6 has to be taken. The relevant values

are given in table 2.1

Table 2.1: Relativistic correction factors for neon. Taken from ([Kop58], Tab. 8.).

Fr(j = 1/2) Fr(j = 3/2) Hr(` = 1) Gr(` = 1) Rr(` = 1, k = 2)

1.0035 1.0008 1.0008 1.0008 1.0015

Radial Integral from HFS Data

Another approach uses hyperfine structure data to calculate the radial integral. 〈r−3〉 can be

determined using equation (2.2), with the well justified assumption εBW = 0, and εBR = 0.

The radial integral can be calculated from

〈
r−3
〉

n`
= an`j

1

R∞ a3
0 α

2 h c

j(j + 1)

`(`+ 1)

I µB

µI

1

Fr(j, Zi)
. (2.14)

One difficulty encountered in this approach arises from the coupling of an electron in

the 3s-state with a hole in the p shell, both contributing to the measured A-factor of neon.

To investigate the radial integral 〈r−3〉 one has to calculate the a2p 3/2 factor of the hole in

the p shell from the A-factors of the electron-hole configuration. The single-electron contri-

butions an`j can be determined in the framework of the Breit-Wills theory in intermediate

coupling [Bre33]. More recent formulations of this can be found in Kopfermann [Kop58], and

in the publication of Kluge and Sauter [Klu74].

In the Breit-Wills theory, the hyperfine structure parameter A of a two-electron configura-

tion splits up into contributions arising from the different electrons. With increasing nuclear

charge Z the wave functions of the electrons change from the LS-coupling (Russel-Saunders-

coupling) to the jj-coupling scheme which is encountered for heavy nuclei. In all practical

cases, the coupling scheme is in between these extremes [Rac42], known as ”intermediate

coupling”.

The wave functions in intermediate coupling have to be written as linear combinations

of pure LS- or jj-functions, leading to a mixture of singlet and triplet states. The levels
3L`±1are independent of the coupling type of the electrons and the wave functions are equal

to their LS/jj-counterparts:

Ψ(3L`±1) = ΨLS(3L`±1) = |(1/2, `± 1/2)`±1〉 (2.15)

Where the index ”LS” is used for LS-coupling wave functions, the kets |(j1, j2)J〉 represent

pure jj functions. The states 3L` and 1L` have to be composed according to:

Ψ(3L`) = c1ΨLS(3L`) + c2Ψ(1L`)

= α |(1/2, `+ 1/2)`〉 + β|(1/2, `− 1/2)`〉 (2.16)

Ψ(1L`) = −c2ΨLS(3L`) + c1Ψ(1L`)

= β|(1/2, `+ 1/2)`〉 − α|(1/2, `− 1/2)`〉 (2.17)
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The mixing coefficients c1, c2 can be expressed by simple trigonometric functions ([Kop58],

p.151):

c1 = cos θ0 − θ , c2 = sin θ0 − θ . (2.18)

The difference between the angles θ0, and θ describes the deviation of the actual configuration

from the pure Russel-Saunders case. θ0 is given by

sin θ0 =

√

`

2`+ 1
. (2.19)

�

δ


∆


3L`+1

3L`

3L`−1

1L`

Fig. 2.1: Illustration of the variables used to calcu-
late the mixing angle. The thick lines rep-
resent the real level energies, the dashed
line the energy in pure LS-coupling.

The angle of intermediate coupling θ can be calculated from the level energies of the

fine-structure [Wol32, Sem64], with the different quantities are displayed in figure 2.1:

sin2 θ =
∆

D
, (2.20)

where ∆ =

∣
∣
∣
∣

`

2`+ 1

[

E(3L`+1 − E(3L`−1))

]

−
[

E(3L`+1) − E(1L`)

]∣
∣
∣
∣
, (2.21)

and D =

∣
∣
∣
∣
E(1L`) − E(3L`)

∣
∣
∣
∣

(2.22)

In the case of neon, the four 2p5 3s-levels [NIS99] have to be taken into account:

E(3P2) = [2p5 (2P 0
3/2) 3s]2 = 134041.84 cm−1

E(3P1) = [2p5 (2P 0
3/2) 3s]1 = 134459.2871 cm−1

E(3P0) = [2p5 (2P 0
1/2) 3s]0 = 134818.6405 cm−1

E(1P1) = [2p5 (2P 0
1/2) 3s]1 = 135888.7173 cm−1

With these input data the difference in the angles becomes

θ0 − θ = ∆θ = 29.54◦ . (2.23)
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From the Breit-Wills theory it is known that the s`-two-electron A-factors can be written

in terms of the single-electron contributions of a two-electron s` configuration ([Kop58], p.

152):

A(3L`+1) =
as

2(`+ 1)
+

2`+ 1

2(`+ 1)
a`+1/2 (2.24)

A(3L`) =
1

2`(`+ 1)

{[

(`+ 1)c22 − `c21

]

as + `(2`+ 3)c21 a`+1/2

+ (2`− 1)(`+ 1)c22 a`−1/2 + 4c1c2
√

`(`+ 1)a′`

}

(2.25)

A(3L`−1) = −as

2`
+

2`+ 1

2`
a`−1/2 (2.26)

A(1L`) =
1

2`(`+ 1)

{[

(`+ 1)c21 − `c22

]

as + `(2`+ 3)c22 a`+1/2

+ (2`− 1)(`+ 1)c21 a`−1/2 − 4c1c2
√

`(`+ 1) a′`

}

(2.27)

Furthermore the factor a`−1/2 can be expressed in terms of a`+1/2 (use equation (2.2))

a`−1/2

a`+1/2
⇒ a`−1 =

(`+ 3/2)

(`− 1/2)

Fr(1/2, Zi)

Fr(3/2, Zi)
a`+1/2 . (2.28)

The factor a′` stands for the short form of a`+1/2,`−1/2 which can be expressed as well in terms

of a`+1/2 by using the relation

a′` =
a3

0R∞ α2 h c

2(2`+ 1)

〈
1

r3

〉

Gr(l, Z)
µI

I µB
. (2.29)

By expressing the radial integral 〈r−3〉 with the help of equation (2.2) one obtains

a′` =
1

2(2`+ 1)

(`+ 1/2)(`+ 3/2)

`(`+ 1)

Gr(`, Z)

Fr(3/2, Zi)
a`+1/2 (2.30)

Note that by the use of equations (2.28) and (2.30) the hyperfine structure can be described

by the two parameters a`+1/2 and a`−1/2.

Finally, for the states under investigation the angular momentum is ` = 1, and the Breit-

Wills mixing angle as calculated above. The required relativistic corrections are listed in

table 2.1. In the literature three A-factors of the 3s-configurations of 21Ne can be found. The

nuclear gI -factor of 21Ne is known from La Tourrette [LT57]. A collection of HFS data is

given Husson and Grandin [Hus78]. The data for the required states are:

[2p5 (2P 0
3/2) 3s]2 : A(3P2) = −267.68(3) MHz [Gro58]

[2p5 (2P 0
3/2) 3s]1 : A(3P1) = −459.88(3.90) MHz [Del76]

[2p5 (2P 0
1/2) 3s]1 : A(1P1) = −658 MHz (Delsart, Keller, priv. comm. in [Hus78])

Using equations (2.24) to (2.29) and the input data from literature it is possible to calculate

the single electron a-factor contributions and the radial integral.

For the analysis of the quadrupole moment the a2p 3/2-factors are of importance. Using

the input data of the different A-factors, the single electron a2p 3/2-factors are obtained from
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solving the equations (2.24) to (2.29):

A(3P2), A(3P1) : a2p 3/2 = −273.24 MHz

A(1P1), A(3P1) : a2p 3/2 = −276.19 MHz

A(3P2), A(1P1) : a2p 3/2 = −301.71 MHz






⇒ a2p 3/2 = −283(18) MHz . (2.31)

The corresponding a3s-factors, which can be used to determine the electronic factor of the

field shift, are given by

A(3P2), A(3P1) : a3s = −251.01 MHz
A(1P1), A(3P1) : a3s = −327.22 MHz
A(3P2), A(1P1) : a3s = −165.58 MHz






⇒ a3s = −248(82) MHz . (2.32)

The errors given for a2p3/2 and for a3s are the maximum difference between the mean and

the three values determining the mean.

2.1.3 Evaluation of Magnetic Moments

In practice, the evaluation of magnetic moments from the measured hyperfine structures

can be based on the independent knowledge of both properties for one stable isotope. As

discussed in depth in the review of Büttgenbach [Büt84], the hyperfine structure constant A

includes the expectation value of the product of the magnetic field produced by the electrons
~H(~r) and the nuclear magnetization ~µ(~r):

A =
1

IJ
〈II|~µ(~r) · ~H(~r)|II〉

= µI ×
〈H(0)〉
IJ

(2.33)

As long as the nucleus in this description can be assumed to be point-like, there are no isotopic

effects included in the theory of the HFS. The magnetic field at the site of the nucleus 〈H(0)〉
is isotope independent, i.e. hyperfine anomalies are negligible (see Sec. 2.1.1). According

to equation (2.33) the unknown nuclear magnetic moment of any isotope can be determined

from the measured hyperfine structure by relating it to the known magnetic moment and the

A-factor of another isotope of the same element:

µx = µ1
AxIx
A1I1

(2.34)

The nuclear magnetic moment of 21Ne was measured directly by La Tourrette et al. [LT57]

using the Atomic Beam Magnetic Resonance (ABMR) technique. The hyperfine parameters

of the metastable lower [2p5 (2P 0
3/2) 3s]2 state of the optical transition used in our experiment

have been measured with high precision by Grosof et al. [Gro58]. The required parameters

are given as:

µI -0.661797(5) µN

A[2p5 (2P 0
3/2

) 3s]2 -267.68(3) MHz

B[2p5 (2P 0
3/2

) 3s]2 -111.55(10) MHz
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2.1.4 B-factors and the Nuclear Electric Quadrupole Moment

The factor B in the hyperfine structure formula represents the quadrupole interaction

([Kop58], p.134)1

B = e Q′
s × 〈Vzz(0)〉. (2.35)

=
e2

4πε0
Q′

s

2j − 1

2j + 2
〈r−3〉n` Rr(`, j) . (2.36)

As already mentioned, the B-factor of the hyperfine splitting is proportional to the expec-

tation value of the electric field gradient at the nucleus produced by the electrons. This

field gradient has to be calculated for the determination of the quadrupole moment. From

equation (2.36) follows for an electron in an alkali-like one-electron state

〈Vzz(0)〉 =
1

4πε0
e

2j − 1

2j + 2
〈1/r3〉 Rr(j, Zi) , (2.37)

where the relativistic factor Rr(j, Zi) is given by equation (2.11), and tabulated for neon in

table 2.1. The expectation value of 〈1/r3〉 was determined in the previous section.

〈r−3〉 from the Fine-Structure

The lower state of the laser excitation in the experiments on neon is [2p5 (2P 0
3/2) 3s]2. For

this state only the 2P3/2-hole contributes to the quadrupole interaction, so the assumption for

equation (2.37) still holds. Combining equations (2.7), (2.36), (2.37), (2.8), setting j = 3/2

and ` = 1 leads to an expression for the (spectroscopic) quadrupole moment Q′
s:

Q′
s = ±15

2

(
µB

ec

)2 B

δν̃fs
· Zi Hr

Rr
(2.38)

Where the plus sign has to be taken for electrons, the minus for a hole in the 2P3/2-state.

With the relativistic corrections which can be taken from (1) [Kop58], or in a graphical

representation from (2) [Sch55] the quotient is found to be:

Zi Hr

Rr
= 5.99 (1)

Zi Hr

Rr
= 6.00 (2)

With the fine-structure splitting given in equation (2.8) the spectroscopic quadrupole moment

can be calculated from the HFS-B-factor of the lower state of the laser-excitation:

Q′
s = −0.72 mb/MHz ×B[2p5 (2P 0

3/2
) 3s]2 . (2.39)

Using the B-factor published by Grosof et al. [Gro58] the uncorrected spectroscopic

quadrupole moment of 21Ne takes the value

Q′
s = 80.31(7) mb . (2.40)

The error containing only experimental uncertainties of the input parameters is mainly due to

the B-factor. Empirical data indicate that the model uncertainties involved in the calculation

of 〈Vzz(0)〉 are up to 20%.

1 The quadrupole moment calculated that way is valid for a spherical nucleus, and is represented by Q′
s.

The effect of the deformed nucleus requires a correction, and the corresponding moment is indicated by
Qs (see below).
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〈r−3〉 from the Hyperfine Structure

Using the radial integral (2.14) from the hyperfine-structure equation (2.36) for the B-factor

offers an alternative equation to determine the spectroscopic quadrupole moment Q′
s. With

the average a2p 3/2-factor given in equation (2.31) the proportionality between Q′
s and the

B-factor is found to be

Q′
s = −0.843(52) mb/MHz ×B[2p5 (2P 0

3/2
) 3s]2 . (2.41)

Employing this and again the B-factor of Grosof et al. [Gro58] one obtains the uncorrected

spectroscopic quadrupole moment

Q′
s = 94.04(8)[5.8] mb . (2.42)

The error given in parentheses corresponds to the uncertainty of the B-factor and the max-

imum difference between the mean and the input data (2.31) contributes the error given in

square brackets.

Polarization Corrections

Besides the radial integral 〈r−3〉 and the relativistic corrections, the effect of the deformed

nucleus on the core electrons has to be taken into account. This polarization effect is taken

care of by the Sternheimer correction R [Ste51] which may result in a shielding or an anti-

shielding of the nuclear quadrupole moment. The hyperfine structure of 21Ne in the tran-

sitions [2P 0
1/2]J=1 4s → [2p5 (2P 0

1/2) 3p]2 → [2p5 (2P 0
3/2) 3s]1 was investigated by Ducas using

laser spectroscopy [Duc72]. The Sternheimer correction is included in the analysis of the

quadrupole moment and is given in first order correction for 21Ne by [Duc72]

R = 0.10(5) .

With this correction the quadrupole moment Qs becomes

Qs = Q′
s ×

1

1 −R
(2.44)

where Q′
s is the uncorrected quadrupole moment. Applying the Sternheimer correction to

the quadrupole moments derived

from fine structure: Qs = Q′
s × 1.11 = 89(5) mb (2.45)

from HFS: Qs = Q′
s × 1.11 = 104(6)[6] mb (2.46)

The errors given in parentheses arise from the uncertainty in R, the error given in square

brackets correspond to those given in equation (2.40) and (2.42).

These corrected values can be compared with the literature value of the spectroscopic

quadrupole moment Qs of 21Ne measured by Ducas et al. Qs = 102.9(7.5) mb [Duc72].

There the calculation of the radial integral 〈r−3〉 follows the Breit-Wills approach based on

data from the hyperfine structure, which was discussed in section 2.1.2. In contrast to the

data presented in the present thesis, Ducas et al. use more advanced wave-functions for the

description of the jj-coupled states. The quadrupole moment Qs = 104(9) mb which was
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calculated with the help of HFS data in the present work reproduces the reference value

for the quadrupole moment of Ducas et al. [Duc72] very well. The present analysis in the

framework of the Breit-Wills theory can thus be supported by the published data. For the

further discussion the value of Ducas et al. [Duc72] will be used as reference value.

Neglecting model uncertainties, the spectroscopic quadrupole moment calculated from FS

data does not agree with the published value within the error bars. The large deviation can

be explained by the estimation of 〈1/r3〉 with the help of semi-empirical methods. These are

unreliable because of model simplifications like neglected spin-spin and spin-orbit terms.

With the known quadrupole moment of 21Ne, the evaluation of Qs from the B-factor

essentially gives the electric field gradient at the site of the nucleus 〈Vzz(0)〉 which is isotope-

independent. In other words the proportionality factor between Qs and B is the same for

all isotopes. The unknown quadrupole moment of an isotope is thus determined from the

reference moment of 21Ne by

Qx =
Bx

B21
×Q21 . (2.47)

This will be used to analyze the data of section 6.1.

Note that the quadrupole moment published by Ducas et al. [Duc72] was extracted by

the semi-empirical method presented in the previous sections. Thus, it is sensitive to the

model-uncertainties connected with this approach.

2.2 The Isotope Shift

The isotope shift (IS) arises from another correction to the basic atomic model and takes into

account effects of the finite mass and size of the atomic nucleus. Reviews of the field can be

found in the books of Kopfermann [Kop58], King [Kin84] and in the tables of Aufmuth, Heilig

and Steudel [Auf87]. The isotope shift δνA,A′
= νA − νA′

between the transition frequencies

of two isotopes of one element can be expressed by the sum:

δνA,A′

IS = δνA,A′

MS + δνA,A′

FS = KMS × mA′ −mA

mA′ mA
+ Fel × δ〈r2〉A,A′

. (2.48)

The motion of the nuclei with masses mA and mA′ and the electrons around their common

center of mass contributes the first part of the sum called mass shift (MS). The second part

of the sum is the field shift (FS), which takes into account the finite size of the nuclear charge

distribution.

2.2.1 Mass-Shift Effects

Since the relative mass-differences between the different isotopes is large for light elements

(Z ≤ 20), the mass shift dominates the isotope shift of light elements. For neon, the field

shift contribution to the IS is of the order of 10 MHz. Compared to the mass shift of about

1 GHz between two neighboring isotopes, this 1% effect has been seen as ”negligible” in the

literature (see [Ami83, Ves85, Bas97]). Nevertheless, it was the aim of the present work to

measure the isotope shift with high precision. Hence, the field shift, and the changes in mean

square charge radii should be resolved. To extract the field shift, the exact knowledge of the

mass shift is important. The mass shift term can be split up into two parts: the normal mass
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shift (NMS) and specific mass shift (SMS) which have the same mass dependence. The first

takes into account the effect of the reduced mass of the valence electron and the nucleus, the

latter arises from the correlated movement of the electrons.

The theory of the mass shift can be found in the book of King [Kin84]. Summarizing, the

normal mass shift constant KNMS can be calculated by the relation

KNMS = νA ×me . (2.49)

For the 2s2 [2p5 (2P 0
3/2) 3s]2 → 2s5 [2p5 (2P 0

3/2) 3p]2 transition in neon (ν̃ = 16274.02 cm−1)

this constant becomes

KNMS = 267.644 GHz u . (2.50)

As will be shown in section 6.4.1 the normal mass shift in the quoted transition contributes

only about two thirds of the total mass shift.

The specific mass shift is very sensitive to the correlation effects of electrons in the open

shells. For a theoretical approach ab initio calculations are necessary (see e.g. [Ves85]). These

calculations do by far not reach the precision needed for an exact determination of the effect

in neon.

In an ad hoc approach the mass dependence of the mass shift ((mA′ −mA)/(mAmA′)) can

be used to extract field effects. This function can to be fitted to the experimental isotope-shift

data, and deviations can be ascribed to the field shift. Of course this approach neglects all

field-shift contributions which have the same mass dependence as the mass shift. In a more

elaborate way, using the so-called ”King-Plot”, KMS is determined by combining absolute

nuclear charge-radii measured by X-ray spectroscopy on muonic atoms with data from optical

spectroscopy. This is presented in chapter 6.

2.2.2 Field Shift Effects

In the simplest model of the extended nucleus the nuclear charge density ρ(r) is assumed to

be constant over the nuclear charge radius

R = 1.2 A1/3 fm. (2.51)

A better approximation is used by Babushkin [Bab63], where the nuclear radius is given by

R = 1.115 A1/3 + 2.151 A−1/3 − 1.742 A−1 . (2.52)

As a consequence of this finite nuclear size, the electrostatic potential generated by the

nuclear charge deviates inside the nucleus from the Coulomb −Ze/r dependence. Electrons

with a non vanishing probability density inside the nucleus are sensitive to these deviations.

The deviation from the Coulomb potential causes the field shift in the frequencies of atomic

transitions depending on the size of the nucleus. This shift between two isotopes is given by

the product

δνA,A′

FS = Fel × δ〈r2〉A,A′
. (2.53)

This is a good approximation for light elements where contributions from higher order radial

moments of the nuclear charge distribution can be neglected. In particular s-electrons have
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high probability amplitudes inside the nucleus. p-states have small probability amplitudes,

thus s − p transitions are most suitable for the spectroscopic study of differences in nuclear

mean square charge radii δ〈r2〉.

2.2.3 Calculation of the Electronic Factor

For the calculation of δ〈r2〉A,A′
from experimental isotope-shift data, the electronic factor

Fel has to be known. From perturbation theory the effect of the potential deviations on the

transition frequency shift between two isotopes ([Kin84], p.35ff) can be calculated from

δνA,A′

FS = πβ|Ψ(0)|2a
3
0

Z
ζN〈r2〉(σ−1)δ〈r2〉A,A′

, (2.54)

where ζ is given by

ζ = R∞

(
2Z

a0

)2σ 1

Γ2(2σ)
, (2.55)

and σ by equation (2.13), which for s-states becomes σ =
√

1 − α2Z2. The variable N is a

function of the nuclear charge Z and the principal quantum number n:

N =

(
n+ 3

n+ 1

)σ 1 + (1 + σ)K/αZ

1 + (1 − σ)K/αZ
. (2.56)

According to King ([Kin84], p.39) the parameter K is a function of n and Z, which for n = 3

takes the form

K = −αZ 7

18

(
1 + 0.097(αZ)2 + 0.014(αZ)4

)
. (2.57)

The quantity ζN is tabulated in the book of King ([Kin84], p.43, Tab. 4.3). For neon:

ζN = 164 MHz fm−2σ . (2.58)

Of the nuclear properties the parameter 〈r2〉σ−1 is needed in the calculation of δνA,A′

FS .

King [Kin84] estimates 〈r2〉 = 3R2/5, where for light nuclei the nuclear radius R is taken

according to equation (2.52). The corresponding expression becomes

f(Z) := ζN〈r2〉(σ−1) = 164.215 MHz fm−2 (2.59)

The values of f(Z) for the different elements are as well tabulated in Aufmuth, Heilig, and

Steudel [Auf87]. For neon

f(Z) = 5.455 × 10−3 cm−1 fm
−2

= 163.53 MHz fm−2 , (2.60)

which was used for the following analysis. With this abbreviation the shift reduces to the

simple form:

δνA,A′
= πβ|Ψ(0)|2ns

a3
0

Z
f(Z)δ〈r2〉A,A′

. (2.61)

After calculating the dependence on several global nuclear parameters, the electron prob-

ability density at the nucleus still has to be determined.

Three approaches can be used to calculate the electron probability density at the site

of the nucleus. Accurate and reliable ab initio calculations are available only for selected

elements. Two different methods are based on empirical approaches – either the known

hyperfine structure and the magnetic dipole moment is used to extract the desired probability

density, or the ns level energies are related to the probability densities by the Goudsmith-

Fermi-Segrè formula.
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|Ψ(0)|23s from Energy Levels:

For the non-relativistic probability of finding an s-electron at the site of the nucleus a dis-

cussion is given in Kopfermann ([Kop58], p.123ff). It is shown that the probability can be

related to quantities describing the energy levels by the well known Goudsmit-Fermi-Segré

formula ([Fer33] and [Kop58], p.127)

|Ψ(0)|2ns =
1

πa3
0

ZiZ
2
a

n3
a

(

1 − dξ

dn

∣
∣
∣
∣
n=3

)

(2.62)

For a 3s-electron in the electronic shell of neon, Za = 1 and Zi = 10. The effective quantum

numbers na are given by

na =

√

R∞

E′
ns

. (2.63)

These are tabulated in table 2.2 together with other relevant data needed for the calculation

of |Ψ(0)|2ns. The level energies are taken from the NIST Atomic Spectra Data base [NIS99].

The energies E ′
ns with respect to the ionization energy of 127110 cm−1 are used to calculate

na. The quantities ξ are quantum defects defined by ξ = n− na.

Table 2.2: Input data for the calculation of the electronic factor.

Level Ens E′
ns = Ei − Ens na ξ(n, na)

[cm−1] [cm−1]

[2p5 (2P 0
3/2) 3s]2 134041.84 39887.76 1.65866 1.34134

[2p5 (2P 0
3/2) 4s]2 158601.12 1528.48 2.67564 1.32436

[2p5 (2P 0
3/2) 5s]2 165828.18 8101.43 3.68041 1.31959

[2p5 (2P 0
3/2) 6s]2 168924.65 5004.95 4.6825 1.3175

[2p5 (2P 0
3/2) 7s]2 170532.72 3396.88 5.68377 1.31623

[2p5 (2P 0
3/2) 8s]2 171473.31 2456.29 6.68402 1.31598

[2p5 (2P 0
3/2) 9s]2 172071.40 1858.20 7.68476 1.31524

For the calculation of |Ψ(0)|2, dξ/dn is needed. This can be obtained by a procedure

which again is described by Kopfermann ([Kop58], p.134). The dependence of the quantum

defect from the principal quantum number n can be found by calculating

dξ

dn
=

dξ

dE′
ns

dξ

dE′
ns

− na

2E′
ns

. (2.64)

The derivative dξ/dE ′
ns can be determined to good approximation by performing a linear fit

to the data of ξ(E ′
ns) for the terms n = 3, ..., 9, which yields dξ/dE ′

ns = 6.8723(56) × 10−7.

One finds for the quantum defect of the 3s state

dξ

dn

∣
∣
∣
∣
n=3

= −0.03418(29) . (2.65)
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The shielding factor β in equation (2.61) can be chosen in analogy to the heavier noble

gases to be β = 1.1. Finally the electronic factor becomes

Fel = πβ|Ψ(0)|2ns

a3
0

Zi
f(Z) = −40(4) MHz/fm2 . (2.66)

The error of Fel is estimated to about 10%, which can attributed to the uncertainty of the

screening factor β and to model limitations. The error contribution of dξ
dn is of the order of

10−2 which is negligible.

|Ψ(0)|23s from Hyperfine-Structure Splittings:

Starting with equation (2.3), the electron density at the site of the nucleus can as well be

determined from the a3s-factor, given by equation (2.32). This factor was determined from

HFS data of the stable odd-A neon isotope 21Ne. From equation (2.3) the electron density

becomes

|Ψ(0)|23s =
3 a3s µB I

8h cR∞ α2 Fr(1/2, Zi)µI
. (2.67)

Using the nuclear function f(Z) of equation (2.60), one arrives at an electronic factor which

is based on the HFS data

Fel = π β |Ψ(0)|23s

a2
0

Zi
f(Z) = −38(4)[12] MHz/fm2 , (2.68)

again with β = 1.1. The error in parentheses belongs to the 10% uncertainty of the screening

factor β, the error in square brackets arises from the uncertainty of a3s. Both methods of

calculating Fel lead to compatible results. For further use we use the Fel-value calculated

from the fine-structure data by the Goudsmith-Fermi-Segrè approach.
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Chapter 3

Collinear Laser Spectroscopy Setup at
ISOLDE/CERN

The experimental environment of the ISOLDE on-line mass-separator facility at CERN in-

volves a number of specific experimental details that have to be considered and will be

described in this chapter. Furthermore, the basic physics of collinear laser spectroscopy, and

details of the experimental setup used in the experiments on neon will be presented.

�����������

��	�
��
��	����������
��	�������	��������

�����

�! �

"$#�%'&)(+*�,.-�/�#

���10$�������
���2��3

465 7�869�465 :<;2= �
>?���2���10@�$AB����3C>��D�

��E�>B���1�F3G�H0$�I	��KJ2	����

L�M�N�NPO�Q�R

�1��3G>?���S�

J2��TU>B��	V��AP���13

�)�W���W����	�>
	$�D>?�X�

0Y�X�������
3Z�)�[����	��

 ]\_^�\ � ^2` �Va  b�dcZe

Fig. 3.1: The layout of the ISOLDE hall.The COLLAPS experiment can be found at one of the
beamline ports to the right.
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3.1 The ISOLDE Facility

3.1.1 General Remarks

The ISOLDE on-line mass-separator is an experimental facility at the European nuclear

physics laboratory CERN in Geneva. A wide spectrum of radioactive isotopes, covering large

regions of the nuclear chart, can be produced and delivered as mass-separated radioactive ion

beams [Kug93]. The layout of the facility is shown in figure 3.11. The radioactive nuclides

are produced by irradiating a target material of appropriate choice with protons of 1-1.4 GeV

kinetic energy which are delivered by the PS-Booster synchrotron accelerator (PS: Proton

Synchrotron). The choice of the target material depends on the desired radioactive isotopes.

A typical proton pulse consist of about 3 × 1013 particles impinging on the target. The

proton beam from the so-called ”PS-Booster” has a time structure of 2.4 µs length and a

period of multiples of 1.2 s between the individual pulses. The proton pulses delivered by

the PS-Booster are distributed to various facilities. 12 consecutive pulses are grouped to

a so-called ”supercycle”, a pulse sequence with 14.4 s periodicity. A schematic plot of the

time structure of the proton intensity on the target and of the beam intensity is shown in

figure 3.3. The proton impact in the target material causes nuclear reactions wherefrom the

radioactive isotopes are formed by fission, spallation or fragmentation. The target material

is contained in a heated tube which is kept at a temperature of about 1500 K. The product

isotopes evaporate from the target material and diffuse via a drift tube to a connected ion

source.

The ion source can be adapted to the desired chemical element. Depending on the chemical

properties of the isotopes, surface ion-sources (for elements with low work function like alkali

metals) or plasma ion-sources (for elements with high ionization energies like noble gases) are

used. Plasma ion-sources are often combined with a cooled ”transfer line” – the drift tube

between the target and the source. This suppresses elements which are less volatile, thus

sticking to the wall of the tube at low temperature. The design of the plasma-source unit

used for the production of noble gas beams is shown in figure 3.2.

3.1.2 Ion Beam Generation

For the present experiments on neon beams, CaO was chosen as a target material for the

production of the light neutron-deficient isotopes and UC2 for the neutron-rich isotopes. The

ion source was a plasma source, in which noble gas ions can be ionized very efficiently. Further

discussion shall be limited to this kind of source. A detailed discussion of the influence of the

ion source characteristics on the beam energy will be presented in chapter B.3.

The principle of the plasma ion-source is based on the ionization of atoms by electron

bombardment. A continuous gas flow, entering the electron-bombardment region, supplies

atoms for a plasma that burns continuously. The primary plasma gas is a noble gas mixture

consisting of 40% of helium, 20% of neon, 20% of argon and 20% of xenon2. The radioactive

neon atoms evaporated from the target material are ionized together with noble gas atoms

1 Picture taken from the ISOLDE home page: Facility layout; online: http://www.cern.ch/ISOLDE/.

2 Uwe Georg: Private communication 01.03.2001
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Fig. 3.2: The ISOLDE ion source. For better visualization parts of the source are cut open. Exotic
isotopes are produced by proton impact in the porous target material, and diffuse via the
cooled transfer line to the plasma ion-source. All the parts shown in the graphic are kept
on the main acceleration voltage besides the extraction electrode (ground potential) and
the end cap (+100 V).

from the continuous gas flow. When ionized, the ions are accelerated in an electrostatic field.

The ion source and the whole target vacuum-chamber are kept at high voltage, whereas the

extraction electrode and the following experimental beam lines are kept at electrical ground

potential. The details of the acceleration potential in the source are of importance for the

beam characteristics and are discussed in the appendix 5. The continuous ion beam generated

by the plasma discharge of the noble gas mixture provides an ion beam of stable isotopes.

This can be used to set and to optimize the beam-line parameters, and to do beam-energy

measurements (see Chap. 5), furthermore the stable reference isotopes are available for the

isotope-shift measurements (see Chap. 6).

Once extracted, the ions pass through a magnetostatic mass separator with a resolving

power of m/∆m = 2400 [Kug93]. The magnetic field can be chosen to select isotopes of a

given mass. The resolving power is not high enough to separate isobars. This necessitates

considerations concerning the detection of isotopes produced with low yields and strong

isobaric beam contaminations. The mass-separated ion beam is transported via an evacuated

beam line to the different experiments placed as shown in figure 3.1.

As a result of the pulsed proton-beam structure, the ion beam from ISOLDE has a certain

time structure as well. The diffusion of the isotopes out of the target material ”smears out”

the ion pulse emerging from the source, as illustrated in figure 3.3. The so-called ”release

curves” – the ion pulse shape as a function of time – depends very much on the chemical

element. For neon typical ion-pulse durations are of the order of 500 ms. The timing of a

measurement has to be adapted to this pulse structure. On the other hand the pulsed time
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structure offers the possibility to discriminate against isotopes with different half-lives by

triggering and gating methods.

1.2 s

~500 ms

Proton-intensity on target

Ion intensity from source

t

I

2.4 µs

Fig. 3.3: Time structure of proton and ion beam at ISOLDE. The plot shows
schematically the time dependence of both beams, the scaling in time
is not proportional.

3.2 The Experimental Setup

3.2.1 General Description of the Setup

The experimental setup of collinear laser spectroscopy at ISOLDE is a versatile installation

for experiments on radioactive isotopes. The development of this apparatus was started in the

late seventies [Ott77, Neu81]. Over the years the experiment experienced many updates and

extensions, increasing selectivity and sensitivity. The present setup is shown schematically

in figure 3.4. It can be divided into four major parts:

• Installations for beam manipulation and beam shaping,

• Installations used for Doppler tuning (see Sec. 4.1) and neutralization

• Optical excitation and fluorescence detection region

• Gas target and atom/ion detection.

All elements used to manipulate the atom/ion beam (deflectors, quadrupole lenses, charge-

exchange chamber,etc.) and the non-optical detectors are contained in an evacuated beam

line. Typical residual gas pressures under experimental conditions are of the order of 1 ×
10−6 mbar.
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Fig. 3.4: Schematic drawing of the major components of the experimental setup. The ion beam optics are displayed only partly for simplicity, the quadrupole
lenses and the correction deflectors in front of the post-acceleration electrodes are omitted.
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Ion Beam Optics

The ion beam enters the experimental setup through a vacuum gate which is used to shut

off the setup from the beam line vacuum sections. The first device used to manipulate the

beam is a set of two vertical capacitor plates. These plates at voltages of about ±2 kV are

used to deflect the ion beam by 10◦ which makes it possible to superimpose the ion and

the laser beam, the latter defining the axis of the apparatus. The deflector is followed by a

triplet of quadrupole ion lenses, and correction elements for horizontal and vertical deflection.

This gives the final possibility to shape and to steer the beam before it is neutralized. Note

that these elements are not included in figure 3.4. The next important element is the post-

acceleration region which is required for the Doppler tuning of the laser frequency. The

post-acceleration region consists of four ring electrodes and the charge-exchange cell (CEC).

All these elements can be adjusted geometrically and are decoupled electrically from ground.

Each of the ring electrodes is set at a voltage which is a fixed fraction of the main post-

acceleration voltage which is applied to the last ring and to the charge-exchange cell itself.

Charge-Exchange Cell

Ion kicker
for non

neutralized
primary ions

Copper
base blocks

Heated
central tube

Connectors to
heating cable

Incoming
ion beam

Fig. 3.5: Photograph of the charge-exchange cell (CEC). The up-
per ”chimney-like” part of the cell gets filled with the
alkali metal used for neutralization.

The last part of the post-acceleration region is formed by the charge-exchange cell, which

is shown in figure 3.5. This device is used to neutralize the incoming ions in flight by quasi-

resonant charge-transfer reaction. The design of the assembly of post-acceleration electrodes

and CEC ensures the neutralization of the ions at the full post-acceleration potential. Thus,

the atom beam leaving the CEC has a beam energy corresponding to the main acceleration

voltage plus the post-acceleration voltage. The CEC is essentially a heated tube which

contains the charge-exchange medium in the form of an alkali-metal vapor. Inside the tube

a roll made out of a stainless steel mesh is inserted to take up the hot, liquified alkali metal.

The tube is heated by a coaxial thermo cable.
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Sodium is used as a charge-exchange medium for the neon beam. The 40 W heating power

give rise to temperatures up to about 560 K at the central part of the tube. The corresponding

sodium vapor-pressure is of the order of 10−2 mbar [Vee02]. This vapor pressure is sufficient

to achieve charge-exchange efficiencies up to 95%.

The ends of the charge-exchange tube are soldered to copper blocks. The blocks are used as

supports to fix the charge-exchange cell to a base plate. They are kept at lower temperatures

than the central part to ensure the condensation of the alkali vapor and recirculation of the

sodium inside the cell.

Optical Detection Region

After neutralization, the atoms in the beam can interact with the laser light. To be able

to detect the fluorescence light, an optical detection system is installed downstream of the

charge-exchange cell. This system consists of a 35 cm long drift tube. Inside this vacuum

tube a half-cylinder mirror is mounted to reflect photons emitted transversally to a set of

lenses which finally focus the light to a plexiglas light guide. Single photons are detected by

a 2” diameter photomultiplier tube (BURLE, type 8852). To suppress background from laser

stray light, the entrance and exit of the optical detection region are equipped with stacks of

diaphragms increasing in diameters towards the detection region.

The Gas Target

The non-optical collisional ionization detection technique requires a gaseous ”target” of up to

10−2 mbar pressure to ionize the incoming neon atoms in collisions (see Sec. 4.2). Technically

this gas target is realized as a special vacuum vessel which was introduced by W. Borchers

[Bor89a]. It is shown schematically in figure 3.6, and consists of three nested concentrical

chambers to realize differential pumping from typically 2 × 10−3 mbar in the inner chamber

containing the target gas, to 10−6 mbar in the outer vacuum system.

The target gas flows constantly through a leak valve into the innermost chamber to replace

gas losses through the entrance and exit diaphragms. These diaphragms, shown in figure 3.6

had diameters of 7 mm during the measurements on neon.

Efficient pumping of the chamber is provided by two turbo-molecular pumps: a special

chemically resistant one with a pumping speed of 450 l/s, evacuating the second inner cham-

ber, and a smaller one (360 l/s) to keep the outer chamber at a pressure of 10−6 mbar. The

pressure inside the gas target is measured by a Leybold ”ViscoVac” gas pressure meter. This

device measures gas pressures via the friction of a rotating ball in the thin gas atmosphere.

The meter has a large dynamical range between 10−6 − 1 mbar and a precision of about 4%

[Ley].

3.2.2 Ion / Atom Detection Techniques

The ions produced in collisions with the target gas-molecules are deflected electrostatically

out of the primary beam direction, and guided to two alternative detectors. The first one is

based on ion counting by a secondary electron multiplier. This method has the advantage

of being applicable to any sort of beam (stable and radioactive) but has the disadvantage of
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Fig. 3.6: Schematic drawing of the gas target chamber.

being sensitive to beam contaminations. The second method is used to suppress efficiently

the non-radioactive or long-lived beam contaminations making use of β-activity counting.

Both methods were already used in the work of Klein [Kle96], but some work had to be done

to improve the concept and to increase the reliability and the sensitivity of the detection

system.

Already A. Klein suggested to normalize the signal of the ions produced in the gas target to

the intensity of the primary beam. This is necessary because intensity fluctuations or irregular

sequences of proton pulses change the conditions in the ISOLDE target and the ion source,

and give rise to intensity fluctuations of the ion beam that are not directly proportional to

the proton-beam intensity. This leads to additional non-statistical count rate fluctuations

which can hamper seriously the acquisition of spectra as a function of time. The idea of

normalizing was implemented by installing detectors identical to the ones for the deflected

ion, also in the forward direction to detect the neutral fraction of the beam (see Fig. 3.4).

This setup was invariably used in the measurement runs on short-lived neon isotopes.

3.2.3 Measurement Modes

The pulsed ion beam from the ISOLDE ion source requires (and offers) adapted measurement

modes used in the collinear laser spectroscopy experiments:

(1) The untriggered mode is used for the experiments with stable isotopes, which are based

on optical detection and on state selective collisional ionization (see below). One mea-

surement scan, consisting of n channels of width ∆t (typically 20 ms) is started without

any timing reference to the proton pulse impinging on the target.

(2) The triggered channel mode: every channel of a single scan is triggered by a proton
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pulse, the channel has an integration time up to the period between two consecutive

proton pulses (typically n proton pulse periods = n× 1.2 s, where n is an integer). This

mode is used in the measurements with radioactive detection.

(3) The triggered scan mode: this mode uses the proton trigger pulse to start one scan

with short channel width (typically of the order of ms). This mode is used to measure

the time structure of the release curve of an isotope from the target, or for half-life

measurements.

3.3 Non-Optical Detection Setups

3.3.1 Ion Counting by Secondary Electron Generation

The counting of ions produced by collisional ionization is based on the generation of

secondary electrons on a metal plate. As shown in figure 3.7, the detector setup con-

sists of a stack of two metal plates, to which a high voltage is applied. The plates

are pierced, so that the impinging ion beam can pass through to the β-detection setup

if the retractable stopper plate is opened. The electrons are detected by a secondary

electron multiplier (SEM)(BALZERS type 217). For the neon runs a second detection

setup was built and installed in the direction of the non-deflected neutral atom beam.

Incoming ion beam

Retractable
stopper
plate

Electron
generation

-4000 V

-3800 V

-3500 V

Balzers
217 SEM

Fig. 3.7: Schematic drawing of the particle detection setup.
Electrons are generated on a retractable metal plate
and get driven to a secondary electron multiplier by
an electrical field.

The SEM has an amplification

of 108 − 109 at the typical work-

ing voltage of -3500 V [Bal] and

it was used to count-rates up to

a few 106 counts/s. The advan-

tages of the ion/atom detection

lie in its suitability for long-lived

and stable species. Typical ap-

plications for this kind of detec-

tion is the ion beam-energy mea-

surement with the stable neon iso-

topes, which is described in chap-

ter 5. Another application is the

optical spectroscopy of the weak

stable isotope 21Ne and of long-

lived isotopes like 23Ne. As men-

tioned before, the ion detection

cannot discriminate against isobaric beam contaminations. As an example, 23Ne is shad-

owed by a very intense beam of stable 23Na. Doubly or even higher charged ions contribute

as well to a background when they have the same q/m-ratio as the desired isotope.

The secondary electron detection setup can be used for fast, untriggered scans with channel

step times of several milliseconds like the optical measurements. This measure mode is

insensitive to the long term fluctuations of the target conditions, which have to be taken into
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account in the measurements with the β-detection setup.

3.3.2 β-Activity Detection

For the measurements on very short-lived isotopes the detection technique based on counting

the β-activity of the radioactive isotopes was used. This technique eliminates the background

from stable and very long-lived beam contaminations but it is of course still sensitive to

background radioactivity:

(1) from radioactive isobaric beams.

(2) from accumulating radioactivity either from radioactive daughter nuclei or from the de-

cay of the isotope under investigation if it has a half life comparable with the integration

time of one measurement channel.

The first kind of background can only be suppressed either by optimizing the gating with

respect to different release-times and/or half-lives of the isotopes leaving the target after the

proton pulse. The other possibility is the energy discrimination, where by the counting of

β-particles is suppressed when their kinetic energy is below a certain threshold.

The second type of background can be suppressed by removing all accumulating radioac-

tivity from the detection zone. This is done by implanting the radioactive atoms into a tape

system. After counting for an appropriate integration time the tape is moved, and a clean

implantation zone is moved into position to take the next pulse. This procedure requires a

triggered channel mode using the proton impact on the ISOLDE target as a starting signal

for one measurement channel.

The β-activity detection is realized by the use of two parallel scintillator-detector plates.

They are placed perpendicular to the direction of the ion beam before and behind the im-

plantation site in the stopper tape (see Figs. 3.4 and 3.8) inside a vacuum chamber. The

photons generated in the scintillation material are guided by a light guide to a photon de-

tector (Phillips XP2262) which is placed outside the vacuum chamber. The plates are made

of plastic-scintillator material (material: NE102) and have a size of 50 × 60 × 1 mm. The

spacing between the plates is 20 mm, thus a solid angle of about 56% of 4π is covered. The

frontward plate is equipped with a hole of 12 mm diameter to be able to implant the ion

beam in the stopper tape placed between the two detector plates.

3.3.3 Improved Tape Transport System

The tape transport system developed by A. Klein enabled the detection of radioactivity free

of accumulating background. Nevertheless the reliability of the system was hampered by

some mechanical weaknesses, so re-engineering of the system became necessary. The main

aim of a new system was to increase the transport speed of the tape and to improve the

reliability under running conditions.

The new tape system was designed to fit into the vacuum chambers used with the previous

model. A schematic view of the mechanics is shown in figure 3.8. The transport mechanism

is based on the ”capstan” principle: one driving step-motor winds the tape and defines the

winding direction. Standard VHS-video tape rolls are fixed on the axes of two 6 W dc motors.
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Fig. 3.8: Schematic view of the new tape station mechanics. For better visibility the base plate is
transparent.

These dc motors keep the tape tight and take up the tape delivered by the stepping motor.

As long as the stepping motor doesn’t move, the dc motors pull the tape with a static force;

when the tape is moved, the tape rolls have to be accelerated. As the acceleration of the dc

motors is far to small to cope with the amount of tape delivered by the stepping motor, two

small sledge-mounted, spring driven rolls are installed to tighten the tape.

The tape system was designed to enable tape transport-speeds of 20 cm per 200 ms. The

speed was tested off-line and a maximum of 20 cm per 150 ms was reached. In normal

running operation the winding speed never exceeded 10 cm per 200 ms, which guaranteed

reliable operation throughout the runs of several days.

The tape material used as implantation host was a standard VHS video-tape of various

suppliers. The video-tape material provides low weight for fast transport, and sufficiently

good electrical conductivity on its magnetically layered side to avoid ion losses by charging

up effects on the beam. A series of measurements was used to study the diffusion of im-

planted neon atoms from the tape material in dependence of the side of the tape where the

implantation takes place. In figure 3.9 two illustrating measurements are presented.

Both plots show the counts detected by the scintillation β-counters after a short implan-

tation of 19Ne with a half life of T1/2 = 17.34 s. The left plot represents the time behavior

of the count rate when the implantation is done into the magnetized side of the video-tape.

No diffusion takes place out of the magnetized side of the tape; the left plot shows a decay
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Fig. 3.9: Diffusion from the tape material. The implanted isotope was 19Ne. The left-hand picture
shows the 17.34 s decay of 19Ne implanted in the magnetized side of the tape and detected
with β-counters. The plot on the right-hand side was obtained under the same conditions,
but with implantation in the non-coated side of the tape.

curve corresponding to the radioactive decay of 19Ne nuclei. The right plot was achieved

by implanting into the ”wrong” non-coated side of the tape. The two plots show that the

diffusion out of the tape material is very rapid from the non-coated side of the tape.

3.3.4 Normalization to Primary Beam Intensity

Proton pulses

Target temperature

Ion-beam intensity

t

1.2 s

Fig. 3.10: Schematic drawing of the effects of an irregular pulse structure on
the target conditions. Long gaps between two proton pulses cause
cooling of the target and lower ion-beam intensity.

Due to proton beam fluctuations, and changing target conditions, the primary ion beam

intensity varies significantly. Also the time structure of the proton-pulse sequence influences

the beam intensity dramatically. This is illustrated in figure 3.10. The impact of the protons

on the target causes a heating effect, which influences the diffusion of atoms out of the target.

Proton-pulse sequences with changing time intervals between two consecutive pulses (”non-

equidistant”) cause varying target heating and cooling conditions seen as strong variations of

the primary ion beam intensity. The effect of these variations on a measurement of the 19Ne
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hyperfine structure is shown in figure 3.11. The strongly varying count rate from channel to

channel in the upper two plots can be attributed to the non-equidistant time structure of the

proton pulses.

U
Accel

 [V]

Fig. 3.11: Example of the power of the normalization method. The pulses
3,5,9,11 of one supercycle were used in this measurement. Upper
graph: 19Ne hyperfine structure in the ion signal; middle: atom
signal for normalization; lower: normalized signal.

To avoid this problem, a tape system with slightly modified design was installed in the

forward direction (see Fig. 3.4). Whereas the backward scintillator plate of the detector

setup in the deflected ion-direction is not equipped with a hole, the backward plate of the

detector in the forward direction has a hole similar to the frontward plate. Additionally the

stopper tape of detection setup in the forward direction can be retracted, to give way for

the atom and the laser beam for beam alignment purposes. To avoid that laser stray-light
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is guided to the photo multipliers, the holes in the scintillators are shielded with aluminum

foil. Additionally, the entrance window of the photo multiplier tube was covered with a BG3

bandpass filter. This filter suppresses the orange laser light in the range between 590-660 nm

by a factor of 105 and has a transmission of better than 99% for the blue scintillation light in

the range between 340 − 380 nm [Sch]. With the normalization of the ion signal to the total

beam intensity, one obtains a signal which is independent of beam intensity fluctuations

Snorm =
N(ions)

(N(atoms) +N(ions))
. (3.1)

The power of this method is illustrated in the lower, normalized spectrum of figure 3.11, which

nicely shows two components of the hyperfine structure of 19Ne with errors determined by

counting statistics.

3.4 Acceleration Voltage Equipment

Of major importance for collinear laser spectroscopy is the high voltage equipment used to

accelerate the ions. This equipment can be subdivided into two subsections: (i) the main

acceleration voltage Uaccel driving the ISOLDE primary ion beam and (ii) the voltage Upost

used to post-accelerate the beam in the collinear setup. Thus, the total acceleration voltage

is given by

Utot = Uaccel + Upost (3.2)

An overview of the high voltage installations is shown schematically in figure 3.12.
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Fig. 3.12: Schematic drawing of the different voltages important for collinear
laser spectroscopy. Uaccel is the main acceleration voltage. It con-
sists of the high voltage UISOL and the anode voltage Uanode. The
optical detection, the gas target and the detection are omitted for
simplicity.

3.4.1 The Main Acceleration Voltage

The ion beam energy is determined mainly by the positive high voltage applied to the ISOLDE

ion source UISOL. This acceleration voltage is generated by a 10−5-stabilized high voltage
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power supply [Fia92] which is typically running at a voltage of +60 kV. For the measurement

the voltage is divided by a precision voltage divider with a ratio of 1:104. The divided

voltage is measured and digitized by a precision voltmeter, and can be read out from the

ISOLDE control system. The absolute accuracy of the measurement of the main voltage is

specified to 10−4, corresponding to about 6 V. During the experimental runs the acceleration

voltage is continuously monitored, and the readout values are saved with the data files of the

”measurement and control programme” (MCP) used to control the experiment.

The total beam energy consists of the main acceleration voltage UISOL plus additional

ion source-dependent voltages. These voltages vary with the type of ion source and the

individual conditions inside the source. In the plasma ion source a cathode, which is kept

on UISOL, emits electrons to ionize the plasma gas atoms (see Fig. 3.2). The electrons are

accelerated by a voltage of about +100 V to +200 V above UISOL which is applied to the

ion-source end-cap (anode). The anode is equipped with a outlet nozzle of 1 mm diameter.

Ions produced close to the nozzle can leave the plasma chamber and are accelerated in the

sum potential of UISOL and an unknown fraction of the anode voltage Uanode. This fraction

is dependent on the place of ionization inside the plasma. The anode voltage is measured

by a digital voltmeter and can be monitored during the measurements in a similar way as

UISOL. The error of the anode-voltage measurement can be neglected.

On the other hand, the anode potential is only approximately the potential at which the

ions are created. It depends on the plasma conditions inside the ion source (see appendix

B.3). The corresponding true fraction of the anode voltage accelerating the ion is called

Uplasma. This potential cannot be measured easily. It was estimated in earlier works on

collinear laser spectroscopy with noble gases to be Uanode with an uncertainty of up to 30 V

[Kei95, Kle96].

3.4.2 The Post-Acceleration Voltage

To perform the ”Doppler-tuning” by post-accelerating the ions before entering the neutral-

ization region, a variable voltage is applied to a set of electrostatic lenses and to the CEC.

This variable voltage consists of a fixed offset voltage (UFluke) in the range of -10 kV to

+10 kV. This voltage is supplied by precision high-voltage supplies (FLUKE 410 B). To

be able to take spectra of several isotopes in a sequence, three voltage supplies are used,

each corresponding to one isotope. Each voltage is set to a proper value which corresponds

roughly to the resonance frequency of the isotope. Before starting a measurement on this

isotope the offset voltage is applied to the post-acceleration electrodes with the use of a re-

motely controlled set of high-voltage switches. The post-acceleration voltage is divided by

a precision voltage divider (Julie research laboratories model KV-10R), which has a divider

ratio Ddiv = 1000 (specified error: 10−4 [Jul]). A more accurate calibration value of Ddiv

from collinear laser spectroscopy can be found in section 5.2.2). The divided offset voltage

is measured with a precision digital voltmeter (PREMA Integrating digital multimeter Type

6040). The accuracy of the voltmeter in the 10 V range and for 1 s integration time, which
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was used during all the experiments, is specified to

∆Uprema = 1 × 10−5 V
︸ ︷︷ ︸

max. Display×10−6

+ 4 × 10−6 × (voltage readout) + 1 × 10−5 V
︸ ︷︷ ︸

error last digit

[PRE] . (3.3)

This corresponds to an error in Upost = Uprema × 1000 of 60 mV for the maximum readout

voltage of 10 V.

To be able to vary the post-acceleration voltage, a voltage ramp (UDAC) is supplied by an

18-bit digital-to-analog (DAC) voltage source (HYTEC DAC 670 MK2 CAMAC [Hyt]), which

is compatible with the CAMAC bus standard and can be driven by computer commands.

The voltage range of this DAC is between -10 and +10 V, with a minimum step width of

1 mV [Hyt]. This voltage is amplified with a high-voltage amplifier (KEPCO Model BOP

500M), which has an amplification factor Fkepco of about 50 [Kep], so the dynamic voltage

range for a measurement is −500 V ≤ Uramp ≤ +500 V. This variable Doppler-tuning

voltage is used to change the ground potential of the Fluke high voltage supplies. The

resulting voltage applied to the post-acceleration electrodes is a voltage ramp as a function

of time with a preselected width and an offset:

Upost(t) = Uprema ×Ddiv
︸ ︷︷ ︸

UFluke

+

Fkepco
︷ ︸︸ ︷

Fcal ×Ddiv ×UDAC(t)
︸ ︷︷ ︸

Uramp

. (3.4)

The voltage amplification factor can vary with the individual amplifier by a few percent.

It varies with time, depending on factors such as the ambient temperature. The experimental

amplification factor is monitored regularly by calibration measurements during the run. To

calibrate, the voltage ramp used in the measurements is applied to the post-acceleration

region. The applied voltage is read out by measuring the divided voltage with the precision

digital voltmeter, yielding a calibration factor

Fcal =
Ukepco/UDAC

Ddiv
= Fkepco/Ddiv . (3.5)

The amplification is then determined by a straight line fit to the measured voltages. The real

amplification factor of the amplifier is determined by the product of Fcal ×Ddiv, and varies

only little in time. A typical time behavior is shown in figure 3.13. The amplification factor

is assumed to be constant for a set of measurements, where UFluke and the sweeping voltage

interval is constant.

3.5 Long-Term Laser Stabilization

To perform measurements on radioactive isotopes which are produced with low yields, one has

to accept long measuring times to collect a certain count rate per channel of a spectrum. The

statistical accuracy is achieved by repeating the measuring sequence of a scan (one or several

ion pulses per voltage step) many times. This is realized by measuring slowly, i.e. adding up

the counts of several ion pulses in one channel before the next step. Alternatively a ”fast”

mode can be chosen, where only the counts of one ion pulse are collected in one channel and

the total measuring sequence is repeated many times. Thus, the long-term stability of the
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Fig. 3.13: Measured amplification factors of the KEPCO high
voltage amplifier during the run 10-1999. The data
points were taken within a period of 4 days, approxi-
mately every 4-5 hours.

laser becomes important. A drift of the laser frequency causes a slow drift of the line positions

in the spectra, which are taken as a function of the post-acceleration voltage, similar to a

drift of the acceleration voltage itself. As pointed out in the introduction, the requirements

on the precision of the determination of the optical line positions are very stringent thus

requiring stable laser conditions.

The Coherent 699-21 dye laser is equipped in the standard version with a frequency stabi-

lization, which is based on a temperature-stabilized confocal Fabry-Perot interferometer. This

stabilization can efficiently be used for short-term frequency stabilization reducing the laser

linewidth to about 1 MHz. The absolute long-term stability is quoted to be 10 MHz/hour

[Coh], mostly due to thermal effects changing the resonance frequencies of the interferome-

ter. As long as the measuring times are short the drift of the laser frequency is not crucial.

However, measurements on radioactive isotopes can easily take hours for accumulating the

required count rate. In the extreme case of 28Ne measurements of the single resonance took

more than 4 hours for a spectrum with good statistics.

To cope with the laser drifts, an additional long-term stabilization was developed and

implemented in the laser setup. The basic components of this setup are a frequency stabilized

Melles-Griot helium-neon laser and a confocal Fabry-Perot interferometer (Coherent Model

number 216 free spectral range 300 MHz). The absolute frequency stability of the He-Ne

laser is specified to 2 MHz/8 h and 0.5 MHz/◦C [Mel]. The basic concept of the stabilization

is to fix the length of the interferometer to the transmission fringes of the stabilized He-Ne

laser. The observation of the transmission fringes of the dye laser in the same interferometer

with a photo diode generates a voltage signal which is used for the long term stabilization of

this laser.

To be able to distinguish between the He-Ne and dye-laser signals they have to be sep-

arated. This is done by giving the lasers orthogonal polarizations and using beam splitter
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Laser Stabilization Layout
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Fig. 3.14: Schematic layout of the long-term laser stabilization. A few of the
devices are shown from the front and the backside with their connec-
tions.

cubes for merging and separating the two laser beams. The signals delivered by two photo

diodes are processed with use of lock-in techniques and are used as control voltages for an

active frequency regulation. The different signal processing units and their connections are

shown in figure 3.14. This long term stabilization limited the laser drifts to the required

values. The absolute stability of the system was estimated to 2.8 MHz from the line positions

of one resonance line under constant acceleration voltage conditions.
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Chapter 4

Basic Concepts of Collinear Laser
Spectroscopy

Collinear laser spectroscopy is based on the geometrical superposition of a fast atomic beam

and a laser beam. There are two main advantages of this method. One is the intrinsically

small linewidth measured in optical transitions. This is caused by the longitudinal com-

pression of the velocity distribution of ions accelerated in an electrostatic field. This effect

is described and briefly discussed in the papers of Kaufman [Kau76] and Wing [Win76].

Summarizing, the energy spread corresponding to the longitudinal velocity distribution is a

constant in the acceleration process. This leads to a compression of the velocity spread which

can be expressed by

δE = δ
(

1
2mc

2β2
)

= mc2 β δβ = const. . (4.1)

Here β = v/c is the dimensionless relativistic parameter for the velocity in units of the velocity

of light, and m is the ion mass. A description of this phenomenon in terms of an analytical

formula for the velocity distribution is difficult, because it depends on the starting conditions

given by the ion source. The attempt of such a description for the model of a thermal gas is

presented in appendix B.

The other advantage is offered by the possibility of post-accelerating the ions in the

collinear laser-spectroscopy setup (see Fig. 3.4). The movement causes a Doppler shift of

the laser frequency in the rest frame of the ions or neutralized atoms. The variable voltage

applied to the charge-exchange cell can thus be used to sweep the frequency in this moving

frame, while the laser stays at fixed frequency. This is preferable to sweeping the laser fre-

quency, because the relatively complicated calibration of the laser wavelength is avoided. As

a result the frequency in the moving frame can be expressed as a function of the ion-beam

energy.

4.1 Doppler Frequency Tuning

The Doppler shifted frequency ν ′ ”seen” by the travelling atom is connected to the laser

frequency in the laboratory system νL by the expression

ν ′ = νL ×
√

1 − β2

1 ± β
. (4.2)
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To match the resonance frequency of an atomic transition ν0 the laser frequency νL must

be equal to the Doppler shifted resonance frequency of the moving atom νD and thus set

according to

νL = νD = ν0 ± δνD = ν0 ×
1 ± β
√

1 − β2
. (4.3)

The ± sign depends on the direction of the laser beam with respect to the direction of the

travelling atoms/ions. ”+” applies when the laser beam direction is parallel to the motion of

the atoms (collinear), ”–” applies when it is antiparallel (anticollinear).

As the velocity of the atoms is connected with the acceleration voltage, β has to be

expressed as a function of the voltage. The relativistic expression for the total energy of the

atom is given by

Etot = eU +mc2 =
mc2

√

1 − β2
, (4.4)

where U is the total accelerating potential difference. Solving for β, one obtains

β =
v

c
=

√

1 − m2c4

(eU +mc2)2
≈
√

2eU

mc2
. (4.5)

Using equation (4.5) one obtains from equation (4.3) the full relativistic description of the

Doppler-shifted frequency as a function of the acceleration voltage:

νL = ν0 ×
mc2 + eU ±

√

eU(2mc2 + eU)

mc2
. (4.6)

The purpose of the experiments is to measure the isotope shift δνIS . The laser frequency

remains fixed, and the two atomic resonances of the isotopes occur at different voltages

fulfilling the condition

νL = ν
(1)
0

m1 c
2 + eU (1) ±

√

eU (1)(2m1 c2 + eU (1))

m1 c2

= ν
(2)
0

m2 c
2 + eU (2) ±

√

eU (2) (2m2 c2 + eU (2))

m2 c2
,

where ν
(2)
0 = ν

(1)
0 + δνIS . (4.7)

By solving equation (4.7) the full relativistic formulae for the isotope shift are derived, which

can be found in Appendix C.4.

To estimate the order of magnitude of the frequency shifts for neon, the transition

2s2 [2p5 (2P 0
3/2) 3s]2 → 2s2 [2p5 (2P 0

3/2) 3p]2 with a transition wave number of 16274.01942(11)

cm−1 [Jun82] was chosen. With the atomic mass of 20Ne, m(20) = 19.992440176(3) u [Aud93],

the following values of practical interest are calculated.

• Doppler shift for 20Ne caused by the primary acceleration voltage of 60 kV: δν̃D =

+41.36 cm−1 ≡ 1.240 THz.

• Isotopic Doppler shift (see appendix C.3) between 20Ne and 21Ne: δν20,21
iso =29.10 GHz.

• Frequency interval corresponding to the voltage sweep range of the post-acceleration

(±10 kV) for 20Ne: ∆ν̃D = 6.927 cm−1 ≡ 207.7 GHz.

• Differential Doppler shift for 20Ne (see appendix C.2) at a beam energy of 60 keV:

δνdiff = 10.35 MHz/V.
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4.2 Detection Methods Used for Neon

Traditionally the detection of atomic excitations by laser light is done by detecting the fluo-

rescence light emitted by the atoms. This light emitted in the optical detection region (see

Fig. 3.4) is collected by a light guide and detected by a photomultiplier. The efficiency of

photon detection is rather low. Limitations are due to a small solid angle of ≈ 2% cov-

ered by the collection optics, the quantum efficiency of the photomultiplier of ≈ 10%, losses

from optical pumping and charge exchange which altogether lead to an overall efficiency of

detecting fluorescence photons of about 10−4. The laser beam travelling through the ap-

paratus causes stray-light background in the optical detection of typically a few thousand

counts/(sec mW). To be able to detect a proper resonance the signal to noise ratio should be

larger than: S/
√
N > 1; with the above estimate for the stray light one ends up with about

100 counts/sec in the resonance.

The experiment on neon relies on optical pumping from the metastable 2p5 3s state to the

ground state (see Figs. 4.1, and 4.2). Taking the spectroscopic transition as an example, the

branching ratio of pumping to the ground state compared to the decay back to the metastable

state is 43%. Thus, the atom will emit in average only two fluorescence photons before it

is pumped to the ground state. Taking the estimates altogether the optical detection limit

is about 106 atoms/sec for a spin I = 0 neon isotope. For isotopes with I 6= 0 the beam

fluxes have to be even higher, because the transition strength is distributed over the hyperfine

structure components.

4.2.1 Detection Methods Used in Collinear Laser Spectroscopy

From the last section it became clear that a more sensitive detection techniques for isotopes

produced with low yields is needed. This was the starting point of a development of non-

optical detection techniques. The collinear laser-spectroscopy experiment utilizes in general

four detection methods to investigate nuclei far from stability:

• Fluorescence detection of the optical resonance.

• Resonance detection based on state selective neutralization [Ver92] and state prepara-

tion by optical pumping.

• Resonance detection by the use of collisional ionization [Neu86].

• The β-asymmetry method which is based on spin polarization by optical pumping with

circularly polarized laser light and detection of the β-decay [Arn87].

Of these four techniques, the optical detection and the collisional ionization method were

used in the present experiments on neon. While the optical detection is straightforward, the

collisional ionization detection requires some explanation.

4.2.2 Populating the Initial State by Charge-Exchange Neutralization

The collisional ionization detection-method is based on differences in the ionization energy of

two atomic levels. The ionization cross-sections in a collisional process depend on the energy
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transfer needed for ionization out of a particular atomic state. Combined with optical pump-

ing, the collisional ionization technique can be used for detecting the change of population

due to the interaction of the atoms with the laser light.

The initial state of the optical pumping process can be populated by a suitable choice of

the charge-exchange partner used for neutralizing the beam. The ionization energy of the

target atom in the collision has to be close to the energy of the level to be populated.

This method is especially suitable for noble gases. In the neutralization process the

metastable level [2p5 (2P 0
3/2) 3s]2 of neon can easily be populated by choosing sodium as

an appropriate charge-exchange partner. These metastable atomic levels can be excited to a

[2p5 (2P 0
3/2) 3p]2 state, which decays via another 2p5 3s (J = 1)-state to the 2p6 atomic ground

state (see Fig. 4.1). The alkali metal sodium, used for the charge exchange, has the following
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Fig. 4.1: Level scheme for the charge-exchange process and the laser excitation.
The sine like arrows indicate the decay to the ground state, the thin lined
arrows the relaxation from higher levels populated in the charge-exchange
process. Note the different Racah notation of the levels which was chosen
for a better overview.

physical properties [Lid00]:

Solid density: 968 mg/cm−3

melting point: 370.87 K = 97.72◦C

boiling point: 1156 K = 883◦C

electronic configuration: 1s2 2p6 3s1

ionization energy: 5.1391 eV
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The neutralization process populates predominantly the [2p5 (2P 0
3/2) 3s]2 state of neon

which has a level energy of -4.9455 eV. The energy difference between the level energy of

neon and ionization energy of sodium, ∆E = Eion(Na) − En(Ne) = 0.1936 eV , has to be

taken from the kinetic energy of the ions and results in a small kinetic energy shift. The

process can be expressed by the equation:

Ne+ +Na+ Ekin → Ne∗ +Na− + Ekin − ∆E (4.8)

Besides the metastable [2p5 (2P 0
3/2) 3s]2 state of neon, higher levels are populated as well in

the charge-exchange process. According to equation (4.8) this translates into an additional

kinetic energy loss corresponding to the difference in ionization energy of sodium and the

energy of the populated level. This loss in kinetic energy has effects on the observed line

shape which will be discussed next section 4.3. An energy-level diagram showing some of the

levels involved in the charge exchange and laser excitation is shown in figure 4.1. The figure

shows parts of the level scheme of Ne I [NIS99], excluding the ground state, which has an

energy of -21.5645 eV.

4.2.3 State Preparation by Optical Pumping

At resonance with the laser, the atoms are excited from the metastable 2p5 3s state to a higher

level of the configuration 2p5 3p. Three optical excitations were involved in the experiment

(see Fig. 4.2).

(A) 2s2 [2p5 (2P 0
3/2) 3s]2 → 2s2 [2p5 (2P 0

1/2) 3p]2, anticollinear voltage-calibration transition

(see Chap. 5), ν̃0 = 16816.67 cm−1, Aki = 1.13 × 107 1/s [NIS99]

(B) 2s2 [2p5 (2P 0
3/2) 3s]2 → 2s2 [2p5 (2P 0

1/2) 3p]1, collinear voltage-calibration transition (see

Chap. 5), ν̃0 = 16730.27 cm−1, Aki = 3.51 × 106 1/s [NIS99]

(C) 2s2 [2p5 (2P 0
3/2) 3s]2 → 2s2 [2p5 (2P 0

3/2) 3p]2, spectroscopic transition,

ν̃0 = 16274.01942(11) cm−1 [Jun82], Aki = 2.82 × 107 1/s [NIS99]

Each of these levels can decay via intermediate levels to the 2s2 2p6 ground state as is

shown schematically in figure 4.2. All three lines allow efficient optical pumping, so that a

fast depletion of the metastable level can be achieved.
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Fig. 4.2: Optical transitions used in the neon experiments, with
level energies in cm−1. Radiative decays are labelled by
(1)-(7), the laser excitation by (A)-(C). The transition
probabilities are taken from [NIS99]:
(1) Aki = 2.33 × 107 1/s, (2) Aki = 1.81 × 107 1/s,
(3) Aki = 2.17 × 107 1/s, (4) Aki = 6.70 × 105 1/s,
(5) Aki = 1.74 × 107 1/s, (6) Aki = 4.16 × 106 1/s,
(7) Aki = 2.79 × 107 1/s,

4.2.4 State Detection by Collisional Ionization

The detection of optical pumping between the metastable state and the ground state makes

use of the different ionization cross sections of the state the atom is in. The ionization energy

of the 2s2 2p5 [2p5 (2P 0
3/2) 3s]2 level is 4.9455 eV, whereas the ionization from the ground

state takes 21.5465 eV. This energy difference causes considerably different cross sections

for ionization in collisions with a gaseous partner. By the use of a special vacuum chamber

downstream of the optical detection region it is possible to introduce an interaction region

for the collisional ionization which can be operated at gas pressures up to 10−2 mbar, the

so-called ”gas target” (see Fig. 3.4, and Sec. 3.2.1). The cross section dependencies on the

atomic state and on the collisional partner were investigated in depth in the PhD thesis of

W. Borchers [Bor89a] and in the diploma thesis of U. Georg [Geo90] for the noble gases radon

and xenon. It was found that molecular chlorine generally gave the highest ionization rates

and the best discrimination between the two states.
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In the startup phase of the ex-

periments on neon, similar investi-

gations were performed in a series

of on- and off-line measurement.

The results of the off-line tests are

documented in the diploma thesis

of G. Kotrotsios [Kot99]. Several

gases were tested and again chlo-

rine was judged as the most effi-

cient collision partner for detecting

the optical resonances.

The plot shown in figure 4.3 is

a summary of the tests done in the

first two runs at ISOLDE. It shows

the signal-to-noise ratio

S/N =
Counts(Signal)

√

Counts(Background)
, (4.9)

for four different gases as a function of the gas pressure inside the gas target. For neon, like

for other noble gases, chlorine yields best performance as a target. A measured resonance

with the quantities background and signal is visualized in figure 4.4.

65780 65800 65820 65840 65860
1.6x10

5

1.7x10
5

1.8x10
5

1.9x10
5

2.0x10
5

2.1x10
5

2.2x10
5

C
o
u
n
ts

Signal

Noise = (Background)1/2

UAccel [V]

Fig. 4.4: Line shape of a resonance in the non-optical detection.
The figure shows the ion signal for the stable isotope
22Ne.

The detection of the Ne+ ions in the beam after the gas target as a function of the laser

frequency reveals the optical resonance as flop-out signal (see Fig. 4.4) corresponding to the

fact that the ionization cross section is smaller in the ground state than in the metastable

state.

Efficient optical pumping requires relatively high laser powers. In the optical detection
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measurements typical laser powers are in the range between 600 µW to 1 mW. The typical

laser power for the non-optical detection were about 10 times higher which is required a

complete depopulation of the metastable level and maximum non-optical signals. These

differences in laser power give an additional line broadening in the non-optical spectra. The

different excitation conditions cause systematic deviations of the line positions determined

from optical or non-optical spectra, due to the correlation between linewidth and line position

in the fits with the asymmetric line shape introduced in the previous section. The deviations

can be determined experimentally and are discussed in chapter 6.

4.3 Asymmetric Line Shapes

The resonance lines observed in collinear laser spectroscopy deviate in shape from a Lorentzian

profile with the natural linewidth. This natural linewidth is of the order of 10 MHz for the

transitions used in the present experiments on neon. There are several effects which change

the shape and the width of the optical line: (i) The residual Doppler width contributed a

broadening with an unknown line shape determined by the ion source. (ii) Saturation for

efficient optical pumping broadens the Lorentzian width of the observed resonance lines from

their natural width. (iii) An additional asymmetric broadening is evoked by the population of

higher levels in the charge-exchange process thus causing strong deviations from the natural

shape.

As discussed in the previous section, the charge-exchange process populates most efficiently

the levels closest in energy to the ionization energy of sodium. Higher excited levels are

populated with lower cross sections. The population of these higher excited levels has an

influence on the line shape observed in the experiment. As pointed out before (see Eqn. (4.8)),

atoms loose a small fraction of their kinetic energy which is equal to the difference

∆Ekin = Eion(Na) − En(Ne) , (4.10)

and depends on the neon level that is populated.

The atoms with smaller energy contribute to a low energy ”tail” in the velocity distribu-

tion, and this gives the asymmetric broadening of the absorption profile. In a simple model,

the population amplitude can be assumed to decrease exponentially with energy difference

between the sodium ionization energy and level energy in neon. If an atom leaves the charge-

exchange process in a higher excited level, it can only participate in the absorption of laser

light, if this level decays to the [2p5 (2P 0
3/2) 3s]2 metastable state.

Within the time of flight through the interaction region (about 0.5 µs), every atom con-

tributes with a power-broadened Lorentzian line shape to the detected resonance which con-

sequentially is a sum of Lorentzians of the same width. The amplitudes of which decrease

exponentially as a function of the energy difference to the ionization energy of sodium. This

effect as an explanation of the asymmetrical lines is known since many years [Mue83]. It is

mathematically approximated by a convolution of a Lorentzian with an exponential function:

F (x) =

∫ +∞

−∞

Γ/2

(x− x0)2 + (Γ/2)2
× e−

1

τ
(x−x0−x′)2 dx′ (4.11)
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a Gaussian Doppler width can be taken into account, which can be done by convoluting

a Voigt-profile (convolution of a Gaussian and a Lorentzian profile) with the exponential

function. Experimentally such a Gaussian width was found to be negligible in the experiments

on neon, meaning that the replacement of the Lorentzian by a Voigt profile in equation (4.11)

did not improve the fits of experimental spectra. However, these fits show a strong dependence

of the fitted line position on the asymmetry parameter τ , which has to be taken into account

very carefully in the data analysis. An experimental spectrum with a broadened ”tail” on

the low energy side of the line is shown in figure 4.5.
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Fig. 4.5: Comparison of Lorentzian and convoluted line fit. In blue the experimental spectrum, the
fit is plotted as red dashed line. The plot to the left shows the fit of a Lorentzian line shape.
The plot to the right shows the fit of a convoluted line shape Lorentzian ⊗ exponential to
the same experimental spectrum.
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Chapter 5

Measurement of Beam Energies
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Fig. 5.1: Field distribution between the plasma ion source and the extraction electrode. The dis-
played field lines represent voltage steps of 1 kV.

As mentioned in the previous chapters, the requirements on the accuracy of the mea-

sured isotope shifts for the determination of field shifts become increasingly demanding with

decreasing nuclear charge Z. The order of magnitude of the field shift in the chosen neon

transition is expected to be about 10 MHz. For comparison, the isotopic Doppler shift be-

tween two neon isotopes with ∆m = 1 u is of the order of 30 GHz. In the experiment the

frequency positions of the optical resonance lines are measured via the beam energy at res-

onance which is directly linked to the electrical potential difference accelerating the ion. To

determine the frequency differences between neighboring isotopes with an accuracy of 1 MHz,

corresponding to a 10% accuracy of the field shift, it is necessary to know the beam energy,

i.e. the accelerating voltage, to 3× 10−5. For the ISOLDE acceleration voltage of 60 kV this

corresponds to 2 V.

Thus, the beam energy is the crucial limitation for the desired accuracy of the measure-

ments on neon isotope shifts. It is possible to measure the applied voltages (the ISOLDE

acceleration voltage, the anode voltage of the plasma ion source and the retardation volt-
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ages applied to the charge-exchange region) with standard voltage measurement equip-

ment to about 10−4, but still the real acceleration potential seen by the ions, is not well

known. The major part of the uncertainty is due to the unknown potential at which the

ionization of the extracted neon atoms takes place in the plasma ion source. From ex-

perience one only knows that this potential is relatively close to the anode potential of

typically about +150 V with respect to the main acceleration potential of about +60 kV.
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Fig. 5.2: Enlargement of the outlet nozzle region of the
plasma ion source. The potential lines shown
in the figure represent steps of 3 V.

To illustrate the conditions in the ion

source, the potential distribution in

the vicinity of the source was simu-

lated utilizing the computer program

SIMIONTM, version 7.0, as shown in

figures 5.1 and 5.2. These simulations

were performed without taking into

consideration the plasma effects inside

the ion source due to restrictions in

the simulation program.

In figure 5.1, the equipotential

lines represent voltage differences of

1000 V. figure 5.2 shows an enlarge-

ment of the source’s outlet nozzle.

Whereas the potential gradient is very

small inside the source itself, it be-

comes quite large in the region of the

nozzle (one step between the lines rep-

resents a Voltage step of 3 V). Hence,

the potential ”seen” by the ion becomes strongly dependent on the position of ionization. To

illustrate the order of magnitude; close to the outlet nozzle a shift of the ion extraction of

0.5 mm results in a voltage difference of about 30 V, as can be seen in figure 5.2.

To meet the described requirements, a new method of measuring the beam energy was

implemented. As a fortuitous circumstance, neon offers two atomic transitions which can

be used in a collinear/anticollinear laser spectroscopy experiment, to measure the Doppler

shift and thus to determine the velocity of the atoms in the optical excitation region. The

following section is dedicated to a description of this experimental method.

5.1 Beam-Energy Measurement by Collinear Laser Spectroscopy

The idea of using laser spectroscopy in collinear geometry to determine ion beam energies,

and thus to measure high voltages with high precision, was published by Poulsen [Pou82] and

by Arnold et al. [Arn82] in the early eighties. The method used to calibrate the energy in

the neon measurements relies on an excitation scheme known as ”inverted Λ-configuration”

or ”V-configuration”, a resonant excitation from a common ground state to two close lying

excited levels.

In the publication of O. Poulsen the excitation scheme was a closed system, aiming at
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efficient detection of the fluorescence light. In a closed system no optical pumping to levels

outside the system takes place. In contrast to this, the excitation scheme in neon is open,

and the optical pumping out of the V system is used for the detection. The use of such

systems offer a substantial advantage: Whereas closed Lambda-systems are difficult to find,

the method used in this thesis only requires two independent transitions which lie within the

working range of the collinear spectroscopy setup.

5.1.1 Basic Equations

 

(collinear)

 

(anticoll.)

 νlaser
 

E

−δνD(U)

+δνD(U)

ν0
(1)
ν0

(2)

Fig. 5.3: Excitation scheme used for the collinear /anti-
collinear excitation in the beam-energy measure-
ment. The hatched arrows denote the frequency of
the transitions in the laboratory system, the filled
arrows in the moving frame of the atoms.

The Doppler shift caused by the

atom-beam velocity depends on

the parallel or antiparallel direc-

tion of the laser beam, and causes

frequency shifts of opposite signs

as shown in equation (4.2). The

frequency shift for the excitation

in the direction of the atom beam

(+δνD) is positive in the labora-

tory system; in the opposite di-

rection, the Doppler shift evokes a

negative frequency shift (−δνD).

Because the shifts act in op-

posite directions, a beam veloc-

ity can be found where the en-

ergy difference between two dif-

ferent atomic levels gets exactly

equal in the laboratory system:

νL = ν
(1)
0

1 + β
√

1 − β2
= ν

(2)
0

1 − β
√

1 − β2
(5.1)

As shown by the equality to νL, the transition can be induced by laser beams of the same

frequency, but travelling in opposite directions.

The effects of the Doppler shift on the excitation of both atomic levels is illustrated in

figure 5.3. The dependence of the transition frequencies on the acceleration voltage is shown

in figure 5.4. The plotted graphs in the latter figure represent the two transitions of neon

used in the present beam-energy measurements. To be able to calculate the beam energy,

one has to take the expressions for the Doppler-shifted transition frequencies in the full

relativistic form. The Doppler shifted transition frequency is given by equation (4.2). The

relativistic factor β is related to the beam energy by equation (4.5). To find the voltage of

equal transition frequencies one has to use expression (4.6). Both frequencies are equal in
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Fig. 5.4: Relation between frequency and voltage in the neon transitions used for
the beam-energy measurement. The gray square shows the working region
of the COLLAPS experiment.

the laboratory frame if

νL =
ν

(1)
0

mc2
·
[

mc2 + eU +
√

eU(2mc2 + eU)
]

(collinear)

=
ν

(2)
0

mc2
·
[

mc2 + eU −
√

eU(2mc2 + eU)
]

(anticollinear) . (5.2)

Solving for the beam energy eU yields

eU =

mc2
(√

ν
(1)
0 −

√

ν
(2)
0

)2

2

√

ν
(1)
0 ν

(2)
0

. (5.3)

The Doppler shifted frequency at this voltage can be calculated easily by the expression:

νcoll = νanti =

√

ν
(1)
0 ν

(2)
0 (5.4)

5.1.2 The Neon Levels Used in the Experiment

As outlined, the beam-energy measurement is based on collinear/anticollinear laser spec-

troscopy employing two energetically close lying atomic transitions. In principle any element,

delivered by the ion source, with such a pair of atomic or ionic transitions can be utilized

to calibrate the beam energy, as long as their Doppler shifted transitions are crossing within

the working range of the experimental setup. Corrections may have to be taken into account,

e.g. when the ionization inside the ion source takes place at different potentials for different

chemical elements. Preferably of course, the measurement should be done using the element

to be investigated in the spectroscopy experiments.



5 Measurement of Beam Energies 53

E / a.u.

2s 2p (Ground state)
2 6

llaseer ν(1)
0

ν(2)
0

-∆νD(U)

+∆νD(U)

[2p5 (2P1/2,3/2) 3s]1
[2p5 (2P3/2) 3s]2

[2p5 (2P1/2) 3p]2

[2p5 (2P1/2) 3p]1

0

0

0

0

Fig. 5.5: Transitions used for beam-energy measure-
ment. The two transition coincide at a
beam energy of 61758.77 eV.

Neon offers the ideal transitions to calibrate beam energies of about 60 keV. These are for
20Ne

1s2 2s2 [2p5 (2P 0
3/2) 3s]2 → [2p5 (2P 0

1/2) 3p]1: ν̃
(1)
0 = 16730.2704470(87) cm−1 [Zha87],

used in collinear geometry, and

1s2 2s2 [2p5 (2P 0
3/2) 3s]2 → [2p5 (2P 0

1/2) 3p]2: ν̃
(2)
0 = 16816.66634(2) cm−1 [Jun82], used

in anticollinear geometry.

According to equation (5.3) both transitions coincide at a beam energy of 61758.77 eV,

when they are excited by laser light of ν̃ = 16773.413 cm−1. With the transition used

for the measurement on radioactive isotopes, they have in common the metastable level

([2p5 (2P 0
3/2) 3s]2) which is populated efficiently by the near-resonant charge transfer with the

sodium vapor. The excitation and optical pumping to the ground state is shown in figure 5.5.

Both wave numbers are known independently ([Zha87, Jun82]) with sufficient precision, and

the laser light can easily be generated with the use of Rhodamine 6G laser dye.

5.1.3 The Experimental Setup

The experimental setup used to perform the beam-energy measurement is the same as used

for the collinear laser-spectroscopy experiment which is described in chapter 3. The decisive

difference between the standard and the beam-energy measurement-setup is the presence of

a mirror at the exit side of the apparatus. This mirror is used to reflect the laser beam in

itself (see Fig. 5.6).

This kind of setup enables the simultaneous excitation and detection of the two resonances

in one measurement. By using the non-optical detection, problems caused by stray light from

the reflected laser beam, which would affect optical measurements, are avoided. Using the

same pair of transitions for two different isotopes opens the additional possibility to calibrate

independently the post-acceleration voltages which are applied to the charge-exchange cell.
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Fig. 5.6: Experimental setup used for the beam-energy measurement. A mirror is used to retro-
reflect the laser beam. It is placed at the end of the apparatus. Ions from collisions in
the gas target are detected by a secondary electron multiplier (see Sec. 3.3.1).

5.1.4 Effects of Laser Detuning

For a detailed analysis, the beam energy expressed in volts has to be split up into the voltages

contributing to the total accelerating potential difference. It can be written as (see Eqn. (3.3))

Ebeam = eUtot = e
[
UISOL + Uanode,plasma
︸ ︷︷ ︸

Uaccel, Ucalib

+ UDAC × Fkepco +

UFluke
︷ ︸︸ ︷

Uprema ×Ddiv
︸ ︷︷ ︸

Upost

]
. (5.5)

Where Fkepco ≈ 50 is the amplification factor of the Kepco HV-amplifier. Uprema is the

readout voltage of the Prema precision digital voltmeter. Note that Uaccel is used as symbol

for the sum of voltages applied to the ISOLDE ion source and the anode, which are measured

electrically. Ucalib is used for the beam energy of the ions from the source calibrated by the

collinear/anticollinear method.

For experimental reasons it is preferable not to choose the laser frequency exactly as given

by equation (5.4). There the two resonances overlap and the beam energy is given by the

simple formula (5.3). First of all, it is difficult to set the laser frequency with the required

precision: The differential Doppler shift for 20Ne is 10.35 MHz/V. The line positions have to

match with a precision substantially better than 1 V. Thus, the absolute laser wave number

has to be determined to better than 3×10−4 cm−1. This corresponds to a relative precision of

2×10−8, which cannot be achieved easily with standard wavelength measurement-equipment.

Secondly the analysis of the two matching lines with respect to their peak positions depends

critically on the assumptions on the asymmetric line shapes. Furthermore both lines have

different amplitudes because of the very different efficiencies for optical pumping to the ground

state. The [2p5 (2P 0
3/2) 3s]2 → [2p5 (2P 0

1/2) 3p]2 transition (anticollinear) has a branching

ratio of 78.5% to the ground state, and 21.5% back to the metastable level, causing large

signal depths of typically 15% (see Fig. 5.5). In contrast to this the [2p5 (2P 0
3/2) 3s]2 →
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[2p5 (2P 0
1/2) 3p]1 (collinear) transition can decay via three branches: 0.5% to [2p5 (2P 0

3/2) 3s]2,

57.9% to the ground state, and 41.6% to the [2p5 (2P 0
1/2) 3p]0 level which cannot decay to the

ground state and is inaccessible for the laser excitation. This gives typical signal depths of

the order of about 5%. An example of a typical spectrum is shown in figure 5.7.

For these reasons a slightly different approach was chosen, where the laser frequency is

detuned from the condition (5.4) by a few 100 MHz. As a result two separated resonance
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Fig. 5.7: Typical spectrum of a voltage calibration measurement.

lines, which can be fitted properly, are obtained in a narrow scan of the post-acceleration

voltage. The separation of the line positions have to be taken into account in equation (5.5)

and cause the replacements:

Collinear line: Upost → U
(1)
post corresponding to UDAC → U

(1)
DAC (5.6)

Anticollinear line: Upost → U
(2)
post corresponding to UDAC → U

(2)
DAC (5.7)

Incorporating these replacements in equation (5.2), the calibrated acceleration voltage has

to be determined via the more complicated equation:

νL =
ν

(1)
0

mc2
·
[

mc2 + eU (1) +
√

eU (1) (2mc2 + eU (1))

]

(collinear)

=
ν

(2)
0

mc2
·
[

mc2 + eU (2) −
√

eU (2) (2mc2 + eU (2))

]

(anticollinear) , (5.8)

where the total acceleration voltages are given by equations (5.5), (5.6), and (5.7). Solving

the equation for Ucalib yields the expression for the calibrated acceleration voltage which

depends on the line positions measured in terms of the total post-acceleration voltage U
(1)
post
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and U
(2)
post

Ucalib =

(

ν
(1)
0 + ν

(2)
0

)
√

m2c4
(

ν
(2)
0 − ν

(1)
0

)2
+ e2ν

(1)
0 ν

(2)
0

(

U
(2)
post − U

(1)
post

)2

2e (ν
(2)
0 − ν

(1)
0 )

√

ν
(1)
0 ν

(2)
0

− 1

2

(

U
(2)
post + U

(1)
post

)

− mc2

e
. (5.9)

If U
(1)
post and U

(2)
post in Equation (5.9) is given only by the variable part of the post-

acceleration voltage, U
(1),(2)
post = UDAC × Fkepco, the result is the static part of the total beam

energy

Ustat = UISOL + Uplasma + UFluke , (5.10)

which is used for the calculation of the voltage divider ratio Ddiv which will be described in

section 5.2.5.

It should be mentioned that the possibility of a finite angle between the directions of the

laser beam and the ion beam has to be taken into account in the error of the calibrated value

Ucalib.

5.2 Experimental Results of beam-energy measurements

The experimental results of the beam-energy measurements and the voltage divider ra-

tio are discussed in the following section. Besides measuring the beam energy the

collinear/anticolinear method was used to calibrate the voltage divider which was used to

measure the post-acceleration voltage applied to the charge-exchange cell.

5.2.1 Voltage Measurement by Collinear/Anticollinear Measurements

As discussed in the previous sections, the calibrated voltage Ucalib is rather close to the

conventionally measured voltages UISOL + Uanode. If the readout value UISOL, taken during

the beam-energy measurements, and the readout of the anode voltage Uanode is summed, and

compared with the calibrated voltage Ucalib, the plots of figure 5.8 and 5.9 are obtained. They

show Ucalib and UISOL + Uanode in the runs 04/2000 and 11/2000 as a function of time:

From these plots one can draw the conclusion that the ion source and a possible miscal-

ibration produce a constant offset voltage to the readout value UISOL. This offset voltage

corresponds to the position dependent potential Uplasma experienced by the ions inside the

plasma ion source. To determine the ion beam energy in the spectroscopic measurements, the

voltage readout of the ISOLDE acceleration voltage UISOL, which is recorded before every

spectroscopic measurement scan, is added to Uplasma, calibrated the average values of

Uplasma = Ucalib − UISOL . (5.11)

This offset voltage changes from run to run, and the differences between the anode voltage

Uanode, measured electrically, and the calibrated plasma voltage Uplasma, can become up to

several tens of volts depending on the individual ion source. This is shown in the overview

of calibrated voltages Uplasma is given in table 5.1.
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Fig. 5.9: Plot of the calibrated main accelera-
tion voltage in run 11/2000. Here
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5.2.2 Discussion of Systematic Errors Sources in the Beam Energy Measurement

The errors of the beam energy calibration have to be treated as systematic errors in the

evaluation of the spectroscopic data. The detailed understanding of the voltage calibration

errors and their sources is essential for the correct analysis of the experimental data. This

section gives an overview of these errors, their origin and their role in the analysis.

Several sources contribute to the systematic error of Ucalib. To get a closer insight into

the relevant error sources, equation (5.2) has to be investigated taking into account all the

different voltages used for acceleration (Eqn. (5.5)), and the effects of the laser detuning

(Eqns. (5.6), (5.7)). The following parameters have to be considered in the analysis, and

contribute to the total systematic error of the isotope shift:

ν
(1)
0 : Uncertainty of the collinear transition frequency. Causing a systematic error of

∆U sys
calib(ν

(1)
0 ) = 0.018 V.

ν
(2)
0 : Uncertainty of the anticollinear transition frequency. This causes a systematic error

of ∆U sys
calib(ν

(2)
0 ) = 0.042 V.

m20 : The mass of 20Ne has to be expressed in eV:m(20) = 19.992440176(2) u [Aud93], where

u is the atomic mass unit in eV 1 u = 931.494013(37) MeV [Moh98]1. The systematic

error contribution from the uncertainty of the atomic mass unit is ∆U sys
calib(u) = 0.078 V,

and with the mass error of 20Ne adds in total up to ∆U sys
calib(m20) = 0.096 V.

α : Angle between the laser and the atomic beam. This angle can be estimated from the

diameters of diaphragms at the entrance and exit of the collinear setup and the length

of the setup. Estimating the geometric error conservatively, a deviation δz of 2 mm

over a distance ∆x of 1 m is assumed. Hence, the angle is given by:

α = arctan[∆z/∆x] = 0.114◦ . (5.12)

1 As well available in the internet: http://physics.nist.gov/cuu/Constants/index.html.
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The corresponding error is of the order of ∆U sys
calib(α) = 0.285 V, which is the largest

systematic error contribution to Ucalib. This error estimate from geometrical consider-

ations holds for the absolute accuracy of any calibration value, while the variation of

values taken with the same beam alignment should be independent of ∆U sys
calib(α).

The total systematic error of the beam energy measurement is given by
√
∑

(∆Ucalib(xi))
2

and is 0.31 V.

5.2.3 Beam-Energy Measurement by Isotope Shift Measurements

In the early runs (06/1998, 09/1998, 03/1999, 05/1999), the collinear/anticollinear beam-

energy measurement method was not implemented yet. To determine the true beam energy

it is possible to utilize the resonance condition for two different isotopes in collinear geometry

with the known isotope shift

δνL =
ν

(1)
0

m1 c2
·
[

m1 c
2 + U (1) e+

√

U (1) e(2m1 c2 + U (1) e)

]

=
ν

(2)
0

m2 c2
·
[

m2 c
2 + U (2) e+

√

U (2) e(2m2 c2 + U (2) e)

]

,

where ν
(2)
0 = ν

(1)
0 + δνIS , (5.13)

which can be solved for Ucalib if the voltages U (1) and U (2) = Ucalib + U
(1,2)
post are given by

the positions of the resonance lines of the two isotopes. The required data are available as

optical measurements on the stable reference isotopes 20,22Ne, which are usually taken before

and after each measurement on an unstable isotope. The required isotope shift δν20,22 was

determined in the runs with the collinear/anticollinear method with high precision.

5.2.4 Results of the Beam-Energy Measurements

The results of the beam energy calibration are given in table 5.1. They are given in form

of plasma voltages Uplasma to be added to the ISOLDE voltage readout UISOL to get the

real acceleration voltage Ucalib. An assumption for this approach is that the any differences

between Uaccel and Ucalib can be attributed to the ion source and not to a miscalibration

of UISOL. The runs 10/99, 04/00, 07/00 and 11/00 are calibrated by collinear/anticollinear

measurements. For the early runs the beam energy measurement was performed indirectly by

utilizing the optical measurements and the isotope shift between the stable isotopes 20Ne and
22Ne. The isotope shift used for this was determined in the runs with collinear/anticollinear

beam-energy measurement. The table shows the measured plasma voltages for seven of

the eight runs on neon with its statistical and systematic errors. The systematic errors of

0.31 V are the same for all the runs with collinear/anticollinear beam-energy measurement

and arise from uncertainties in the input values of the wavelengths, masses and the maximum

angle between the laser beam and the atom-beam direction α. For the runs with a voltage

measurement by using the isotope shift δν20,22
IS the error of the isotope shift adds an additional

error of 0.12 V. The error of the divider ratio is not taken into account in the table. The

values labelled Uanode are the readout values of the anode voltage which can be acquired from

by ISOLDE control system.
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Note that the differences between Uanode and Uplasma can differ by more than 30 V (run

03/99). A cross-check of the reliability of this value was done by calculating the isotope

shifts δν20,22
IS of this run using Uanode and Uplasma, respectively. The utilization of Uanode

in the calculation of δνIS leads to values which are about 30 MHz off from the literature

value, implying a beam energy which is wrong by about 30 V. In contrast the use of Uplasma

leads to correct isotope shifts between 20Ne and 22Ne. Thus, it is assumed that the different

conditions inside the plasma ion source cause the different ion beam energies. This means

that the true beam energy can differ appreciably from the value obtained by standard voltage

measurements, which obviously necessitates the direct beam-energy measurement.

Table 5.1: Experimental values of the calibrated plasma voltage Uplasma in the neon runs. The
systematic error given in the table is the quadratic sum of the errors from different
sources (see Sec. 5.2.2).

run Uanode [V] Uplasma [V] Ua − Up [V] ∆U stat
plasma [V] ∆U syst

plasma [V]

09/98 115.36 117.05 -1.69 0.35 0.43

03/99 172.71 138.45 +34.26 0.35 0.43

05/99 150.61 151.50 -0.89 0.14 0.43

10/99 149.59 148.29 +1.30 0.06 0.31

04/00 112.59 114.46 -1.87 0.04 0.31

07/00 190.00 190.90 -0.90 0.11 0.31

11/00 153.53 134.54 +18.99 0.04 0.31

5.2.5 Measurement of the Voltage Divider Ratio

To calibrate the voltage-divider ratio for the measurement of the post-acceleration voltage,

the stable isotope 22Ne is utilized together with 20Ne in a collinear/anticollinear measure-

ment. The divider ratio can be determined from the line positions of the collinear and the

anticollinear line of 20Ne and 22Ne, which are given for the two isotopes by

U
(1),(2) 20
tot =

Ustat
︷ ︸︸ ︷

UISOL + U20
plasma + U20

prema ×Ddiv +U
(1),(2) 20
DAC × F 20

cal ×Ddiv (5.14)

U
(1),(2) 22
tot = UISOL + U22

plasma
︸ ︷︷ ︸

Ucalib

+U22
prema ×Ddiv + U

(1),(2) 22
DAC × F 22

cal ×Ddiv . (5.15)

By measuring Ustat from the measurement on 20Ne and Ucalib from the measurement on 22Ne,

the four equations (5.14) can be solved for Ddiv. The divider ratio can be calculated from

Ddiv =
U22

stat − U20
stat

U22
prema − U20

prema

(5.16)

The required data are available from collinear and anticollinear measurements. Additional

systematic errors for the isotope shifts of the two transitions have to be taken into account.

These isotope shifts were determined from the weighted means of the results from several

publications:

δν
(1) 20,22
IS : Collinear line – Weighted mean: 1728.79(16) MHz,

from [Bas97, Bel83, Gut94, Kon92, Wik78, Zha87]
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δν
(2) 20,22
IS : Anticollinear line – Weighted mean: 1715.3(1.8) MHz,

from [Bel83, Gut94, Kon92, Odi65]

The small error of δν
(1) 20,22
IS is mostly determined by the value of Zhao et al. [Zha87]

(0.16 MHZ), the other values have error in the order of a few MHz. Thus, the system-

atic error of Ddiv is determined by the uncertainty of the isotope shift of the anticollinear

line δν
(2) 20,22
IS .

1000.15

1000.1

1000.05

1000.0

999.95

999.9

999.85
0 10 20 30 40 50 60 70 80

10/99 04/00 11/00

Measurement #

D
iv
id
e
r
ra
ti
o

Fig. 5.10: Voltage divider ratios measured in three differ-
ent runs. The values scatter around a constant
ratio throughout the different measurements.

The divider ratio of the voltage divider, which is used to measure the dc post-acceleration

voltage, is assumed to be constant throughout the runs. This can be justified by the following

facts: the accuracy of the divider ratio is specified to be 1000 with an error of 10−4, valid in

a temperature range of +15◦ C − +35◦C [Jul]. The temperature inside the ISOLDE hall is

stabilized to 21 ± 1◦ C, as well are the humidity conditions.

The ratio was determined in several runs by the collinear/anticollinear method, the ex-

perimental values from the runs 10/99, 04/2000 and 11/2000 are plotted in figure 5.10. The

Table 5.2: Mean values of the divider ratios from four last runs. The earlier runs were not calibrated
with the collinear/anticollinear method.

run Ddiv ∆Ddiv

10/99 1000.0780 0.0137

04/00 999.9931 0.0069

07/00 1000.0139 0.0093

11/00 999.9910 0.0034

corresponding mean values together with their errors from the different runs are listed in table

5.2. The final divider ratio is found by calculating the weighted mean of the four tabulated

values which is 999.997(3). Additionally the systematic error of ∆Dsyst
div = 0.025 arising from

the input data has to be added, which are dominated by ∆δν
(2) 20,22
IS . It is found

Ddiv = 1000.00(3) , (5.17)



5 Measurement of Beam Energies 61

which verifies the specified value and decreases the error compared to the specification by a

factor of 3.
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Chapter 6

Experimental Results

The experimental results on the neon isotopes will be presented in this chapter. First the

hyperfine splitting parameters of the odd-A neon isotopes are discussed, then the isotope-shift

data on 17−26,28Ne are presented.

6.1 Hyperfine Structure and Magnetic Moments of the Odd-A

Isotopes

6.1.1 Hyperfine structure analysis

Typical experimental spectra of the hyperfine structures of the isotopes 17Ne, 19Ne, 21Ne,
23Ne, and 25Ne are displayed in Figs. 6.1. These were analyzed using the standard HFS-

level-shift formula (2.1). The spectra of the I = 1/2 isotopes with large splittings (17Ne,
19Ne, 25Ne) were measured by splitting up the measurement sequence into ”windows” which

covered the outer small lines and the central lines to minimize the required measurement

time without loosing information. Thus, in a first step of the analysis these measurement

windows were combined to one single spectrum. Examples of such spectra of 17Ne, 19Ne and
25Ne are shown in figure 6.1.

To obtain the A- and B-factors of the lower and upper atomic state, a χ2-minimization

was performed. The spectra were fitted by the use of one single function describing the

complete hyperfine spectrum. The line positions are calculated from a set of coupled equations

determined by the selection rules, the nuclear spin and the hyperfine structure parameters of

the lower (A3s, B3s) and upper (A3p, B3p) state. The asymmetric line shape is modelled, as

discussed in chapter 3, by a convolution of a Lorentzian and an exponential function. The free

parameters of the fit were the A- and B-factors of the lower and upper atomic state, the line

amplitudes, the common Lorentzian linewidth, the common decay factor of the exponential,

the center of gravity of the hyperfine structure, and the parameters of a linear offset to allow

for a background having a slope.

To achieve consistency between the optical signal of the stable isotopes and the ion signals

the optical line was fitted first by the use of the asymmetric line model. The resulting

fitting parameters determine the exponential factor which was used as fixed parameter in

the subsequent hyperfine structure fit. The fitting algorithm was provided by the MINUIT

fitting package [Jam75].
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Fig. 6.1: Typical spectra of the odd-A neon
isotopes. The radioactive isotopes
17,19,23,25Ne were detected using the
normalization method. Correspond-
ingly the y-axis shows the normalized
signal N(ions)/(N(ions)+N(atoms)).

The resulting A- and B-factors are compiled in table 6.1. The mean values of A3s, A3p,

B3s, and B3p were determined by substituting the results of individual measurements again

to a horizontal line fit yielding realistic errors. The errors given in table 6.1 were obtained by

normalizing the fitting errors with the reduced χ2 to account for the scattering of the data

points, typical χ2
red were of the order of 2.

The comparison with known experimental data from Grosof et al. [Gro58] shows good

agreement between these high precision measurements and the present results. Nevertheless

show the present values a deviation to smaller values. This raises the question if the errors

given in table 6.1 omit additional effects which had to be taken into account. However, such

effects had not been found at the present stage of discussion. Besides these, all other values

have been measured for the first time.
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Table 6.1: Experimental values of the hyperfine structure parameters of the odd-A neon isotopes.
(a) : Reference value from Grosof et al. [Gro58].

A I A3s A3p A3s/A3p B3s B3p B3s/B3p

[u] [MHz] [MHz] [MHz] [MHz]

17 1/2 +956.00 +665.06 1.4375
(0.66) (1.67) (0.0037)

19 1/2 -2286.17 -1587.23 1.4404
(0.67) (0.21) (0.0005)

21 3/2 -267.68(a) - - -111.55(a) - -
(0.03) (0.10)

-267.58 -185.66 1.4412 -111.82 -69.11 1.618
(0.07) (0.10) (0.0009) (0.11) (0.25) (0.0059)

23 5/2 -262.04 -181.82 1.4412 -152.32 -94.55 1.611
(0.78) (0.68) (0.0069) (3.89) (3.38) (0.058)

25 1/2 -1221.11 -847.55 1.4408
(0.51) (0.20) (0.0007)
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Fig. 6.2: Difference between the applied post-acceleration
voltage and a straight line fit in an extreme case.

Systematic uncertainties like

beam energy, etc. can be ne-

glected in this context. The

largest systematic error of the

hyperfine structure can be at-

tributed to the uncertainty of the

Kepco calibration factor Fcal and

nonlinearities in the amplification

curve, which causes a stretching

or compression of the x-axis of the

experimental spectrum. As dis-

cussed in chapter 5, the errors of

the amplification are of the or-

der of ∆Fcal = 10−3 which leads

to negligible changes in the HFS

parameters. Nonlinearities in the

amplification curve led to deviations which were smaller than 0.05 V despite a few exceptions.

An example plot of an strongly nonlinear amplification curve is shown in figure 6.2, where

the fit residuals are plotted against the applied DAC voltage.

These nonlinearities cause changes in the HFS parameters which are below the experi-

mental accuracy. As an example the changes in the HFS parameters of 21Ne was checked by

introducing artificial nonlinearities corresponding to figure 6.2 in the x-axis of one spectrum

of 21Ne. The corresponding error in the HFS parameters was of the order of 0.03 MHz.

6.1.2 Nuclear Moments

From the HFS parameters given in table 6.1, the nuclear magnetic dipole moment µ and the

nuclear quadrupole moment Qs can be determined as discussed in chapter 2. To calculate

these quantities, adopted reference values from the literature were used, for the magnetic
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Table 6.2: Experimental values of the nuclear moments. The errors given in parentheses were
calculated from the uncertainties due to the HFS parameters, and the errors of the
reference nuclear moments. The mean values µI and Qs are the weighted mean of the
two corresponding values belonging to the 3s and 3p state.

A 17 19 21 23 25
(reference)

I 1/2 1/2 3/2 5/2 1/2

µI(3s) [µN ] +0.78785(55) -1.88407(59) -0.66155(19) -1.0797(32) -1.0063(4)

µI(3p) [µN ] +0.78988(203) -1.8851(16) -1.0802(41) -1.0071(6)

µI [µN ] +0.78798(53) -1.88419(56) -1.0799(25) -1.0066(4)

µI [µN ] -1.88542(8) -0.661797(5) -1.08(1)
(other source) [Mac82] [LT57] [Dob68]

Qs(3s) [mb] 103.15 140.5
(0.14)[7.51] (3.6)[10.2]

Qs(3p) /[mb] 102.9 140.8
(0.53)[7.5] (5.1)[10.2]

Qs [mb] 103.0 140.6
(0.14)[7.5] (2.9)[10.2]

Qs [mb] 102.9(7.5)
(other source) [Duc72]

moment of La Tourrette et al. [LT57], and for the quadrupole moment of Ducas et al. [Duc72].

The results, given in table 6.2, were calculated according to equations (2.34) and (2.47).

The nuclear moments tabulated in table 6.2 were calculated independently for the 3s, and

the 3p state from the corresponding HFS factors. Subsequently the weighted mean and the

weighted errors were calculated from these two values. The errors of the HFS parameters

determined in this work and the values published by Grosof et al. were treated as statistical

errors in the calculation of the nuclear moments belonging to the 3s and 3p state.

The error of the magnetic and the quadrupole moment taken from La Tourrette et al.

and Ducas et al. were treated as systematic error sources. The corresponding error of µ is

of the order of 10−6 and could be neglected. The situation is different for the spectroscopic

quadrupole moments. Here the error is dominated by the systematic error given by the

uncertainty of Qs(
21Ne). The weighted mean of Qs was calculated by the use of the statistical

errors only. The systematic error can be calculated from

∆Qsys
s (ANe) = ∆Qs(

21Ne) × Qs(
ANe)

Qs(21Ne)
.

The comparison with published magnetic moments of 19,21,23Ne shows good agreement

with the measurements of the present work. The accuracy of the magnetic moment of 23Ne

was improved by a factor of 4. Only the values of the magnetic moment of 19Ne are not

in agreement within their error bars. Similarly to the discussion on the HFS of 21Ne the

raw-data were investigated for systematic effects causing the discrepancy, but no such effects

were found. Thus, it seems that the errors given in the present thesis may be underestimated.
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6.2 Systematic Error of Isotope Shifts

In section 5.2.2 the different errors connected with the acceleration voltage were examined.

Still missing is an investigation of the influence of these errors on the error of the isotope

shift.

Additional sources contribute to the total systematic error of the isotope shifts extracted

from measurements on the radioactive isotopes. Among these are the input data such as

transition energies and atomic masses.

6.2.1 Additional Error Sources in the Spectroscopic Measurements

Besides the error of Ucalib (statistical + systematic), which was discussed in chapter 5, ad-

ditional error sources have to be considered in the analysis of spectroscopic isotope-shift

measurements arising from the post-acceleration voltage.

Ddiv : Divider ratio of the high-voltage divider used to measure the post-acceleration volt-

age. The ratio was calibrated by collinear/anticollinear measurements on 22Ne (see

Sec. 5.2.5), and it was shown that the divider ratio error is Ddiv = 1000± 0.03. Taking

a maximum value of the post-acceleration voltage of 10 kV, one obtains a maximum

error of 0.3 V for the voltage at the charge-exchange cell. The error of the voltage

divider ratio Ddiv is treated as systematic error source which is invariable throughout

all the runs.

Fkepco : Amplification factor of the Kepco voltage amplifier. The amplification factor is

determined by regular calibration measurements. (see Sec. 3.4.2), and is typically about

50. The typical fitting error for the amplification factor is of the order of 10−3. The

calibration depends on the divider ratio Ddiv = 1000 with an error that is negligible

compared to the direct error in Fkepco.

Even the maximum post-acceleration voltage error from the scanning voltage UDAC ×
Fkepco of 0.01 V, including the error due to nonlinearities of the amplification factor

can be neglected.

Uprema : Voltage readout of the DC post-acceleration voltage taken before the start of a

measurement cycle on one isotope. With the precision given in section 3.4, the max-

imum error is ∆U sys
post(Uprema) = 60 mV for the maximum readout voltage of 10 V

(corresponding to Upost = 10 kV) which can be neglected.
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Averaging the Main ISOLDE Voltage
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Fig. 6.3: Plot of the ISOLDE readout voltage UISOL of run
04/2000. The plot shows the total data collected
throughout the run.

The readout of the ISOLDE main acceleration voltage fluctuates significantly with time as

shown in figure 6.3. Throughout a run the ISOLDE main acceleration voltage UISOL is

monitored and the readings were saved every two minutes. As can be seen in the upper plot,

UISOL shows deviations of about 10-15 V from a slowly varying average trend, 10% of the

data show these strongly deviating values. These dropouts can be explained by the impact

of the proton beam onto the target. Because the beam ionizes the surrounding air, the high

voltage is switched to ground for several milliseconds, to protect the ASTEC high voltage

supplies. If the readout coincides with this proton beam impact, the monitored voltage value

shows a strong deviation from the general trend. It was verified by checking the optical line

positions that these fluctuations appear only in the voltage readout, but do not influence the

actual measurements which are triggered by the proton pulses. Hence, these fluctuations can

be omitted.

The voltage readout data during one set of measurements with stable measurement con-

ditions are averaged over the sample region. Measurements performed under instable voltage

conditions (e.g. the steep decent of UISOL in the first third of the lower plot) were taken

out of the analysis. The average of UISOL is used for further calculations of the accelera-

tion voltage Ucalib. The statistical error due to the averaging procedure is part of the set of

systematic errors contribution in the isotope shift measurements.

6.2.2 Systematic Isotope Shift Errors Related to Beam Energy

Main Acceleration Voltage

The error of UISOL is determined by the variation of the voltage readout over a number

of consecutive measurements. Thus, it contributes together with Uplasma to the systematic
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error. They add up to a total error of the acceleration voltage Ucalib, which contributes to

the systematic error of the Doppler shifted frequency νD. According to A. Klein this error

has approximately the same mass dependence as the mass shift [Kle96]

∆δνIS ≈ KV S(∆Ucalib) ×
mA′ −mA

mA′mA
, (6.1)

where KV S is the proportionality constant due to the voltage error (”Voltage Shift”). Taking

advantage of the similar mass dependencies of both the mass effect and the systematic error

in δνIS due to the acceleration voltage, the voltage calibration error can be eliminated in the

evaluation of the field effect of the radioactive isotopes, as shown in [Kle95, Kle96].

Even though the error of the beam-energy measurement can be eliminated in the calcula-

tion of the field shifts, it affects the isotope shifts which are the directly measured quantities.

Also the comparison and combination of results from different runs is only possible on the

basis of the voltage calibration. In discussing the effect of a calibration error, it is instructive

to investigate the validity of the approximation (6.1).

The error resulting from the error of the acceleration voltage can be estimated by testing

its effect on the isotope shift δνIS given in Appendix (C.7). For testing purpose an artificial

”isotope shift” was calculated from (C.7), where Uaccel = 60 kV. The ”line position” of the

reference isotope was set to Upost = 0 V. The line position of the isotope under investigation

was set to 2.9125 kV × (mA′ −m20) to get approximately the proper mass dependence. The

voltage of Uprema was chosen to reproduce the experimental isotope shift δν20,21
IS . Similarly

the difference between the approximated mass dependence (6.1) of an error due to ∆Uaccel

and the exact behavior can be investigated. The results of this investigation are summarized

in the plots presented in figure 6.4, (A), (B), (C).

Figure 6.4 (A) shows the mass dependence of the error of the isotope shift ∆δνIS connected

to an error in the main acceleration voltage of ∆Uaccel = +1 V which is given by the difference

∆δνIS(∆Uaccel = +1 V) = δνIS(Uaccel) − δνIS(Uaccel + 1 V) , (6.2)

where δνIS(Uaccel) and δνIS(Uaccel + 1 V) were calculated according to equation (C.7).

The approximation in equation (6.1) was verified numerically by producing a data set

according to equation (6.2), and fitting the approximated mass dependence equation (6.1) to

these data which yielded the proportionality constant KV S(∆Uaccel). The difference between

the fit and the function is shown in plot 6.4 (B). It can be seen that within the scope of our

investigations the assumption of a voltage error with the same mass dependence as the mass

shift is valid within a few per mill of the voltage error ∆δνIS and well below the statistical

errors of all isotope shift measurements.

Secondly the linearity of the error caused by ∆Uaccel was investigated by calculating

∆δνIS(∆Uaccel) = δνIS(Uaccel) − δνIS(Uaccel + ∆Uaccel) ,

where ∆Uaccel was varied for a fixed isotope mass (21Ne). The result of this calculation

is shown in figure 6.4 (C), which shows that the error in δνIS increases linearly with the

error in Uaccel. Consequently, the proportionality constant KV S of the approximated mass

dependence scales as well linearly with ∆Uaccel.



70 6 Experimental Results

To investigate the magnitude of the error arising from ∆Uaccel, a mass dependent data set

of ∆δνIS was calculated. A fit to this error plot of the form

∆δνIS(∆Uaccel = ±1 V) = KV S(∆Uaccel = ±1 V) × mA −mA′

mAmA′
, (6.3)

yields the proportionality constant of the mass dependence KV S(∆Uaccel) for the typical

beam energy of e Uaccel = 60 keV

KV S(∆Uaccel = ±1 V) = ±203.6 MHz u . (6.4)

Measured Beam Energy Voltage

The beam energy measurement was presented in chapter 5. The error of the beam energy

was attributed to the unknown plasma potential Uplasma. The error of this plasma potential

is approximately 0.5 V, thus the mass dependent voltage error is given by KV S(∆Ucalib) =

101.8 MHz u.

This result has to be compared with the mass shift constant KMS which takes the value

of approximately KMS ≈ 360 GHz u and will be calculated below.

Post-Acceleration Voltage

The errors related to the post-acceleration behave similarly to those from the main accelera-

tion voltage and are dominated by the error of Ddiv. The error in Upost arising from ∆Ddiv

can be approximated by:

∆δνIS(∆Ddiv) ≈ KV S(∆Ddiv) ×
mA −mA′

mAmA′
. (6.5)

For the dependencies of the errors in the post-acceleration voltage Upost a similar analysis

was done as for Uaccel. The results are plotted in figure 6.4 (D)-(F). The mass dependence is

shown in plot 6.4 (D), where for test purposes an error in Ddiv of 0.1 was assumed. In plot

6.4 (E) the correctness of the approximated behavior according to Eqn (6.5) is shown. The

approximation is again valid in the per mill region.

After investigating the validity of equation (6.5), the order of magnitude of the isotope shift

errors in dependence of the post-acceleration errors are of interest. This error dependence was

tested similarly to the dependence on Uaccel by calculating the error arising from ∆Ddiv = 0.1

and fitting the mass dependence. This fit yields

∆KDS(∆Ddiv = ±0.1) = ±1203.3 MHz u . (6.6)

As can be seen from plot 6.4-(F) ∆δνIS scales linearly with the error in Ddiv and can easily

be extrapolated.

Calibrated Voltage Divider

In chapter 5 it was shown that the voltage divider used in the collinear setup can be calibrated

with the collinear/anticollinear method. The calibrated divider ratio was measured to be

Ddiv = 1000.00(3), and this is taken as systematic error source. The errors show the mass
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Fig. 6.4: Dependencies of the errors in δνIS caused by errors in the acceleration voltages.
(A) ∆Uaccel: Mass dependence of ∆δνIS for an error of ∆Uaccel = +1 V.
(B) ∆Uaccel: Difference between ∆δνIS and a fit of a mass dependent function of the
type: ∆δIS) = K × m

A′−mA

mAm
A′

.

(C) ∆Uaccel: Dependence of ∆δνIS on ∆Uaccel, reference isotope: 20Ne, investigated
isotope: 21Ne.
(D) ∆Ddiv: Mass dependence of ∆δνIS for an error of ∆Ddiv = +0.1.
(E) ∆Ddiv: Difference between ∆δνIS and a fit of a mass dependent function of the type:
∆δIS) = K × m

A′−mA

mAm
A′

.

(F) ∆Ddiv: Dependence of ∆δνIS on ∆Ddiv, reference isotope: 20Ne, investigated
isotope: 21Ne.
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dependence (6.5). For the proportionality constant of the mass dependent frequency shift

due to the divider (”Divider Shift”) within the working range of the collinear spectroscopy

(Uaccel = 60 kV, Fkepco = 50) it is found

∆KDS(∆Ddiv = 0.03) = ±361.00 MHz u , (6.7)

which is the leading error contribution due to the post-acceleration.

6.2.3 Other Error Sources

Besides the acceleration voltage, several other error sources contribute to the systematic

error of δνIS . These quantities are the definitions of the atomic mass unit u in eV, the

atomic masses of the isotopes, etc. The errors arising from these parameters are listed in

table 6.3 for the isotopes involved in the experiments. As can be seen from the table, most

of the errors are negligible, and only the atomic masses of the most neutron-deficient and

neutron-rich isotopes give an appreciable contribution to the total error of the isotope shift.

Table 6.3: Contributions from different error sources to the systematic error of the isotope shift
∆δνIS.
(1): 22Ne as reference.

A

17 18 19 21 22 23 24 25 26 28(1)

error [kHz] [kHz] [kHz] [kHz] [kHz] [kHz] [kHz] [kHz] [kHz] [kHz]

∆u 9.3 6.1 3 2.2 5.02 6.8 9.3 12 12.7 10.6

∆m20 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 5.9

∆mA′ 2065 563 21 1.3 6.4 6.8 267 1005 1205 2368

∆ν20 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.03 0.03
∑

∆i 2075 570 24.1 3.6 11.5 13.8 277 1017 1218 2385

6.3 Corrections due to Optical and Non-Optical Line Positions

In the spectroscopic measurements resonances of at least two isotopes are required to de-

termine the isotope shift. The common reference isotope of all measurements was 20Ne, the

stable isotope with the highest abundance of 90.48%. Besides this reference isotope all mea-

surements on radioactive isotopes included the resonance of the second even stable isotope,
22Ne. The resonances of both stable isotopes were detected by observing the fluorescence

light emitted by the atoms in the optical detection region. All the other resonances were

detected by utilizing the collisional reionization method.

Due to the different detection methods there are several effects that might influence the line

shape and the line position dependent on the detection. In the optical detection saturation

effects in the line shape and the corresponding homogeneous line broadening are avoided by

keeping the laser power well below 1 mW. This laser power is sufficiently low to avoid optical

pumping into dark states, before the atoms reach the detection zone. At the same time,

the rate of detected fluorescence photons with stable beam intensities of 10–50 nA does not

exceed the saturation threshold of the photomultiplier.



6 Experimental Results 73

0 20 40 60 80 100 120

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

U
(f

lu
o
re

s.
)-

U
(i

o
n
ic

) 
[V

]
measurement #

03 '99

05 '99

10 '99

04 '00
07 '00

11 '00

20Ne
22Ne

Fig. 6.5: Difference between the peak positions from fluores-
cence and non-optical detection. Filled circles rep-
resent data from 20Ne, open circles of 22Ne. The
data sets were taken in each of the runs 03/99-
11/00.

This is contrasted by the non-

optical detection method which is

used for radioactive isotopes. It

relies on efficient optical pump-

ing with laser beam powers of

typically 10 mW, that cause

power broadening. On the other

hand the broadening effect re-

lated to the beam divergence is re-

duced, because the non-optically

detected atoms have to pass a long

path which is well defined by nar-

row diaphragms. Thus, atoms

passing the laser beam at rela-

tively large angles do not reach

the detection region.

Independently of the detection

method the line shape is asym-

metric due to the charge-exchange process as described in section 4.3. Because this asymmetry

only depends on the conditions for charge exchange, it is assumed to be the same for both

detection methods.

All these effects accumulate and change the line shape in a way which can hardly be mod-

elled by a mathematical description. In the model used for the line description (convolution

of a Lorentzian and an exponential function, see section 4.3), the fitting parameters of the

linewidth, the exponential factor and the line position are highly correlated. So it is not

surprising that there is a small systematic effect which changes the line positions of the non-

optically detected lines slightly against the optically detected ones. To determine this effect,

numerous experiments in several measuring periods were performed, where the optical and

the non-optical line shapes of the stable isotopes were compared under various conditions.

As can be seen in figure 6.5, the difference in the peak positions scatter considerably,

but they can be approximated by a as systematic deviation of the optical with respect to

the non-optical line positions to negative acceleration voltages. The question how much this

effect depends on the conditions in the particular run cannot be answered due to the large

scattering of the data. On the average a systematic shift can be found towards a negative

shift of the fluorescence signals compared with the ionic signals. Thus, the shift was assumed

to be the same for all the runs, and independent of the reference isotope. The mean value

and the statistical error of the data shown in figure 6.5 is given by:

∆Ucorr = UFluores − Uionic

= −0.145(0.012) V .

This systematic shift has to be taken into account in the analysis of the isotope shifts. All

signals recorded with optical detection and low laser power have to be corrected relative to

the line positions of the unstable isotope by the voltage given in equation (6.8). The resulting
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frequency shift ∆νcorr
IS is about -1.5 MHz.

6.4 Isotope Shifts Along the Neon Isotope Chain

The data collected in Appendix A tables A.1, A.2 and A.3 show an overview of line positions

and isotope shifts of the isotopes that were obtained in several runs . The run 06/98 does

not appear in the table because it was used for test purposes, run 03/99 was only on the

stable isotopes to test systematic effects such as the line shift between lines detected optically

and by particle detection. The values printed in bold in the Tables A.1, A.2 and A.3 are

final results for the isotope shifts of the investigated neon isotopes. The errors quoted in

parentheses are purely statistical and were calculated as errors of the weighted mean of the

individual measurements plus the statistical error of the difference between the peak positions

of the optical and non-optical signals (see appendix A).

Table 6.4: Isotope shifts of the neon isotopes including statistical and systematic errors.

Mass δν20,A
IS ∆stat(δν20,A

IS ) ∆syst
1 (δν20,A

IS ) ∆syst
2 (δν20,A

IS )
[u] [MHz] [MHz] [MHz] [MHz]

17 -3183.847 1.169 2.075 3.307

18 -1995.484 0.616 0.570 2.087

19 -947.424 0.741 0.024 0.986

20 – reference –

21 874.940 0.556 0.004 0.902

22 1663.595 0.170 0.012 1.720

23 2393.810 1.379 0.014 2.470

24 3053.643 0.752 0.277 3.155

25 3654.737 0.659 1.017 3.788

26 4215.791 0.706 1.218 4.372

28 5209.596 1.396 2.385 5.416

Of the various systematic error sources, only the calibrated acceleration voltages and the

differences in the line positions for optical and non-optical detection appear in the tables

of appendix A. These were measured independently for every run and can be treated as

statistical in the averaging over the results of the individual runs. Note that the constant

voltage difference in line positions of optical and non-optical detection cause varying frequency

errors of δνIS depending on the total beam energy of the line positions. The errors are well

understood as discussed in the previous sections. This can be confirmed by looking at the

consistency of the data from different runs. Note that the runs took place with time intervals

of several months and under changing conditions. The individual results are consistent within

the error bars.

For a better overview the data are collected in a more compressed form in table 6.4. In

addition to the statistical errors ∆stat(δν20,A
IS ), the systematic errors are separated into two

parts. The contribution (∆syst
1 (δν20,A

IS )) was discussed in the previous section and arises from

the uncertainties in the natural constants and masses of the isotopes. The influence of the

uncertainty of the transition wave number used for 20Ne is of the order of 3 × 10−4 and was

neglected. The contribution to the systematic error ∆syst
2 (δν20,A

IS ) is due to the beam-energy
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measurement, and includes the systematic error of 0.31 V of Ucalib plus the error contribution

of Ddiv. This second systematic error contribution can be treated as an error of the specific

mass shift constant as is shown in the following sections.

The isotope shift between 20Ne and 22Ne for the investigated transition was measured

in several experiments before. The data of the corresponding publications are collected in

table 6.5.

Table 6.5: Isotope shift in the [2p5 (2P 0
3/2) 3s]2 → [2p5 (2P 0

3/2) 3p]2 transition, published by several
authors.

[Odi65] [Bel83] [Kon92] [Gut94] [Bas97] weighted mean

δν20,22
IS [MHz] 1660.9(3.0) 1669(4) 1660(3) 1663.7(5.0) 1653(14) 1662.3(1.7)

The comparison between these previously published data shows good agreement with the

value for the isotope shift in the transition [2p5 (2P 0
3/2) 3s]2 → [2p5 (2P 0

3/2) 3p]2 found in this

thesis. This holds for the results given in table 6.5 as well as for the weighted mean value

given in the last column.

6.4.1 Determination of the Mass Shift

As mentioned at the end Chapter 2, the mass shift can be separated from the field shift with

the help of known charge radii from X-ray spectroscopy on muonic atoms. Starting with the

isotope shift equation

δν20,A
IS = KMS

mA −m20

mA m20
+ Fel δ〈r2〉20,A

muon , (6.8)

and dividing by the mass-dependent quotients yields

δν20,A
IS

mA ·m20

mA −m20
︸ ︷︷ ︸

y

= KMS
︸ ︷︷ ︸

B

+ Fel
︸︷︷︸

m

δ〈r2〉20,A
muon

mA ·m20

mA −m20
︸ ︷︷ ︸

x

. (6.9)

This can be regarded as an equation for a straight line, where the left-hand term is the y-

coordinate, KMS is the intersection with the y-axis and the electronic factor Fel is the slope

of the straight line. The factor δ〈r2〉20,A
muon (mA m20)/(mA −m20) is the x-coordinate.

As the mean square charge radii are known for the stable isotopes 20Ne, 21Ne and 22Ne,

this ”King plot” can be applied for the two data points δ〈r2〉20,21 and δ〈r2〉20,21. The mass

shift constant KMS is determined by a χ2-minimization of a straight line with a slope fixed

to the electronic factor calculated in section 2.2.3, namely Fel = −40(4) MHz/fm2, with a

variability within the error of Fel.

Errors of Charge Radii Obtained from Muonic Atoms

Absolute nuclear charge radii can be determined from X-ray spectra of muonic atoms. A

large compilation of radii calculated from such spectra is given in Fricke et al. [Fri95]. In
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general the radial moments of a nucleus are given by

〈rn〉 =
1

Ze

∫

ρN (r) rn dr , (6.10)

thus 〈r2〉 =
1

Ze

∫

ρN (r) r2 dr . (6.11)

In contrast to electronic transitions, muonic transition energies depend strongly on the

charge distribution inside the nucleus. Due to the high mass of the muon (mµ ≈ 200×me), the

muon is much more tightly bound to the nucleus than an electron. This leads to appreciable

variations of the wave function and of the probability density over the volume of the nucleus.

The energy shift in the levels i and f participating in the transition caused by the density

variation is given in first order perturbation theory by

δEif = 4π

∫ ∞

0
δρN (r)

[

V i
µ(r) − V f

µ (r)
]

r2 dr , (6.12)

where δρN (r) is the deviation from the spherical charge distribution. In the region where

δρN (r) r2 is large, V i
µ(r) − V f

µ (r) can be approximated by the analytic expression B rk e−α r,

as suggested by Barrett [Bar70]. From perturbation theory follows that the Barrett moment

〈

rke−α r
〉

=
4π

2e

∫ ∞

0
ρN (r) rk e−α r r2 dr (6.13)

can be deduced model-independently from the experimental transition energy Eif . With the

Barrett moment one can define the Barrett equivalent radius Rkα via

3 [Rkα]−3
∫ ∞

0
rk e−α r r2 dr =

〈

rke−α r
〉

. (6.14)

The Barrett radius Rkα is thus the radius of a sphere with constant charge density which

yields the same moment
〈
rke−α r

〉
as the actual charge distribution.

The measured transition energies are analyzed by numerically determining the eigenvalues

of the Dirac equation with an analytical function describing the nuclear charge distribution.

Normally, like in Fricke et al. [Fri95], this distribution is parameterized for spherical nuclei

by a two-parameter Fermi distribution of the form [Eng74]:

ρ(r) =
ρ0

1 + exp

[

4 ln(3) r−c
a

] , (6.15)

where t = 4 a ln(3)

Here t is the parameter of the surface thickness, and c is the half-density radius. The rms radii

given in table 6.6 are based on a surface thickness parameter of t = 2.3.

Fricke et al. [Fri95] give the charge radii of the stable neon isotopes measured by X-ray

spectroscopy of muonic atoms ([Fri95], Tab. IIIA):
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Table 6.6: Nuclear rms charge radii and differences in mean square charge radii of the stable neon
isotopes from the analysis of X-ray spectroscopy of muonic atoms [Fri95]. For errors
see text.

A c 〈r2ch〉
1/2
model α k Rµ

kα

[fm] [fm]

20 2.9589(24) 3.006(2)[3] 0.0329 2.0445 3.8656(26)[33]

21 2.8941(20) 2.967(2)[3] 0.0330 2.0441 3.8162(21)[31]

22 2.8706(11) 2.954(2)[3] 0.0330 2.0439 3.7986(21)[31]

Besides the values of the nuclear charge radii 〈r2
ch〉

1/2
model, table 6.6 contains data needed to

estimate the errors of 〈r2
ch〉

1/2
model.

The statistical errors of the δ〈r2〉 values used in the King-Plot were calculated from the

relative statistical errors of the Barrett radii Rµ
kα in table 6.6, which are given in parentheses.

According to Fricke et al. [Fri95], the systematic errors of the mean square charge radii can

be calculated by varying the skin thickness parameter t by about 10%.

Errors Due to the beam-energy measurement

The mass shift dependence of the voltage error can be determined from the isotope shift

errors ∆sys
2 (δν20,A

IS ) in table 6.4. Plotting the error data with respect to the isotope mass and

fitting the mass dependence leads to a voltage error in the mass shift constant:

KV S(∆U) = 378 MHz u . (6.16)

As was shown by Klein, the systematic errors of the isotope shift arising from the beam-

energy measurement are eliminated in the evaluation of the field shift [Kle96]. This is because

these errors show approximately the same mass dependence as the mass shift. The isotope

shift equation, including the errors due to the beam energy can be written

δν20,A
IS ± ∆δνIS(Ucalib) ± ∆δνIS(Upost) = KMS × mA −m20

mA ·m20
+ Fel × δ〈r2〉20,A , (6.17)

Where δν20,A
IS is the experimentally determined isotope shift, ∆δνIS(∆Ucalib) is the systematic

error related to the main acceleration voltage and ∆δνIS(∆Upost) is the systematic error due

to the uncertainty of the post-acceleration voltage. These two errors can be combined to

one voltage related error ∆δνIS(∆U) := ∆δνIS(∆Ucalib) + ∆δνIS(∆Upost). Provided that

the error related to voltage uncertainties has the same mass dependence as the mass shift,

equation (6.17) can be rewritten in the form:

δν20,A
IS ±KV S(∆U) × mA −m20

mA ·m20
= KMS × mA −m20

mA ·m20
+ Fel × δ〈r2〉20,A , (6.18)

from where follows the new proportionality constant of an effective mass shift which includes

the systematic error from the beam energy:

CMS = KMS ±KV S(∆U) =

[

δν20,A
IS − Fel × δ〈r2〉

]
mA ·m20

mA −m20
. (6.19)
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This effectiv constant CMS is obtained from the King plot of the isotope shift data, hence the

systematic errors ∆U disappear in the evaluation of δνFS and δ〈r2〉. The mass shift constant

KMS becomes CMS with the additional error of ±KV S(∆U).

With these assumptions the modified mass shift constant can be determined from the King

plot to be

CMS = 363.072(167)[308] GHz u . (6.20)

For the evaluation of field shifts this constant can be used independently of the error from

the beam-energy measurement. The statistical error in parentheses is determined by the fit

error in the King plot, the error in square brackets is the systematic error determined by the

assumption of the 10% accuracy of Fel and the isotope shifts of the stable isotopes. Taken

as a result for the real mass shift constant, the constant KMS becomes

KMS = 363.072(167)[308][98] MHz u (6.21)

with the additional error from the voltage and divider-ratio calibration.

6.4.2 Experimental Results of the Differences in Mean Square Charge Radii

After the determination of the mass shift parameter CMS the experimental field shift δνFS

and the differences in mean square nuclear charge radii δ〈r2〉 can be calculated. Subtracting

the mass shift from the experimental data of the isotope shift tabulated in table 6.4 yields

the values for the field shift in the neon isotope chain collected in table 6.7.

Table 6.7: Field shift and differences in mean square charge radii.
δνFS ; ∆stat: statistical error of δνFS = ∆stat(δνIS)
δνFS ; ∆sys1: systematic error of δνFS = ∆stat

1 (δνIS)
δνFS ; ∆sys2: systematic error of δνFS resulting from CMS

δ〈r2〉 ; ∆stat: statistical error of δ〈r2〉
δ〈r2〉 ; ∆sys1: systematic error arising from ∆sys1(δνFS)/Fel

δ〈r2〉 ; ∆sys2: systematic error arising from ∆sys2(δνFS)/Fel

Mass δν20,A
FS [MHz] δ〈r2〉20,A′

[fm2]

[u] δνFS ∆stat ∆sys1 ∆sys2 δ〈r2〉 ∆stat ∆sys1 ∆sys2

17 –9.35 (1.17) [2.08] [4.15] 0.234 (29) [52] [104]

18 +8.34 (0.62) [0.57] [2.62] -0.208 (15) [14] [66]

19 –0.73 (0.74) [0.02] [1.24] 0.018 (19) [1] [31]

20 – reference –

21 +8.69 (0.55) [0.004] [1.13] -0.217 (14) [0] [28]

22 +12.87 (0.17) [0.012] [2.16] -0.322 (4) [0] [54]

23 +22.88 (1.38) [0.014] [3.10] -0.573 (34) [0] [78]

24 +25.20 (0.75) [0.28] [3.96] -0.631 (19) [7] [99]

25 +18.44 (0.66) [1.02] [4.76] -0.462 (16) [25] [119]

26 +19.39 (0.71) [1.22] [5.49] -0.485 (18) [30] [137]

28 +10.38 (1.40) [2.39] [6.80] -0.260 (35) [60] [170]

The statistical errors of the field shift (in parentheses) are the same as the statistical

errors of the isotope shift ∆stat(δν20,A
IS ) (see table 6.4). The systematic error of the field shift

includes the effect of ∆CMS the errors of δν21,A′

IS , δν22,A′

IS , and Fel determining the King plot.
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The errors of δ〈r2〉 are calculated by dividing the field shift errors by the electronic factor.

The 10% error of Fel contributes to the error of CMS and is included in the error ∆sys
2 of

δνFS .

The data collected in table 6.7 is plotted in figure 6.6. As can be seen, the differences in

the mean square charge radii are clearly resolved. The systematic errors cause a shift in the

general slope of the plot, the relative effects between the isotopes persist with changing slope.

The interpretation of the results from the nuclear physics point of view will be discussed in

the following chapters.
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Fig. 6.6: Plot of the field shift δνFS in the upper plot and the differences in mean square charge
radii δ〈r2〉 in the lower plot. The open circles denote the experimental data for δνFS and
δ〈r2〉 with respect to 20Ne with their statistical error ∆stat and systematic error ∆sys

1 . The
two lines show the value range of the data given by the error ∆sys

2 related to ∆CMS. Note
that this systematic error changes the general slope of the curve but does not affect the
relative effects.
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Chapter 7

Nuclear Moments of Odd-A Neon
Isotopes

In the scope of this work five odd-A neon isotopes were investigated. The experimental values

of the nuclear moments were presented in section 6.1.2. To be able to discuss the implications

of the moments on the structure of nuclei in the p- and sd-shell region, a brief outline of the

theoretical background shall be given.

7.1 Theoretical Description of Nuclear Moments

The theoretical description of nuclear multipole moments is summarized in the book of Ring

and Schuck ([Rin80], Appendix B, p.580ff). An overview of the shell-model theory of the

nuclear dipole and quadrupole moments can be found in the book of Heyde ([Hey94], p.168ff).

7.1.1 Electromagnetic Operators and Moments

The starting point of the investigation of nuclear electromagnetic moments is the interac-

tion of the nucleus with an external electromagnetic field. The Hamiltonian of the system

consisting of a nucleus and a field is given by a sum of three contributions

H = Hnucl + Hfield + Hint . (7.1)

The term Hnucl represents the Hamiltonian of the bare nucleus without any interaction, the

corresponding eigenfunctions Ψi(1, ...A) are assumed to be known. Following the discussion

in Jackson ([Jac83], p.277), the field Hamiltonian (= field energy) is given by

Hfield =
1

8π

∫

V ol
(E2(r, t) + B2(r, t)) d3r . (7.2)

The interaction of the nucleus with the external electromagnetic field Aµ(Φ,A) is addressed

by the Hamiltonian

Hint = −1
c

∫

jµA
µ d3r

=

∫ (

ρ(r, t)Φ(r, t) − 1

c
j(r, t) · A(r, t)

)

d3r , (7.3)
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where ρ(r, t) stands for the nuclear charge density, and j(r, t) is the current density inside

the nucleus which is connected to the nuclear magnetic moment.

The interaction of the nucleus with the external fields causes an energy shift which can be

calculated in first-order perturbation theory by

∆Ei =
〈
Ψi

∣
∣Hint

∣
∣Ψi

〉
. (7.4)

By applying the Maxwell theory, the interaction Hamiltonian becomes

Hint =
∑

λµ

aλµQ̂λµ + bλµM̂λµ , (7.5)

where Q̂ and M̂ are the electromagnetic multipole operators,

electric: Q̂λµ =

∫

ρ(r)rλYλµ(θ, φ) d3r

= e
A∑

i=1

(1

2
− τ (i)

z

)

rλ
i Yλµ(θi, φi) (7.6)

magnetic: M̂λµ =

∫

µ(r) · ∇
(

rλYλµ(θ, φ)
)

d3r

= µN

A∑

i=1

{

g(i)
s si +

2

λ+ 1
· g(i)

`

}

·
(

∇rλYλµ(θ, φ)
)

. (7.7)

Here Yλµ are spherical harmonics, and θ and φ the spherical coordinates. The expectation

values for the electric and magnetic multipole moments are given by

Oλµ =
〈
Ψ
∣
∣Ôλµ

∣
∣Ψ
〉
, (7.8)

where Oλµ represents Qλµ or Mλµ, respectively.

The electromagnetic interaction conserves parity, so it is possible to choose
∣
∣Ψ
〉

as eigen-

state of the parity operator. The operators Q̂λµ and M̂λµ have the parity (−1)λ and (−1)λ+1,

respectively, depending on the order of λ. Accordingly, the electromagnetic multipole expec-

tation values vanish:

Qλµ = 0 for λ = 1, 3, 5, ... , (7.9)

Mλµ = 0 for λ = 0, 2, 4, ... . (7.10)

Since the electromagnetic operators are spherical tensors, the Wigner-Eckart theorem (see

App. E.1) can be applied for finding the eigenstates of angular momentum

Qλµ =
〈
J, Jz

∣
∣Q̂λµ

∣
∣J, Jz

〉
= (−1)J−Jz

(
J λ J

−Jz µ Jz

)
〈
J
∣
∣
∣
∣Q̂λµ

∣
∣
∣
∣J
〉

(7.11)

Mλµ =
〈
J, Jz

∣
∣M̂λµ

∣
∣J, Jz

〉
= (−1)J−Jz

(
J λ J

−Jz µ Jz

)
〈
J
∣
∣
∣
∣M̂λµ

∣
∣
∣
∣J
〉
. (7.12)

Furthermore it is found that

Qλµ

Mλµ

}

6= 0 only if µ = 0 and 0 ≤ λ ≤ 2J . (7.13)
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7.1.2 Magnetic Dipole Moment

The magnetic dipole moment is defined as the expectation value of the magnetic dipole

operator (λ = 1) in the state with maximum Jz projection, i.e. Jz = J . With the restrictions

mentioned in equation (7.13) the only non-trivial matrix element is given by ([Hey94], p.174)

µ :=

√

4π

3

〈
J, Jz = J

∣
∣M̂10

∣
∣J, Jz = J

〉
(7.14)

= µN

〈
J, Jz = J

∣
∣
∑

i

g
(i)
`

ˆ̀
z,i +

∑

i

g(i)
s ŝz,i|J, Jz = J〉

= µN

〈
J, Jz = J

∣
∣
∑

i

{

g
(i)
` ĵz,i +

(

g(i)
s − g

(i)
`

)

ŝz,i

} ∣
∣J, Jz = J

〉
(7.15)

The variables g` and gs are the gyromagnetic ratios of the orbital and the spin contribution

to the nuclear magnetic moment. By applying the Wigner-Eckart theorem the magnetic

moment can be expressed as

µ = µN
J

√

J(J + 1)(2J + 1)

〈
J
∣
∣
∣
∣
∑

i

{

g
(i)
` ĵi +

(

g(i)
s − g

(i)
`

)

ŝi

} ∣
∣
∣
∣J
〉
. (7.16)

Single-Particle Moment: Schmidt Values

A single-particle magnetic moment is caused by one unpaired nucleon moving outside an

inert core of the remaining A− 1 nucleons whose angular momenta couple to zero. Thus, the

nuclear spin is given the angular momentum of the single particle. As is shown in the book

of Heyde ([Hey94], p.174), the magnetic moment for a single particle outside a closed shell

can be determined with the help of the reduced matrix elements

〈
j
∣
∣
∣
∣j
∣
∣
∣
∣j
〉

= (j(j + 1)(2j + 1))
1
2 , (7.17)

〈
j
∣
∣
∣
∣σ
∣
∣
∣
∣j
〉

=





1
2 ` j
1
2 ` j
1 0 1




〈

1
2

∣
∣
∣
∣σ
∣
∣
∣
∣1
2

〉
(2`+ 1)1/2 . (7.18)

The corresponding single-particle magnetic moment (”Schmidt value”) follows from these

formulae and can be calculated easily by utilizing the well known formula (see e.g. [Rin80],

p.61)

µsp = j

(

g` ±
gs − g`

2`+ 1

)

µN , j = `± 1
2 , (7.19)

where g` = 1 (0), and gs = 5.5858 (−3.8261) for a single proton (neutron) outside a closed

shell. Plotted as a function of j the Schmidt values form two lines corresponding to protons

or neutron having total angular momenta j = ` + 1/2 and j = ` − 1/2. These are shown in

the figures 7.1 and 7.2 together with some experimental values for nuclear spin I = j. Most

of the experimental nuclear magnetic moments fall between both lines. This can be ascribed

to an interaction of the valence nucleon with the core nucleons, which effectively reduces

the gs-factor by contributing higher-order interaction terms like core polarization, mesonic

exchange currents, etc. (see e.g. [Ari54]). The problem can be addressed by introducing

effective g-factors, or by including these higher order effects, like configuration mixing, in the

theoretical model.
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Fig. 7.1: Schmidt lines and magnetic moments for nuclei with an unpaired
proton. Taken from [May55].

Fig. 7.2: Schmidt lines and magnetic moments for nuclei with an unpaired
neutron. Taken from [May55].
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7.1.3 Electric Quadrupole Moment

The electric quadrupole moment is defined in a similar way as the magnetic dipole moment.

The second-order electric moment according to equations (7.9) and (7.13) is given by ([Rin80],

p.63)

Q :=

√

16π

5

〈
J, Jz = J

∣
∣Q̂20

∣
∣J, Jz = J

〉
(7.20)

=

√

16π

5

〈
J, Jz = J

∣
∣

A∑

i=1

ẽi r
2
i Y20(θi, φi)

∣
∣J, Jz = J

〉
. (7.21)

In this context ẽi is the effective charge of the corresponding nucleon, ẽp = e for free protons,

and ẽn = 0 for free neutrons. As will be seen later, this charge of the contributing nucleons is

usually found to deviate from the charges of the free particles, when the calculated quadrupole

moments are compared with experimental data. Modern shell model calculations use these

effective charges differing from the values of the free particle. The spherical harmonic Y20 is

given by

Y20(θ, φ) =

√

5

16π
×
(
3 cos2 θ − 1

)
, (7.22)

so that the quadrupole operator takes the well known form

e Q̂20 =

∫

ρe(r)r
2
(
3 cos2 θ − 1

)
d3r . (7.23)

With the help of the Wigner-Eckart theorem the expectation value can be rewritten as

([Hey94], p.168)

Q =

√

16π

5

(
J 2 J

−J 0 J

)
〈
J
∣
∣
∣
∣

A∑

i=1

ẽi r
2
i Y20(θi, φi)

∣
∣
∣
∣J
〉

(7.24)

=

√

16π

5

(
J(2J − 1)

(2J + 1)(2J + 3)(J + 1)

)1/2

×
〈
J
∣
∣
∣
∣

A∑

i=1

ẽi r
2
i Y20(θi, φi)

∣
∣
∣
∣J
〉

(7.25)

The expressions for the quadrupole moment depend explicitly on the radial coordinate r.

Hence, the radial dependence of the wave functions in the nuclear potential has to be con-

sidered in the calculation of quadrupole moments.

Single-Particle Quadrupole Moment

In analogy to the magnetic moment, a single-particle quadrupole moment can be calculated.

For a single nucleon the reduced matrix element
〈
j
∣
∣
∣
∣Y20

∣
∣
∣
∣j
〉

is given by ([Hey94], p.168)

〈
j
∣
∣
∣
∣Y20

∣
∣
∣
∣j
〉

=

√

5

4π
(2j + 1)

3/4 − j(j + 1)
(
j(j + 1)(2j − 1)(2j + 1)(2j + 3)

)1/2
. (7.26)

With the help of this result and equation (7.25), the single-particle quadrupole moment takes

the very simple form

Qsp(j) = −2j − 1

2j + 1
ẽ
〈
r2
〉
, (7.27)



86 7 Nuclear Moments of Odd-A Neon Isotopes

If there are n nucleons in a configuration jn; I = j, and n is odd, the quadrupole moment

becomes

Qn = Qsp ×
(

1 − 2n− 2

2j + 1

)

. (7.28)

This implies that the quadrupole moments for a hole or a particle in the same state have the

same absolute value, but the opposite sign.

The quadrupole moment caused by a single particle moving outside a closed-shell config-

uration is obtained with the nucleon charge ẽ as given above, while for a single hole in a

closed proton (neutron) shell the effective charge becomes ẽh = −ẽp (ẽh = −ẽn). As can be

seen, the quadrupole moment is negative for a single proton outside a closed configuration,

which corresponds to a oblate deformation. A single hole in a proton shell causes a positive

quadrupole moment, corresponding to a prolate deformation. These situations are illustrated

in figure 7.3.

Z-axis Z-Axis

Hole in a
closed
shell

Particle above
a closed
shell

core + particlecore + hole

Fig. 7.3: Simple picture of single-particle/hole quadrupole deformation. Figure
according to [Hey94], p.169.

7.2 Nuclear Moments and Shell Model Calculations

As mentioned in the beginning of this chapter, shell model calculations are the state-of-the-

art theoretical approach for the calculation of nuclear moments. After a discussion of the

foundations of the theory of nuclear moments within the shell model, theoretical results will

be given and compared to the experimental data.

7.2.1 General Remarks

The theoretical predictions of nuclear magnetic dipole and electric quadrupole moments

presented in this work [Wil79, Bro01b] have been calculated in the framework of an ex-

tended nuclear shell model which was developed by Wildenthal and Brown in the 1980ties

[Wil84, Bro88b].

Modern shell model calculations incorporate many of the multinucleon configurations aris-

ing under the assumption that all protons and neutrons in the valence shell simultaneously

occupy several different, partially filled, single-particle configurations. They are thus exten-

sions of the ”classical” nuclear shell model proposed by Mayer and Jensen [May49], which
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assumes a single configuration for each nuclear level, corresponding to a single nucleon in one

single-particle orbit. The theoretical investigation of neon isotopes requires calculations in

an sd-shell model-space ranging from 8 < N, Z < 20. The magnetic moment of 17Ne will be

discussed separately, because it involves a proton pair in the sd shell and a neutron hole in

the p shell.

A basic assumption of the shell model calculations is that only nucleons above, or holes

below a closed-shell configuration contribute to effects in the calculated observables. The

nucleons in the closed-shell configuration form a ”core” which is considered as inert against

excitations to higher configurations. For the sd shell this closed core is formed by the doubly

magic 16O. The N,Z closed-shell configuration above the sd shell is assumed to be 40Ca

(e.g. [Bro01a], p. 520).

The assumption of closed cores can be questioned, as is discussed by Warburton et al.

[War92b]. It becomes evident that, if the cores are investigated in model spaces larger than

the closed-shell configuration, they are found to have significant non-closed-shell admixtures.

As an example, 16O has about 50% of admixtures from higher states if it is investigated in

the (0 + 2 + 4)~ω model space [War92b]. To account for the simplification of an inert core,

the operators and interactions used in the model space have to be renormalized by the use

of effective charges.

7.2.2 The sd-Shell Model Interaction

Early attempts of a model-independent approach for the nuclear interaction were undertaken

by Kuo and Brown [Kuo66, Kuo67], who developed interactions for 2-particle ”2p” (A = 18)

and 2-hole ”2h” (A = 38) configurations above and below the closed shells. These calculations

were based on the calculation of renormalized G-matrix elements, but were unapplicable for

more complicated configurations. The next step was done by Chung and Wildenthal [Wil79],

who developed a so called ”CWP” particle interaction for the lower sd shell (A = 18 − 24)

and a ”CWH” hole-interaction for the upper sd shell (A = 32 − 39). These two interactions

worked well in ”their” mass region, but the interpolation to the mid-shell region was not

successful.

The yet unpublished theoretical predictions of nuclear moments [Bro01b], presented in

this work, are based on the work of Brown and Wildenthal performed in the nineteen-

eighties [Bro88a, Bro88b, Wil84]. Here a model independent nuclear interaction was devel-

oped which is based on a purely phenomenological approach. This interaction, referred to as

”W-interaction” or ”USD-interaction”, removed the shortcomings of the earlier interactions.

The interaction is determined by calculating three single-particle matrix elements and 63

two-body matrix elements (TBME). These TBMEs in the jj-coupled representation are given
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by ([Bro88a], p. 197/8)

〈 ab; JT |V (1, 2)| cd; JT 〉 =
∑

L,S,L′,S′

[(1 + δab)(1 + δab)]
−1/2[(1 + δAB)(1 + δCD)]1/2

×





`a
1
2 ja

`b
1
2 jb

L S J ′









`c
1
2 jc

`d
1
2 jd

L′ S′ J ′




∑

p

(−1)J−J ′

{
L S J
S′ L′ p

}{
L S J ′

S′ L′ p

}−1

× 〈ABLSJ ′T |Vp|CDL′S′J ′T 〉 , (7.29)

where the a, b, c, d are the orbitals of the particles under investigation in the model space, J is

the total two-particle angular momentum and, if the isospin is conserved, the matrix elements

are characterized by their isospin T = 0 or T = 1. If isospin is not conserved, then there

are three sets of TBMEs for the combination pppp, nnnn, pnpn [Bro01a], where p =proton,

n =neutron. These TBMEs together with their linear combinations are treated as the free

parameters of a least-squares fit to experimental binding and excitation energies. The model

includes a mass dependence of the TBMEs of the form [Bro88a, Bro88b]

〈V 〉(A) =
〈V 〉(A = 18)

(A/18)0.3
, (7.30)

where the power 0.3 was imposed by a least-squares fit [Bro88b] of these two-body matrix

elements to experimental values. 19 of the total of 66 TBMEs are fixed to the A=18 G-matrix

elements calculated by Kuo et al. [Kuo67]. This was done to overcome problems to in the

determination of these elements to the desired precision. The remaining 47 matrix elements

were fitted to 447 energy levels in the mass region A = 18−39 with a rms deviation of 185 keV

[Wil84] with model-space dimensions below 1000 ([Bro88b], p.35). The detailed discussion of

the fitting procedure and values for the TBMEs can be found in the publication of Brown et

al. [Bro88a].

Shell Model Extensions

As mentioned by Brown [Bro98b], a big problem of the described method is the ”explosion”

of the model space if the calculations are extended to higher-mass regions. Successful shell-

model studies have meanwhile been carried out for the pf shell [Ric91, Miz01, Cau01], but

calculations in higher-dimensional model spaces are prohibited by the exponentially growing

computer demands. Hence, the long standing desire for procedures to link groups of two-body

matrix elements together via a fundamental or an ad hoc relationship, or to eliminate some

of them from the variation procedure, remains a primary goal.

To study the interaction more closely, it has to be separated into its components (central,

spin-orbit, tensor and antisymmetric spin-orbit terms). This can be done by transforming

the jj-coupled TBMEs into a LS-coupled representation. This transformation is unique, and

no additional assumptions about the interaction is necessary than its two-body nature. If the

potential determining the interaction is isospin-conserving, then the antisymmetric spin-orbit

(ALS) component must vanish ([Bro98b], p.12). Studies of the USD-interaction revealed only

a minor dependence on the ALS component. Setting this to zero increased the rms deviation

to the experimental energy values only from 185 keV to 215 keV.
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In [Bro88a] an additional effort to reduce the number of parameters in the two-body

interaction is described. To do so, a 14-parameter, density-dependent one-boson exchange

potential (OBEP) was introduced for each component. With this OBEP it was possible to

reproduce the 447 experimental binding energies which determined the USD-interaction with

a rms deviation of 260 keV. The potential model defined by the OBEP is called ”SDPOTA”,

and it was used to extend the calculations to the p shell [Ric91] and p−sd cross shell [War92a].

However, calculations for the magnetic moment of 17Ne based on these approaches have not

been published so far.

7.2.3 Magnetic Dipole Moments

The theoretical values to be compared with the experimental magnetic moments of
19,21,23,25Ne, presented in this work, are based on the CWP and CHP interactions of Wilden-

thal et al. [Wil79], and shell model calculations utilizing the USD-interaction described

above [Bro01b]. None of these calculations includes predictions for 17Ne, therefore an at-

tempt to interpret the magnetic moment of 17Ne will follow in a separate section.

The theoretical concept of calculating the magnetic moments is discussed in the publication

of Brown and Wildenthal [Bro87]. It is found that the calculation necessitates the use of

effective g-factors. These were determined on the basis of an analysis of experimental data

of a number of A = 17 − 39 sd shell nuclei. The standard approach used in the shell model

is to employ the magnetic M1 operator Ô(M1) to calculate the corresponding reduced M1

matrix elements, in the notation of [Bro87]

M(M1) = 〈f||Ô(M1)||i〉
=

(
1
2

)
(−1)Tf−Tz

×
[( Tf 0 Ti

−Tz 0 Tz

)

〈f|||Ô(ISM1)|||i〉 +

(
Tf 1 Ti

−Tz 0 Tz

)

〈f|||Ô(IVM1)|||i〉
]

.(7.31)

The corresponding magnetic moments in terms of the reduced matrix elements are given by

equation (7.14)

µ =

√

4π

3
〈J, Jz = J |Ô(M1)|J, Jz = J〉

=

√

4π

3

J
√

J(J + 1)(2J + 1)
〈J ||Ô(M1)||J〉 . (7.32)

The operators Ô(ISM1) and Ô(IVM1) in the reduced matrix elements are the isoscalar (IS)

and isovector (IV) components of the M1 operator:

Ô(M1) = 1
2

[
Ô(ISM1) + Ô(IVM1)

]
, (7.33)

where

Ô(ISM1) = µN

√

3

4π

∑

i

[
g`(ISM1)ˆ̀i + gs(ISM1)ŝi

]
I(IS) ,

Ô(IVM1) = µN

√

3

4π

∑

i

[
g`(IVM1)ˆ̀i + gs(IVM1)ŝi

]
I(IS) . (7.34)



90 7 Nuclear Moments of Odd-A Neon Isotopes

The parameters I(IS) and I(IV) are given by 1 and τ (i), respectively, where τ is the isospin

of the i-th nucleon. The summation index i runs over all A nucleons in the nucleus, and the

gs and g` are the spin and orbital g-factors of the free nucleons:

gs(ISM1) = 1
2 [gs(p) + gs(n)] = 0.880 ,

g`(ISM1) = 1
2 [g`(p) + g`(n)] = 0.500 ,

gs(IVM1) = 1
2 [gs(p) − gs(n)] = 4.706 ,

g`(IVM1) = 1
2 [g`(p) − g`(n)] = 0.500 . (7.35)

It turns out that the theoretical values obtained with this method of using free-nucleon

g-factors cannot reproduce the experimental magnetic moments very well. As mentioned by

Heyde [Hey94], the approach of using the free nucleon g-factors fails because of the limitations

of the model space where closed-shell nuclei are treated as an inert core. Core excitations

which are not included in the model, are accounted for by effective g-factors which deviate

from the free-nucleon values. The approach of Brown and Wildenthal tries to improve the

discrepancies between theory and experiment by adjusting phenomenologically the values of

effective g-factors. Optimum values for geff are found by performing a least-squares fit of

shell-model values to a collection of 49 experimental magnetic moments and 114 experimen-

tally determined M1 matrix elements [Bro87] as mentioned above. The authors introduce an

effective M1 operator Ôeff of the form

Ôeff (ISM1/IVM1) = (3/4π)1/2[gsŜ + g`L̂ + gs δ(M1)] , (7.36)

where the parameter δ is adjusted to the experimental values, and has a mass dependence of

δ(A) = δ(A = 28)(A/28)0.35 . (7.37)

Finally the effective g-factors are given by

geff
s (A) = gs + gsδs(M1 ;A = 28)(A/28)0.35 , (7.38)

geff
` (A) = g` + gsδ`(M1 ;A = 28)(A/28)0.35 , (7.39)

geff
p (A) = gsδp(M1 ;A = 28)(A/28)0.35 , (7.40)

where gp is the tensor part arising from the dipole-dipole interaction within the nucleus.

The different contributions to the g-factors are given in [Bro87] and listed in table 7.1.

With these effective g-factors the theoretical magnetic moments for the sd shell were calcu-

lated by Brown [Bro01b], and they are used in figure 7.4 (C). A comparison between the

experimental data and these and earlier theoretical values obtained with three different in-

teractions is shown in figure 7.4, where the differences between experiment and theory are

plotted against the isotope mass.
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Table 7.1: Effective nuclear moments in comparison with free-nucleon values. The values collected
here were taken from [Bro87].

type g(free) g(eff)(A=28)

gs isoscalar 0.880 0.76
isovector 4.71 4.00
proton 5.586 4.76
neutron -3.826 -3.25

g` isoscalar 0.5 0.519
isovector 0.5 0.608
proton 1.00 1.127
neutron 0.00 -0.089

gp isoscalar 0 0.03
isovector 0 0.38
proton 0 0.41
neutron 0 -0.35
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Fig. 7.4: Deviation of theoretical values for
µI from experimental values in the
sd shell. Experimental data from
[Rag89, Kle96], theoretical values:
(A) Wildenthal [Wil79], free nucleon
values;
(B) Wildenthal [Wil79], fitted inter-
action;
(C) Brown, USD-interaction
[Bro01b], private communication.
The straight full lines show the mean
value of the data set, and the dashed
lines the standard deviation.

In plot (A) of figure 7.4, the theoretical values are taken from [Wil79], where the magnetic

moments were calculated on basis of a shell-model approach using free nucleon g-factors.

The sd-shell wave functions were calculated on the basis of two mass independent empirical

Hamiltonians, one of which described the mass region 17 ≤ A ≤ 28, the other the mass region

29 ≤ A ≤ 39. The low-mass Hamiltonian was fitted to 200 experimental binding energies

relative to 16O, predominantly from the region 17 ≤ A ≤ 24. The high mass Hamiltonian was

obtained in a similar way by fitting to 140 binding energies in the mass range 32 ≤ A ≤ 39.
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Table 7.2: Comparison of magnetic moments in the lower sd shell - experiment and theory. 6th
column: single-particle magnetic moment (Schmidt value)

isotope Exp [Wil79], free [Wil79], fit µSP [Bro01b], USD
[µN ] [µN ] [µN ] [µN ] [µN ]

17O -1.89379(9) -1.91 -1.88 -1.91 -1.904
19O -1.53195(7) -1.5 -1.54 -1.91 -1.621
17F +4.7223(12) +4.79 +4.79 +4.79 +4.76
19F +2.628868(8) +2.9 +2.82 +4.79 +2.665
21F +3.93(5) – – +4.79 +3.762

19Ne -1.88419(56) -2.04 -1.96 -1.91 -1.88
21Ne -0.66158(18) -0.77 -0.66 -1.91 -0.741
23Ne -1.0799(25) -1.07 -1.11 -1.91 -1.177
25Ne -1.0066(4) – – -1.91 -0.873
21Na +2.8363(1) – – +4.79 +2.442
22Na +1.746(3) +1.78 1.82 – 1.74
23Na +2.2176556(6) +2.1 +2.05 +4.79 +2.137
24Na +1.6903(8) +1.59 +1.54 – +1.611
25Na +3.683(4) – – +4.79 +3.619
25Mg -0.85545(8) -0.85 -0.84 -1.91 -0.918

Plot (B) shows the comparison of experiment and theory from the same publication. There

effective g-factors were used which were determined on basis of the linear combinations of ten

single-particle matrix elements, which were fitted to 42 experimentally known magnetic mo-

ments. The sd-shell wave functions employed to calculate the theoretical magnetic moments

were the same as those used for the calculation with free g-factors.

To judge the quality of the theoretical descriptions the mean deviations were calculated

and plotted as horizontal lines inside the graphs. The mean values are given as solid lines,

the dashed lines show the standard deviation of the data. The corresponding systematic

differences between experimental and theoretical magnetic moments are as follows:

δµ = (0.065 ± 0.161) µN Wildenthal, free g-factor, Fig. 7.4 (A)

δµ = (0.003 ± 0.111) µN Wildenthal, fitted g-factor, Fig. 7.4 (B)

δµ = (0.028 ± 0.096) µN Brown, USD-interaction, Fig. 7.4 (C)

(7.41)

7.2.4 Discussion of the Magnetic Moments

The comparison between experimental and theoretical magnetic moments in the sd shell

which is presented in the previous section, shows the predictive power of recent shell-model

calculations. As can be seen, the calculation based on the semiempirical W/USD-interaction

yields the best results, showing the smallest deviation between theory and experiment. At

first glance, it is surprising that this ”best” theory reproduces the moments of 21Ne and 23Ne

less accurate than the calculation by [Wil79]. These deviations are still within the general
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Fig. 7.5: Plot of theoretical and experimental magnetic moments of isotones in
the sd shell. The open symbols represent theoretical values provided
by [Bro01b]. The filled symbols correspond to experimental data avail-
able from [Rag89] and the present study. The dashed horizontal line
shows the Schmidt value of magnetic moments caused by an unpaired
neutron in an `+ 1/2 state (-1.91 µN ).

trend and possibly influenced by the strong nuclear deformation which can be found in the

vicinity of 20Ne (for details see chapter 8). An argument to prefer the USD-theory is the fact

that this theory describes the whole sd shell by one interaction, which is not the case for the

calculations of Wildenthal, where the parameters had to be fitted for the low-mass and the

high-mass region of the shell separately.

The behavior of the magnetic moments can be explained qualitatively by taking a look at

their variation in isotonic chains. For the odd neon isotopes measured in the present work

experimental magnetic moments are known for a number of isotones. These data, plotted

as filled symbols, together with the theoretical values given by Brown [Bro01b] plotted as

open symbols, are presented in figure 7.5. The unknown signs of the experimental data were

adjusted according to the theoretical prediction which was always negative in the region

shown in the plot. Additionally the single-particle magnetic moment of ` + 1/2 neutron

configurations is plotted as a dashed horizontal line for orientation.

As can be seen, the trends of the experimental data are very well reproduced by the theory.

The course of the magnetic moments along one isotone chain can be attributed mostly to

the filling of protons into the sd shell, and thus softening the single-particle character of

the configuration. The effect becomes most prominent for proton mid-shell nuclei, where

the magnetic moments show the smallest absolute values and the largest deviations from the

single-particle moment. Beyond the mid shell the single-particle character becomes dominant

again, and the magnetic moments approach the single-particle value.
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The magnetic moment of 19Ne shows a deviating behavior from the general trend, having

almost the same value like 17O, whereas one would expect a smaller value. The ground state

of 19Ne is a deformed s = 1/2 state (see section 7.2.6) which is an exception in the chain of

N = 9 nuclei, having d5/2 ground states. Thus, one expects admixtures of other states than

s1/2 in the deformed configuration. Thus, a large deviation from the general trend of the

magnetic moments of the N = 9 nuclei is expected. This deviation can be attributed to the

suppression of first order configuration mixing for the s1/2 neutron state in 19Ne.

7.2.5 Electric Quadrupole Moments

The quadrupole deformation of valence orbits (i.e. the orbits included in the model space of

the shell model) leads to deformation of the core orbits as well, which are not to be included in

the model. This core deformation can be described in a self-consistent way as a perturbation

from the coupling of 2~ω, Jπ = 2+ core excitations to the valence orbits ([Bro01a], p.575).

In the shell model space this effect can be accounted for by introducing effective charges of

protons (ẽp = efree
p +δep) and neutrons (ẽn = efree

n +δen). Hence, the case of a free nucleon is

given by δep,n = 0, efree
p = +e and efree

n = 0. As discussed by Sagawa and Brown [Sag84], the

polarization charge δ e has a slight orbital dependence, and the isoscalar polarization charge

δ ep + δ en takes values between 0.70 [Car86] and 0.79 [Bro88b]. The isovector polarization

charge δen − δep is found to be of the order of 0.2, but is more difficult to determine, because

most quadrupole data is dominated by the isoscalar component [Kei00]. Taking into account

only the isoscalar component the effective charges become ẽp = 1.35 e and ẽn = 0.35 e [Car86],

whereas including the isovector component yields effective charges ẽp = 1.29 and ẽn = 0.49

[Bro01a] were used in the theoretical study presented below [Bro01b].

Similar to the magnetic moments, the electric quadrupole moments were calculated theo-

retically. Besides the privately communicated results of Brown [Bro01b], an older publication

of Carchidi et al. [Car86] was used to compare theoretical with experimental data. For the

lower sd-shell nuclei this comparison is given in table 7.3 and shown graphically in figure 7.6

Both theoretical calculations start from the multipole operator

Ô(E,LM)i = ẽir
L
i YLM (θi, φi) . (7.42)

For of the quadrupole moment this operator with L = 2, M = 0 the expectation value

takes the form of equation (7.21). The wave functions used to calculate the quadrupole

moments are again based on the USD-interaction. As the quadrupole operator Ô(E2) has a

radial dependence, this has to be accounted for explicitly. Carchidi et al. use three different

approaches to model the corresponding Hamiltonian [Car86]. The first data set calculated

by Carchidi et al. [Car86] based on the Woods-Saxon potential [Bro82]

V0(r) = U0

{

1 + exp(r − r0A
1/3)/a0

}−1
. (7.43)

The parameters given as ”WSE” in [Bro82], were determined for the two doubly magic nuclei
16O and 40Ca. A smooth mass dependence is introduced by using for each of the Woods-Saxon

parameters U0, r0 and a0 the function

X0 = Xa +XbA
−1/3 , (7.44)
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Fig. 7.6: Deviation of theoretical values for Qs from experimental values in the sd shell. Experi-
mental data from [Rag89, Kle96], theoretical values with different radial wave functions:
(A) Carchidi [Car86], Woods-Saxon potential;
(B) Carchidi [Car86], harmonic oscillator with mass dependence. The values for 26−29Na
were taken from [Kei00] (Tab. 4, column 7), where Brown calculated Qs with the same
parameter set as in [Car86];
(C) Carchidi [Car86], harmonic oscillator with experimental rch;
(D) Brown, harmonic oscillator [Bro01b].
The straight full lines show the mean value of the data set, and the dashed lines the stan-
dard deviation of the data. The data in the four sets do not include all the same isotopes
corresponding to availability data.

where X represents one of the parameters. The effective charges used for the calculations

with the Woods-Saxon potential were ẽp = 1.15 e, and ẽn = 0.45 e. The difference between

experimental and theoretical values are plotted in figure 7.6 (A)

The second theoretical data set uses a fit to the charge radii of closed-shell nuclei to

determine the oscillator parameter which is obtained as

~ω = 45A−1/3 − 25A−2/3 [MeV] , (7.45)

or equivalently expressed by the oscillator length

b =

√

~

mω
0.6A1/6[1 − 0.556A−1/3]−1/2 [fm] . (7.46)

Plot 7.6 (B) shows the difference values between experimental data and the corresponding

theoretical values of Carchidi et al. including this mass dependence.
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Table 7.3: Comparison of quadrupole moments in the lower sd shell - experiment and theory.

[Bro01b] [Car86] [Kei00] [Car86] [Car86]
isotope Exp USD, HO HO(mass) HO(mass) HO(fit) WS

[mb] [mb] [mb] [mb] [mb] [mb]

17O -26(3)(∗) -30.46 -21.2 – -21.8 -31.3
17F -58(4)(∗) -80.44 -81.7 – -83.9 -87

21Ne +102.9(7.5) +107.57 +94.7 – +101.2 +102.9
23Ne +141(13) +149.59 – – – –
23Na +105.6(1.2)(∗) +109.61 +103.4 – +103.9 106.5
25Mg +201(3) +194 +193.7 – +186.9 +189.7
26Na -5.3(2) – – -11.4 – –
26Al +270(30) +263.25 – – – –
27Na -7.2(3) – – -12.5 – –
27Al +150(6) – +157.4 – +150.8 +148.6
28Na +39.2(1.2) – – +40.6 – –
29Na +86(3) – – +67.9 – –
33S -64(10) -66.96 – – – –
35S +47.1(9) +49.27 +42.9 – +43.6 +43.2
35Cl -82.49(2) -90.75 -84.9 – -86 -79.6
35Ar -84(15) -92.81 – – – –
37Cl -64.93(2) -77.4 -80.7 – -80.6 -66.4
37Ar +76.2(9.2) +78.96 – – – –
39K 49(4) +68.89 +70.7 – +71.9 +59.6

The third theoretical calculation uses an oscillator length b which is calculated individually

for each stable isotope on the basis of experimental charge radii [Car86]

r2ch = (r(0)p )2 + r2p + (N/Z)r2n +
3

4
(~/mc)2 , (7.47)

where the oscillator length b is connected to r
(0)
p , which is the rms point proton radius for

nuclei in the sd shell [Car86]

(r(0)p )2 =

[
18 + 3.5(Z − 8)

Z

]

b2 − 3b2

2A
. (7.48)

For r2p and r2n Carchidi et al. used the values (0.86)2 and −(0.34)2, respectively [Car86]. The

comparison between experiment and theory is plotted in figure 7.6 (C). Both of the two

calculations used an oscillator potential, and the effective charges were set to ẽp = 1.35 e,

and ẽn = 0.35 e.

The fourth set of values given by Brown [Bro01b] includes predictions also for the more

recently measured quadrupole moments as well as for 23Ne. The calculational details follow

the lines discussed in Keim et al. [Kei00]. The effective charges used in the calculation were

ẽp = 1.29 for the proton and ẽn = 0.49 for the neutron, and a harmonic oscillator potential

was assumed for the radial dependence. The comparison between the values obtained in this

way and experimental data is plotted in figure 7.6 (D).
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All of the four sets of theoretical values are compared with experimental data compiled

by Raghavan [Rag89] and partly supplemented from the preprint of Stone [Sto01], and with

data from laser spectroscopy. In a similar way as for the magnetic moments the deviation

between experiment and theory is plotted in figure 7.6, together with the mean value and the

corresponding standard deviation. The mean values and the standard deviations of the four

data sets are the following:

δQ = (−1.1 ± 6.5) mb Carchidi, Woods-Saxon potential, Fig. 7.6 (A) ,

δQ = (+0.6 ± 10.6) mb Carchidi, harmonic oscillator, closed-shell fit, Fig. 7.6 (B) ,

δQ = (−1.1 ± 10.7) mb Carchidi, harmonic oscillator, experimental rch, Fig. 7.6 (C) ,

δQ = (−1.1 ± 9.7) mb Brown, harmonic oscillator, Fig. 7.6 (D) .

These deviations are generally of the order of the experimental errors.

7.2.6 Discussion of the Electric Quadrupole Moments

In a collective model the quadrupole moments of 21Ne and 23Ne can be well understood in the

context of nuclear deformation, which dominates as well the behavior of the nuclear radius as

will be discussed in chapter 8. The neon nuclei can be characterized by well deformed nuclear

shapes and large intrinsic quadrupole moments Q0 which is connected to the spectroscopic

quadrupole moment Qs by [Rin80]

Qs = Q0
3K2 − I · (I + 1)

(2I + 3)(I + 1)
. (7.49)

Assuming deformed nuclei, the single-particle levels can be described in the context of

the Nilsson model [Nil55], where the nuclear state is determined by the quantum numbers

[N nz m` , J ]. J is the total angular momentum of the nucleus, thus corresponding to the

spin. The deformation properties are supported by the spins of the odd neon isotopes which

contradict the spherical shell model, where the spins should be I(19Ne) = 5/2, I(21Ne) = 5/2,

I(23Ne) = 5/2, I(25Ne) = 1/2. In the Nilsson model 19Ne can be assigned to a [220, 1/2]

state, and 21Ne to a [211, 3/2] state, which is consistent with the spin of those isotopes.

In comparing the results of the different calculations, one finds neither the different as-

sumptions for the radial wave function nor the modification of the effective charges within

reasonable limits give a systematic improvement of the overall agreement with experimental

data.

7.3 Comparison of Mirror Nuclei 17Ne and 17N

A long lasting dispute about the nuclear ground state structure of 17Ne [Oza94, Gui95, Zhu95,

Tim96, For01] has been going on for almost one decade. The community is split into two

parties, favoring either a proton halo or a standard shell-model structure. Hence, a separate

discussion of the possibilities to clear up the structure of 17Ne from the data gathered in the

present work is very interesting. Calculations of the nuclear moment in the framework of

nuclear halo models or in the large-basis shell model framework have not been performed, so

a qualitative approach was chosen.
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The magnetic moment of 17N, the mirror nucleus of 17Ne, was measured by Ueno et al. in

1996 [Uen96]. Hence, the structure of 17Ne can be discussed in the context of mirror magnetic

moments as was suggested by Sugimoto [Sug73]. It is particularly interesting to combine the

two magnetic moments µ(17Ne) and µ(17N) to an isoscalar moment, and to compare this

with simple models and with the systematics of isoscalar moments [Sug73].

7.3.1 Isoscalar Moment

According to Sugimoto [Sug73], the nuclear magnetic moment of a jn configuration of protons

or neutrons can be written in an isospin-space representation:

µ =
1

2

[

gs
`

〈∑

i

`(i)z

〉

J
+ µs

n,p

〈∑

i

σ(i)
z

〉

J
+ gv

`

〈∑

i

τ (i)
z `(i)z

〉

J
+ µv

n,p

〈∑

i

τ (i)
z σ(i)

z

〉

J

]

. (7.50)

The gs
` and gv

` represent the isoscalar and isovector orbital g-factors, the µs
n,p and µv

n,p the

intrinsic nucleon magnetic moments. For details the book of de-Shalit and Talmi [Sha63]

should be consulted. The upper indices s and v distinguish between components of the

magnetic moment which behave like a scalar (s), or a vector (v) in isospin space. The isoscalar

components have the same values for both members of a mirror pair, while the isovector

components have the same absolute value, but opposite sign for both mirror partners.

The isoscalar moment of two mirror nuclei (nuclei with the same mass number A(1) = A(2)

and opposite isospin Tz(1) = −Tz(2)) is given by half of the sum of the two magnetic moments

of the mirror partners

1
2 [µ(Tz = +T ) + µ(Tz = −T )] =

1

2

[

gs
`

〈∑

i

`(i)z

〉

J
+ µs

N

〈∑

i

σ(i)
z

〉

J

]

. (7.51)

In the same way the isovector moment is given by the difference of the two moments

1
2 [µ(Tz = +T ) − µ(Tz = −T )] =

1

2

[

gv
`

〈∑

i

τ (i)
z `(i)z

〉

J
+ µv

N

〈∑

i

τ (i)
z σ(i)

z

〉

J

]

, (7.52)

which will not be discussed in the present context.

The total angular momentum in jj-coupling is given by J =
〈∑

`
〉
+ 1

2

〈∑
σ
〉
. Assuming

the parameter µs
n,p is given by the sum of the magnetic moments of the free nucleons µn,p =

µn + µp, and the orbital g-factor g` = 1 as well by the free-nucleon factors, the sum moment

can be written as:

µ(Tz = +T ) + µ(Tz = −T ) = J +
(
µp + µn − 1

2

) 〈∑

i

σ(i)
z

〉

J
(7.53)

7.3.2 Discussion of the Experimental Results for 17N/17Ne

Sugimoto [Sug73] gives an overview of a number of isoscalar moments of T = 0, 1/2, 1 nuclei.

As he points out, most of the experimental isoscalar moments fall inside the limits given by

the isoscalar moments calculated from the Schmidt values of the nuclei under investigation.

The deviations can be addressed by correcting the single-particle moment by relativistic and
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configuration-mixing effects [Noy59], while the influence of meson exchange currents (MEC)

largely cancels out.

The magnetic moment of 17N was measured in a β-NMR experiment using a spin polarized

beam from a fragmentation reaction of 18O with a 93Nb target [Uen96]. The experiment

yielded an absolute value of the magnetic moment |µ(17N)| = 0.352(2) µN . The sign was

not measured, but from shell-model considerations the sign was assumed to be negative,

corresponding to a proton in the p1/2 state.

The Schmidt moment of a p1/2 proton (Eqn. (7.19)) is

µS(17N) = −0.264 µN . (7.54)

A surprising observation is that the magnetic moment of 17N is more negative than the

corresponding Schmidt value, which is one of the few exceptions from the general trend

shown in figure 7.1.

The magnetic moment of 17N can now be compared to the moment of its mirror nucleus
17Ne. The Schmidt value of a neutron in a p1/2 state is

µS(17Ne) = +0.638 µN , (7.55)

while the experimental value of the magnetic moment is +0.78798(53) µN . 17Ne shows as

well an outward deviation from the Schmidt lines shown in figure 7.2.
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Fig. 7.7: Isoscalar moments from experimental magnetic moments and Schmidt values according
to Sugimoto [Sug73]. Experimental values are plotted as circles, from the corresponding
Schmidt value as lines for Jπ. The data points marked by filled circles represent data
of nuclei with isospin T = 1/2, the open circles denote nuclei with T = 3/2. The plot
contains data taken from [Sug73] and additional data from [Rag89]. Data not included in
[Sug73] are marked by large circles.

Now the isoscalar moment can be investigated. The experimental data available to Sug-

imoto [Sug73] cover a number of mirror nuclei, namely 9 self conjugate nuclei (T = 0), 13

isospin doublets (T = 1/2) including two excited states, and 4 isospin triplets (T = 1).
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Meanwhile this collection of data can be extended in the light nuclei region to additional

T = 0, 1/2, 1 and T = 3/2 pairs [Rag89]. The corresponding values of 〈
∑
σ〉, calculated by

the use of equation (7.53), are plotted in figure 7.7. The plot covers the isoscalar moments of

nuclei up to the sd shell. It is limited to mirror pairs with T = 1/2 and T = 3/2, using data

available nowadays from the sources [Rag89] supplemented by [Sto01] and 17Ne from this

work. The isoscalar moment of self-conjugate nuclei and T = 1 pairs were omitted, because

those are formed by odd-odd nuclei.

Several features become obvious from Fig 7.7:

• The isoscalar moments of the majority of the mirror nuclei fall between and deviate

little from the corresponding isoscalar moments Schmidt moments.

• The isoscalar moment of the T = 3/2 mirror pair 9C-9Li falls far outside the general

trend.

• The T = 3/2 mirror pairs 13O-13B and even 17Ne-17N follow the general trend of the

T = 1/2 nuclei.

The situation for the (T = 1) mirror pair 8Li-8B, which is not plotted in figure 7.7, is similar

to the case of 9C-9Li. The corresponding isoscalar moment (〈∑σ〉exp = 1.815) exceeds its

single-particle value (〈∑σ〉sp = 1.33) considerably. From these observations the conclusion is

drawn that nuclei with ”unusual structure”, like 9C [Huh98] and 8B [Min92] cause a behavior

deviating from the general trend of the isoscalar moments. In contrast to this, the mirror pair
17N-17Ne, with magnetic moments adding up to an isoscalar moment close to the Schmidt

value, shows isospin symmetry of the two nuclei.

7.3.3 Discussion for 17N

The statements of the previous section can be used to find a qualitative picture for the

structure of 17Ne. First of all, as discussed e.g. by Arima [Ari78], the general deviation of

the magnetic moments and isoscalar moments from their Schmidt values can be explained

by several mechanisms, namely (i) First order configuration mixing (core polarization), (ii)

mesonic exchange currents (MEC), (iii) coupling of a valence nucleon to low-lying collective

states, (iv) second-order configuration mixing (of states with 2~ω or higher).

Compared to the individual magnetic moments, the isoscalar moments are less sensitive

to these mechanisms because the effects influencing the magnetic moments partly cancel out.

Thus, the magnetic moments show stronger deviations from the corresponding single-particle

value than the isoscalar parts. Furthermore, the first-order configuration mixing does not

contribute to the moments of p1/2 states [Ari54, Shi74]. The 17N magnetic moment has been

explained by Ueno et al. [Uen96]. In this context, also the behavior of the magnetic moments

and their isoscalar parts for the pair 17Ne-17N can be well understood.

The exceptions from the general trend observed in figure 7.7 for A = 8 and A = 9 are

probably caused by the proton-drip-line nuclei 8B and 9C and cannot easily be explained by

the above mechanisms. 8B is considered as a proton halo nucleus, which was suggested from

a β-NMR measurement of the quadrupole moment by Minamisono et al. [Min92] and was
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confirmed by Schwab et al. [Sch95] from a narrow momentum distribution observed in beak-

up reactions. Similarly the magnetic moment of 9C, probably causing the strong deviation

from the trend in the isoscalar moments ”may be an indication of unique structure phenomena

for the drip-line nucleus” [Huh98]. These deviations imply the breaking of isospin symmetry

between the mirror partners.

The isoscalar moments of the two other T = 3/2 mirror pairs follow the general trend

of the T = 1/2 nuclei, which indicates isospin symmetry between the two partners. This

behavior is shown also by the pair 17Ne-17N, even though the individual magnetic moments

fall both outside the Schmidt lines.

Ueno et al. [Uen96] explained the magnetic moment of 17N by admixtures of sd-shell

configurations to the p1/2 single-hole state. The authors investigate 17N in a model assuming

a core of 16O, so that the 17N ground state is formed by a hole in a p1/2 proton shell and

two neutrons in the sd shell. In a first approximation, the neutrons in the sd shell couple to

Jπ = 0, so that the proton alone is responsible for the nuclear spin of Iπ = 1/2−.

ψ0 =

∣
∣
∣
∣
(πp1/2)

−1 ⊗ [(ν sd)2]J
π=0

+
〉Jπ=1/2−

Thus, the proton configuration is uniquely assigned to a p1/2 hole, where first-order core

polarization of the protons does not contribute. Finally, the contribution of this configuration

to the magnetic moment consists only of the single-particle value plus small corrections arising

from MEC and second order core polarization, which is accounted for by the use of effective

g-factors (see [Uen96]).

Secondly, the influence of the sd shell neutrons is investigated, with the result that the wave

function contains appreciable components of the sd-shell neutron pair coupled to Jπ = 2+,

ψA =

∣
∣
∣
∣
(πp3/2)

−1 ⊗ [(ν d5/2)
2]J

π=2
+
〉Jπ=1/2−

,

ψB =

∣
∣
∣
∣
(πp3/2)

−1 ⊗ [(ν s1/2)(ν d5/2)]
Jπ=2

+
〉Jπ=1/2−

.

Then the ground state wave function can be described by

ψ(17N) = c0ψ0 + cAψA + cBψB , (7.57)

and the magnetic moment of 17N can be explained by |cA|2 + 0.73|cB|2 = 4.4% which corre-

sponds to an admixture of configurations with sd neutrons coupled to 2+ between 4.4 and

6%.

Shell-model calculations with two different interactions (PSDWBT, PSDMK) justify this

empirical argumentation, yielding 2.8% and 4.6%, respectively, of Jπ = 2+ admixture to the

Jπ = 0+ major component.

As well interesting in the context of a possible halo structure is the ψ0 wave function, which

consists of three contributions. For 17N, the shell model calculations yielded the components

listed in table 7.4.

Note that the wave function of the two valence neutrons is dominated by the 0d5/2 state.
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Table 7.4: Contributions to the ground-state wave function ψ0 of 17N. The values are taken
from [Uen96].

interaction
configuration PSDWBT PSDMK

(π p1/2)
−1 ⊗ [(ν d5/2)

2]0
+

63.4% 62.8%

(π p1/2)
−1 ⊗ [(ν s1/2)

2]0
+

26.9% 25.1%

(π p1/2)
−1 ⊗ [(ν d3/2)

2]0
+

6.5% 6.7%

7.3.4 Conclusions for 17Ne

As discussed above, the behavior of the magnetic moments of the mirror nuclei 17N-17Ne

is symmetric in the isospin. Thus, the explanation given by Ueno et al. [Uen96] for the

magnetic moment of 17N can be as well adopted for 17Ne without problems, suggesting a

similar structure.

It remains to be discussed how a halo structure, with similar contributions of the sd-shell

proton pair coupled to Jπ = 2+, would influence the magnetic moment of 17Ne, and thus

the composition of the wave function? The dominant zero-order wave function of a halo

configuration has to be

ψ0 =

∣
∣
∣
∣
[(π s1/2)

2]J
π=0

+

⊗ (νp1/2)
−1

〉Jπ=1/2−

.

This dominance would involve a difference to the composition of the wave function of 17Ne

to the magnetic moment. The leading s1/2 proton configuration would suppress the d5/2

admixtures, which are important for the deviation from the Schmidt value. However, from

the magnetic moment itself, and from their mirror symmetry, it is clear that both nuclei, 17N

and 17Ne, are similar in their ground-state structure.

The argument against the proton halo structure of 17Ne is supported by the theoretical

study of Fortune and Sherr [For01], who describe the ground state structure of 17Ne with a

proton pair in the sd shell in a 15O + 2p (2s, 1d) model. In comparison with experimental

excitation energies they conclude that the ground state of 17Ne is dominated by 78% of a

(πd5/2)
2 configuration with 22% of (πs1/2)

2 admixture. The calculations of Zhukov et al.

[Zhu95] yield almost the same ratio of s-wave and d-wave components, although the authors

argue in favor of a halo. Finally Timofeyuk et al. [Tim96] claims the dominance of the halo

s1/2 state over the d5/2 configuration, but nevertheless argues against a halo. We will come

back to this discussion in connection with the mean square charge radii.
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Chapter 8

Nuclear Shapes and Sizes

The interpretation of the experimental differences in mean square charge radii of the neon

isotopes, presented in chapter 6, is closely related to the shapes of the nuclei. The deformation

properties are usually responsible for irregularities in the trend of the radii along the isotope

chain. Thus, the first part of this chapter is devoted to the description of the nuclear shapes.

The second part compares the experimental data with several recent microscopic theoretical

calculations of the charge radii. In a third section the radius of 17Ne is compared to theoretical

predictions in the context of a possible halo structure.

8.1 Nuclear Shape and Nuclear Deformation

8.1.1 Shape Description by Spherical Harmonics

The shape of a nucleus, described in terms of e.g. spherical harmonics and spherical coordi-

nates, can be related to the experimental observables such as quadrupole moments and E2

transition strengths. In the simplest model a non-spherical nucleus is represented by a liquid

drop which is filled homogenously with nuclear matter and has a well defined surface. The

radius vector pointing to the surface is parameterized in terms of spherical harmonics (see

[Rin80], p.5ff)

r = R(θ, φ) = R0



1 + α00 +
∞∑

λ=1

λ∑

µ=−λ

α∗
λµYλµ(θ, φ)



 , (8.1)

where R0 is the radius of a sphere with the same volume.

The term α00 accounts for the volume conservation of the nuclear ”liquid drop” under

deformation (assuming that the nuclear medium is incompressible). It is given by

α00 = − 1

4π

∑

λ≥1,µ

|αλµ|2 . (8.2)

The terms with λ = 1 describe a translation of the whole nucleus. The three parameters

α1µ can be fixed by the condition that the origin coincides with the center of mass
∫

V
r d3r = 0 . (8.3)

In the present framework only quadrupole deformations are of interest which limits the de-

scription to λ = 2. In this case five parameters α2µ have to be considered. Three of them
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define the rotation of the deformed body with respect to an external coordinate system. By a

suitable transformation it can be changed to a body-fixed coordinate system which is aligned

to the body’s principal axes. In this system, only three of the five parameters are different

from zero: α20 and α22 = α2−2. Under these conditions it is convenient to change to the

so-called ”Hill-Wheeler coordinates” [Hil53], which are given by

α20 = β2 · cos γ ,

α22 =
1√
2
β2 · sin γ ,

∑

µ

|α2µ|2 = α2
20 + 2α2

22 = β2
2 ,

cos γ =

√

α2
20

α2
20 + 2α2

22

(8.4)

The corresponding expression for the vector pointing to the nuclear surface is given by

R(θ, φ) = R0

(

1 + β2

√

5

16π
(cos γ(3 cos2 θ − 1) +

√
3 sin γ sin2 θ cos 2φ)

)

(8.5)

In figure 8.1 a few examples of the deformation dependence of the parameters are shown.

(A) (B) (C)

(D) (E) (F)

Fig. 8.1: Examples of nuclear deformation depending on the deformation parameters. SH stands for
deformation in terms of spherical harmonics, HW in terms of Hill-Wheeler coordinates
(A) SH: α20 = α22 = 0, HW: β2 = γ = 0, spherical shape
(B) SH: α20 = 0.2, α22 = 0, HW: β2 = 0.2, γ = 0, prolate small def.
(C) SH: α20 = −0.2, α22 = 0, HW: β2 = 0.2, γ = π/3, oblate small def.
(D) SH: α20 = 0, α22 = 0.3, HW: β2 =

√
0.42, γ = π/2, triaxial def.

(E) SH: α20 = 0.6, α22 = 0, HW: β2 = 0.6, γ = 0, strong prolate def.
(F) SH: α20 = 0.6, α22 = 0.3, HW: β2 = 0.74, γ = 0.61, strong triaxial def.
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For γ = 0 and γ = π/3 the resulting nuclear shapes have cylindrical symmetry with one

stretched (prolate) or shortened (oblate) axis. The coordinate system describing the nuclear

shape is chosen such that the coordinate system’s z-axis is parallel to the symmetry axis

of the nucleus. Then, these nuclear shapes are characterized by α22 = 0, while α20 > 0

describes prolate and α20 < 0 oblate shapes. Correspondingly, prolate shapes are described

in Hill-Wheeler coordinates by β2 > 0 and γ = 0 oblate shapes by β2 > 0, γ = π/3. All other

parameter sets describe nuclear shapes having no axis of cylindrical or rotational symmetry,

i.e. so-called triaxially deformed nuclei. As can be seen from the plots in figure 8.1 (E), (F)

the parametrization of the nuclear shape in terms of spherical harmonics differs considerably

from the ellipsoidal shape in the case of large deformation parameters.

All further discussion shall be limited to nuclei with rotational symmetry along the z-axis,

meaning that only the deformation parameter α20 differs from zero. Furthermore by fixing

γ = 0 and shifting the sign of the deformation to β2, it possible to set

α20 ≡ β2 , (8.6)

which is used as the deformation parameter in the literature.

Thus, the radius vector r of a deformed nucleus is then given by

r(θ) = R0 [1 + α00 + β2Y20(θ)] . (8.7)

In lowest order of β the ms radius of a deformed nucleus is connected to the ms spherical

radius rsph by [Ott89]

〈r2〉 = 〈r2〉sph

(

1 +
5

4π
β2

2

)

. (8.8)

8.1.2 Droplet Model Description of Nuclei

The droplet model was introduced as a refinement of the liquid drop model (LDM) of average

nuclear properties. The model takes into account the effects of to the deviation of neutron

and proton densities from a constant bulk value, treats the nuclear surface as diffuse, and

incorporates the deformation of the nuclear shape. The nuclear radius r is expanded in a

series of Legendre polynomials

r = nR(1 + α2P2 + α4P4 + α6P6 + ...) , (8.9)

where volume conservation is achieved by the relation

n =
(
1 − 2

5α
2
2 − 2

105α
3
2 + 2

25α
4
2 − 2

35α
2
2α4 − 1

9α
2
4 + ...

)
. (8.10)

The connection between the αλ and the deformation parameter βλ is given by

αλ =

√

(2λ+ 1)

4π
βλ . (8.11)

In the context of this work the ms nuclear charge radii are of interest. Following Myers et

al. [Mye83, Mye87] this ms radius can be expressed by

〈r2〉 = 〈r2〉u + 〈r2〉r + 〈r2〉d , (8.12)
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which is the general expression for protons or neutrons. This expression for the sharp nuclear

radius can be used to calculate the neutron skin thickness

t = 2
3R(I − δ̄)/Bs, (8.13)

which gives different neutron and proton radii,

for neutrons: Rn = R+
Z

A
t, for protons: RZ = R− N

A
t . (8.14)

Note that in the following the explicit distinction between proton and neutron radius is not

made.

The first term of equation (8.12) treats a uniform distribution of nucleons, including the

nuclear shape. It is given as an expansion in the deformation parameters αλ

〈r2〉u = 3
5R

2
(
1 + α2

2 + 10
21α

3
2 − 27

35α
4
2 + 10

7 α
2
2α4 + 5

9α
2
4 + ...

)
, (8.15)

where the overall radius R contains more details of the nuclear bulk properties than the LDM:

R = r0A
1/3(1 + ε̄) , (8.16)

ε̄ =
−2 a2A

−1/3Bs + Lδ̄2 + c1Z
2A−4/3BC

K
, (8.17)

δ̄ =
I + 3

16(c1/Q)ZA−2/3Bv

1 + 9
4(J/Q)A−1/3Bs

, (8.18)

I =
(N − Z)

A
. (8.19)

The different parameters used in the model are given in [Mye83]

r0 = 1.18 fm, the nuclear radius constant,

b = 0.99 fm, the nuclear diffuseness,

c1 = 3
5(e2/r0) = 0.73219 MeV, the Coulomb energy coefficient,

a2 = 20.69 MeV, the surface energy coefficient,

J = 36.8 MeV, the symmetry energy coefficient,

Q = 17 MeV, the effective surface stiffness,

K = 240 MeV, the compressibility coefficient, and

L = 100 MeV, the density symmetry coefficient.

The coefficients Bx are shape dependent and can be expressed by an expansion in terms of

the deformation parameters αλ

Bs = 1 + 2
5α

2
2 − 4

105α
3
2 − 66

175α
4
2 − 4

35α
2
2α4 + α2

4 + ... (8.20)

BC = 1 − 1
5α

2
2 − 4

105α
3
2 + 51

245α
4
2 − 6

35α
2
2α4 − 5

27α
2
4 + ... (8.21)

Bv = 1 − 1
5α

2
2 − 2

105α
3
2 − 253

1225α
4
2 − 4

055α
2
2α4 + 4

9α
2
4 + ... (8.22)



8 Nuclear Shapes and Sizes 107

The second sum term of equation (8.12) for the ms radius treats the redistribution of the

nucleons, and is given by

〈r2〉r = 12
175C

′R2
(
1 + 14

5 α
2
2 + 28

15α
3
2 − 29

5 α
4
2 − 116

15 α
2
2α4 + 5

9α
26
70 + ...

)
. (8.23)

The parameter C ′ in this formula depends only on A and Z, and can be approximated by

(e2 = 1.4399764 MeV fm)

C ′ =
1

2
(

9

2K
+

1

4J
)
Z e2

Rz
≈ 0.0156Z A1/3 . (8.24)

Finally the last term of equation (8.12) takes into account the diffuseness of the nuclear

surface and has the simple form

〈r2〉d = 3b2 . (8.25)

It is worth noting that this correction has no shape dependence, and is taken as a constant

for all nuclides.

Additionally Myers et al. give a droplet-model expression for the quadrupole mo-

ment [Mye83]:

Q0 = Qu +Qr +Qd, where Qd = 0 . (8.26)

The contributions from the uniform distribution Qu and the redistribution are given by

Qu = 6
5 Z R

2
(
α2 + 4

7α
2
2 − 1

7α
3
2 − 94

231α
4
2 + 8

7α2α4 + ...
)

(8.27)

Qr = 48
175 C

′ Z R2
(
α2 + 6

7α
2
2 − 4

5α
3
2 − 1984

1155α
4
2 + 50

21α2α4 + ...
)

(8.28)

8.1.3 Particle-plus-Rotor Description

To describe the interplay between the bulk properties of the nuclear matter corresponding to

a collective behavior of the nucleons and the single-particle motion of an individual particle,

Bohr and Mottelson developed the particle-plus-rotor model [Boh53]. An overview is given

in chapter 3.3 of [Rin80].

In this model the nucleus is described as a deformed even-even core with an appropri-

ate number of valence particles moving in the deformed mean potential of the core. From

symmetry considerations, rotation components of the core parallel to the symmetry axis of

the deformed core are not allowed. Thus, the core rotates with an angular momentum R

around an axis which is perpendicular to the axis of rotational symmetry (see Fig. 8.2). The

Hamiltonian describing the system is divided into two parts. Hcoll describes the collective

behavior of the core, Hintr (”intrinsic” term) describes microscopically the valence particles

occupying Nilsson states in the deformed potential:

Htot = Hcoll + Hintr . (8.29)

The collective part describes the rotations of the inert core

Hcoll =
3∑

i=1

R2
i

2Ji
, (8.30)

where Ji is the moment of inertia of the rotor with respect to the body-fixed coordinate

system, and Ri are the components of the angular momentum of the core along the three
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axes of the laboratory system. Furthermore are defined the projection of the spin on the

body-fixed coordinate system K := I3, and the projection of the angular momentum of the

single-particle on the 3-axis of the body-fixed system Ω := j3. The orientation of the angular

momenta is shown in figure 8.2 for the two limits of ”strong coupling” and ”weak coupling”.

By taking into account that the spin of an odd-A nucleus is given by I = R+ j (see Fig. 8.2),

the collective Hamiltonian can be separated into three parts

Hcoll = Hrot + Hrec + Hcor . (8.31)

Hrot describes the rotation of the combined system of the core and the valence particles.

The recoil term Hrec acts on the valence particles only and takes into account the two-body

interaction, if there is more than one valence particle. Finally there is the Coriolis term Hcor

which couples the degrees of freedom of the valence particles with the ones of the rotor. It is

given by

Hcor = −
3∑

i=1

Iiji
Ji

, (8.32)

and is responsible for the so-called strong-coupling and weak-coupling limits of the model.

These limits are given by the proportionality of the Coriolis matrix elements to the angular

momentum term ([Rin80], p.113),

〈ΨI
MK+1|Hcor|ΨI

MK〉 ∝
√

I(I + 1) −K(K + 1)
√

j(j + 1) − Ω(Ω + 1) . (8.33)

(A) (B)

Fig. 8.2: Illustration of the alignment of angular momenta in strong and weak coupling. Axes la-
belled by x,y,z belong to the external coordinate system, the 3-axis is the symmetry axis
of the body-fixed coordinate system. The vector ~I denotes the spin of the nucleus, ~j the
angular momentum of a single-particle, and ~R the angular momentum of the rotating core.
(A) Strong coupling case.
(B) Weak coupling / rotational alignment case
Figure after Fig. 3.7 in [Rin80]

In the strong-coupling limit the angular momentum of the unpaired particle(s) follows

adiabatically the rotation of the even-even core. The strong coupling limit is realized when

the Coriolis matrix elements (see Eqn. (8.33)) are small compared to the level splitting of the

single-particle energies in the deformed shell model [Rin80]. The Coriolis term is small, if

either the spin I is small, or if the single-particle angular momenta j are small. If j is large,
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the projection of j on the 3-axis Ω has to be large too for strong coupling. Strong coupling

is expected for strong deformations [Rin80]. An illustration of the coupling of the various

angular momenta is given in figure 8.2 (A).

In the weak coupling limit the Coriolis matrix elements are no longer negligible, which is

the case for small deformations with the single-particles moving essentially in their spherical

shell model orbits. This situation is found for high-spin states.

8.1.4 Spectroscopic Quadrupole Moments and Nuclear Deformation

To relate the experimental spectroscopic quadrupole moment to a static deformation of the

nucleus, the intrinsic quadrupole moment Q0 has to be calculated from the experimental

moment. This intrinsic moment is defined in a coordinate system which is fixed to the

nucleus, whereas the spectroscopic quadrupole moment is an observable in the laboratory

frame. To calculate the intrinsic moment of well deformed nuclei with static deformation the

expression (see e.g. [Boh75], p.45)

Qs = Q0
3K2 − I · (I + 1)

(2I + 3)(I + 1)
(8.34)

has to be evaluated, where K = I3 is again the projection of the spin on the 3-axis of the

body-fixed system. In the case the strong coupling limit, which is normally realized in the

ground state of well deformed nuclei [Boh75], it is found that K = I = j3, where one valence

particle alone is responsible for the nuclear spin, whereas the core particles couple to a R = 0

configuration. For very high spins of ground state nuclei (K = I) the system becomes weakly

coupled, and the spectroscopic and the intrinsic quadrupole moment are equal Qs = Q0.

For fixed K and increasing spin, which corresponds to increasing angular momentum of

the single-particle, the quotient Qs/Q0 = −1/2 for very high spins. Thus, the spin becomes

aligned to an axis perpendicular to the axis of symmetry of the nuclear body as shown in

figure 8.2 (B).

A vanishing spectroscopic quadrupole moment does not necessarily mean that the inves-

tigated nucleus has spherical shape. This is because all Qs vanish, if I = 0, or I = 1/2,

independent of Q0. From equation (8.34) is seen that even strongly deformed nuclei can have

vanishing spectroscopic quadrupole moments.

8.2 Experimental Deformation Parameters

Raman et al. [Ram01] published a large compilation of B(E2) values, quadrupole moments

β2 parameters and related quantities. The β2 values therein were calculated from the first

order formula

Q0 =
3√
5π

Z R2
0 β2 (8.35)

A different approach was chosen in this thesis, where the deformation parameters and radii

were calculated from the droplet-model expressions. This was due to two mayor weaknesses

of expression (8.35): (i) The limitation to the lowest order of β2 leads to overestimated defor-

mations. This becomes especially important for large deformations, where higher order terms

contribute substantially to the quadrupole moment. (ii) The nuclear radius is approximated
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Table 8.1: Calculated intrinsic quadrupole moments and nuclear deformation parameters from ex-
perimental data calculated for the strong coupling case by the use of the droplet model
expressions and from ms charge radii. The errors are purely experimental.

21Ne 23Ne

Qs = Q0(w.c.) [mb] 103(7.6) 141(13)

Q0(s.c.) [mb] 515(39) 394(36)

〈r2〉 [fm2] 8.81(8) 8.46(20)

droplet model: βDM
2 (s.c.) 0.607(20) 0.471(19)

Kumar: βKum
2 (s.c.) 0.462(34) 0.370(35)

by R0 = r0A
1/3. This dependence leads to too small radii, especially for light nuclei, and

thus to too large deformation parameters.

8.2.1 Deformation Properties of 21Ne and 23Ne

In the droplet model the nuclear deformation parameter β2 is related to the quadrupole

moment via equation (8.26). By the use of the experimental quadrupole moment, measured in

the present experiment, the deformation parameter β2 was calculated from this droplet-model

expression. Because higher order βs are unknown, in the droplet-model series expansion only

the two lowest orders of α2 were taken into account. The results for 21Ne and 23Ne are

collected in table 8.1.

The nuclear deformation can be as well related to the experimentally measured mean

square charge radii. Kumar [Kum72] uses the nuclear monopole moment (i.e. the mean

square charge radius) and the quadrupole moment to calculate the deformation parameter

β2 by the first order expression

βKum
2 =

√
π

5

Q0

Z · 〈r2〉 . (8.36)

The corresponding values of the nuclear deformation parameters calculated from the results

of the present measurements for the strong coupling case are as well collected in table 8.1.

The two isotopes 21Ne and 23Ne, whose quadrupole moments are discussed here, show well

deformed nuclear shapes. Assuming strong coupling for the calculation of the deformation

parameters β2 one ends up with β2 > 0.3, which is associated with strong prolate deformation.

As low-spin states are considered, the assumption of strong coupling seems to be justified.

The majority of the investigated isotopes have even-even nuclei with ground state spin

I = 0, or odd-even ones with I = 1/2 which thus have vanishing spectroscopic quadrupole

moments. As will be seen in the next section, the deformation parameters of these isotopes

can be determined from nuclear spectroscopy data.

8.2.2 Nuclear Deformation of the Even Isotopes

The determination of the nuclear shape of even-even isotopes relies on the measurement of E2

transition probabilities, the so-called ”B(E2) values” or ”E2 transition strengths”. These are

determined from γ-ray spectroscopy measurements. The γ-ray transitions between low-lying

collective states of the nucleus can have two different natures. On the one hand, they are



8 Nuclear Shapes and Sizes 111

connected with the relaxation of quadrupolar surface vibrations of the nuclear shape around

its spherical equilibrium. On the other hand, the observed γ-ray spectra can be connected to

rotational excitation modes of a statically deformed nuclear shape.

For rotational quadrupole transitions, the transition probability is connected to the in-

trinsic quadrupole moment ([Boh75], p.45), by

B(E2;KI1 → KI2) =
5

16π
Q2

0 〈I1K20|I2K〉2 , (8.37)

where 〈I1K20|I2K〉 is a vector addition coefficient representing the coupling of the angular

momenta in the intrinsic frame. In the special case of a rotational transition from I1 = 2+ to

I2 = 0+ within a band with K = 0, e.g. in the ground-state band of a doubly-even isotope,

the intrinsic quadrupole moment can be calculated from [Ram01]

Q2
0 =

16π

5
×B(E2; 2+ → 0+) (8.38)

Experimental data on B(E2)-values, Q0 and other related quantities for even-even nuclei

were compiled by Raman et al. [Ram01], and compared also to a number of theoretical

model predictions. Similar to the β2 from laser spectroscopy, the quadrupole moment from

the corresponding B(E2)-value was used to calculate the deformation parameters for the

even-A neon isotopes. Again the droplet model expressions were employed, and the lowest

two orders in α2 were taken into account in the equations.

The β2 expression given by Kumar [Kum72] (Eqn. (8.36)), can be rewritten in terms of

the B(E2)-value and becomes

βKum
2 =

4π

5
×
√

B(E2)

Z 〈r2〉 . (8.39)

Furthermore, the liquid drop model gives a very simple expression for the single-particle

deformation parameter β
(sp)
2 [Ram01], for neon with Z = 10

β
(sp)
2 ≈ 1.59/Z = 0.16 . (8.40)

The deviation of β2 from this parameter gives an idea how much of the transition strength

has to be attributed to collective motion. All the relevant values for the properties discussed

above are collected in table 8.2.

Table 8.2: B(E2)-values, and related quantities for the even neon isotopes. The values are taken
from [Ram01], additionally in column 6 the deformation parameter calculated with the
help of equation (8.39)

Isotope E(2+) B(E2) Q0 βDM
2 βKum

2 βDM
2 /β

(sp)
2

[keV] [e2b2] [mb] [Ram01] [Kum72]

18Ne 1887.3(2) 0.0269(26) 0.519(25) 0.636(13) 0.466(45) 3.98
20Ne 1663.674(15) 0.034(3) 0.584(26) 0.684(13) 0.512(45) 4.28
22Ne 1274.542(7) 0.023(1) 0.481(10) 0.566(5) 0.437(19) 3.54
24Ne 1981.6(4) 0.017(6) 0.41(7) 0.483(35) 0.34(14) 3.02
26Ne 2018.2(3) 0.0228(41) 0.477(43) 0.540(21) 0.443(80) 3.38
28Ne 1310(20) 0.027(14) 0.50(14) 0.552(65) 0.47(24) 3.45
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Fig. 8.3: Plot of absolute values of the deformation parameters β2 of nuclei in the sd shell and
below. All values shown for even-even configurations are taken from [Ram01], values of
odd configurations are calculated with the help of equations (8.34), and the droplet model
expressions. The input parameters for the spectroscopic quadrupole moments were taken
from [Rag89].

A map of the experimentally known deformation parameters in the p and sd shell is

shown in figure 8.3. It contains the values for even-even isotopes taken from [Ram01]. Odd-

A configurations were calculated using the first order expression (8.35) given by Raman

et al. [Ram01]. The input quadrupole moments for the calculation were taken from the

compilation of Raghavan [Rag89]. Additional values for 21,23Ne, argon [Kle96], and sodium

isotopes [Kei00] are added in the plot. Large deformation parameters are indicated by dark

colors, small deformation parameters by light ones.

Finally the energies of the rotational band can be used to judge about the nature of the

γ-radiation. For a K = I3 = 0 band of a good rotator the energies of the levels are given by

([Boh75], p.24)

E(Rot) =
~

2

2J · I(I + 1) . (8.41)

the energies of the levels 2+, and 4+ of a good rotator fulfill the condition

E(4+)

E(2+)
=

10

3
= 3.3 . (8.42)

This has to be compared to the spectrum of a vibrator for which

E(4+)

E(2+)
= 2 . (8.43)

For some of the even neon isotopes the energies of the 2+ and 4+ levels are known as shown

in table 8.3, and they can be used to characterize the nature of these states, and the corre-

sponding nuclear shape.



8 Nuclear Shapes and Sizes 113

Table 8.3: Comparison of the 4+/2+ level energy for some even neon isotopes. Values taken from
[Fir96].

18Ne 20Ne 22Ne 24Ne

E(2+) [keV] 1887.3(2) 1633.674(15) 1274.53(2) 1981.6(4)

E(4+) [keV] 3376.2(4) 4247.7(11) 3357.2(4) 3962.18(9)

E(4+)/E(2+) 1.78 2.56 2.63 2.00

The E(4+)/E(2+) ratios suggest that 20Ne and 22Ne can be regarded as rotators. The

ratios for 18Ne and 24Ne indicate that the excited collective states originate from vibrations

rather than rotations. Thus, the values of β2 calculated from the quadrupole moments should

not be overinterpreted. Nevertheless, if the static deformation parameter β2 is interpreted as

the rms deformation parameter 〈β2〉1/2 of the oscillator model, it is justifiable to use this in

the calculation of the radii in the framework of the droplet model.

8.3 Mean Square Charge Radii in the Droplet Model

Using the droplet model and the deformation parameters discussed in the previous section,

the deformations can be used to calculate ms nuclear radii in the framework of the droplet

model (DM) developed by Myers et al. ([Mye74, Mye83, Mye87], and references therein).

8.3.1 Neon Radii in the Droplet Model

Table 8.4: 〈r2〉DM and δ〈r2〉DM calculated in the droplet model by the use of deformation para-
meters βDM

2 from the droplet model expressions. Additionally radius data calculated
from the droplet model by the use of deformation parameters βKum

2 according to Kumar
[Kum72].

A βDM
2 〈r2〉DM δ〈r2〉20,A

DM βKum
2 〈r2〉Kum δ〈r2〉20,A

Kum

[fm2] [fm2] [fm2] [fm2]

18 0.636(13) 9.263(22) -0.379(24) 0.466(45) 9.010(59) -0.328(81)

20 0.684(13) 9.642(24) - 0.512(45) 9.338(67) -

21 0.607(20) 9.462(33) -0.179(42) 0.462(34) 9.253(46) -0.085(81)

22 0.566(5) 9.415(10) -0.227(24) 0.437(19) 9.250(27) -0.088(81)

23 0.462(34) 9.224(24) -0.417(25) 0.370(35) 9.197(38) -0.141(81)

24 0.483(35) 9.327(49) -0.315(74) 0.34(14) 9.127(16) -0.211(81)

26 0.540(21) 9.636(33) -0.006(42) 0.443(80) 9.540(91) 0.201(101)

28 0.552(65) 9.818(114) 0.177(203) 0.47(24) 9.757(94) 0.418(107)

Using the droplet-model formulae, the differences in the ms charge radii with respect to
20Ne can be predicted from known deformations. The ms radii are calculated from equa-

tion (8.12), and only the two lowest orders in α2 were taken into account, similar to the

calculation of the deformation parameters β2. Higher order terms were dropped, because the

mixed terms in β2 and β4, partly compensating the higher power terms in β2 are unknown.

From the droplet model deformation parameters βDM
2 , ms radii 〈r2〉DM and differences in

ms radii δ〈r2〉DM were calculated by the use of the above mentioned droplet-model expression
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(8.12). The corresponding values of βDM
2 , 〈r2〉DM and δ〈r2〉DM are collected in table 8.4. In

figure 8.4 this result compared with the experimental data of the present experiment.

Additionally, the deformation parameters βKum
2 , calculated according to equation (8.36)

were used to calculate 〈r2〉Kum and δ〈r2〉Kum from the corresponding droplet-model expres-

sions. These values are not included in plot 8.4. They show worse agreement with the

experimental values of δ〈r2〉 and were consequently omitted for better overview.
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Fig. 8.4: Comparison between experimental data and prediction from the
droplet model. The open circles together with the error limits rep-
resent range of the experimental data of this work. The triangles are
the predictions for δ〈r2〉 from the droplet model. The line crossing
the data point of 26Ne shows the δ〈r2〉 from the droplet model with
constant deformation β2 = 0 for comparison.

8.3.2 Discussion of the Droplet-Model Description

As can be seen from figure 8.3, 18Ne and 20Ne are the nuclides with the largest β2-values

known in the sd shell according to Raman et al. [Ram01]. Generally the region of light

neon isotopes shows large quadrupole deformations. The mid-shell nucleus 24Ne seems to be

the least deformed isotope, and the deformation increases again towards 30Ne at N = 20,

which is the neutron shell closure. A corresponding behavior is observed in the comparison

of the energy level ratios of the lowest 2+, and 4+ states of the even isotopes. It shows good

agreement with the rotational model based on static quadrupole deformation for the two

stable neon isotopes, 20Ne and 22Ne. A puzzling case is 18Ne with a closed N = 8 neutron

shell, a large value of β2 and an apparently vibrational level structure.

The radii determined by the fairly simple droplet model calculation reproduce surprisingly

well the experimental data. Despite the general slope of the curve, the curvature is very
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similar. This can as well be taken as support of the description in terms of well deformed

nuclear shapes. This is very much in contrast to other light nuclear systems like argon [Kle96],

where the deformation is small and the behavior of the radii seems to be dominated by the

single-particle structure. Also for heavier systems it has been found that the semi-empirical

droplet-model description is most suitable in regions of strong deformation. The agreement

between the droplet model and the experimental data can even be improved by assuming

oblate deformation of the isotopes 24,26,28Ne as will be shown below.

8.4 Comparison with Theoretical Studies

In recent years, a number of comprehensive theoretical studies of basic nuclear properties

were published employing various models. Möller et al. [Möl95], Lalazissis et al. [Lal99],

and Goriely et al. [Gor01] calculated properties like masses, radii and deformations all over

the nuclear chart with different methods. Siiskonen et al. [Sii99] deal more specifically with

the even-even configurations of oxygen, neon, and magnesium isotopes.

8.4.1 Macroscopic-Microscopic Calculation

Table 8.5: Relevant nuclear ground state properties from macroscopic-microscopic calculations,
taken from [Möl95].

Isotope M (MM) −M (exp) β
(MM)
2 β

(MM)
4 β

(MM)
6 r

(MM,DM)
ch δ〈r2〉

[MeV] [fm] [fm2]

18Ne 0.005 0.109 0.150 0.0 2.8908 -0.7805
19Ne 0.001 0.294 0.330 0.011 2.9690 -0.3223
20Ne 0.001 0.335 0.428 0.023 3.0228 0.0
21Ne 0.001 0.327 0.274 0.012 2.9974 -0.1526
22Ne 0.001 0.326 0.225 0.011 3.0006 -0.1336
23Ne 0.001 0.307 0.141 0.009 2.9934 -0.1767
24Ne 0.010 -0.215 0.155 -0.010 2.9816 -0.2474
25Ne 0.040 0.0 0.0 0.0 2.9644 -0.3495
26Ne 0.070 0.0 -0.014 0.0 2.9747 -0.2882
27Ne 0.280 0.0 -0.014 0.0 2.9849 -0.2280
28Ne 0.390 -0.204 0.127 0.002 3.0188 -0.0242

The calculation of Möller et al. [Möl95] is based on a macroscopic-microscopic model which

uses the finite range droplet model (FRDM) for the macroscopic description of the nuclear

shape. The FRDM is a refined version of the DM with am improved description of the nuclear

compressibility. The macroscopic properties are corrected by microscopic effects, namely the

shell-plus-pairing correction. This correction is parameterized by several methods: BCS and

the Lipkin-Nogami model for the pairing effects and the Strutinsky shell correction for the

shell effects. The nine model constants of the macroscopic parameters and one microscopic

parameter (Lipkin-Nogami effective pairing gap constant rmic) are determined by a least

squares fit to 1654 ground state masses ranging from 16O to 263Sg. The overall deviation
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between the input and the theoretical masses is 0.669 MeV, but worse for the light-mass

region with A < 65. The additional microscopic model constants influencing the model were

determined independently from the least squares fit to the nuclear masses.

Besides other results the calculation yields nuclear deformation parameters β2, β4, β6,

and nuclear masses. The relevant values for the nuclei under investigation in this work are

tabulated in table 8.5 (index ”MM”). A comparison with the ”experimental” deformation

parameters calculated in the droplet model βDM
2 is shown in figure 8.5, where the β

(MM)
2

correspond to the up-triangles. Because Möller et al. do not give rms charge radii, the

deformation parameters were used to calculate nuclear rms charge radii r
(MM,DM)
ch in the

framework of the droplet model according to equation (8.12). Note the values for the hex-

adecapole deformation β4 which are of the same order of magnitude as β2. Consequently

these were taken into account in the droplet model calculation. A comparison between the

calculated rms radii, the differences δ〈r2〉 in the ms radii (up-triangles) and the experimental

data from this work is shown in figure 8.6.

8.4.2 Hartree-Fock Calculation

Table 8.6: Relevant nuclear ground state properties from Hartree-Fock calculations, taken from
[Gor01].

Isotope M (HF ) −M (exp) β
(HF )
2 β

(HF )
4 r

(HF )
ch

[MeV] [fm]

18Ne 0.7 0.18 0.0 2.96
19Ne 0.2 0.19 0.01 2.94
20Ne -0.5 0.35 0.00 2.96
21Ne 0.3 0.40 -0.01 2.97
22Ne -0.2 0.40 -0.04 2.96
23Ne 1.3 0.29 -0.01 2.95
24Ne 0.8 -0.3 -0.05 2.94
25Ne 2.1 -0.19 -0.02 2.93
26Ne 2.2 -0.07 0.00 2.93
27Ne 3.1 -0.07 0.00 2.95
28Ne 2.1 0.13 -0.01 2.98

Hartree-Fock (HF) calculations of Goriely et al. [Gor01] were intended to give predictions

of nuclear ground state masses all over the nuclear chart. The nuclei were modelled in the

framework of the Hartree-Fock method (HFBCS-1), with pairing correlations described by

the BCS formalism. The nuclear force used in the calculations was of the Skyrme type (10-

parameter MSk7), together with a 4-parameter δ-function pairing force and a 2-parameter

phenomenological Wigner term. The parameter set was fitted to reproduce 1888 experimental

ground state masses from the Audi-Wapstra tables [Aud93], for which the rms error was

0.738 MeV.

Besides the nuclear masses many other nuclear parameters were calculated. The deforma-

tions parameters β2, β4, and rms charge radii rch. These are collected for the neon isotopes in
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table 8.6. The theoretical quadrupole deformation parameters are plotted together with the

βDM
2 deduced from the droplet model in figure 8.5, where they appear as down-triangles. The

rms charge radii and the differences in ms radii δ〈r2〉20,A calculated from these are plotted as

down-triangles in figure 8.6.

8.4.3 Relativistic Mean-Field Calculations

Table 8.7: Relevant nuclear ground state properties of the even-even neon nuclei from relativistic
mean-field calculations, taken from [Lal99].

Isotope β
(RMF )
2 β

(RMF )
4 r

(RMF )
ch

[fm]

18Ne 0.001 0.000 3.066
20Ne 0.186 0.054 3.020
22Ne 0.350 0.070 3.000
24Ne 0.191 0.024 2.956
26Ne 0.001 0.000 2.955
28Ne 0.000 0.000 2.993

The calculations of Lalazissis et al. [Lal99] are based one the relativistic mean field

(RMF) approach. The corresponding Lagrangian uses the 9-parameter set called ”NL3”, and

includes pairing by the use of the BCS formalism. In contrast to the two former theoretical

approaches, the RMF theory is less phenomenological and is limited to even-even nuclei. The

parameter set NL3 was determined by a fit to the ground-state charge radii, binding energies

and neutron radii of 10 spherical nuclei [Lal97].

The predicted properties of interest are listed in table 8.7. Similarly to the prediction of

the calculations presented in the previous sections, the deformation parameters β2, the rms

radii rch, and δ〈r2ch〉 can be found in figures 8.5, and 8.6, indicated by asterisks.

8.4.4 Hartree-Fock Calculation in the Lower sd Shell

Table 8.8: Relevant nuclear ground state properties of the even-even neon nuclei from deformed
Hartree-Fock calculations, taken from [Sii99].

18Ne 20Ne 22Ne 24Ne 26Ne 28Ne

β
(DHF )
2 0.00 0.38 0.33 -0.22 0.20 0.17

r
(DHF )
ch [fm] 3.011 3.009 2.971 2.956 2.961 2.999

Siiskonen et al. [Sii99] concentrated their theoretical study on the even-even isotopes

of oxygen, neon, and magnesium up to the neutron drip-line. They compare the predic-

tions of shell model calculations and calculations using a deformed Skyrme-Hartree-Fock

(DHF) model with axial symmetry and BCS pairing included. Using Skyrme forces with the

parametrizations SkI6, RATP, Z∗
σ, and SkX (see references in [Sii99]) they obtain ground-

state deformations and rms radii. The authors find the SkI6 parameterization to give the

best overall agreement with experimental data in the O, Ne, Mg region. The results of these
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model calculations for the rms nuclear charge radii rch, and deformation parameters β2 (index

”DHF”) are given in table 8.8.

The deformation parameters β
(DHF )
2 are included in figure 8.5, indicated by diamonds.

Values for δ〈r2〉 were calculated from the given rms radii and are plotted together with the

other data as diamonds in figure 8.6.

8.4.5 Summary of the Theoretical Results
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Fig. 8.5: Comparison between experimental data of absolute deformation parameter |β2|,
calculated using the droplet model equations, compared to theoretical values
([Möl95, Gor01, Lal99, Sii99]).

From figures 8.3 and 8.4 can be seen that the charge radii and their isotopic variation

are much better reproduced by theory than the absolute values of the deformation. On the

average, the different theoretical approaches predict the absolute rms charge radii rch equally

well. Similar, a remarkable agreement is found in the structure of the δ〈r2〉 curves given by

experiment and theory. All of them show a maximum close to A = 20, a flat minimum in the

region of A = 24 − 26, and increasing δ〈r2〉 towards A = 30.

For the absolute rms radii the rms deviation from experimental values are smallest for the

two HF calculations [Gor01, Sii99]. Nevertheless, the prediction of [Gor01] gives the largest

deviation from the experimental reference radius of 20Ne [Fri95]. This shifts the whole curve

of predicted δ〈r2〉 values. Also the shape of the nuclei in terms of quadrupole deformation

seems to be reproduced best by the two HF models (see Fig. 8.5), although all the models

predict β2 values which are at least 30% smaller than the values derived from B(E2) values

assuming the rotator model. This behavior may be understood by the fact that the nuclei in

this region do not behave like rigid rotors. Especially the assumption of well defined rotors

has to be questioned in the case of 18Ne and 24Ne where the E(4+)/E(2+) energy ratios

suggest vibrational excitations. Furthermore, the calculation of β2 is sensitive to choice of
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the terms in the series expansion of Q0 which are not negligible for large deformations.
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Fig. 8.7: Comparison for the isotopes 24Ne,
26Ne, 28Ne – prolate or oblate?

None of the theoretical calculations predicts

a large quadrupole deformation for 18Ne, 26Ne

and 28Ne. In particular, the position of 18Ne at

the shell closure N = 8 leads to spherical nuclei

in the models. Siiskonen et al. [Sii99] attribute

the discrepancy with the large experimental de-

formations to the failure of ”the Bohr-Mottelson

dynamics or of the HF results”. A simple argu-

ment against the rotational character of 18Ne is

its E(4+)/E(2+) energy ratio, as pointed out in

section 8.2.2. It seems that the large B(E2) value

as well as the large radius have their origin in a

pronounced vibrational character of this nucleus.

This may also explain the large scattering of the

predictions for the radius of 18Ne.

Very interesting is the inspection of the defor-

mation parameters β2 predicted by Möller et al.

and by Goriely et al. in the region of A > 23. Both calculations yield negative deformations

corresponding to an oblate shape. Lalazissis et al. ([Lal99], Tab. B) mention 24Ne as a nu-

cleus ”with possible shape coexistence in the ground state”. Their model gives a very small

difference in the binding energy of prolate and oblate states. Similarly, the calculation of

Siiskonen et al. show oblate deformation for 24Ne.

As the sign of the deformation parameter cannot be determined from the B(E2) values,

all β2 were assumed to be positive in the droplet model calculations. Taking the predictions

serious, and using experimental deformations with negative sign for A ≥ 24, the droplet

model leads to δ〈r2〉 values which are plotted in figure 8.7. The up triangles show the earlier

droplet values of δ〈r2〉 from positive β2 values, the dots show the values for negative sign.

By taking the sign information seriously, the agreement between the experimental and the

model values can be improved – possibly an argument for oblate deformation in this region.

In summary the calculations of Siiskonen et al. [Sii99] seem to give the most realistic

description of nuclear ground state properties in the region of the even-even isotopes of O,

Ne, and Mg. The calculation of Goriely et al. [Gor01] was intended for a large scale mass

table. Nevertheless it yields good agreement for the radii of the heavy neon isotopes and 18Ne,

whereas it fails to predict the maximum in the radii observed for 19Ne and 20Ne. It is the

only calculation predicting a moderately non-spherical shape of 18Ne. The largest deviations

from the experimental data are observed in the results by Möller and Nix [Möl95] obtained

from macroscopic-microscopic calculations based on the FRDM. This type of model is better

suited for heavy nuclei, and cannot hold for few-nucleon systems where individual particles

play an important role. Also the unrealistically large hexadecapole deformation parameter

β4 predicted in the region around 20Ne probably belongs into this context.
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8.4.6 Conclusion for the sd-shell Isotopes with A ≥ 18

The strong deformation of 18Ne found from the measured B(E2) value is supported by the

observation of a large experimental ms charge radius, provided that the DM is a reasonable

approach for the description in terms of empirical deformation values. This assumption is

strongly suggested by the success of the DM description presented in section 8.3. On the other

hand, this is contrasted with the energy ratio E(4+)/E(2+) = 1.78. This can be taken as an

evidence for vibrational rather than rotational excitation, which leads as well to noticeable

mean square deformations and changes in the radius. Thus, 18Ne cannot be considered to be

a good rotator with static deformation.

20Ne, which serves a the reference isotope for the ms charge radii, exhibits strong defor-

mation, having the largest quadrupole deformation in the Bohr rotator model experimentally

known in the sd shell. This finding is well known and has been discussed since a long time.

The spectrum of 20Ne is discussed in some length in the book of Bohr and Mottelson ([Boh75],

p.96). 20Ne is specified as a good rotator with strong static quadrupolar deformation. As

an evidence for this is seen in the changes of B(E2,i → f)/B(E2,2 → 0) ratios within the

ground-state band([Boh75], p.98). Similarly the K = 2 band B(E2)-value relations show

values corresponding to a rotational spectrum, as well as the energies of the three levels

Kπ = 0+, 2−, and 0−.

Many properties of 20Ne such as the strong deformation can be understood by 16O+α

cluster-model [Buc75, Buc95, Duf96]. In this model the nucleus is described by a 16O core

(which itself can be seen as a 4-α cluster) plus an additional α-particle bound to the core.

With this model it is phenomenologically easy to understand the large deformation and the

quadrupole moment caused by the α-particle outside a spherical core.

The behavior of the isotopes with A ≥ 21 can as well be understood in terms of deformation

properties. The static deformation calculated for 21Ne and 23Ne from the spectroscopic

quadrupole moments found by laser spectroscopy fits smoothly into the trend of βDM
2 values

calculated from the B(E2) values of the even isotopes. Even though the differences in ms

charge radii, calculated by the use of the DM, follow the experimental δ〈r2〉 very well as is

shown in figure 8.4, the assumption of static deformation is again questioned from the energy

ratio E(4+)/E(2+) observed for 24Ne, which indicates dynamic deformation. Unfortunately,

these energy ratios are not available for 26Ne and 28Ne.

23Ne and 24Ne are found to have the smallest deformation of all neon isotopes as is seen

from the plot of β2 in figure 8.3. Assuming that the deformation of 24Ne is overestimated by

the B(E2) values, due to vibrational excitations, 24Ne seems to mark the minimum of static

deformation. The occurrence of oblate deformation for the heavier isotopes, as predicted

by theoretical calculations, cannot be confirmed from the B(E2) values alone. However,

in combination with the radii, better agreement between the experimental data and the

deformed DM description is obtained if negative β2 parameters are assumed for 24,26,28Ne,

corresponding to oblate deformation in this region.

Towards the neutron shell closure at N = 20 a decrease of deformation is expected, but the

experimental data show the opposite behavior [Thi75, Det79, Gui84]. This can be seen in the

context of the so-called ”island of inversion” postulated for the region of N ≈ 20 and Z ≈ 11,
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which is discussed in a number of articles (see [Pov94, Cau98, Uts99, Cau01] and references

therein). The discovery of this breakdown of the shell closure goes back to measurements of

the mass and the spin of 31Na [Thi75], and was attributed to a shape change from spherical to

prolate [Cam75]. Later experiments on magnesium, other sodium and neon isotopes showed

a similar behavior of the isotopes around N = 20. The experimental information indicating

deformed nuclei led to a shell-model interpretation by the intrusion of a 2p−2h configuration

(i.e. belonging to the fp shell) which is intrinsically deformed [Pov94]. The shell-model study

of Utsuno et al. [Uts99] predicts the onset of this effect for neon isotopes with N > 26. The

sd-shell calculation reproduces the experimental E(2+) energy of 26Ne, whereas 28Ne shows

large discrepancies between experiment and theory. This is interpreted as arising from large

2p−2h contributions to the sd-shell wave function leading to a deformed ground state in this

nucleus.

8.5 Separate Discussion for 17Ne

So far, the properties of 17Ne were excluded from the discussion of the results. 17Ne is an

exceptional case in the sense that it is not an sd-shell nucleus and that proton-halo properties

have been postulated and discussed in numerous publications of recent years.

8.5.1 Experimental Data from Scattering Experiments

Most of the discussion about the charge radius of 17Ne goes back to the experiments of Ozawa

et al. [Oza94]. In these experiments the nuclear matter radii of three isobars with A = 17 were

determined from interaction cross sections using a Glauber-model analysis [Tan85]. These

cross sections were measured from the transmission of 17N, 17F and 17Ne beams with a kinetic

energy of 700 MeV/u through different targets. In all cases 17Ne exhibits a larger interaction

cross section and thus a larger ms radius than the radii of the neighboring nucleus 17F, and

the mirror nucleus 17N. This is interpreted as an isospin antisymmetry, explained by the

assumption of a large contribution of the (πs1/2)
2 configuration of the two protons above the

N = 8 shell – prerequisite for a proton halo. The data on nuclear matter radii published by

Ozawa et al. [Oza94] can be found in the leftmost column of table 8.9.

Ozawa et al. are the only authors who explicitly give values for a rms charge radius

rch. This is derived by folding the charge distribution of the proton with the point proton

distribution which is given by the Glauber model analysis. The convolution leads to a simple

expression for the rms charge radius which is given by (see e.g. [Lal99])

rch =

√
(

r
(0)
p

)2
+ (rp)

2 , where r(0)p = 0.8 fm . (8.44)

All other publications quoted below give values for the rms proton (rp), neutron (rn) and

matter radius (rm). The rms charge radius in table 8.9 was calculated from rp by the use of

equation (8.44).
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Table 8.9: Data on nuclear radius parameters of 17Ne from one experimental and four theoretical
publications. The data marked with (*) are calculated rp using equation (8.44). The
experimental value of the present work is composed of the absolute radius given in [Fri95]
and δ〈r2〉 from laser spectroscopy.

[Oza94] [Zhu95] [Zhu95] [Tim96] [Kit97] [Kit97] this
(CSF1) (CSF2) (πd5/2)

2 (πs1/2)
2 work

rch [fm] 2.90(7) 3.05(*) 2.99(*) 2.82(*) 2.953(*) 3.21(*) 3.045(7)

rp [fm] 2.79(7) 2.94 2.88 2.70 2.843 3.105 -

rn [fm] 2.69(7) 2.62 2.62 2.35 2.526 2.526 -

rm [fm] 2.75(7) 2.81 2.88 2.56 2.711 2.717 -

8.5.2 Theoretical Studies of the Structure of 17Ne

Zhukov and Thompson [Zhu95] use the data of Ozawa et al. [Oza94] as comparison with a

three-body 15O+p+p model with Borromean binding structure (none of the subsystems is

bound if one of the three constituents is removed). They calculated radii of 17Ne from two

models with two nuclear forces for each model. The results of these calculations [Zhu95] are

given in table 8.9. The selected values are those from a Fadeev calculation [Ban92] with a

SSC(C) force [Tou82] (CFS1), and a gaussian force [Joh90] (CFS2). The second model, the

hyperharmonics method [Zhu93] yields the same radius properties as the CSF2 calculation,

and is not included in the table. The authors conclude that 17Ne ”can be considered as a very

promising candidate” for a proton halo with a proton radius exceeding the radius of the the

neutron distribution by about 0.3 fm , and a proton wave function having a 26% probability

of (πs1/2)
2, which is the typical halo configuration, and a 70% probability of (πd5/2)

2.

The possibility to explain the reaction cross sections by a proton halo motivated as well

the theoretical study of Timofeyuk et al. [Tim96]. They investigated the mirror nuclei 17N,

and 17Ne in a three body cluster model (GCM) [Bay89], where 17Ne is again described

by a 15O+p+p, and 17N by a 15N+n+n configuration. Timofeyuk et al. [Tim96] find a

shallow minimum in the center region of the calculated 17Ne proton-density distribution.

The authors conclude that this is a sign that the two last protons ”...occupy 1s1/2 states

rather than 0d5/2states”, but do not give numbers for the wave-function composition. The

matter distributions calculated in the model are almost indistinguishable for the two mirror

partners, showing only small differences in the far tails of the radial distributions. The proton

and neutron radii calculated for the two nuclei are symmetric with respect to the isospin.

Hence, ”the last two neutrons in 17N should also occupy a 1s1/2 state rather than a 0d5/2

state”, which contrasts the analysis of 17N by Ueno et al. [Uen96]. Nevertheless, Timofeyuk

et al. [Tim96] criticize the analysis of [Oza94] which seems to underestimate the radius of
17N, and thus introduces the radial differences in comparison with 17Ne. On the basis of this

discussion the authors conclude that 17Ne ”should not be considered as a halo nucleus”.

Finally Kitagawa et al. [Kit97] use the data of Ozawa et al. [Oza94] for a comparison

with their results of Hartree-Fock calculations. Additionally the scattering experiment on

A = 20 isobars [Chu96] provided experimental data on reaction cross sections and the rms

nuclear charge radius of 20Ne. Kitagawa et al. [Kit97] use these data for comparison with

the theoretical calculation of the cross sections and the rms charge radius of 20Ne which were



124 8 Nuclear Shapes and Sizes

performed in the same model as 17Ne. In a first step the nuclear density is modelled by a set

of wave functions, which are obtained by the HF method using a Skyrme-type interaction

(SGII), where the potential depth is adjusted to the empirical proton separation energy. On

basis of these calculations Kitagawa et al. [Kit97] obtain rms matter radii, as well as the

proton and neutron distribution of 20Ne and for a (πd5/2)
2 and a (πs1/2)

2 configuration of the

sd-shell proton pair of 17Ne. These are tabulated in table 8.9. The Glauber model reaction

cross sections were calculated from the theoretical radii and compared to the experimental

data from Ozawa et al. [Oza94]. The HF approach of Kitagawa et al. [Kit97] does not

lead to an unambiguous conclusion. On the one hand they point out that ”the density

distribution of 17Ne ... shows a clear sign of a proton halo in the case that the last two

protons occupy 2s1/2”. This is contrasted by comparing the radii for the mirror pair 17Ne-
17N: ”...the isospin dependence is obtained in a reasonable way by the calculations with 1d5/2

valence configuration...”. From this point of view ”... the evidence of proton halo is still not

conclusive”.

8.5.3 Comparison with Data from Laser Spectroscopy

2.8

2.9

3.0

3.1

3.2

r π
,c

h
. [

fm
]

[Zhu95]

(CFS1)

[Zhu95]

(CFS2)

[Oza94]

[Tim96]

[Kit97]

(1s1/2)π
2

[Kit97]

(1d5/2)π
2

Fig. 8.8: Comparison between the ex-
perimental data of rch from
the present work and data
from cross section measure-
ments and from theory.

The theoretical results on nuclear charge radii pre-

sented in the last section have to be compared to the

data from laser spectroscopy. To do so, the absolute

radius of 17Ne was calculated. The input parameters

are δ〈r2〉20,17 of 17Ne, and the experimental radius

of 20Ne of rch = 〈r2〉1/2 = 3.006(59) fm published by

Fricke et al. [Fri95]. The result is given in the last

column of table 8.9. In figure 8.8 the experimental

value is indicated by a dashed horizontal line, with

the total error comprising the sum of the statistical

and systematic error of the absolute radius of 17Ne.

Similarly, the values of δ〈r2〉20,17 were calculated

from the experimental and theoretical input data on

the absolute radii gathered in table 8.9. The corre-

sponding comparison with the experimental value

from the isotope shift is shown in figure 8.9. The

data contained in the figures 8.8, and 8.9 consists

of:

• The experimental value of rch and δ〈r2〉 measured by laser spectroscopy indicated by

a dashed line with the error indicated as shaded area.

• Experimental rms charge radius rch given by Ozawa et al. [Oza94]. δ〈r2〉 calculated

from the values of rch from the publication of Ozawa et al. [Oza94], and Fricke et al.

[Fri95]. These data are indicated by filled circles.

• Theoretical values of rch published by Zhukov et al. [Zhu95], Timofeyuk et al. [Tim96]

and Kitagawa et al. [Kit97]. δ〈r2〉 calculated from the theoretical values of rch for
17Ne,20Ne published by Kitagawa et al. [Kit97], indicated by open circles.
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Fig. 8.9: Comparison between the ex-
perimental data of δ〈r2〉 of
this work and values from
cross section measurements
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gawa et al. [Kit97].

The comparison of the available data with the

experimental value does not lead to a clear picture.

Taking a look at the absolute radii rch, the earliest

values for 17Ne by Zhukov et al. [Zhu95] are con-

sistent with the value from laser spectroscopy. The

theoretical value of rch given by Timofeyuk et al.

[Tim96] shows the largest deviation from the experi-

mental value. The Hartree-Fock calculation of Kita-

gawa et al. [Kit97] does not show good agreement

with experiment for either assumption about the

wave function of 17Ne. On the other hand these cal-

culations underestimate systematically the charge

radii, as is seen from the comparison with the known

radius of 20Ne given by Fricke et al. [Fri95]. Correct-

ing the 17Ne radius of Kitagawa by the difference

between the theoretical and experimental radius of
20Ne (δrch = 0.096 fm), yields an absolute radius in

the (πd5/2)
2 state of 3.049 fm, which is consistent

with the experimental value.

Unfortunately [Oza94, Zhu95], and [Tim96] published only values for 17Ne but not for 20Ne.

Thus, a comparison of the experimental and theoretical values of δ〈r2〉 is always hampered by

the lack of consistently calculated theoretical of both, 17Ne and 20Ne. Consequently, only the

experimental charge radius published by Ozawa et al. [Oza94] together with the absolute

radius of Fricke et al. [Fri95] was used for comparison. The only consistent theoretical

values were published by Kitagawa et al. [Kit97]. The systematic effect mentioned above is

eliminated in the calculation of δ〈r2〉. the Kitagawa value for the (πd5/2)
2 state is in good

agreement with the value of δ〈r2〉 measured by collinear laser spectroscopy.

In summary it seems that 17Ne does not exhibit clear halo-nucleus behavior from the view-

point of the data discussed above. The discussion on radii supports the picture already found

by the comparison of the magnetic moments of the mirror nuclei 17Ne-17N (see Sec. 7.3.3):

the nuclear structure of 17Ne is a mixture of wave functions for the two protons above a 15O

core

17Neg.s. = 15Og.s. ⊗
∣
∣α (πd5/2)

2 + β (πs1/2)
2
〉
.

From the publication of Fortune and Sherr [For01], who investigated the 17Ne ground state

in the framework of the shell model, the contribution of the (πs1/2)
2 state is about 22%.

This is consistent with the discussion of the nuclear moment and the value of 26% given

by Zhukov [Zhu95]. But the conclusions drawn from these numbers are converse. Zhukov

and Thompson consider 17Ne ”as a very promising candidate” for a proton halo. In contrast,

Fortune and Sherr conclude from their calculations ”that the (πd5/2)
2 configuration dominates

for the last two nucleons and not (πs1/2)
2 as suggested by others”. Furthermore Millener

[Mil97] investigated isospin asymmetries in β-decays for the mirror pair 17Ne-17N. He finds

as well a dominance of (πd5/2)
2 over the (πs1/2)

2 state.
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8.6 Comparison with Unpublished RMF Data on Radii

In connection with this thesis theoretical calculations were performed by the group of Rein-

hard et al. [Rei01], which will be published together with the experimental data. These
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Fig. 8.10: Comparison of experimental nuclear radii of neon with the results of
Skyrme-HF and RMF calculations of Reinhard et al. [Rei01]. The ex-
perimental value range defined by the statistical and systematic errors is
shown as grey area. The theoretical radii (dashed curves) were calculated
by the use of different interactions.

calculations were performed in the framework of the Skyrme Hartree-Fock and the relativis-

tic mean field (RMF) model employing five different forces. The theoretical model involves

deformation properties, which only partly determine the trend of the radii. The results of the

calculations for absolute radii are plotted in figure 8.10 together with experimental results

which were calculated using the δ〈r2〉 values from laser spectroscopy and the absolute radius

of 20Ne from [Fri95]. At the present time these calculations are only available up to the

isotope 24Ne, but work was in progress to extend the theoretical data to the range of isotopes

covered by the experiment.

As can be seen from the plot, the models are able to reproduce the general trend of the

charge radii increasing towards the proton drip-line. Still the structure of the experimental

curve cannot be reproduced in detail. Nevertheless, it is very interesting to compare exper-

iment and theory in the vicinity of 17Ne. All theoretical predictions show a steep increase

of the radius from 18Ne to 17Ne and no shell effects for 18Ne. Hence, the behavior of the

experimental data for these nuclei can be interpreted without the necessity to argue in favor

of a halo, rather suggesting a ”standard” structure.
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Chapter 9

Summary and Outlook

The aim of this work was the investigation of short-lived neon isotopes far off stability by

collinear laser spectroscopy. The measurements took place at the on-line mass separator

ISOLDE at the European nuclear physics center CERN in Geneva, Switzerland. The exper-

imental work included the application and optimization of a method which allows to detect

optical resonances under very challenging conditions – i.e. very low primary ion beam in-

tensities, necessitating extremely high sensitivity, and very high selectivity due to otherwise

overwhelming background levels. From the experimental spectra isotope shifts and hyperfine

structure parameters were to be extracted to study nuclear phenomena in the lower sd shell,

in the vicinity of the neutron shell closures N = 8 and N = 20. The nuclear moments, which

are calculated from the hyperfine structure parameters can be used to test predictions of

the single-particle structure of the odd-A nuclei in the framework of the nuclear shell model.

Complementary the differences in mean square charge radii, which can be determined from

the isotope shift, give information about the collective behavior of the investigated nuclei.

The appropriate nuclear models of the relativistic mean field or the Hartree Fock type were

to be tested with the acquired data. Of special interest in this context is the discussion about

a possible proton halo structure of 17Ne, which should show up in the observables accessible

to laser spectroscopy.

In collinear laser spectroscopy a large Doppler shift is involved, which depends on the

isotope mass and the acceleration voltage of the incoming ion beam. The transition frequency

between two atomic states is determined by measuring the resonance peak position in terms

of an acceleration voltage. To reach the precision required for the small field shifts of neon

isotopes, the beam energy in terms of an acceleration voltage of the incoming ion beam had

to be determined to better than a 2 V at a typical acceleration voltage of 60 kV.

The direct beam energy measurement was achieved by applying a new method which is

based on collinear-anticollinear laser spectroscopy. In this geometry two closely lying atomic

transitions are shifted into opposite directions due to the direction dependence of the Doppler

shift. If the atomic levels are spaced appropriately they cross within the experimental working

range of the collinear laser spectroscopy setup. Fortunately such a pair of transitions with

very accurately known wave numbers was found in the atomic spectrum of 20Ne. This newly

implemented beam-energy measurement technique was realized by the use of the standard

collinear laser spectroscopy setup with only minor modifications.

Besides the advances in measuring the beam energy, the laser system was upgraded to
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achieve an improved long-term stability of the laser frequency. This improvement is important

for experiments which require measuring times of several hours at stable laser conditions.

The sensitivity for laser spectroscopy on short-lived isotopes was achieved by implement-

ing the method pioneered by A. Klein in previous measurements on argon [Kle96]. Here

the method of detecting an optical resonance non-optically by collisional reionization was

combined with the detection of the β-particles emitted by the radioactive isotopes. With the

introduction of an additional identical detection system the signals can now be normalized

to the primary beam intensity. This is necessary because the primary beam intensity varies

strongly depending on the target conditions under proton bombardment. This normalization

and the improvement of the laser stabilization enabled the measurement of the resonance

of 28Ne at an extremely low primary ion beam intensity of 50 ions per proton pulse on the

target within about 4 hours.

The experiments on the odd-A neon isotopes yielded the nuclear moments which were

determined from the measured hyperfine structure parameters. The magnetic moments of
17Ne and 25Ne are reported for the first time. The spin of 25Ne was found to be 1/2. Similarly

the quadrupole moment of 23Ne was measured for the first time, and the accuracy of the

magnetic moment was improved. The comparison of the results on 19Ne and 21Ne with

previously known data gave excellent agreement. The nuclear moments were compared with

values from nuclear shell-model calculations by A. Brown, showing fairly good agreement

over the sd shell.

The magnetic moment of 17Ne was interpreted separately in the framework of the isoscalar

moment which can be calculated for the mirror partners 17Ne and 17N. Both nuclei show sym-

metric deviations from the general trend of p1/2 magnetic moments but follow the systematics

of the isoscalar moments. This behavior implies mirror symmetry of the two isotopes, so that

the interpretation of the magnetic moment of 17N which was given by Ueno et al. [Uen96]

holds as well for 17Ne.

The isotope shifts δνIS were measured in the full range of 17Ne to 26Ne, and for 28Ne

with respect to the reference isotopes 20Ne. From these data it was possible to extract the

differences in mean square nuclear charge radii δ〈r2〉. The comparison with theoretical data

implies that the changes in the charge radii can be explained well by nuclear deformation

effects. Very surprising for such low-A systems the radii derived from the droplet model

with experimental deformation parameters match the experimental values rather well. The

agreement becomes even better, if a shape transition from prolate to oblate is assumed when

the mid shell is crossed at 24Ne, which is supported by theoretical predictions. The behavior of

the nuclear charge radii implies that the shell closure at 18Ne, still showing strong deformation

effects, is softened. Similarly approaching the neutron shell closure N = 20 does not indicate

decreasing deformation for 28Ne. This behavior is understood to be linked to the so-called

”island of inversion”, which was found to determine the nuclear structure in the vicinity of
31Na and 32Mg.

The comparison of the nuclear charge radius of 17Ne with theoretical predictions does

not lead to a conclusive picture. Nevertheless the experimental result does not support a

pronounced proton halo structure of this nucleus. A structure dominated by a d5/2 proton

pair with small s1/2 admixtures seems to be more likely.
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The experimental improvements made for this work give good prospects for further mea-

surements on short-lived isotopes in the region of light elements. Thus, the improved exper-

imental setup was already used for studies of argon isotopes in the neutron-rich region close

to stability. An extension to beyond the N = 28 shell closure is planned for the future. Fur-

thermore the odd krypton isotope 73Kr was investigated to complete an earlier experiment

yielding the nuclear spins, moments and nuclear charge radii of neutron-deficient krypton

isotopes.

The improvements achieved by developing a beam-energy measurement technique enable

collinear laser spectroscopy measurements of isotope shifts with unprecedented accuracy.

Besides being useful for laser spectroscopy experiments the measurement of the beam energy

is of interest for other experiments like ion beam decelerators and bunching facilities, which

require a precise knowledge of the actual beam energy as well. Still it will be very difficult

to push the possibilities of measuring field shifts by collinear laser spectroscopy experiments

towards lower masses.
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Appendix A

Isotope Shift Data for all the Runs

In the tables A.1, A.2 and A.3, δν20,A
line is the frequency shift between a resonance line of

an arbitrary isotope and the reference 20Ne without the correction for the difference in

the optical and non-optical signals. The statistical errors of the uncorrected line posi-

tion ∆stat(δνline) results from the scattering of the data, the errors from the fit of the

lines are neglected, because it is found ∆(δνscatter) >> ∆(δνfit). The systematic errors

∆sys(δνline) are resulting from the statistic uncertainties of the beam-energy measurement

∆U stat
MAIN =

√

(∆U stat
ISOL)2 + (∆U stat

plasma)
2. These errors are run dependent, the run indepen-

dent systematic errors of the beam-energy measurement are included later and contribute to

the errors in table 6.4. The total error of the individual run ∆(δν20,A
line,corr) is given by the

linear sum ∆stat(δνline) + ∆sys(δνline).

In column 5 the non-optical line correction parameter δνcorr
line with its error ∆(δνcorr

line ) in

column 6 is found. The final values of the corrected shifts δν20,A
line,corr of an individual line of a

hyperfine multiplet of all the evaluated runs is presented in column 7. The data printed in bold

characters are the weighted mean values for the isotope shifts δν20,A
IS , with ∆(δν20,A

line,corr) as

weights. The error given in parenthesis is the sum of the weighted mean error of ∆(δν20,A
line,corr)

and the error of the line-position correction ∆(δνcorr
line ).
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Table A.1: Data on line positions and isotope shifts of 17,18,19Ne.

run δν20,A
line ∆stat(δνline) ∆sys(δνline) δνcorr

line ∆(δνcorr
line ) δν20,A

line,corr ∆δν20,A
line,corr

[MHz] [MHz] [MHz] [MHz] [MHz] [MHz]

17Ne

Fi = 5/2 → Ff = 5/2 wmv δν20,A
line,corr=-3473.951(0.978) MHz

09/98 -3476.081 0.526 0.960 1.474 0.123 -3474.607 1.486
10/99 -3475.552 1.378 0.104 1.473 0.122 -3474.079 1.482
04/00 -3472.798 2.622 0.068 1.422 0.117 -3471.376 2.690

Fi = 5/2 → Ff = 3/2 wmv δν20,A
line,corr=-1084.715(2.448) MHz

10/99 -1086.188 2.344 0.104 1.473 0.122 -1084.715 2.448

Fi = 3/2 → Ff = 5/2 wmv δν20,17
line,corr=-5135.118(2.822) MHz

10/99 -5136.591 2.718 0.104 1.473 0.122 -5135.118 2.822

Fi = 3/2 → Ff = 3/2 wmv δν20,17
line,corr=-2749.918(1.150) MHz

09/98 -2745.783 1.980 0.960 1.474 0.123 -2744.309 2.940
10/99 -2752.563 1.195 0.104 1.473 0.122 -2751.090 1.299
04/00 -2750.387 4.504 0.068 1.422 0.117 -2748.965 4.572

δν20,17
IS,corr = −3183.847(1.169) MHz

18Ne

09/98 -1996.088 0.574 0.606 1.487 0.123 -1994.601 1.180
10/99 -2001.479 1.458 0.065 1.474 0.122 -2000.005 1.523
04/00 -1996.516 0.539 0.043 1.478 0.122 -1995.038 0.582

δν20,18
IS,corr = −1995.484(0.616) MHz

19Ne

Fi = 5/2 → Ff = 5/2 wmv δν20,19
line,corr=-248.695(0.742) MHz

09/98 -252.576 2.741 0.286 1.487 0.123 -251.089 3.027
10/99 -251.737 0.910 0.031 1.474 0.121 -250.263 0.941
04/00 -246.664 1.294 0.020 1.478 0.122 -245.186 1.314

Fi = 5/2 → Ff = 3/2 wmv δν20,19
line,corr=-5968.290(3.360) MHz

09/98 -5961.881 9.462 0.679 1.487 0.123 -5960.394 10.141
10/99 -5970.738 3.530 0.031 1.474 0.121 -5969.264 3.561

Fi = 3/2 → Ff = 5/2 wmv δν20,19
line,corr=3723.331(1.003) MHz

09/98 3722.460 0.653 0.679 1.487 0.123 3723.947 1.332
10/99 3721.048 1.495 0.031 1.474 0.121 3722.522 1.526

Fi = 3/2 → Ff = 3/2 wmv δν20,19
line,corr=-1995.401(0.489) MHz

09/98 -1989.295 1.223 0.286 1.487 0.123 -1987.808 1.509
10/99 -1998.213 0.599 0.031 1.474 0.121 -1996.739 0.630
04/00 -1996.848 0.883 0.020 1.478 0.122 -1995.370 0.903

δν20,19
IS,corr = −947.424(0.741) MHz
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Table A.2: Data on line positions and isotope shifts of 21,22,23,24Ne.

run δν20,A
line ∆stat(δνline) ∆sys(δνline) δνcorr

line ∆(δνcorr
line ) δν20,A

line,corr ∆(δν20,A
line,corr)

[MHz] [MHz] [MHz] [MHz] [MHz] [MHz]

21Ne

09/98 873.255 0.756 0.262 -optical- -optical- 873.255 1.018
03/99 873.674 1.013 0.263 -optical- -optical- 873.255 1.276
10/99 874.288 1.788 0.028 0.750 0.031 875.038 1.847
04/00 877.761 1.359 0.019 1.515 0.125 879.276 1.503
07/00 872.063 1.313 0.060 1.552 0.128 873.615 1.501
11/99 875.620 1.303 0.024 1.525 0.126 877.145 1.453

δν20,21
IS,corr = 874.940(0.556) MHz

22Ne

05/99 1662.692 0.607 0.134 -optical- -optical- 1662.692 0.741
10/99 1663.703 0.426 0.054 -optical- -optical- 1663.703 0.480
04/00 1664.500 0.389 0.035 -optical- -optical- 1664.500 0.424
07/00 1662.791 0.345 0.113 -optical- -optical- 1662.791 0.458
11/00 1663.593 0.179 0.055 -optical- -optical- 1663.593 0.234

δν20,22
IS,corr = 1663.595(0.170) MHz

23Ne

05/99 2391.848 1.576 0.192 1.580 0.130 2393.428 1.768
10/99 2392.888 1.977 0.077 1.570 0.129 2394.458 2.054

δν20,23
IS,corr = 2393.810(1.379) MHz

24Ne

05/99 3049.902 0.927 0.245 1.592 0.132 3051.494 1.172
10/99 3054.632 0.635 0.099 1.567 0.129 3053.199 0.734
07/00 3051.031 1.001 0.208 1.549 0.127 3052.580 1.209
11/00 3049.263 0.979 0.101 1.571 0.130 3050.834 1.080

δν20,24
IS,corr = 3053.643(0.752) MHz
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Table A.3: Data on line positions and isotope shifts of 25,26,28Ne.

run δν20,A
line ∆stat(δνline) ∆sys(δνline) δνcorr

line ∆(δνcorr
line ) δν20,A

line,corr ∆(δν20,A
line,corr)

[MHz] [MHz] [MHz] [MHz] [MHz] [MHz]

25Ne

Fi = 5/2 → Ff = 5/2 wmv δν20,25
line,corr=4028.792(0.604) MHz

05/99 3049.902 1.457 0.295 1.585 0.131 4032.615 1.752
07/00 4026.683 1.653 0.250 1.573 0.130 4028.256 1.903
11/00 4026.715 0.563 0.121 1.563 0.129 4028.278 0.684

Fi = 5/2 → Ff = 3/2 wmv δν20,25
line,corr=976.238(1.069) MHz

05/99 975.132 0.905 0.295 1.585 0.131 976.717 1.200
11/00 972.828 2.236 0.121 1.563 0.129 974.391 2.357

Fi = 3/2 → Ff = 5/2 wmv δν20,25
line,corr=6144.093(1.475) MHz

05/99 6142.724 1.608 0.295 1.585 0.131 6177.309 1.903
11/00 6142.205 2.213 0.121 1.563 0.129 6143.768 2.334

Fi = 3/2 → Ff = 3/2 wmv δν20,25
line,corr=3094.609(0.457) MHz

05/99 3098.029 0.841 0.295 1.585 0.131 3099.614 1.136
07/00 3092.077 0.849 0.250 1.573 0.130 3093.650 1.099
11/00 3092.079 0.310 0.121 1.563 0.129 3093.642 0.560

δν20,25
IS,corr = 3654.737(0.659) MHz

26Ne

05/99 4213.748 0.930 0.340 1.558 0.129 4215.306 1.270
07/00 4212.800 0.681 0.288 1.573 0.130 4214.373 0.969
11/00 4215.575 0.728 0.139 1.578 0.130 4217.153 0.867

δν20,26
IS,corr = 4215.791(0.706) MHz

28Ne

05/99 5209.326 0.956 0.421 1.512 0.125 5210.838 1.377
11/00 5200.871 3.162 0.160 1.494 0.123 5202.365 3.322

δν20,28
IS,corr = 5209.596(1.396) MHz
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Appendix B

Line Compression Mechanism in
Accelerated Ion Beams

B.1 General Idea of Compression Mechanism

As described in [Kau76], the velocity distribution of the ion/atom beam experiences a com-

pression which is dependent on the acceleration voltage. To the knowledge of the au-

thor there is no analytical formula available in the literature which describing the veloc-

ity distribution resulting from this phenomenon. Attempts were made to explain simi-

lar effects, as an example Field et al. [Fie89]) investigate the compression of the velocity

distribution of a cloud of atoms accelerating in the gravitational field of a planet. How-

ever, the velocity bunching in accelerated ion beams was not yet described by an analyt-

ical formula. In the framework of this thesis the exact description of the line shape was

desirable, and an attempt was made to describe the line shape compression analytically.
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Fig. B.1: An ion cloud expanding in an
electrical field. The arrows in-
dicate the starting velocities.

In a simple picture a cloud of ions expands with

thermal energies from one point in all directions

of space, each ion with a starting velocity ~v =

(vx, vy, vz). The starting point is ~x = (0, 0, 0),

their velocity distribution should be Maxwellian.

It is assumed that the ion density is small enough

that repulsive forces due to their electrical charge

are negligible. The expansion takes place in a ho-

mogeneous electrical potential, which has a con-

stant gradient in z-direction ∂φ
∂z = const whereas

the potential is constant in the other directions.

The electrical field causes a force in +z direction,

and depending on the starting velocity the ions will

only be able to escape to +z as shown in figure B.1.

The kinetic energy gain of the ions is dependent on their starting position in the electrical

potential, i.e. the position where their velocity z-component is zero. An ion starting with a

velocity 0 will gain kinetic energy according to

∆Ekin =
∂φ

∂z
∆z. (B.1)
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An ion starting with a velocity component in the +z-direction will have an initial kinetic

energy, which adds to the gain from the field potential energy. Ions starting with velocities

in the negative z-direction will be stopped and then accelerated by the field. Because the

distance they have to travel in the field is bigger, their gain from potential energy is bigger

as well – actually equal to their kinetic energy at the beginning. Finally all the ions with

the same absolute starting velocity will end up in the same energy regime of the accelerated

ions, independent of their starting velocities’ z-directions
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Fig. B.2: Velocity compression of a Maxwell shaped distribution. The volt-
ages indicated are the acceleration voltages used for the different
profiles. The initial distribution at zero velocity is of Maxwellian
type. An ion temperature of 0.9 eV ≈ 20000 K is assumed. This
corresponds to a typical value of a rf plasma ion source such as used
at ISOLDE [Wol].

As an approximation a Maxwell distribution for the ion velocities in the z-direction is

assumed

P (vz) =

(
m

2πkT

)1/2

· e−mv2
z/2kT . (B.2)

Or written in terms of momenta:

P (pz) =

(
m

2πkT

)1/2

· e−p2
z/2mkT . , (B.3)

which is an expression for the kinetic energy. The kinetic energy of the ions after acceleration

is expressed by:

Ekin =
p′2z
2m

=
pz

|pz|
· p

2
z

2m
+ eU

︸ ︷︷ ︸

X

(B.4)

⇒ p′z = 2m
X

|X|
√

|X| (B.5)
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The factor pz/|pz| and X/|X| is needed to indicate the ion’s direction ±z. Replacing pz in

equation (B.3) yields an expression for the accelerated velocity distribution which compresses

with increasing acceleration as shown in figure B.2:

P (p′z) =

(
m

2πkT

)1/2

· e−p′2z /2mkT

= C · e−( pz
|pz |

·
p2
z

2m
+eU)2/(2kT×| pz

|pz |
·

p2
z

2m
+eU |)

(B.6)

The norm constant C is given by preservation of the integral under the curve. In parallel to

this thesis the line shape problem was investigated by another group at Mainz. Stefan Götte

derived an analytical formula for the normalization constant [Göt02]

C = N0

√
m

2πkT
· 1

exp
[√

eU
kTc2

]2
(

1 − erf

[√
eU
kT

]) , (B.7)

whereN0 is the initial area under the Gaussian distribution inside the ion source. In figure B.2

the velocity bunching effect is clearly visible even for very small acceleration voltages. In

practice the acceleration voltage will not be below 40 kV. Plotting of distributions at high

voltages was omitted for better visualization of the effect.

B.2 Compression Factor for Linewidth

After having derived the expression for the linewidth compression it is interesting to investi-

gate the linewidths resulting from the acceleration. Unfortunately, an analytical expression

for the FWHM could not be calculated. To get an idea about the magnitude of the com-

pression a numerical approach was chosen. In figure B.3 the dependence of width on voltage
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Fig. B.3: Behavior of the linewidth of the compressed velocity distribution as
a function of the acceleration voltage. The initial parameters are the
same as in figure B.2.
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dependence is plotted. The plot has a logarithmic ordinate, which represents the distribution

width in m/s. As can be seen, the distribution width decreases significantly with increasing

acceleration voltage. With acceleration voltages of about 60 kV a reduction by a factor of

1000 of the width of the velocity distribution can be expected.

Assuming an initial ion energy spread of 0.9 eV, corresponding to about 20000 K, which

is the typical order of magnitude for ions in a plasma ion source, the initial Doppler width

of the ”spectroscopic” transition of 20Ne ”inside the ion source” is given by ([Dem98], p.68)

∆νD =
ν0

c

√

8kT ln(2)/m = 11.05 GHz . (B.8)

Using the compression factor of 1000 at an ion-beam energy of 60 keV, residual Doppler

linewidths in the order of 11 MHz are found. This corresponds to the residual Doppler width

typically observed in experimental spectra.

B.3 Ions in Ion Sources

The principle outlined in the previous paragraph can be adapted to the situation inside a real

plasma ion source. Inside the source cavity the space is filled with the burning plasma. The

physics of ion sources and plasmas can be found in books like [Bro89]. Inside the plasma the

potential is constant, external fields are shielded from the interior region, quite similar to the

way a metal excludes electric fields from its interior. at the plasma borders a boundary layer

is formed between the plasma itself and the exterior region. This boundary layer is called

plasma sheath, and the potential inside the plasma drops to the potential of the outside wall

within the sheath thickness, given by the Debye length:

λD =

√

ε0kTe

e2ne
. (B.9)

Where Te is the electron temperature, which is of the order of several eV (1 eV =̂ 23216 K)

in the case of a discharge ion source [Bro89] similar to those used at ISOLDE. The parameter

ne, the so-called plasma density, is the number of electrons emitted by the ions of charge

state qi with number ni:
∑

qini = ne . (B.10)

When an external electrical field is applied on the plasma, the field can penetrate the plasma

only to a depth given by the high voltage sheath thickness:

dsheath = λD

√

Uexternal

kTe
(B.11)

The effect of the penetrating external potential and the thickness of the plasma layer is shown

schematically in figure B.4.
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distance / a.u.

Plasma egde /
position of outlet nozzle

without
external
potential
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external
potential

lD

dsheath

U = const.Plasma

Fig. B.4: Potential distribution at the plasma edge. The dimensions shown
in this figure are not to scale, the depth of the plasma sheath is
underestimated in comparison with λD.

Two important effects can be explained by the slope-like structure of the potential at the

ion source nozzle. On the one hand is a potential slope necessary for the velocity compression.

On the other hand the unknown acceleration potential can be attributed to the potential step

at the outlet orifice of the source . The total acceleration potential is extremely sensitive to

the position of ionization. If it takes place at the potential step, big differences between the

applied electrical voltages and the beam energy can be the result. The dependence on the

ion source conditions is supported by the measurements done in this work. The experimental

results of the measurements are presented in chapter 5.
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Appendix C

Small Formula Collection for Collinear
Laser Spectroscopy

In the literature the equations governing the physics of collinear can unfortunately only be

found in the simplified non-relativistic formulation. The purpose of this formula collection is

to give the full relativistic formulation of these equation together with a number of expression

which are useful in the daily experimental work.

C.1 Basic Equations

• Doppler shifted frequency νD of an atomic resonance frequency ν0:

νD = ν0 ± δνD = ν0 ×
1 ± β
√

1 − β2
(C.1)

• Relativistic factor β in dependence of the acceleration voltage:

β =
v

c
=

√

1 − m2c4

(eU +mc2)2
(C.2)

• Doppler shifted resonance frequency as a function of the acceleration voltage:

νD = ν0 ×
mc2 + eU ±

√

eU(2mc2 + eU)

mc2
(C.3)

C.2 Differential Doppler Shift

The Differential Doppler shift δνdiff is given by the Doppler shift in MHz per volt acceleration

voltage:

δνdiff =
∂νD

∂U
=

ν0

mc2

(

e+
e
(
mc2 + eU

)

√

eU (2mc2 + eU)

)

(C.4)

In the case of 20Ne the differential Doppler shift at 60 keV beam energy is δνdiff =

10.35 MHz/V.
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C.3 Isotopic Doppler Shift

A useful quantity for experimental purposes is the so-called ”isotopic Doppler shift”, the

frequency difference caused by the difference in mass between two isotopes:

δνiso = ν
(1)
D − ν

(2)
D , where ν

(2)
0 = ν0 + δνIS (C.5)

⇒ δνiso =
ν0

m1c2

[

eU (1) +
√

eU (1)(2c2m1 + eU (1))

]

− δνIS

− (ν0 + δνIS)

m2c2

[

eU (2) +
√

U (2)e(2m2c2 + eU (2))

]

(C.6)

Here U (1) and U (2) represent the resonance positions for the two isotopes (mass m1 and m2)

under investigation. The differential Doppler shift is defined as the frequency difference for the

case U (1) = U (2). Taking as an example the isotopic Doppler shift between the isotopes 20Ne,

and 21Ne (δνIS = 875 MHz) at a beam energy of 60 keV, it is found that δνiso = 29.10 GHz.

C.4 Isotope Shift

The isotope shift δνIS has to be calculated from the line positions U (1) and U (2) of the

corresponding isotopes. From these line positions the isotope shift becomes:

δνIS = ν0 ×
{

m2eU
(1) −m1eU

(2)

m1

[

m2c2 + eU (2) +
√

eU (2)(2m2c2 + eU (2))

]

+
m2

√

eU (1)(2m1c2 + eU (1))

m1

[

m2c2 + eU (2) +
√

eU (2)(2m2c2 + eU (2))

]

− m1

√

eU (2)(2m2c2 + eU (2))

m1

[

m2c2 + eU (2) +
√

eU (2)(2m2c2 + eU (2))

]

}

(C.7)

where m1, m2 represent the atomic mass of the corresponding isotope.
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Appendix D

Small Formula Collection for Beam
Energy Measurement

D.1 Acceleration Voltage from Collinear/Anticollinear Excitation

The measurement of the true ion beam energy relies on collinear/anticollinear excitation of

two closely lying atomic levels of one isotope.

νL =
ν

(1)
0

mc2
·
[

mc2 + U (1)e+
√

U (1)e(2mc2 + U (1)e)

]

(collinear)

=
ν

(2)
0

mc2
·
[

mc2 + U (2)e−
√

U (2)e(2mc2 + U (2)e)

]

(anticollinear) , (D.1)

The line positions of the two resonance lines can be written in terms of main acceleration

voltage and post-acceleration voltage:

U (1),(2) = Ucalib + U
(1),(2)
post (D.2)

Solving for Ucalib yields an expression for the calibrated beam energy (acceleration voltage)

Ucalib =

(

ν
(1)
0 + ν

(2)
0

)
√

m2c4
(

ν
(2)
0 − ν

(1)
0

)2
+ e2ν

(1)
0 ν

(2)
0

(

U
(2)
post − U

(1)
post

)2

2e (ν
(2)
0 − ν

(1)
0 )

√

ν
(1)
0 ν

(2)
0

− 1

2

(

U
(2)
post + U

(1)
post

)

− mc2

e
. (D.3)

The line positions in terms of the post-acceleration voltage is given by:

U
(1),(2)
post = U (1),(2)

prema ×Ddiv + U
(1),(2)
DAC × F

(1),(2)
cal ×Ddiv (D.4)

For small separations of the collinear and anticollinear line one finds

U (1)
prema = U (2)

prema , F
(1)
cal = F

(2)
cal (D.5)

D.2 Divider Ratio from Collinear/Anticollinear Excitation of two

Isotopes

If the ion beam energy was determined twice by using the collinear/anticollinear method by

the use of two isotopes, the divider ratio can be calculated. The part of the acceleration
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voltage, which is constant in time for the two isotopes, is

U
(1)
stat = UISOL + U

(1)
plasma + U (1)

prema ×Ddiv (D.6)

U
(2)
stat = UISOL + U

(2)
plasma + U (2)

prema ×Ddiv . (D.7)

UISOL and Uprema are electrically measured voltages, and Uplasma is the unknown offset

voltage measured by collinear laser spectroscopy. The voltage divider ratio can be calculated

from

Ddiv =
U

(1)
stat − U

(2)
stat

U
(2)
prema − U

(1)
prema

. (D.8)

Note that the measured beam energy and the divider ratio are coupled quantities. Thus,

the determination of both requires an iterative calculation. It was found that this iteration

converged for the present measurements.
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Appendix E

General Quantum Mechanics Formulae

E.1 Wigner-Eckart Theorem

For further information see [Hey94], p.50f, [Sak95], p.238f, or [Gre96], p.35f. The Wigner-

Eckart theorem is used for the calculation of matrix elements of spherical tensor operator

components T̂
(k)
κ . With its help it is possible to separate the part which is only dependent

on projection quantum numbers – ”m-quantum numbers” – and the other part that depends

on other properties (radial, angular momentum, etc.) of the operator and the state vectors.

Take a matrix element of the irreducible spherical tensor operator T̂
(k)
κ between angular-

momentum states of the form |αjm〉. The corresponding matrix element is given by

〈αjm|T̂ (k)
κ |α′j′m′〉 . (E.1)

Using the Wigner-Eckart theorem we can split projection and other parts and can write the

reduced matrix element

〈αjm|T̂ (k)
κ |α′j′m′〉 = (−1)j−m

(
j k j′

−m κ m′

)

〈αj||T̂ k||α′j′〉 , (E.2)

where the matrix coefficient in the equation is given by the Wigner 3j-symbols

(
j1 j2 jz
m1 m2 m3

)

=
(−1)j1−j2−m3

√
2j3 + 1

〈j1m1, j2m2|j3 −m3〉 . (E.3)

The reduced matrix element is defined implicitly by equation (E.2), and is symbolized by the

double-bar 〈 || || 〉.
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”Measurement of the magnetic moment of the one neutron halo nucleus 11Be”

Physical Review Letters, vol. 83, no. 19, p.3792-3725, 1999



XXVIII F List of Publications and Conference Contributions

• S. Kappertz, W. Geithner, G. Katko, M. Keim, G. Kotrotsios, P. Lievens, R. Neugart,

L. Vermeeren, S. Wilbert:

”Measurement of the magnetic moments of 7Be and of the halo nucleus 11Be”

2nd International Conference on Exotic Nuclei and Atomic Masses, Bellaire, MI, USA,

23.-27. June 1998 / Edited by B.M. Sherill, D.J. Morrissey, J. David, C.N. Davids,

AIP conference proceedings 455, p.110-113, 1998

• S. Wilbert, B.A. Brown, W. Geithner, U. Georg, S. Kappertz, M. Keim, P. Lievens, R.

Neugart, M. Neuroth, L. Vermeeren:

”β-NMR measurements of the nuclear quadrupole moments of 20,26−31Na”

2nd International Conference on Exotic Nuclei and Atomic Masses, Bellaire, MI, USA,

23.-27. June 1998 / Edited by B.M. Sherill, D.J. Morrissey, J. David, C.N. Davids,

AIP conference proceedings 455, p.142-145, 1998

F.2 Conference Contributions

Poster: W. Geithner, S. Franchoo, K.M. Hilligsøe, S. Kappertz, M. Keim, P. Lievens, K. Mari-

nova, R. Neugart, H. Simon, L. Vermeeren, L. Weissman, S. Wilbert, and the ISOLDE

collaboration

”Laser spectroscopy measurements of isotope shifts and nuclear moments of short-lived

neon isotopes”

ENAM2001: 3rd international conference on exotic nuclei and atomic masses, Hämeen-
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”Isotopieverschiebung im lithiumähnlichen 7,9,10Be+ und das magnetische Moment von
7Be”,

Spring meeting of the German physical society (Deutsche Physikalische Gesellschaft –

DPG), Konstanz, March 1998.



XXX



G Acknowledgement XXXI

Appendix G

Acknowledgement

I want to thank all the people, who helped to get this thesis done. Many were involved and

I hope that I don’t forget anybody in the list. People who read this may forgive me that I

write in German, as a reason it is much easier to express things in my own language here.

An erster Stelle steht immer der ”Doktorvater” der Arbeit, in diesem Fall Prof. Dr.

R. Neugart. Ich könnte jetzt alle die Dinge über Themenstellung und gute Betreuung

sagen, aber ich glaube es ist besser, einfach zu erwähnen, das mein ”Doktorvater” der beste,
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[PRE] PREMA Präzisionselektronik GmbH; Robert Bosch Strasse 6, 55129 Mainz, Ger-

many; Manual: 6040 integrierendes Präzisionsmultimeter.
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