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The longitudinal envelope equation1 can be used to describe the evolution of a bunched beam under the
influence of linear longitudinal forces in induction linacs, rf linacs, and circular accelerators. Unlike the
radial envelope equation of Kapchinskij and Vladimirskij,2 it does not yield a simple analytic solution for
the stationary case. We present an approximate analytic solution that shows the scaling with respect to
emittance, space charge and external focusing, and which is always within 3.4% of the exact solution.
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Neuffer1 has derived an equation for the half-length of a bunched charged particle
beam with a parabolic line charge density PL(Z) = PL(O)(l- z2 /Z2), where Z = Zmax
is the bunch half-length and Z = 8 - 8 0 is the longitudinal distance from the bunch
center. Here, 8 is the distance along the direction of propagation and 8 0 is the distance
of the bunch centroid along the direction of propagation. It is assumed that the change
in energy due to acceleration occurs adiabatically (i.e., on a time scale that is large
compared to the longitudinal oscillation period). This equation is

(1)

where Z" is the second derivative of Z with respect to 8o, Ez 1r Z(z')max1r is the
longitudinal emittance «(z')max is the maximum derivative of z with respect to 8 0 ),

kzo is the longitudinal focusing constant, and K L is the longitudinal perveance.
For longitudinal motion in a circular machine, k zo = ((21rq Em 111 sin CPs!)/

(A;33~mc2))1/2 and K L = -3gNrcrJ/(2{32~3), where Em is the peak rf field, CPs is
the synchronous phase, A is the rf wavelength, m is the particle mass, q is the particle
charge, 9 is the geometry factor,3 N is the total number of particles in the bunch, rc is
the classical particle radius, {3 = v / c, the beam centroid velocity divided be the speed
of light, and ~ = (1 - (32)-1/2. 11 = 'Y;2 - ~-2 is the slip factor, and 'Ytmc2 is the
transition energy. In a linear accelerator 'Yt ~ 00 and rJ = _~-2. For an induction
linac one uses the electric field gradient E~a instead of - 21rEm Isin CPs 1/(A{3), so
kzo = (qE~a/(mc2{32'Y3))1/2.
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It is desirable to find the stationary solution to this equation (when Z" == 0) in
the smooth approximation, so that one can predict the equilibrium half-length of a
bunched beam with given beam and machine parameters. Unlike the well-known ra­
dial envelope equation of Kapchinskij and Vladimirskij,2 the longitudinal envelope
equation does not yield a simple analytic solution. While the equation can be solved
numerically, an analytic solution provides more physical insight. We derive the so­
lution as an infinite sequence and show that the third term, and for many cases the
second term, provides an accurate equilibrium solution.

The longitudinal envelope equation with Z" = 0 can be solved easily for two
special cases. When the space-charge term is negligible (KL = 0), the solution is
Z == (Ez/kzo )1/2. When the emittance term is negligible (Ez == 0) the solution is
Z == (KLlk;o)1/3. We use the former to write Z in units of Zo == (€zlkzo )1/2 for
the general case, and Equation (1) with Z" == 0 becomes

(4 _ a( - 1 == 0, (2)

where ( == ZIZo and a == KLI(E~/2 k~~2). This equation has one positive real solution,

U1/2 [(U2)1/2 u] 1/2
(=-2-+ 4+ 1 -4" '

where

u == [a2 (64 (4 )1/2] 1/3 [a2
_ (64 .a4,,)1/2] 1/3

2 + 27 + 4 + 2 ' 27 + 4 ' , (3)

in which the resulting expression for Z is quite complicated. We seek a simpler
approximate solution in which the effects of the emittance and space charge terms
can be clearly seen.

Solving Equation (2) is equivalent to finding a fixed point of (i+1 = T((i), where
T(() = (1/( + a)1/3. T(() represents a contraction near the (positive) fixed point, so
we choose a starting value of (1 == 1 and write the solution as

(4)

This sequence converges rapidly towards the exact solution. The second term, (2 ==
(1 + a)1/3, is always within 3.4% of (and always greater than) the exact solution; the

third term, (3 == ((1 + a)-1/3 + a)1/3, is always within 0.52% of (and always less than)
the exact solution. In terms of the parameters given in Equation (1), the envelope can
be approximated by the second term as

(

3/2 ) 1/3Ez K L

Z ~ Z2 == '... 3/2 + k2. ,kzo zO
(5)
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which shows the scaling with respect to the beam parameters (Ez , K L) and the applied
focusing wave constant (kzo ). Depending on the desired accuracy, therefore, either the
second or third term in the sequence given in Equation (3) can be used as a simple
analytic solution to the longitudinal envelope equation for a bunched beam.
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