
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-SL-2002-044 (AP)
KEK-Report 2002-3

Introduction to the Polymorphic Tracking Code
Fibre Bundles, Polymorphic Taylor Types and “Exact Tracking”

Etienne Forest,
National High Energy Research Organization (KEK), Japan,

Frank Schmidt,
SL-AP Group, CERN, Geneva, CH,

Eric McIntosh,
IT-AP Group, CERN, Geneva, CH

Abstract
This is a description of the basic ideas behind the “Polymorphic Tracking Code” or PTC. PTC

is truly a “kick code” or symplectic integrator in the tradition of TRACYII, SixTrack, and TEAPOT.
However it separates correctly the mathematical atlas of charts and the magnets at a structural level
by implementing a “restricted fibre bundle.” The resulting structures allow backward propagation
and recirculation, something not possible in standard tracking codes.

Also PTC is polymorphic in handling real (single, double and even quadruple precision) and
Taylor series. Therefore it has all the tools associated to the TPSA packages: Lie methods, Normal
Forms, Cosy-Infinity capabilities, beam envelopes for radiation, etc., as well as parameter dependence
on-the-fly. However PTC is an integrator, and as such, one must, generally, adhere to the Talman
“exactness” view of modelling. Incidentally, it supports exact sector and rectangular bends as well.
Of course, one can certainly bypass its integrator and the user is free to violate Talman’s principles
on his own; PTC provides the tools to dig one’s grave but not the encouragement.

The reader will find in Appendix B a PowerPoint presentation of FPP. The presentation is a bit
out of date but it gives a good idea of FPP which is essential to PTC. FPP is a stand-alone library and
can be used by anyone with a FORTRAN90 compiler.

This presentation is also, to be honest, a place where the authors intend to document very incom
pletely nearly two years of work: the development of FPP and subsequently that of PTC.

Our ultimate intention is to morph PTC completely into MAD-X. The code MAD-X is an upgrade
of MAD-8 and not of the C++ CLASSIC based code MAD-9. The present document does not address
when and how this will be done. It is also our goal to link, if possible, PTC with CAD programs for
the design of complex follow-the-terrain beam lines. So far FPP and PTC have been used in the
design of beam separators (complex polymorphs) and recirculators. They have also been linked with
the code BMAD from Cornell. There is still a lot of work to be done if these tools are to be generally
usable by a wide range of people.

In addition, more complex structures will be needed to handle effects beyond single particle
dynamics in a way which respects the fundamental mathematical integrity of the structures of PTC.

Geneva, Switzerland
July 24, 2002

Introduction to the Polymorphic Tracking Code
Fibre Bundles, Polymorphic Taylor Types and “Exact Tracking”

July 8, 2002

Etienne Forest

National High Energy Research Organization (KEK)

1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan

and

Frank Schmidt

SL-AP Group, CERN, Geneva, CH

Eric McIntosh

IT-API Group, CERN, Geneva, CH

Abstract
This is a description of the basic ideas behind the “Polymorphic Tracking Code” or PTC. PTC is

truly a “kick code” or symplectic integrator in the tradition of TRACYII, SixTrack, and TEAPOT.
However it separates correctly the mathematical atlas of charts and the magnets at a structural level
by implementing a “restricted fibre bundle.” The resulting structures allow backward propagation and
r ir ul ti n, s m thin n t p ssibl in st nd rd tr in d s.

Also PTC is polymorphic in handling real (single, double and even quadruple precision) and Taylor
series. Therefore it has all the tools associated to the TP SA packages: Lie methods, Normal Forms,
Cosy-Infinity capabilities, team envelopes for radiation, etc., as well as parameter dependence on-the-fly.
However PTC is an integrator, and as such, one must, generally, adhere to the Talman “exactness”
view of modelling. Incidentally, it supports exact rector and rectangular tends as well. Of course, one
can certainly bypass its integrator and the user is free to violate Talman’s principles on his own; PTC
provides the tools to dig ore’s grave but not the encouragement.

The reader will find in Appendix B a PowerPoint presentation of FPP. The presentation is a bit out
of date but it gives a good idea of FPP which is essential to PTC. FPP is a stand-alone library and can
be used by anyone with a FORTRAN90 compiler.

This presentation is also, to be honest, a place where the authors intend to document very incompletely
Marty two years of work: the development of FPP and subsequently that of PTC.

Our ultimate intention is to morph PTC completely into M AD-X. The cote M AD -X is an upgrade
of MAD-8 and not of the C + + CLASSIC based cote MAD-9. The prerent document tees not address
when and tew this will be done. It is also our goal to link, if possible, PTC with CAD programs for
the design of complex follow-the-terrain team lines. So far FPP and PTC have teen used in the design
of team separators (complex polymorphs) and recirculators. They have also teen linked with the code
BMAD from Cornell. There is still a lot of work to be done if these tools are to be generally usable by
a wide range of people.

In addition, m ^ o m p f e x structures will be Meted to handle effects beyond single particle dynamics
in a way which respects the fundamental mathematical integrity of the structures of PTC.

N .B .-T his document will be slowly corrected and upgraded on our website as FPP, P TC ,
and M A D -X evolve.

Contents
1 O V E R V IE W W IT H E X A M P L E S 8

A A Survey of P T C 8
A .l Introduction... 8
A.2 A Short Description Using Los Alamos P S R ... 8

A.2.1 The Layout and an Example: PSR Storage R i n g ... 9
A.2.2 The Importance of the Charts: Misalignments and the Euclidean G r o u p 13
A.2.3 Tracking a Single Fibre ... 17

A.3 Comparing and Contrasting C=—H CLASSIC Classes and Multiple Inheritance with Compo
sition (Forward D e leg a tion)... 17
A.3.1 Fibre Bundles (or n o t) .. 17
A.3.2 Composition, Inheritance and Algorithmic C la s s e s ... 19
A.3.3 More on delegation and PTC ... 22

A.4 ELEMENTP and P olym orph ism ... 23

B Non Trivial Examples 30
B.1 Example 1: Two Siamese R in g s .. 30
B.2 Example 2: Making a Figure “8” ... 33

2 FILE B Y FILE D E SC R IP T IO N 35

C A few aspects of FPP and P TC 35
C.1 ELEMENT and ELEMENTP: EL and E L P ... 35
C.2 Real@8 array X (6) 36
C.3 Real Polymorph Array Y (6) ... 36
C.4 Beam Envelope Array Y S (6) 36

C.4.1 Definition of Beam Envelope ... 37
C.4.2 Normalizing the Beam Envelope in PTC .. 37

C.5 The Type DAMAP: M ... 38
C .6 The Type N O R M A L F O R M ... 38
C.7 The Type U N IV E R S A L .T A Y L O R .. 38
C .8 The Module Precision_Constants... 39
C.9 The Module F ile_H andler.. 39

D Sa_ROTATIO N_M IS.f90: The M odule Rotation_mis 40
D.1 Basic Description of the Module ... 40
D.2 Operations on Type M atrix_P T C ... 41

E Sb_EXTEN D _PO LY.f90 43
E.1 The Explosive Functions .. 43
E.2 The REAL .8 T y p e ... 43
E.3 The (=) A ssign m en t.. 43

E.3.1 R E AL.8REAL6 : Y = X .. 43
E.3.2 REAL6R E AL.8 : X = Y .. 43
E.3.3 R E AL.8R E AL.8: Y 2 = Y 1 .. 44
E.3.4 E N V 8MAP: Y S = M ... 44
E.3.5 REAL6E N V 8 : X = Y S .. 44
E.3.6 Initializing an Envelope with E N V 8T or E N V 8BENV: Y S = T or Y S=E N V 44
E.3.7 Extracting the Tracked Envelope with TENV_8 : T = Y S .. 44

E.4 The Operator + 44
E.5 The P INT and DAP INT Interface ... 44

E.5.1 Printing and Reading A r r a y s ... 44
E.5.2 Printing a Beam Envelope Y S ... 45

E .6 The ALLOC and KILL In te r fa ce ... 45
E.6.1 Allocating A rrays.. 45

E.7 The Context outine ... 45

F Sc_i_POL_TEM PLATE.f90 and Sg_i_tem plate_M Y_KIND.f90 46
F .l Dealing with P O L .B L O C K ... 46
F.2 Dealing with W O R K .. 48

G Sd_EUC LID EAN .f90 49
G .l Coping with the Square R o o t .. 50
G.2 Translating an Element: TRANS(A,X,B,EXACT, CTIME) .. 50
G.3 Rotating an Element: ROT_YZ, R O T X Z , and R O T X Y ... 50

G.3.1 The Rotation ROT_XY in the Transverse P lan e.. 51
G.3.2 The Rotations ROT_XZ and R O T Y Z .. 51

G.4 A Matter of Perspective: Are we Patching H e r e ? ... 52
G.4.1 Defining Patching ... 52
G.4.2 An Example: First, Using the Compression Trick ... 53
G.4.3 Same Example: Now, Using Patching ... 53
G.4.4 Failure of Compression: Decompression!.. 54

G.5 Routines of Sd_E U C LID E A N ... 55

H Se_FR A M E .f90 56
H .l The Charts and the P atches... 56
H.2 Subroutines of S _ F R A M E ... 57

I Sf_STATUS.f90 59
I.l Constants of Sf_STATUS.f90 .. 59
1.2 TYPE W ORK .. 61
1.3 TYPE P O /B L O C K ... 61
1.4 TYPE M A G N E T C H A R T ... 61
1.5 TYPE I N T E R N A /S T A T E ... 61
1.6 Defined States and Operations on S ta tes .. 61

1.6.1 The Basic S ta te s .. 62
1.6.2 The Eternal Basic States .. 62
1.6.3 MAKE_STATES: Initializes PTC and Solves Maxwell’s Equations 62
1.6.4 Addition of States: S 1 + S 2 .. 63
1.6.5 Subtraction of States: S1-S2.. 63
1.6.6 Unary Plus: = S 1 .. 63
1.6.7 STATEMEXACTMIS versus ELEMENTMEXACTMIS .. 63
1.6.8 STATEMFRINGE versus E LE M E N TM PE R M FR IN G E .. 63
1.6.9 Printing a State: P R I N T S .. 63
1.6.10 U PD A TE .STA TE S... 64
1.6.11 C LE A R .STA TE S.. 64

1.7 Initializing FPP within PTC: INIT .. 64
1.7.1 INIT in FPP ... 64
1.7.2 INIT in PTC ... 65

1.8 User Defined Integrators or Strange s -D e p e n d e n ce .. 66

J Sg_0_FITTED.f90 68

K Sh_DEF_KIND.f90 69
K.1 List of Magnet Types ... 69
K.2 Inheritance of Element Properties: Delegation in FO T AN90 ... 70
K.3 Some Maintenance outines: Zeroing, ALLOC and KILL ... 71

K.3.1 The (=) Assignment .. 71
K.3.2 More Interfaces for ALLOC and KILL .. 72

K.4 More about the Magnets .. 72
K.4.1 DRIFT 1: D r i f t ... 72
K.4.2 DKD2: Drift-Kick-Drift Element .. 72
K.4.3 KICKT3: Thin Multipole Kick .. 73
K.4.4 CAV4: RF C a v i t y ... 73
K.4.5 SOL5: The Combined Function Solenoid .. 74

K.4.6 KTK: Delta-dependent Quadratic Hamiltonian and Multipole K i c k s 74
K.4.7 TK TF : Quadratic Hamiltonian, Delta-Corrections, and Multipole K ick s 75
K.4.8 NSMI and SSMI: Single Multipole Thin K ick s... 76
K.4.9 TEAPO T: The Exact Sector B e n d ... 76
K.4.10 MON : M o n ito r s .. 77
K.4.11 ESEPTUM: Electric S e p t u m ... 78
K.4.12 STREX: The Exact Generic Rectangular B e n d .. 78
K.4.13 SOLT: Delta-dependent Quadratic Hamiltonian with a Solenoidal Term and Multipole

Kicks ... 79

L Si_DEF_ELEM ENT.f90 80
L.1 Constants and Internal Routines of Si_DEF_ELEM EN T.f90.. 80

L.1.1 ZERO _AN BN ... 80
L.1.2 ALWAYS_EXACTMIS and ALW AYS_FRIN G E.. 80
L.1.3 The Logical F E E D _P 0C ... 80
L.1.4 BE Z and ETIENNE .. 80
L.1.5 M O D N (I,J) ... 80
L.1.6 RESET31(ELP), TPSAFIT(LNV), and S E T T P S A F I T .. 80
L.1.7 VERBOSE and GEN .. 80

L.2 Types whose functionality is defined in Si_DEF_ELEM ENT.f90.. 81
L.3 Copying ELEMENT and ELEMENTP: COPY and EQUAL ... 81
L.4 The Assignment (=) ... 82

L.4.1 EL(P)=IN TEGER : ZERO_EL and ZERO_ELP ... 82
L.4.2 El (p)=STATE : MAGSTATE and M A G P S T A T E .. 82
L.4.3 The Type(W ORK): Design E n erg y ... 82
L.4.4 The T ype(m U L B L O C K): Changing the A N and B N ... 83
L.4.5 Example of Non-Trivial Use of Types M U LB LO C K and W ORK 84
L.4.6 Setting the Knobs Using a POL_BLOCK: Routines BLPOL_0 and E L P P O L 86
L.4.7 E L = X (6) : Subroutine MIS_, MIS_P, and FIBRE_MIS for Misalignments 89

L.5 The SETFAMILY Interface: Pointing from ELEMENT to Magnet Types 90
L .6 Adding Multipole Components: ADD .. 91

M Sj_ELEM ENTS.f90 92

N Sk_LINK_LIST.f90 93
N.1 The fundamental types FIB E and LAYOUT ... 93
N.2 The various routines of S_FIBRE_BUN DLE.. 97

O Sl_FAM ILY.f90 99
O.1 More on P O L B L O C K .. 99

O.1.1 Assigning Polymorphs to a Layout with SETPOL_L: LAYOUT=POL_BLOCK 99
O.1.2 Why is the Polymorph ELPML not in P O L _ B L O C K ? .. 101
O.1.3 Removing Parameters: K IL L _P A R A ... 101

O.2 outines extended from EL(P) to FIB E .. 101
O.2.1 The Interface ADD: A D D P A N B N ... 101
O.2.2 FIB R E PO L: FIB R E =PO L_B LO C K ... 101
O.2.3 FIBR E B L: FIBRE=MUL_BLOCK ... 101
O.2.4 FIBR E W O R K : F IB R E = W O R K ..101
O.2.5 M ISALIGNFIBRE: F IB R E =X (6) .. 102

O.3 Copying all ELPs into ELs and Vice Versa .. 102
O.4 Copying Layouts: CO PY and EQUAL ..102
O.5 Standard Surveys .. 102

O.5.1 Full Standard Survey...102
O.5.2 Partial Standard S u rv ey .. 102

O .6 Moving a Layout ... 103
O.6.1 Rotating a L a y o u t .. 103
O.6.2 Moving a L a y o u t ... 103

O.7 Routines of S_FAM ILY...103

P Sm _T R A C K IN G .f90 105
P.l TRACK for a Layout.. 105
P.2 TRACK for a Fibre .. 105
P.3 The MIS_FIB Routines: Misaligning a Magnet .. 107
P.4 The Variables ALWAYS_EXACT_PATCHING .. 108
P.5 The Routines of S_T R A C K IN G .. 108

Q Sn_M AD_LIK E.f90 109
Q.1 Example of the PSR Revisited .. 109
Q.2 Operations on types LAYOUT and FIBRE ... 110

Q.2.1 E L + E L ..110
Q.2.2 EL+BL and BL+EL (BL stands for a layout) ... 110
Q.2.3 BL+BL ... 111
Q.2.4 N@EL and N @ B L ... 111
Q.2.5 -BL .. 111

Q.3 Am I a Dumb or Smart U se r? ... 111
Q.4 The ules ... 112

Q.4.1 Making the States and the Logicals: MAD and M A D L E N G T H ..112
Q.4.2 The Subroutine S E T M A D and MADKIND2 (M A D T H IC K)...113
Q.4.3 Logicals and Integer Flags .. 113
Q.4.4 More on MADKINDs .. 114
Q.4.5 Cleaning Up ... 114

Q.5 The Elements ... 115
Q.5.1 The Marker .. 115
Q.5.2 The D r i f t .. 115
Q.5.3 The Monitors and the Instruments ... 115
Q.5.4 The Quadrupole and Tilting ... 115
Q.5.5 The S o le n o id ..116
Q.5.6 Other Straight E lem ents.. 116
Q.5.7 More Straight Elements: HKICKER,VKICKER, and K IC K E R ..116
Q.5.8 The ectangular Bend .. 116
Q.5.9 The Sector Bend .. 117
Q.5.10 The General Bend ... 118
Q.5.11 The RF C a v ity ...118
Q.5.12 The Single Lens or SixTrack’s S M I .. 118
Q.5.13 The Thin Multipole B lo c k ...118

Q .6 Operators Acting On MAD-Like Input ...118
Q.6.1 Adding Multipole C om p on en ts ...119

Q.7 The Final Step: the Creation of a L a y o u t ... 119

R So_FITTIN G .f90: Non-core Routines 120
R.1 Changing the Integration Method of a Magnet ...120
R.2 Fixed Point Routines: Polymorphi Delendi Sunt ... 120

R.2.1 FIN D _O RBIT_LAYO U T(RIN G ,X ,LO C,STATE)..121
R.2.2 FIND_ORBIT_LAYOUT_NODA(RING,X,LOC,STATE,EPS)...121
R.2.3 FIND_ORBIT_M_LAYOUT(RING,Y,LOC,STATE)...121
R.2.4 FIND_ENV_LAYOUT(RING,YS,X,LOC,STATE)..122
R.2.5 Parameter Dependence: FIND_ENVELOPE(RING,YS,A,FIX,LOC,STATE)...................122

A Postface by Etienne Forest 125

B A P P E N D IX : TH E P O W E R P O IN T P R E SE N TA TIO N OF FPP 129

Complex_polymorph. f90

real_polymorph. f90

Allows complex TPSA c om plex_tay lor. 90

Finally, at the top, this package overloads various
useful parameterizations of a map: Dragt-Finn
inverse Dragt-Finn, vector fields, vector fields
in resonance basis, and, of course, normal forms.

Basic Operations of the TPSA packages
involving Taylor series are overloaded here,

for example +,-,/, etc... as well as other things such
as derivatives. Here we really overload dab.f and
newda.f90

tpsalie_analysis. f90
i

tpsalie.90

— i—
Tpsa.f90

— i—
definition.f90

Berz's TPSAPackage:
polynomials are represented
by integer pointers.

N e w D y n a m ic a l a l lo c a tio n o f B erZ s
P a c k a g e

Analysis F

b_d a_array s_fix. f9 0

Polymorphic types: Can change at run
time

Complex type is overloaded. The complex type
is made of 2 tayl°rs: T Y P E com plex tay lo r

type (taylor) r
type (taylor) i
END T Y P E com plextaylor

- Code that overloads the Taylor packages
(including that of Berz) as well as the
analysis routines of Lielib

Here operations on maps are overloaded. A new type
. damap is introduced (as well as other useful types).

Map operations are overloaded, for example,
concatenation and inverse.

Both TPSA Taylor series are merged here.
A new type called taylor combines taylorlow
and the integer pointer of Berz's TPSA. The
complex taylor type and the polymorphic
types are also defined there.

A newlielib.f90

newda.f90

define newda.f90

New TPSAPackage

Defines a new
type called taylorlow

a_scratch_size.f90
File handler
Scratch size

Figure 1: Structure of FPP

The above picture is from the PowerPoint presentation on the “Fully Polymorphic Package ” located at the
URL

http://bel.Ibi.gov/CBP_pages/educational/TPSA_DA/Introduction.html

http://bel.Ibi.gov/CBP_pages/educational/TPSA_DA/Introduction.html

PTC STRUCTURE

Figure 2: Structure of PTC

1 OVERVIEW W ITH EXAMPLES

A A Survey of PTC

A.1 Introduction
The program PTC was started as an educational exercise at DESY in collaboration with Aimin Xiao under
the name SmalLCode. Our goal was to implement two things that are missing in traditional codes. The
hrst thing and perhaps the most fundamental was the implementation of a Layout class which allows a
clear separation between the ideal bend angle and the actual held which attempts to produce this bend.
This Layout type is now a doubly linked list whose nodes, of type FIBRE, contains the magnet per se, the
local charts and the patches. The reader will realize that the FIBRE is the central entity which makes up
a beam line inside a tracking code. Traditionally a beam line is thought of as being made up of magnet
propagators. Unfortunately this simple point of view does not permit the creation of a hbre bundle which
is the correct mathematical structure needed to fully support single particle dynamics in a tracking code in
the “s” -dependent (or magnet dependent) formalism rather than the more general “t” -dependent Newton
Einstein parameterization. This aspect is why we do not yet discuss the details of the implementation of
PTC into M AD-X. At present all versions of M AD deal with the traditional collection of magnet propagators
and thus cannot handle an arbitrary PTC lattice. It should be pointed out that it is relatively easy, as we
shall see, to create monstrosities within PTC, but it is not trivial to imagine doing such things within a
MAD-like input hle with no assumed access to the programming language. There are some pointers within
the hbre which point (sorry about the bad pun) to the issue of copying, manipulating and storing P T C ’s
more bizarre lattices. It is interesting, as we shall also see, that it is possible within the context of a
programming language to generate lattices which cannot be copied, unlike the standard beam lines, unless
one adds additional pointers, “unnecessary” from the point of view of pure tracking (see Sect. N .l). All
of this and the actual implementation in M AD-X, when and if hnally done, will be fully documented in a
separate document. In the present article we will show simple hctitious beam lines which display the power
of the PTC structures.

The second thing is the implementation of polymorphism for TPSA calculations (Truncated Power Series
Algebra) where parameter dependence is done on-the-fly. This has been possible for years in the context
of COSY-Inhnity style interpreters. It is also possible, with messy programming, to put a subset of such
capabilities in a compiled FORTRAN77 tracking code (as was done in DESPOT and SixTrack). However
modern languages such as C + + and FORTRAN90 facilitate greatly this task provided someone goes to the
trouble of creating a suitable library: this is FPP.

In this note, we will describe the core of PTC as it exists. Certainly the basic model overlaps with codes
such as TRACYII, LEGO, MAPA, and TEAPO T just to name a few. LEGO1, in particular, provides some
of the patching functionality found in PTC. But the complete implementation of a hbre bundle is perhaps
unique to PTC. MAPA 2 seems to have some appealing features in its class hierarchy as it seems that by
adding one extra-layer it becomes more or less PTC, but honestly we are not capable of judging all the pros
and cons of these new products. The purpose of this paper is to describe how we think it should be done
and to document a modest attempt in FORTRAN90 rather than C + + .

PTC now supersedes completely the FORTRAN90 version of SixTrack which was a superset of the old
SmalLCode. It has the functionality of SixTrack, TRACYII (Old Despot) and small machine capabilities.
Because of the clean separation between charts and magnets, there is no limit to its ability to handle small
rings and multiple beam lines as well as recirculators.

A.2 A Short Description Using Los Alamos PSR
We will glance over the code in general terms. We will use the PSR as an example. In this section we do
not describe in detail all the commands; we merely demonstrate a few commands. In the second part of this
paper (starting with Section 2), we will describe the commands and the various internal procedures more
systematically. In this hrst example we use a standard lattice which any code could produce easily. It is
however a lattice famous for displaying “small ring” effects.

1 L E G O was developed at SL A C by Y unhai Cai in C + + .
2 T h e program M A P A is a C + + p iece o f software from the T E C H -X com pany.

A .2.1 The Layout and an Example: PSR Storage Ring

The layout is a FORTRAN90 type (it would be a class in C + +). It represents a standard beam line, i.e., a
collection of magnets with the necessary charts at the entrance and exit of the magnets (drifts are magnets for
the purpose of this discussion). As we will see, the layout is realized by a doubly linked list in FORTRAN90.
Each node of the list is of type fibre. Each fibre contains the magnet, the charts and the patches associated
to the variable “s” which happens to be discrete in a tracking code. One can think of the layout as being the
ordered collection of the variable si that positions a magnet in the standard theory. Here however, we do not
insist at all for a continuous connection between the variable si and the Hamiltonian used in the integration
o f each magnet. This is truly the power of a map based theory: continuous s-dependent Hamiltonians for
the ring are just special cases. In a sense the layout type is really the fibre bundle of the mathematicians:
perhaps the reader prefers here to stick to the more descriptive “layout.”

It has been argued by Forest since circa 1990, that tracking codes are deficient because they usually do
not contain an atlas. What is an atlas? An atlas is a collection of charts.3

For each element in the beam line we associate as a minimum an entrance chart and an exit chart. The
routine (the transfer map) that tracks the ray assumes that the entrance coordinates are with respect to the
entrance chart and the exit coordinates are with respect to the exit chart.

It has been shown that if the magnets do not interact (no true space charge for example), then the
magnet or the element as we call it, takes a dynamical existence of its own; more precisely the flow through
the magnet becomes a mathematical object with rotational and translational properties similar to that of
the physical object. The ontological nature of a magnet, when single particle maps are used, can be realized
if and only if the atlas and the collection of magnets are theoretically unrelated. This is neither the case
of TEAPO T nor M A D 8/9 nor SAD[1, 2].

We start with the definition of the layout. Comments are preceded by the exclamation point (!) in the
FORTRAN90 style. Before displaying the layout, we should display each node of the layout, namely the
type fibre:

TYPE FIBRE
! BELOW ARE THE DATA CARRIED BY THE NODE
INTEGER,P0INTER ::D IR
REAL(DP).POINTER : :P0C,BETA0
TYPE(PATCH).POINTER : :PATCH
TYPE(CHART).POINTER : : CHART
TYPE (ELEMENT). POINTER : : MAG
TYPE (ELEMENTP).POINTER : : MAGP
! END OF DATA
! POINTER TO THE MAGNETS ON EACH SIDE OF THIS NODE
TYPE (FIBRE).POINTER : : PREVIOUS
TYPE (FIBRE).POINTER : : NEXT
! POINTING TO PARENT LAYOUT AND PARENT FIBRE DATA
TYPE (LAYOUT).POINTER : : PARENT_LAYOUT
TYPE (FIBRE).POINTER : : PARENT_PATCH
TYPE (FIBRE).POINTER : : PARENT_CHART
TYPE (FIBRE).POINTER : : PARENT_MAG

END TYPE FIBRE

The type fibre is recursively defined. This will allow the creation of a linked list. O f course a list is interesting
only if it contains data. One can think of a linked list as a chain; on each link hangs potentially some data.
In our case the fundamental datum is the object CHA T o f type CHA T. This contains three actual charts
(affine frames of reference): one at each end of the fibre and one in the middle. In addition we have the beam
element MAG and its polymorphic version MAGP. MAG is the generic magnet to which we will attach a
single particle propagator. MAGP is almost a carbon copy of MAG. The integer DIR defines the direction
o f propagation through the fibre. We can either enter the magnet from the front or from the back. P0C
and BETA0 define a preferential frame of reference for the energy of this fibre. It is usually the same as the
energy of the Element MAG. We will come back later to this apparent departure from accelerator physics,
the relegation o f the magnet to a secondary role behind the charts.

3 to English w e have the w ord chart and the w ord m ap. O bviously to accelerator physics w e want to avoid using the w ord
m ap when talking ab ou t a chart.

Finally we have the pointers PREVIOUS and NEXT which must point to the previous and next link of
the chain respectively. The pointers of the PARENT type are best explained later. Essentially they help us
uncover the true nature of the data within the hbre: in PTC data can be cloned (the usual way in accelerator
physics) or pointed at in the case of recirculators and elements shared between beam lines. Without the
PARENT pointers it is not possible to copy or print a recirculator, for example, even though it exists inside
PTC at execution time! See again Sect. N .l and particularly the metaphor of the door to door peddler.

Now the chain itself is of type Layout. It is given by:

TYPE LAYOUT
CHARACTER(120), POINTER : : NAME ! IDENTIFICATION
INTEGER, POINTER : : INDEX,CHARGE ! IDENTIFICATION, CHARGE SIGN
LOGICAL, POINTER : :CLOSED
INTEGER, POINTER : : N ! TOTAL ELEMENT IN THE CHAIN
INTEGER, POINTER : :NTHIN ! NUMBER OF THIN LENSES IN COLLECTION (FOR SPEED ESTIMATES)
REAL(DP), POINTER : : THIN ! PARAMETER USED FOR AUTOMATIC CUTTING INTO THIN LENS
! POINTERS OF LINK LAYOUT
INTEGER, POINTER : : LASTPOS ! POSITION OF LAST VISITED
TYPE
|

(F IB R E), POINTER : : LAST ! LAST

TYPE (F IB R E), POINTER : : END
TYPE (F IB R E), POINTER : : START
TYPE (F IB R E), POINTER : : START_GR0UND
TYPE (F IB R E), POINTER : : END_GR0UND !

END TYPE LAYOUT

! STORE THE GROUNDED VALUE OF START DURING CIRCULAR SCANNING
STORE THE GROUNDED VALUE OF END DURING CIRCULAR SCANNING

This linked list is explained in Figure 3.
Here we displayed a layout with four elements. Obviously this number could be enormous in an actual

beam line. First we see unimportant data speciDc to the layout itself: data concerning steps of integration
statistics. Secondly, besides the Dbres, the two most important quantities in this layout are N and CLOSED.
The variable N is simply the number of Dbres in the layout which is often the number of magnets in non
recirculating objects. It is updated each time magnets are inserted or deleted. The boolean CLOSED refers
to the topology of the so-called “base space” or, in accelerator parlance, the s-variable. Is the variable “s”
periodic (a ring) or is the variable s simply deDning an interval (a straight beam line)? In the case of a ring,
CLOSED is set to true, otherwise it is set to false. This does not happen automatically: the user must set
it to the desired value.

In standard accelerator physics, the connection between the variable s, the local phase space coordinates
z and the global coordinates of the underlying topological space (in our case usually the global R 6) is contin
uous. Therefore an s-dependent smooth Hamiltonian is written and thus pops the standard Courant-Snyder
theory and its nonlinear extensions. O f course this is highly restrictive and mathematically unwarranted.
Here there is no assumed existence of any smooth theory. It is absolutely unnecessary since all the quantities
of interest (lattice functions, etc...) will be extracted using a Dnite “time” perturbation theory, i.e., a theory
based on approximate Taylor maps.

The second type of variables in the linked list are the pointers. Their role is best explained looking at
Figure 3. First of all, a linked list must have at least one pointer, this allows the creation of a simple linked
list rather than a doubly linked (two-way) list. In our case this role is played by the pointer PREVIOUS.
In a simple linked list, each node has the red “previous” pointer. The pointer END points to the end of the
list, in our case Dbre W?. Then the list is traversed backwards using the pointer “previous.” The reader,
not familiar with linked lists may think that this is the result of poor programming— unfortunately this is
what happens if one attempts to develop the simplest linked list.

Therefore a more complex structure must be introduced to handle two-way traversing. To do this we
introduce the pointer “START” and at each node we add the green pointer “N EXT.” The green pointer
points to the next element until it Dnally ends on the START pointer. The START pointer as well as
the END pointer are nulliDed or grounded. Thus one can perform an “ASSOCIATED” check on either
NODEMNEXT or NODEMPREVIOUS to determine if the extremities of the list have been reached.

Finally, we want to have a circular linked list for tracking a ring. When circular, the magenta link
pointing to the grounded START is cut. The last Dbre’s green pointer now points to Dbre W& (blue link).
Thus the list is made circular in the forward direction. The purpose of the START_GROUND pointer is
precisely to remember the “location” of the grounded START pointer to re-establish the ordinary two-way
terminated list if necessary. The same type of operation is performed on the magenta link pointing to the

Figure 3: A linked list Layout in PTC

END pointer. The list is then fully circular. PTC has routines which permit a programmer to toggle back
and fourth between terminated and circular lists; they are shown in Sect. N.I.

Finally, we have the LAST pointer. This pointer simply remembers the last Dbre which was accessed by
any of the maintenance routines. This allows the routine MOVE_TO, which locates an actual Dbre, to Dnd
its target faster. Obviously in our case speed is not of great importance: we tend to traverse a LAYOUT
in the order of tracking— this is not a phone book. Let us try an actual example, a single cell o f the PSR
storage ring at Los Alamos. In this example, the layout has 7 elements or Dbres (which includes drifts).
Each Dbre has a variable of type CHART which contains frames at the beginning in blue, in the middle in
green, and at the end in red.

The following program is a real example of PTC where the lattice and the operations on it are done in
the main program called RUN_PSR.

PROGRAM RUN_PSR
USE S_TRACKING
USE S_FITTING
USE MAD_LIKE
IMPLICIT NONE
INTEGER ND2,NPARA
TYPE(REAL_8) Y(6)
TYPE(NORMALFORM) NORMAL
TYPE(LAYOUT) PSR
TYPE(LAYOUT) CELL,RING
TYPE(FIBRE) D1,QD,QF,D2,B
REAL(DP) X(6),KF,KD,ANG,BRHO,MIS_ROT(6)

CALL MAKE_STATES(.FALSE.)

EXACT_MODEL=.TRUE.
DEFAULT=DEFAULT+NOCAVITY+EXACTMIS
CALL UPDATE_STATES
MADLENGTH=.FALSE.

ANG=(TWOPI*36.D0/360.DO); BRHO=l.2D0$(2.54948D0/ANG);
CALL SET_MAD(BRHO=BRHO,METHOD=6,STEP=10)
MADKIND2=DRIFT_KICK_DRIFT

KF=2.72D0/BRHO; KD=-1.92D0/BRHO;

Dl = DRIFT("D1",2.28646D+00);D2 = DRIFT("D2",0.45D+00);
QF = QUADRUPOLE("QF",0.5D0,KF);QD = QUADRUPOLECQD" ,0. 5D0 ,KD) ;
B = RBEND("B", 2.54948D0,ANG);
CELL= D1+QD+D2+B+D2+QF+D1; PSR=10$CELL;
PSR=.RING.PSR
CALL SURVEY(PSR)
CALL CLEAN_UP

X=0.D0; CALL FIND_ORBIT(PSR,X,1,DEFAULT) ! DEFAULT IS A STATE

CALL INIT(DEFAULT,3,0,BERZ,ND2,NPARA)
CALL ALLOC(Y);CALL ALLOC(NORMAL); ! ALLOCATE VARIABLES
Y NPARA
Y X

CALL TRACK(PSR,Y,1,DEFAULT)

NORMAL=Y; WRITE(6,*) NORMAL7.TUNE ;
CALL DAPRINT(NORMAL7„DHDJ7„V(1),6) ;CALL DAPRINT(NORMAL7.DHDJ7.V(2),6) ;

CALL KILL(Y);CALL KILL(NORMAL);

END PROGRAM RUN_PSR

fibre0/ochart #1 fibre%chart #7

Figure 4: A Cell of PSR

The program RUN_PSR uses PTC pseudo-MAD overloaded input style. The results of PTC can be
compared to that of reference [3] in which Dragt did a careful study of the chromaticity of small rings. We
must look at Table V and equations (3.19) and (3.20) of Dragt’s paper.
The set of calls

CALL MAKE_STATES(. FALSE.)
EXACT_MODEL=.TRUE.
DEFAULT=DEFAULT+NOCAVITY+EXACTMIS
CALL UPDATE_ STATES
MADLENGTH=.FALSE.

are very important in PTC. Certain tracking internal states are set by the call to MAKE_STATES. These
states affect either the actual ray tracking or the type of TPSA calculation one intends to do. The input to
MAKE_STATES is true if we deal with electrons (positrons actually) and false for protons. There is also a
global parameter concerning the nature of the Hamiltonian being4 used. If EXACT_MODEL is set to true,
then the full “square root” Hamiltonian will be used. This is supported so far for the straight elements, the

4T h e M A D -like input o f P T C looks at E X A C T _M O D E L to figure out w hich m odel to use for a given m agnet.

53

7

rectangular bends, and sector5 bends. In his paper, Dragt used the correct Hamiltonian with a first order
fringe field effect at the pole face (See Forest’s book [5], page 383. Equation (13.13.f), for the final path
length, is incorrect, please interchange and £.).

DEFAULT is something called an internal state (type INTE RNAL_STATE). The user can create his own
and certain operations are allowed on them; we will discuss that later. Then all the possible predefined
states can be upgraded with “CALL UPDATE_STATES.” Finally, a global flag relevant to the MAD-like
input is changed from TRUE to FALSE. This flag, if true, accepts the Cartesian length in the command for
the rectangular bend. Thus, in this example, the command

B = RBEND("B", 2 . 54948D0,ANG)

uses the arc length of 2.54948 meters rather than the Cartesian distance between the parallel faces of the
bend. We perform a standard survey in this lattice (CALL SURVEY(PSR)).

When we create the bend B using the standard command RBEND, the code defines an ideal Carte
sian length (B%P%LC), an ideal 1/p (B%P%B0), an ideal arc length6 (B%P%LD), and an ideal tilt angle
(B%P%TILTD). The code also defines the ideal relativistic (B%P%BETA0) which it uses for the compu
tation of time7 if desired by the user. These are really internal survey data. The integration of a rectangular
magnet in the exact model uses Cartesian variables. It is not done around the arc LD. Thus the code ex
plicitly needs the actual B y. In the case o f the ideal magnet it is also numerically equal to B%P%B0. It is
stored in the multipole content array B%M AG%BN(1). Now, consider the following interesting experiment.
We increased the value8 of B%M AG%BN(1) by 25% and recomputed the survey and plotted the new closed
orbit.

B = RBEND("B", 2 . 54948D0,ANG); B%MAG%BN(l)=B%MAG%BN(l)*1.25d0; CALL COPY(B/MAG ,B0/„MAGP) ;

Figure 5: Changing the B-field of the Bends in PTC

As is seen in Figure 5, the survey remained at the same place since it depends on the survey variables LC,
LD,B0, and TILTD. However the closed orbit, in magenta, shrunk considerably because of the stronger
magnetic field. This example shows the ability of the layout type to decouple the ideal field of a bend, which
determines the layout in a standard survey, from the true B field of the magnet. In fact there is no relation
whatsoever between layout and field. A relation, if any, is imposed by standard survey commands.

A .2.2 The Importance of the Charts: Misalignments and the Euclidean Group

Each fibre contains 7 data objects: an ELEMENT (M AG), an ELEMENTP (M AGP), a CHART (CHART),
a PATCH (PATCH), the directional integer pointer DI R and two less important real variables9 P0C and

5Sector bends are easy to su pport if w e ignored the curvilinem effects o f the ben d on M axw ell’s equations. T hen w e sim ply
have the m odel o f T E A P O T [4]. In P T C w e assum e a circu lm geom etry ^ d solve M axw ell’s equations to mi. order specified by
t e se .

6L D is really the M eal path length or tim e o f flight.
7A ctu ally the cod e also keeps redundmrt q u a l i t ie s such as p oc in E d it io n to fto in the elem ent definition.
8It is n ot always possible to sim ply chrnige the m ultipole m ray as done here; P T C provM es certain procedures ^ d types to

do it reliably. However it is correct in the present case.
9T h ey m e not used in P T C at the m om ent.

BETAO. ELEMENT is simply a magnet of some sort while ELEMENTP allows for the flow of Taylor series
through polymorphism. Without the chart “CHART,” the fibre is simply a magnet at “the factory.” It does
not know how to misalign itself with respect to the beam pipe. In mathematical terms, the chart connects
the local coordinates of the magnet (in type MAGNET_CHART) to the local coordinates attached to the
pipe. The quantity PATCH contains additional elements of the Euclidean group which permit the patching
of a fibre with the preceding and following fibre. This patching is geometrical (SO(3)) using the dynamical
Euclidean group as well as “energetic” in case the magnets in surrounding fibres have different reference
energies. This is the case in a recirculator for example. The directional integer DIR refers to the direction
of propagation inside this fibre as PTC fully supports forward and reverse propagation. Finally it is possible
to give the fibre a reference energy different from that contained in the magnet. This energy information is
stored in POC and BETAO and is defaulted to the magnet energy. Again this is useful in a recirculator since
the reference energy we may want to use, for displaying purposes, may vary each time we recirculate though
a magnet. Since the fibre is different (remember it is really the “s” variable) but the magnet is by definition
the same, a different reference energy, if desired, must be attached to the fibre. At this point PTC does not
use these energy variables but they are there for the user.

Thus in practice, the fibre structure permits rigorous translations and rotations of the element in physical
space. In contrast, standard accelerator physics assumes a continuous connection between the layout variable
s, the local magnet variables, and the global space in which the magnet is immersed. This is assumed in order
to enforce, manu militari, a continuous s-dependent Hamiltonian theory. This approach prevents the use of
discontinuous patches that are necessary for a sensible descriptions of complex magnets and for the elevation
o f the magnet into a dynamical object having well-defined properties under rotations and translations.

For example, many tracking codes, without our structure, require the introduction of internal changes
o f the magnet as a result of misalignments such as the introduction of feed-down multipole terms: this
clearly invalidates the “ontological” nature of the magnet-object. Other more exact codes, such as M AD8/9,
introduce two new pathological elements on both sides of a magnet to misalign it.

Many people have looked at our ideas and call them “novel.” Actually we have been pushing them for
a long time and they are well-known in other fields. In addition, they can be found in the work of other
accelerator physicists, for example Michelotti in his book[6], on page 10, refers to related ideas in what he
calls “two minor comments.” Actually Michelotti talks explicitely about the freedom one has in choosing
an “atlas of charts” and that all of this probably done unconsciously in accelerator tracking codes: we could
not agree more.

Now let us illustrate the use of the type ELEMENT by calling directly the tracking routine10 on the
fourth element of the layout PSR, which is just the bend B. For example we start with the ray X (5) = Sp/p0
and track it through the fourth element (here we require a pointer P to fetch this element):

TYPE(FIBRE), POINTER : : P
INTEGER, TARGET : : UNO=l

NULLIFY(P)
CALL MOVE_TO(PSR,P,4)
WRITE(6, +) "THE NAME IS 11 ,P°/MAG°/0NAME
X (:)= 0 .D 0 ; X (5)= 0 .lD 0 ;
P°/MAG0/0P°/0DIR=>UNO; P°/0MAG0/0P°/0CHARGE= >UNO;
CALL TRACK(P/MAG,X)
W RITE(6,+) X

The result of this piece of code is:

THE NAME IS B
7 . 117497437015063E -002 6 .437143094882025E -002 0 . 000000000000000E+000
0 .000000000000000E +000 0 .100000000000000 1 . 633652773351549E -002

The routine TRACK is the fundamental routine which controls ordinary tracking as well as map com
putations used in perturbation theory. Thanks to TPSA and polymorphism all the quantities of ordinary
perturbation theory are computed by using Normal Form theory and the subroutine TRACK. This subrou
tine is found in Sj_ELEMENTS.f90.

10A ctu ally in the m ost recent version o f P T C , this call cannot even track unless one gives to the m agnet the d irec
tion o f propagation (F IB R E p roperty) and the sign o f the charge (g loba l L A Y O U T p roperty). It can b e d on e w ith
P % M A G % P % D IR = > U N O ;P % M A G % P % C H A R G E = > U N O ;

T h e rea d er w ill n o t ic e th a t , in th e a b o v e e x a m p le , th ere is n o m e n tio n o f th e la y o u t. W h e n o n ly th e
m a g n e t is m e n tio n e d , th e tr a c k in g is p e r fo r m e d as i f th e m a g n e t is lite ra lly s itt in g o n th e fa c to r y b e n c h
w ith n o c o n c e r n a b o u t its su rro u n d in g . A t th is p o in t th e P S R is in its id ea l s ta te , th e re fo re th e eq u iv a len t
tr a c k in g th ro u g h th e la y o u t w ill p r o d u c e th e sa m e resu lts . T h is w o u ld n o t b e tru e in re c ir cu la to rs o r o th e r
b iza rre la tt ice s w h ere p a tch e s are req u ired t o c o n n e c t th e m a g n e t ’ s in tr in s ic fra m e s t o th a t o f th e m a ch in e
w h ere it is used .

CALL TRACK(P°/„MAG,X) is r e p la c e d b y CALL TRACK(PSR,X,4,5,DEFAULT)

THE NAME IS B
7 . 117497437015063E -002 6 .437143094882025E -002 0 . 000000000000000E+000
0 .000000000000000E +000 0 .100000000000000 1 . 633652773351549E -002

N ow , le t u s m isa lig n th is fo u r th e lem en t b y a tr a n s la tio n o f d z = 1 0 ~ 4rn in th e lo n g itu d in a l d ir e c t io n .
N o t ic e th a t th e d e fa u lt s ta te u ses E X A C T M I S . T h is en su res th a t m isa lig n m e n ts are d o n e e x a ctly . N o w
co n s id e r th e fo llo w in g p ie ce o f c o d e :

NULLIFY(P)
CALL M 0VE_T0(PSR,P,4)
W RITE(6,+) "THE NAME IS " ,P°/„MAG°/0NAME

M IS _R 0 T (:)= 0 .D 0 ;M IS _R 0T (3)= 1 .D -4 ;
P=MIS_R0T; ! Same as CALL MISALIGN_FIBRE(P,MIS_R0T)

X (:)= 0 .D 0
P0/„MAG0/0P°/0DIR=>UN0; P°/0MAG0/0P°/0CHARGE= >UN0;
CALL TRACK (P°/„MAG,X)
WRITE(6 ,%) "ELEMENT TRACKING : " , X (1) ,X (2)
X (:)= 0 .D 0
CALL TRACK(PSR,X,4,5,DEFAULT)
WRITE(6,+)"LAY0UT TRACKING : " , X (1) ,X (2)

B
F ig u re 6: T r a n s la tio n o f a B e n d

In th is p ie ce o f c o d e , a d o u b le p r e c is io n (r e a l (d p)) a rra y is u sed t o p u t th e m isa lig n m e n ts in th e h bre
P u sin g an o v e r lo a d e d e q u a l s ign . M I S _ R O T (1 :3) c o n ta in s th e tr a n s la tio n a n d M I S _ R O T (4 :6) th e ro ta t io n .
(S o m e m a y s im p ly p re fe r th e a ctu a l ca ll “ C A L L M I S A L I G N _ F I B R E (P ,M I S _ R O T) .”) T h e resu lt o f th e a b o v e
c o d e is

THE NAME IS B
ELEMENT TRACKING : -5 .9 3 9 3 5 2 23 6 8 7 2 5 18 E -0 1 7 5 .551115123125783E -017
LAY0UT TRACKING : 6 . 180339887489015E -005 5 .551115123125783E -017

A s w e sa id , an e lem en t in h er its fr o m th e F I B R E M C H A R T th e k n o w le d g e n e ce ssa ry fo r “ m isa lig n in g
itse lf .” T h e r e fo r e th e ca ll t o T R A C K (P % M A G ,X) is in c a p a b le o f p r o d u c in g m isa lig n m en ts . H ow ev er th e
ca ll t o T R A C K (P S R ,X ,4 ,5 ,D E F A U L T) ta k es th is d a ta in to a cco u n t . It is in teres tin g t o lo o k at th e w a y th e
h rst o b s o le te v ers ion s o f P T C a p p ro a ch e d th is p r o b le m :

IF(C7MAG7MIS) THEN
CALL ROT_XZ(C7.CHART7.ALPHA/2.D0 ,X, C7.MAG7.P7.BETAO,OUR,C7.MAG7.P7.TIME)
CALL TRANSZ(C7.CHART7.L/2.D0 ,X, C07MAG07P07BETA0,OUR,C7.MAG7.P7.TIME)
CALL ROT_YZ (C7«MAG70R (1),X, C7.MAG7.P7.BETA0, OU, C7«MAG°7P°7TIME)
CALL ROT_XZ (C"7MAG7.R (2),X, C7.MAG7.P7.BETA0, OU, C°7MAG7.P7.TIME)
CALL ROT_XY(C°7MAG7.R(3),X,OU)
CALL TRANS (C7.MAG7.D, X , C7.MAG7.P7.BETA0, OU, C7.MAG7.P7.TIME)
CALL TRANSZ(-C7.CHART7.L/2.D0 ,X, C07MAG07P07BETA0,OUR,C7.MAG7.P7.TIME)
CALL ROT_XZ(-C7.CHART7.ALPHA/2.D0 ,X, C07MAG07P07BETA0,OUR,C7.MAG7.P7.TIME)

ENDIF

CALL TRACK(C"7MAG,X)

IF(C°7MAG°7MIS) THEN
CALL ROT_XZ(-C7.CHART7.ALPHA/2.D0 ,X, C07MAG07P07BETA0,OUR,C7.MAG7.P7.TIME)
CALL TRANSZ(-C7.CHART7.L/2.D0 ,X, C07MAG07P07BETA0,OUR,C7.MAG7.P7.TIME)
CALL TRANS (-C"7MAG7.D, X , C7.MAG7.P7.BETA0, OU, C7.MAG7.P7.TIME)
CALL ROT_XY(-C7.MAG°7R(3),X,OU)
CALL ROT_XZ(-C7.MAG"7R (2),X, C07MAG7.P7.BETA0, OU, C7.MAG7.P7.TIME)
CALL ROT_YZ(-C7.MAG"7R (1),X, C°7MAG7.P7.BETA0, OU, C7.MAG7.P7.TIME)
CALL TRANSZ(C7.CHART7.L/2.D0 ,X, C07MAG07P07BETA0,OUR,C7.MAG7.P7.TIME)
CALL ROT_XZ(C7.CHART7.ALPHA/2.D0 ,X, C07MAG07P07BETA0,OUR,C7.MAG7.P7.TIME)

ENDIF

The reader will notice the mathematical structure of these calls. They are of the form:

E (T) = E - f o T o E in (1)

where the map T represents the call T R A C K (C % M A G ,X)— the magnet “on the factory bench.” Moreover
the maps E - 1 and E m are made of rotations and translations. They depend o n ly on the layout charts and
not on the element C M M A G . W e can be a bit more precise and expand this expression further:

E (T) = L t o E - 1 o L -1 o T o L -1 o E o L (2)

T compressed

Standard Operation

T re-expanded

The operator T is just our element “on the factory bench,” the operators L depend o n ly on the layout, and
hnally, the operator E is just the standard Euclidean group operators in their dynamical representation. The
entire gymnastics creates a “thin” or “compressed” Cartesian element. Such an element transforms under
the Euclidean group in the usual geometrical manner.

The present version of P TC uses a “P TC standard factorization” of the Euclidean operator and it is used
for all Euclidean group operations-misalignments and patches:

IF(C7.MAGP7.MIS) THEN
ou = K7EXACTMIS.or.C7MAGP7EXACTMIS
CALL M IS_FIB(C,X,OU,.TRUE.)

ENDIF

CALL TRACK(C7MAGP,X)

IF(C7MAGP7MIS) THEN
CALL M IS_FIB(C,X,OU,.FALSE.)

ENDIF

The subroutine MIS_FIB is just, in the case of forward propagation,

IF(ENTERING) THEN
CALL ROT_YZ(C7CHART7ANG_IN(1),X,C7.MAGP7.P7.BETA0, OU,C7.MAGP7.P7.TIME)
CALL ROT_XZ(C7CHART7ANG_IN(2), X , C7.MAGP7.P7.BETA0, OU,C7.MAGP7.P7.TIME)
CALL ROT_XY(C7CHART7ANG_IN(3),X,OU)
CALL TRANS(C7CHART7D_IN, X , C7.MAGP7.P7.BETA0, OU, C7MAGP7P7TIME)

ELSE ! EXITING

CALL R0T_YZ (C7.CHART7.ANG_0UT(1),X, C7.MAGP7.P7.BETA0, OU, C7.MAGP7.P7.TIME)
CALL R0T_XZ(C7.CHART7.ANG_0UT(2) , X , C7.MAGP7.P7.BETA 0, OU, C7.MAGP7.P7.TIME)
CALL R0T_XY(C7.CHART7.ANG_0UT(3),X,0U)
CALL TRANS (C7.CHART7.D_0UT, X , C7.MAGP7.P7.BETA0, 0U, C7.MAGP7.P7.TIME)

ENDIF

O f course the arrays (ANG_IN,D_IN) and (ANG_OUT,D_OUT) are computed on the basis of the magnet
arrays (C%M AG%R,C%M AG%D) at the moment of misalignment. This is done in the module ROTA-
TION_MIS using solely the group SO(3) acting on the affine space R 3. In that space, all the operators
o f the original “ ‘compressed” Cartesian element are well behaved, and thus this new version of PTC can
handle magnets near 180 degrees as discussed in Sect. G.4.4. It should be said that one can use the routines
o f ROTATION_MIS to preprocess (C% M AG% R,C%M AG% D) and thus use a magnet body frame different
from that of PTC.

A .2.3 Tracking a Single Fibre

In PTC, it is possible to track11 a single fibre. Therefore the mathematical expression of Equation (2) is a
single call in PTC, namely:

CALL TRACK(C,X,STATE, CHARGE)

A .3 Comparing and Contrasting C)—) CLASSIC Classes and Multiple Inheri
tance with Composition (Forward Delegation)

In this section we present, what is in our opinion, an obvious flaw of CLASSIC/M AD9; namely, the failure to
create a fibre bundle. We also present a description of composition (forward delegation) in FORTRAN90. (A
more in-depth treatment of the OO aspects of FORTRAN90, as applied in PTC, can be found in Ref.[7].) We
actually contrast three techniques, fibre bundles by composition (PTC), fibre bundles by multiple inheritance
(but are not aware of any existing implementation), and the definition of lots of classes to be used by
algorithms to manage standard beam lines(MAD9/CLASSIC) without the fibre bundle concept.

A .3.1 Fibre Bundles (or not)

It is a key feature of the design that our type CHART transforms geometrically in the usual manner under
the Euclidean group. By expressing the map as a “thin map” around the center chart (the green one in
Figure 4), we create a map which transforms under the Euclidean group like a geometrical object. Thus, the
fibre inherits the transformational properties of the chart. (See explicitly the fibre propagator in Equation
(2) and Sect. A.2.3.) The fibre then inherits its tracking methods from either the element MAG (or the
polymorphic element M AGP). They, in turn, inherit their tracking methods from the various on-the-bench
magnets. This is done by forward delegation (or composition) rather than multiple inheritance (which is not
supported in FORTRAN90 anyway). This will be described below with the help of Figure 11.

In this representation, the most fundamental datum within the fibre is the variable FIBREMCHART of
type CHART. A magnet may well exist as a complicated piece of metal within a layout. As such it can be
moved and displayed by a CAD-like program, but it cannot be tracked. Secondly, it may also exist as a
generator of a magnetic field but not as a well defined propagator. This happens in the presence of “true”
space-charge or other types of collective effects. In this case the propagator given by the subroutine TRACK,
inherited from the magnetfi’s o f Figure 11, is strictly speaking meaningless and thus its transformational
properties under the Euclidean group are also meaningless. Finally, it is possible that the magnet has an
elastic structure: it is not an inflexible solid. In this case the magnet is modified by internal misalignments.
Since PTC gives full access to the internal parts of a magnet (all variables are public), one can certainly handle
elastic magnets. Furthermore, in the case of true collective effects, the layout can be used as a database for
a more complex time-base propagation ignoring the single particle propagators; the fibre bundle becoming,
like the so-called design orbit, a figment of our imagination.

In conclusion, we have developed a type which takes full advantage of the “ontological” nature of the
magnet propagator when it is valid, while still leaving enough freedom to allow more complex situations. In
PTC, thanks to this layout structure, single particle calculations are always done correctly in the presence

11A suggestion o f D avid Sagan o f Cornell.

of misalignments simply because the propagators are never modified internally: ad hoc fudges like feed-
down, introduction of fake B-field, etc. are no longer necessary. It is only when physics dictates a radical
modification of the magnet that its internal integrity is violated.

In PTC it is possible to do a standard survey. This is equivalent to the Surveyor visitor function of
the CLASSIC class structure in MAD9. In PTC all the elements have an implicit entrance and exit chart
described by the parameters LD, LC, BO, and TILTD. PTC does not necessarily assume, in its structure,
that the connection between the charts attached to a magnet (type MAGNET_CHART) and those of the
layout is the identity map. However, if that is the case, then PTC can perform a survey. In the CLASSIC
case, the Surveyor visitor function does the same thing: it takes the internal geometry of a magnet and
performs a survey based on it.

In PTC, since we implemented essentially a fibre bundle structure, patches can be loaded to connect
charts. They are not elements. This simply reflects, that from the start, we designed support for a math
ematical framework in which the connection between the global space and the local magnet coordinates is
neither assumed to be identity nor continuous; moreover, this connection is not a property of the magnet
but a property of the fibre, i.e., the layout. This last point is crucial in recirculators and when elements are
shared between two beam lines. In fact, if a fibre bundle is implemented and two beam lines with shared
elements are read in, as in the LHC rings, then fitting two beam lines simultaneously is not only possible,
but it is the only thing possible. Thus the MAD9 problems about fitting two rings simultaneously, are not in
PTC by construction. It should be obvious that, if our objects are correctly implemented, then if a common
quadrupole is modified, both rings will see the effect. In a real collider, one is not concerned about only
ring W& seeing a change if an element common to rings W& and W6 is modified. In such a case it would be
difficult, if not impossible, to isolate the rings.

Therefore the proper implementation of a fibre bundle was a sine qua non, non-negotiable point, which
Forest and Bengtsson insisted upon in the early days of pre-CLASSIC C + + collaborations. A quick look
at CLASSIC (MAD9) shows that the CLASSIC structure does not satisfy this condition. In particular,
patches are derived from the beam element class and are thus of the same nature as the element. Patches
are generally a figment of one’s mathematical imagination, useful tools, but they are not physical elements
which can be ordered from a factory. We believe this is a major flaw in the CLASSIC design. It is perhaps
the result of placing too much emphasis on implementation using C + + capabilities, rather than the basic
mathematical framework. We believe this accounts for the excessive number of classes and the complexity
o f CLASSIC (MAD9).

One can philosophize further about emphasizing algorithms rather than flow. PTC tracks
rays and Taylor series through polymorphism, function interfaces and operator overloading.
In addition P TC tracks stochastic moments using the so-called “beam envelop theory.” This
means that an expression such as

CALL TRACK(PSR,X,5 ,1 0 ,DEFAULT)

could represent the flow of a myriad of things. It could be the flow of a simple ray in R 6: the
usual function of a tracking code. It could also be the flow of a jet(see [5], p .223) , i.e., a
truncated power series, thanks to T P SA (usually Berz’s “DA-package” in our case). Then,
by adding to this package the polymorphism of FPP, the jet could become a jet in system
variables such as quadrupole strengths.

Therefore the first thing to realize with polymorphism and T P SA is that the concept of
flow is potentially extended further than can be imagined. Secondly, thanks to the so-called
“Hamiltonian-free” perturbation theory, jets can be used to compute the various quantities
of accelerator physics: lattice functions, equilibrium beam sizes, etc... it is simply a matter
of selecting the proper X and its subsequent tracking and analysis. The flow of X is of central
importance. Algorithms based on T P SA act correctly on the flow and not on the magnet.
Thus, if the strength K f of a quadrupole12 is declared as a parameter of the polymorph,
the object being computed will be a jet in K f . This will be done correctly, exactly, without
knowledge of the inside state of this quadrupole. The quadrupole retains its inviolate property
as a dynamical object. The design, based on flow, allows magnets to be well defined objects
since “algorithms” are performed on the flow and not on the magnets themselves. O f course

12 O f course this K f points to som ething inside the m agnet but one does n o ^ e d to know w hat it is exactly. Indeed this
qu adru pole cou ld b e a horribly com p lex m agnet w ith fringe fields, errors, correlations betw een K f and som e other factor— we
d o not care. In contrast, the analytical form ulas o f perturbation theory as found in m ost M A D m odules m ust know all these
things to b e correct and they break dow n as lattices and m agnets deviate from som e Meal state.

this capability will break down at some point. But given that the propagators found in codes
like M A D , T E A P O T , SixTrack, T R A C Y II, etc. all assume single particle dynamics in normal
operational mode, it is a major weakness, in our view, that they fail to exploit the “object
orientedness” of the theory. In any case, as mentioned previously, with P TC it is always
possible to ignore the single particle propagator and use the magnets as pure database objects
for simulation conditions incompatible with the magnet-object paradigm.

We do not necessarily believe that PTC is the ideal alternative to CLASSIC classes. We simply think
that the CLASSIC classes have a design flaw, in addition to being rather complex and rigidly hierarchical.
We have yet to hear a reasoned argument as to why our insistence on giving the flow of an individual magnet
a mathematically sound object-oriented character would be a mistake. Given the power of a polymorphic
TPSA, we cannot see any drawback in our general approach.

Finally, on reading further, it will become clear that our way of implementing multiple inheritance is
close to what is called “forward delegation” or “composition” in computer science terminology. Inheritance
works best when a subclass is truly ontologically an “is-a” of the class which it extends. In our case,
the “is-a” relationship between the generic fibre, the chart (the geometrical magnet description) and the
dynamical magnet/flow is not always realized. Certain conditions must be met before the flow through the
magnet can acquire the status of an object. When composition is used, interfaces must be written to ensure
polymorphism (interfaces for rays, Taylor and Beam Envelopes). The situation thus becomes more complex.
However, CLASSIC has a far too complex and too rigid structure, and lacks the fundamental mathematical
object of single particle dynamics.

A .3.2 Composition, Inheritance and Algorithmic Classes

For the purposes of illustration we imagine the existence of a “Superbird” , a kind of domesticated flying
horse, capable of flying while carrying a person in its claws.

Figure 7: Normal Class Hierarchy for Humans and Superbirds

In Figure 7, we see the normal class hierarchy prior to any attempt to make humans fly with the help of
superbirds, analogous to PTC without its single particle propagators. It might be the hierarchy of a program
which ignores completely human flying (single particle tracking).

Our goal is to now implement human superbird flying. We will see that there are three ways which come
to our attention. The first method, multiple inheritance, is highly intrusive and fundamentally modifies the
hierarchical structure. The second method, composition, is less intrusive and preserves the inner sanctity of
both the superbird and human classes while at the same time using the superbird class. This is how PTC is
implemented.

Finally the last way simply ignores the Superbird class and uses algorithms visiting the Human class.
These algorithms will produce Superbird flying without using or even creating this object. This is analogous
to the M AD9/CLASSIC technique.

First we examine multiple inheritance. Clearly it is correct to use inheritance and say that the Human
class extends the Primate class (JAVA syntax). But of course primates cannot fly. Furthermore, when
our humans fly, they do so by being the equivalent of a weight carried by a superbird. Thus, in the
language of multiple inheritance, we may say that Human inherits from Superbird. The advantage of this
is that the code for Superbird can be re-used and that polymorphism is automatic. We already have the
interface superbird.fly() and therefore human.fly() will correctly invoke superbird.fly(). The problem with
this construction is that humans are not superbirds; in fact not even birds. In order to have code re-usability

Figure 8 :Human flying through Multiple Inheritance

and polymorphism, we create a logical category confusion. Will humans have feathers in this model? This
is the “diamond problem” of multiple inheritance.

In addition, Superbird becomes a superclass of human and thus any change to the return value of
superbird.fly() will ripple down in any code using the human.fly() method. This is nasty since superbirds
ought to be able to change their color, for example, quite independently of humans.

The proper solution is to use composition methods as one would do in JAVA. In this case, the Human

Figure 9: Human flying through Composition

class contains an instance of the Superbird class. The Human.fly() method is defined by an interface which
calls directly the method Superbird.fly() on the instance of Superbird defined for each Human object. If
one changes the return value of Superbird.fly(), then it is only necessary to change the interface to ensure
that old code using the Human.fly() method can still be used. Thus composition provides a far stronger
encapsulation than inheritance.

Of course if humans were actually superbirds, then inheritance would be more appropriate. It would still
be true that a change in Superbird would ripple down the Human codes. However in that case the change in
Superbird would imply that the original code was inadequate and badly designed for superbirds as well as for
humans since humans are truly superbirds. The ripple down effect would be an unfortunate but necessary
consequence of our mistakes in the Superbird superclass. And yes, in such a case, we would definitely have
feathers.

It should also be said that as neither FORTRAN90 nor JAVA support multiple inheritance, but both
support interfaces, we are obliged to use composition.

The effect of the Human.fly(), in either a composition or inheritance scheme, is to return some data
consistent with a superbird flying a human between point A and point B. The code will perhaps return a
time of flight, the energy used by the superbird, and potentially many other things which depend on the
actual state of the human and of the superbird.

The third (algorithmic) option is used in CLASSIC/M AD9. Since humans are not superbirds, we may

want to describe the effect of a superbird flight as a complicated algorithm acting on the data contained
inside the Human object. We do not deal at all with the superbird nor do we make Human a contrived
subclass of Superbird. CLASSIC rather constructs a large class hierarchy of visitor algorithms. Why are
these required? In procedural programming, new algorithms, i.e., new functions can be added without
disturbing the data structures, i.e. without disturbing the objects. For example, in a code like SixTrack, one
can do all sorts of calculations using its massive collection of common blocks, without a need to “rewrite”
the common blocks. This is an extreme case of structureless procedural programming. In object oriented
programming the situation is rather reversed. New data types can be added without affecting the existing
functions. Unfortunately there are cases where we want to add a new function without disturbing the data
type, i.e., the object. In standard accelerator physics, all algorithms are generated from formulas. Formulas
are symbolic manipulations on the abstract “s” -dependent equations of motion. They are not fundamental
objects13 o f PTC nor are they fundamental objects of CLASSIC. There are of course a nearly infinite
collection of these formulas. It is therefore impracticable to incorporate each formula as a data type within
the object beam element or, in our analogy, the object human. The concept of visitor functions is intended
to provide a solution.

Figure 10: A particular aspect of Superbird flying comes for a visit!

Since algorithms are in general quite arbitrary and not necessarily ontologically related to the object on
which they are applied, the concept of visitors is a valuable construct of object oriented programming. To
the extent that we may have algorithms acting in a drastic way on our objects, for example flexible magnets
deforming under rotations, it is certainly desirable for a CLASSIC-like structure to have a visitor class. In
addition, there are certain computations, particularly first order computations, in which a formula related
to mild collective effects, requires an integral over single particle propagators. This type of integral is not
normally obtainable from the polymorphic magnet/flow object.

The draw back of implementing Human Superbird flying (or single particle magnet/flow) through visitor
functions, is related to the fact that when flying (or when pushing single particles), our objects are temporarily
inheriting from a superclass. Moreover, in the case of the magnet/flow, the algorithm which would normally
act on the magnet data, really simply acts on the magnet/flow alone, once properly extended to include

eal/Taylor polymorphs. The draw back is precisely the absence of a superbird. If a superbird is misfed
(read misaligned magnet), loses a feather (read mispowered), it is not really a superbird any more; what
guarantees do we have that a visitor function will return something consistent with true superbird flying? It
is just an algorithm acting on the data of the Human class or, in CLASSIC, visiting the beam line objects.
This is confirmed by the fact that MAD9, previous versions of MAD, and other codes based on this model fail
to give the correct dispersion when some bizarre magnet is introduced or give wrong synchrotron integrals
when cavities are misaligned, etc.

PTC avoids this completely because a large (very large) portion of the algorithms of single particle dy
namics can be made to act not on the Human class but to act on the quantity returned by Human.fly()
namely the single particle polym orphic(Real/TPSA) flow. Therefore if the Superbird was correctly imple
mented to react correctly when losing feathers or misfed, then Human.fly() will also react correctly. By
extending the flow to include Berz’s TPSA variables polymorphically, we can get rid of a vast array of algo
rithms acting on the magnet and replace them by algorithms acting on the flow. Of course it is still possible
to have algorithms acting on the individual magnets - analytical formulas are typical examples, but it is of

13 to P T C we prom ised no algorithm s beyon d tracking the flow and this is in d ea l the case, to C L A SSIC , it is hard to im agine
that the com putation o f the third order m om entum com p action w ould suddenly b ecom e a fundam ental o b je ct sim ply because
som eone decided that the know ledge o f t t i ^ u m b a was relevant to his design efforts,

ten unnecessary. People who know only standard Courant-Snyder theory (99% of all accelerator physicists),
understand only analytical formulas and are therefore sure to generate procedural code in relation to the
magnet or flow object irrespective of their choice of programming language!

A .3.3 M ore on delegation and PTC

In an accelerator, the single particle magnet propagators (magnet_i of Figure 11) are various types of birds.
These are our Superbirds. The ELEMENT is the actual magnet. It is in our Human class. In the case of
single particle dynamics, it will then inherit its tracking method from one of the magnet_i depending on the
variable ELEMENTMKIND. The interface is provided in the module S_ELEMENTS (see Sect. L).

ELEMENT: General Abstract
FIBRE: Element in a Lattice Element on the "bench"

Thus, in PTC, the flow through an element is inherited from one of the magnetfi’s through composition.
While the ELEMENT inherits its single particle tracking properties from the magnets in
S_DEF_KIND as well as some geometrical properties (MAGNET_CHART), it is not a subclass of any of
the magnet types. In fact we could write code which uses ELEMENT and totally ignores the propagators of
magnet_i. Moreover, the single particle propagators can be changed at will. In particular, we could change
the interface without breaking any code beyond the interface module S_ELEMENTS. It is important to
realize that we elevated the single particle flow to an occasionally well-defined object without compromising
the fact that perhaps the objects of type ELEMENT are not always really compatible with single particle
propagators: humans are not always superbirds. In other words, type ELEMENT is the generic magnet in
the absence of single particle propagators. This type can be used when our propagators are either inadequate
or plainly irrelevant. For example, one may want to write a fast tracking structure made out of thin lens
kicks to save time, or to study collective effects. The resulting structure is closer to the global Hamiltonian
H (s) or even H (i). Such an entity will have pointers to objects of type ELEMENT but is unlikely to use
their single particle propagators.

In PTC the story does not end with the ELEMENT. We do not define a beam line as a sequence of
elements as other codes do, but rather create a fibre bundle. Initially the term fibre bundle was never used
by Forest. It appears only once in a paper[8] written with Hirata. This lack of mathematical terminology
results from the emphasis on the very realistic idea of making the magnet flow rotate and translate like a

physical magnet, as in the types CHART and MAGNET_CHART. Therefore in Forest’s papers one always
hnds emphasis on the issue of decoupling the layout (or tunnel) coordinates from the geometry of the magnet.
There is a little of this idea in Dragt’s paper on chromaticities[3] in small rings in relation to the proper
integration methods for parallel face bends. Mathematically, one simply needs to support a hbre bundle
structure, which is an arbitrary connection between the outside world of R 6 and the local coordinates used
by the magnet propagators magnet_i’s used by ELEMENT. But this is not general relativity, this generality
can be restricted to the group S 0(3), the group of rotations in three dimensions. Thus in PTC we have a
“restricted” hbre bundle built into the type FIBRE.

The element FIBRE, through composition, inherits properties from the CHART and the ELEMENT (P).
The geometrical properties and the dynamical Euclidean group are inherited from CHA T. The single
particle propagator is inherited from ELEMENT(P). Together these give us the FIBRE propagator. Suddenly
a magnet knows how to misalign itself. The third important object in the FIBRE is the PATCH. The patches
are the hooks and eyelets which will permit the arbitrary connection of hbres into a layout - the true beam
line of PTC. Each Hbre of a layout is the discontinuous “s” variable of standard Courant-Snyder theory. A
fibre may contain a magnet or simply a pointer to an existing magnet. The same is true of a patch contained
by a Hbre. This flexibility allows for the complete management of recirculators and the common beam lines.

Because there is no strict inheritance, only interfaces, one can certainly ignore the propagators within
a given magnet_i or invent new ones. In addition, the magnetic Held and electric Held structure of these
magnets are totally irrelevant. PTC does not concern itself with the form or the look of the internal Helds.
This ensures maximum flexibility. A magnet designer may create a complicated structure: super bend at
ALS, FFAG as generated with T0SC A , etc... all that PTC needs is that certain interfaces are provided. The
internal details are irrelevant; the user can develop hundreds of classes for describing his new
magnet in enormous detail. The internal symmetries of a magnet are of no concern to P TC .
O f course the interfaces must be written, but the added flexibility, in complete agreement with the physics, is
why one should not use a strict inheritance mechanism in cases where the “is-a” relationship is not complete.
Composition methods are more powerful and preferable, simply because they follow the physics. At the very
least, one should beware inheritance when it is dictated only by a wish to have automatic polymorphism.
Interfaces require some work, but are often more appropriate.

A .4 ELEMENTP and Polymorphism
Besides the layout and its charts, the other new aspect of PTC is its reliance on TPSA (LBNL version
o f Berz’s DA-package in particular) for the calculation of Taylor series maps. We just babbled above on
the importance of TPSA and polymorphism, in particular, their tremendous impact on a “correct” class
structure. These maps are used for all the lattice function calculations through the use of Normal Form
theory. PTC uses something called the “Fully Polymorphic Package” or FPP. This set of FORTRAN90
tools creates a polymorphic type that can change from real to Taylor at execution time; it handles complex
polymorphs as well, but PTC does not use them directly. We will now explain in general terms how this
works within PTC.

A Simple Example

The Hrst thing is the concept of a real polymorphic variable. This is deHned in the FPP package and has
little to do with PTC. The reader will notice the following declaration in PSR.f90:

TYPE(REAL_8) Y (6)

The variable Y (6) is a polymorph. Consider the following piece of code

NULLIFY(P)
CALL M0VE_T0(PSR,P,4)
W RITE(6,*) "THE NAME IS " ,P7MAG7NAME

M IS _R 0T (:)= 0 . DO; M IS_R 0T(3)=1. D -4 ;
P=MIS_R0T;

X (:)= 0 .D 0
CALL TRACK(PSR,X,4 , 5 , DEFAULT)

WRITE(6,*)"LAYOUT TRACKING X (1) ,X (2)

CALL ALLOC(Y);
CALL TRACK(PSR,Y,4 , 5 , DEFAULT)
CALL P R IN T(Y(1), 6) ;CALL P R IN T (Y (2),6)

As before, we perform a misalignment of the fourth magnet and track the origin of phase space. This
is then followed with an initialization of Y, which Dlls the array with zeros, and an identical tracking call
applied to Y rather than X.

Since Y is not a real variable but something else, we need a special routine to print the result. This piece
o f code gives us the output

THE NAME IS B
LAYOUT TRACKING : 6 .180339887489015E -005 5 . 551115123125783E -017

6 . 180339887494295E -005
0 . 000000000000000E+000

Certainly the reader may wonder what this is all about. Nothing changed except for the annoying call to
ALLO C(Y) and a special print routine. What is going on here? In fact things are even worse, speed tests
would even show that on a typical computer architecture, the tracking of Y takes at least about 4 times
longer than that of X!

Now, obviously a slightly more complex syntax with a speed reduction is not our goal. Consider instead
the following problem. Suppose we would like to know the dependence to hrst order in the B-held BN(1) of
this trajectory. If by miracle it were possible to declare BN(1) as a TPSA parameter, then our task would
be over. In this context, we look at this modihed piece14 o f code:

CALL INIT(1,1,BERZ)
CALL ALLOC(Y);
P°/„MAGP°/0BN (1) °/„KIND=3; P'MAGP'BN (1) °/„I= 1
CALL TRACK(PSR,Y,4,5,+DEFAULT)
CALL PRINT(Y(1),6);CALL PRINT(Y(2),6)

The result is:

Berz’s Package
etall 1, NO = 1, NV = 1, INA = 222

I COEFFICIENT ORDER EXPONENTS
NO 1 NV 1

0 0.6180339887489018E-04 0
1 -3.144178731616748 1
-2 0.000000000000000 0

etall 1, NO 1, NV 1, INA 226

I COEFFICIENT ORDER EXPONENTS
NO 1 NV 1

1 -2.636803553144651 1
-1 0.000000000000000 0

The result if expressed in more standard notation is:

X (1) = 0.6180339887489018 10~4 - 3.144178731616748 A 61

X (2) = -2.636803553144651 A 61 . (3)

What happened here? First the TPSA package of Berz was initialized with degree 1 and with one variable
using a standard call to the FPP package; this was done with the call INIT(1,1,BERZ). Secondly the variable
BN(1), which is of type REAL_8 in ELEMENTP, was set to “kind=3.” This is a TPSA knob. A knob is
something which is hxed and should not change during a calculation. This knob was indexed with the value
1 by the assignment BN(1)%I=1. Finally the unary operator “+ ” acted on the internal state DEFAULT:
this tells PTC (actually FPP) to take into account the knobs rather than ignoring them.

14A gain this is not a safe p iece o f code , bu t it does w ork for the exact rectangular bend w hile bein g closer to F P P than a
safer call to the recom m ended P T C procedure.

It is clear that this provided us with a sensitivity analysis of the ray with respect to BN(1).

The Real Power of Polymorphism

The main power behind polymorphism and TPSA is their ability to carry out Normal Form calculations.
These kinds of calculations are at the center of all the generalizations of the Courant-Snyder theory to non
linear, non-Hamiltonian and even non-deterministic effects. In particular Normal Form theory applies not
only to the equations of motion but to maps of phase space. The Courant-Snyder theory and its Hamiltonian
generalizations always deal with the equations of motion, i.e., the infinitesimal generator of a map. This is
not what a tracking code produces. In fact it is not even what a typical experiment measures.

Let us go back to the above example and consider the following piece of code:

NULLIFY(P)
CALL M0VE_T0(PSR,P,4)
W RITE(6,*) "THE NAME IS " ,P7MAG7NAME

M IS _R 0T (:)= 0 . DO; M IS_R 0T(3)=1. D -4 ;
P=MIS_R0T;

X = 0 .d 0 ; CALL FIND_0RBIT(PSR,X,1 , DEFAULT,1 . D -7)

CALL INIT(DEFAULT, 2 , 1 , BERZ,ND2, NPARA)
CALL ALL0C(Y); CALL ALL0C(N0RMAL);
Y=NPARA; Y=X ! MAKES Y = CL0SED 0RBIT + IDENTITY MAP

P7MAGP7BN(1) 7KIND=3; P7MAGP7BN(1) 7I=NPARA+1
CALL TRACK(PSR,Y,1,+DEFAULT)

N0RMAL=Y
W RITE(6,*) N0RMAL7TUNE
CALL DAPRINT(N0RMAL7DHDJ7V(1),6)
CALL DAPRINT(N0RMAL7DHDJ7V(2) ,6)

CALL KILL(Y)
CALL KILL(N0RMAL)

We have already seen the meaning of the misalignment commands. In the next line, the code finds the closed
orbit in the default state. Incidentally, in this example we used a different call to FIND_ORBIT that does
not use TPSA. Therefore it could be moved prior to the line Y = X .

The call INIT(DEFAULT,2,1,BERZ,ND2,NPARA) is most important. It is a call similar to
INIT(1,1,BERZ) of the previous example. However this is a subroutine of PTC rather than just a routine
of FPP. It will initialize the polymorphic package, including the Normal Form routines, in a way compatible
with the state DEFAULT. The degree of the polynomials will be 2 and there will be one system parameter
possible. ND2 is the returned number of phase space variables. Here that will be 6 . NPARA is the index
of the last variable that is not a system parameter (i.e., not a kind=3 of FPP). Here it is also 6 . If delta
(X (5)) is a parameter15, ND2 is 4 and NPARA is then 5. The array Y (6) must start as the identity map
around the closed orbit; it is achieved here by equating the fixed point X with Y. Clearly there is a lot of
mystery happening here under the overloading of that equal16 sign and it involves the integer NPARA. The
call TRACK(PSR,Y,1,+DEFAULT) produces the one-turn map at position 1 in the DEFAULT state. The
unary = activates the parametric dependence on the BN(1) of the fourth magnet.

The next line is N ORM AL=Y. NORMAL is of type NORMALFORM. It performs a normal form on the
mapping represented by Y. Since there are no cavities and the phase space dimension is 6 , the result will
be a reduction of the approximate Taylor map into a rotation in the transverse plane and a drift-like map
in the longitudinal plane. This means that we get tunes and momentum compaction from this operation.
NO MAL contains all sorts of information. We will show in the next example how one extracts and tracks

15It is never in P T C an F P P param eter, i.e., k in d = 3 , but it is sim ply a constant Taylor series o f k ind= 2 .
16T his involves the F P P package as well as P T C ; w e delay this discussion. See Sect. E .3.1.

the lattice functions using the normal form and the routine TRACK. In the mean time, this is the result of
the above code:

THE NAME IS B
B erz ’ s Package

NO ND
1 2

4 . 549303376691718E -005
4 . 951861254696703E -010
5 . 395960987324300E -016
1 . 653307271249937E -016
3 . 221926252210130E -016
B erz ’ s Package

NO ND
2 3

0 .254100 4052392 39
ETALL 1 , NO = 2 , NV =

ND2
4

NP
0

ND2
6

0 .255432440298811

NP
1

7 , INA 298

I COEFFICIENT ORDER EXPONENTS
NO 4 2 NV 4

0 0 .254100 4052392 394
1 -0 .9 2 8 1 6 1 2 9 6 1 3 3 8 2 3 8
1 -0 .4 8 9 3 5 5 6 4 4 4 6 2 7 4 3 7

- 3 0 .000000 0000000 00
ETALL 2 , NO 4 2 , NV

I COEFFICIENT
NO 4 2 NV 4

0 0 .255432 4402988 110
1 -2 .1 1 1 3 1 0 6 5 1 0 0 0 0 3 9
1 0 .4317083900993576

- 3 0 .000000 0000000 00

7
0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0

7 , INA = 299

NDPT
0

NV
4

NDPT
5

18 .8741689756373

NV
7

ORDER EXPONENTS
7
0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0

0
0
1

0 0

0

The last two polynomials represent the tune in the x and y planes. For example, the hrst polynomial,
rounded up in normal notation is

vx = 0.2541 - 0.9282 Sp/p0 — 0.4894 . (4)

What is a normal form? A normal form is a statement about the (approximate17) topological nature of the
flow. Mathematically it often18 assumes the existence of a transformation A at position 1 such that the
one-turn map from 1 to 1, can be transformed into an amplitude dependent rotation R:

R = A - 1 o M o A (5)

It is much better to look at this process geometrically as mathematicians and children would do. The
tracking of phase space around the fixed point will produce a figure simultaneously in the X (1) — X (2) and
the X (3) — X (4) planes. In the absence of coupling and nonlinearities, we all know that the usual ellipses
will appear in each plane, therefore it is not hard to imagine that there exists a transformation Aj which
will turn the ellipse into a circle in the ¿th plane.

Figure 12 represents an ellipse rotated by 30 degrees and stretched in the x-direction by 2 while shrunk
by 1/2 in the vertical direction. The blue area is preserved because A is a symplectic transformation.

Normal form theory is an attempt to generalize the kind of transformation displayed in the above figure.
Such transformations are useful because it is easier in a ring (or linac) to perform calculations in the nor
malized space. For example ergodic averages and equilibrium averages are all simple averages over the angle

1T x a c ^ a k r e if the m ap is linear!
18 F P P supports at least four norm al form s relevant to accelerators. W e d o not have the space to explain all o f H am iltonian-

free perturbation theory in this m anual, nor d o w e have the will. A n d if it was not e x p la in « ! to you in the last sum m er school,
well, this is not our fault.

Figure 12: Geometrical Meaning Normal Form

around these circles. The results in the normalized space can then be transformed into results in the actual
physical space with the help of the map A. In fact the relationship between the blue area and the desired
quantities in real space dehne rigorously invariant lattice functions.

The reader should not try to “translate” these results into Hamiltonian theory. Of course the connection
is possible and he could consult Forest’s book[5] if he is interested. Rather one should focus directly on the
geometric approach and how an approximate Taylor map helps us uncover this transformation A. Let us see
again, on an example, how PTC proceeds in this manner.

Y=(NORMAL7A_T+X)

P=>PSR7START
B ETAX=(Y(1).SU B.’ 1 0 ’) * * 2 + (Y (1) .S U B .’ 0 1 ’)* * 2
WRITE(6, >) 1 , ’ ’ , P7.MAG7.NAME, BETAX

DO I=1,PSR7.N
BETAX=(Y(1).SU B.’ 1 0 ’)* * 2 + (Y (1) .S U B .’ 0 1 ’)* * 2
WRITE(6, >) I , ’ ’ , P7.MAG7.NAME, BETAX
CALL TRACK(PSR,Y,I,I+1,+DEFAULT)
P=> P7.NEXT
ENDDO

BETAX=(Y(1).SU B.’ 1 0 ’) * * 2 + (Y (1) .S U B .’ 0 1 ’)* * 2
WRITE(6,>) 1 , ’ ’ , P7MAG7NAME, BETAX

The above piece of code follows the normalization statement NORMAL=Y of the previous example. The map
NORMAL%A_T is the canonical transformation A expressed around the closed orbit X . It was computed
by the assignment NORMAL=Y. The polymorphic array is thus initialized as the transformation A added to
the hxed point. Since the FPP package deals normally with Lie/Differential algebraic quantities, the closed
orbit19 is not part of the normalization process and must be added later. The above piece of code is based
on the relation between the normal form transformation A i at position i, the one-turn map Mi, the map
Mi i+ 1 between i and i = 1, and hnally the one-turn map at i = 1, M i+1. Using the following equalities

Mj = Aj o R o A r 1 and M j+ 1 = Mj j+ 1 o Mj o M r i1+1

Mj+ 1 = Mj j+ 1 o Aj o R o A r 1 o M r jL+1. (6)

Mj = Aj o R o A ^ 1 and M j+ 1 = Mj j+ 1 o Mj o M r i1+1

M j+ 1 = Mj j+ 1 o Aj o R o A r 1 o M ^ , (7)
19O perations on T aylor series m aps are self-consistent only if they are around the closed orbit. In such a case the Lie algebra

o f truncated operators form s a g r a d ^ differential algebra. E veryth ing becom es self-consistent. In sim ple jargon-free term s it
m eans that w e m ust expand our operators and m aps around the closed orbit to get self-consistent results. P T C deals w ith
exact tracking and thus it is im portant to keep track correctly o f the closed orbit w hatever it m ay be.

we conclude that the transformation B j+1 given by

Bi+1 — Mi i+ 1 o Ai (8)

also normalizes the one-turn map M i+1 at position i + 1. This important result shows that the normalizing
transformation A i can be tracked, and thus all lattice functions can be tracked. In the above example, we
computed a real@8 BETAX. Thus we obtained the so-called beta function. The results are extracted with
the operator “ .SUB.” of the FPP package; for example the string Y(1).SU B.’ 10’ means the coefficient of *1,
thus

¡3X — (Y(1).SUB.'10/) * *2 + (Y(1).SU B.'01') * *2 = A ^ + A 212 . (9)

The results are

1 D1 6 .437605 0540945 2
2 QD 3 .773335 2322642 2
3 D2 3 .954103 0783332 2
4 B 4 .595163 7271459 6

1 D1 6 .437605 0540944 0

The reader may wonder how the parameter dependence enters in all o f this. Indeed, since the map depends
on the seventh TPSA variable, we ought to be able to get BETAX as a polynomial in this variable. This
can be done if BETAX is replaced by a REA/ 8 polymorph. In the following piece of code BETX is a
polymorph. Notice that the operator .SUB. is replaced20 by the operator .PAR.:

B E T X =(y(1).P A R .’ 1 0 0 0 ’)* * 2 + (y (1) .P A R .>0100’)* * 2

The results are
0 6.437605054094520 0 0 0 0 0 0 0
1 -2.019537138724649 0 0 0 0 1 0 0
1 -0.2584365546574744 0 0 0 0 0 0 1
2 0.3059396954101024 0 0 0 0 2 0 0
2 -2.699159311243196 0 0 0 0 1 0 1
2 12.71997024647950 0 0 0 0 0 0 2
6 0.000000000000000 0 0 0 0 0 OO

0 6.437605054094401 0 0 0 0 0 0 0
1 -2.019537138724240 0 0 0 0 1 0 0
1 -0.2584365546572856 0 0 0 0 0 0 1
2 230.6165041134295 0 0 0 0 2 0 0
2 128.6268879897636 0 0 0 0 1 0 1
2 17.93909544717098 0 0 0 0 0 0 2
6 0.000000000000000 0 0 0 0 0 OO

We notice that results are periodic to hrst order in X 5 and X 7 (Sp/po and A 61). The higher order terms
are incorrect because our calculation was only second order in the TPSA variables.

Phase Advance

Consider the simple diagram of Figure 13. It expresses compactly the concept of normal form and its
related little brother “the phase advance.”

We have already discussed the tracking of the canonical transformation A. However the phase advance
is the result of a strict dehnite “recipe” for the calculation of A. In the hrst example, the matrix A - 1 was
not in the “ordinary” Courant-Snyder form, that is to say in the form:

U (10)
20SUB returns a rea l(dp) coefficient; P A R cou ld have been used instead o f SUB since the syntax R E A L *8 = R E A L _8 will

sim ply r e t o n to e constant part o f to e polym orph .

The reader can check that a simple rotation can be put in that form. The answer is then

d I \4 4
- 1 V ?

vd 1
A : 1 = 4 4_

(i i)

Similarly from the above figure, we can write an equation for the phase advance:

M i i+i o Ai o R #A0 i1i+1) = A i+i (i 2%
T r a c k e d t r a n s f o r m a t i o n C o u r a n t — S n y d e r

The phase advance can be viewed as the difference between the tracked transformation and the transformation
which depends on the one-turn map through a specific recipe. Generally if

R = o M o A = B :1 o M o B (13)

the product

B :1 o A

is also a rotation. In general this product is of the same nature as the normal form, hence in the nonlinear
case, it is an amplitude dependent rotation. As a last example, consider the piece of code

Y=(NORMAL°/„A_T+X)

PH ASE(:)=0.D 0
TESTOLD(:)=0.D0
P=>PSR°/„START
DO I=1,PSR/.N

CALL TRACK(PSR,Y,I,I+1,+DEFAULT)

TEST=DATAN2((Y(1). SUB.’ 0 1 ’) , (Y (1) .S U B .’ 1 0 ’))/TW OPI
IF(TEST<0. D0. AND. DABS(TEST)> 1 .E-10)TEST=TEST+1. D0
DPH=TEST-TESTOLD(1)
IF(DPH<0. D0)DPH=DPH+1. D0
PHASE(1)=PHASE(1)+DPH

TEST=DATAN2((Y(3).SUB.’ 0 0 0 1 ’) , (Y (3) . SUB.’ 0 0 1 0 ’))/T W 0P I
IF(TEST<0. D0. AND. DABS(TEST)* 1 .E-10)TEST=TEST+1. D0
DPH=TEST-TEST0LD(2)
IF(DPH<0.D0)DPH=DPH+1.D0
PHASE(2)=PHASE(2)+DPH
TEST0LD(2) TEST

P=>P"/.NEXT
ENDD0

WRITE(6,%) " T o t a l Phase A dvances " , PHASE(1),PHASE(2)

The above code computes the angle necessary to rotate the tracked normalizing transformation into the
standard Courant-Snyder21 transformation. The result is simply

T o t a l Phase A dvances 2 .25410040523924 2 .25543244029881

The geometrical interpretation of the normal form is completely encapsulated in Figure 13.
Quite often this interpretation looks “non rigorous” or “unphysical” to accelerator physicists.
Actually this is both the most rigorous way to look at a normal form as well as the most
physical way. It is the most rigorous because, the normal form when truly achievable, is a
statement on the intrinsic (local) topology of the motion, i.e., of the manifold on which the
motion resides. It is also the most physical because it is detached from any equation of motion.
Recent experiment at the ALS concerning the diffusion of particles across resonances measure
directly the failure of the normal form to exist. These techniques, initiated by Laskar in solar
system dynamics, do not rely on any particular equation of motion. Accelerator physicists
unfortunately are very much “equation prone” and feel comfortable if concepts are defined in
terms of equations. This is why some of the ideas connected to P T C , namely “Hamiltonian-
free” perturbation theory are extremely difficult to communicate; without them the entire
P TC edifice falls flat because we are dragged back to the continuous/smooth s-dependent
perturbation theory where accelerator theorists feel at home. Obviously this is not compatible
with the fibre bundle structure of P TC .

B Non Trivial Examples
In this section we create directly in FORTRAN90 some lattices which are not possible in a standard tracking
code without cumbersome logic linking magnet clones. We will first examine two versions of the PSR glued
by the “waist.” We will later turn these two layouts into a single “figure-8” layout.

B .l Example 1: Two Siamese Rings
It is best to look at the picture of the beastly lattices, in Figure 14, before trying to discuss their creation.
One sees a common region that consists of (D2,QF,D1,D1,QD,D2). The only real physical magnets are QF
and QD. These are the two grossly misaligned elements in the figure.

The structure of the main program is very simple:

DIR=1 ; CALL MAKE_PSR(PSR(1),DIR)
D IR =-1; CALL MAKE_PSR(PSR_REV,DIR)
CALL SURVEY(PSR(1)) ; CALL SURVEY(PSR_REV);

0MEGA=0. D0; A=0. D0; A (2)=T W 0P I/2 . D0;
CALL ROTATION(PSR_REV,0MEGA,A)

CALL MAKE_SIAMESE(PSR(1) ,PSR_REV,PSR(2))

In this PTC example we pretty much follow the typical procedure of constructing a non-trivial entity from
MAD-like beam lines. O f course, a powerful code should be able to generate directly through its input the

21 W it t coupling, this algorithm w ould give the “T eng-E dw ards” phase advance.

double monstrosity. But, for the time being, what follows provide a simple example of the creation of a
non-trivial topology from pasting together M AD-like standard lines.

Here the hrst two calls create two separate rings with no common elements. The subroutine M AK E_PSR
is pretty much the main program we saw previously. Here it is again, reduced to a minimum (notice that
M A D K IN D 2=D R IF T _K IC K _D R IF T is a default to the Drift-Kick-Drift model and thus can be omitted):

SUBROUTINE MAKE_PSR(PSR,DIR)
USE MAD_LIKE
IMPLICIT NONE
TYPE(LAYOUT) PSR
TYPE(FIBRE) D1,QD,QF,D2,B
REAL(DP) X(6),KF,KD,ANG,BRHO,MIS_ROT(6)
INTEGER DIR

FIBRE_DIR=DIR ; FIBRE_FLIP = .TRUE.;

ANG=(TW OPI*36.D0/360.D0); BRHO=1. 2D 0*(2 . 54948D0/ANG);
CALL SET_MAD(BRHO=BRHO, METHOD=6, STEP=10)

KF=2. 72D0/BRHO; KD =-1. 92D0/BRHO;
D1 = D R IF T ("D 1",2 .28646D +00);D 2 = DRIFT(MD 2 ",0 .4 5 D + 0 0) ;
QF = QUADRUPOLE("QF",0.5D0,KF); QD = QUADRUPOLE("QD", 0 . 5D 0,K D);
B = RBEND(" B" , 2 .54948D 0,A N G);

PSR=. RING.(1 0 * (D1+QD+D2+B+D2+QF+D1))

CALL CLEAN_UP
END SUBROUTINE MAKE_PSR

The integer DIR is set to either 1 or -1. Generally, if set to -1, the M AD-like input of P TC will also
invert B-helds so as to ensure closure if FIBRE_FLIP is true. This is done in this run.

Going back to the main program, we notice that PSR(1) and PSR_REV are created. PSR(1) is the normal
forward lattice and PSR_REV is a carbon copy but made of reversed propagators. A t this stage the two beam
lines are completely independent. In the next step, since we have no C A D input, we simply proceed with a
standard M AD-like survey using the commands CALL SU R V E Y(PSR (1)) and CALL SU R VEY(PSR _R EV).
Using this particular technique, the two rings will in fact be right on top of each other. This is not exactly
what we want. To correct this problem we actually rotate the PSR_REV by 180 degrees around its origin
which happens to be the origin of space. This is done by the commands:

OMEGA=0. D0; A=0. D0; A(2)=TW O PI/2. D0;
CALL ROTATION(PSR_REV,OMEGA,A)

If plotted, the two rings would appear like the hnal “Siamese” system. However the common area would be
made of physically different QF and QDs unphysically superimposed on one another.

The next step consists in using the existing rings, PSR(1) and PSR_REV, to create the new ring PSR(2)
to replace PSR_REV. Let us look in detail into the routine “M A K E _SIA M E SE ” which will perform this
surgery.

SUBROUTINE MAKE_SIAMESE(PSR,PSR_REV,TWIN) ! PSR h e re i s P S R (l) and TWIN w i l l be PSR(2)
USE MAD_LIKE
IMPLICIT NONE
TYPE(LAYOUT) PSR, PSR_REV, TWIN ;
TYPE(FIBRE), POINTER : : P,PN
INTEGER I

TWIN=0; CALL SET_UP(TWIN); ! (l)

NULLIFY(P,PN) ; P=>PSR°/„START; PN= >PSR_REV°/„START; ! (2)

Figure 14: Two Rings joined like Siamese Twins

CALL APPEND_POINT(TWIN,P) ! (3)
P=>P"/.NEXT ; PN= >PN°/„NEXT ; !
ENDDO !

DO I=4,PSR°/„N-3 !
CALL APPEND(TWIN,PN) ! (4)
P=>P°/0NEXT;PN=>PN°/0NEXT; !
ENDDO

DO I = l , 3 !
CALL APPEND_POINT(TWIN,P) ! (5)
P=>P°/0NEXT;PN=>PN°/0NEXT; !
ENDDO

TWIN°/„CLOSED=.TRUE. ; CALL RING_L(TWIN, .TRUE.) ; ! (6)

NULLIFY (P) ;P=>TWIN°/„START ! (7)

DO I = l , 3 ; P=>P°/„NEXT; ENDDO; ! (8)

CALL FIND_PATCH(P°/„PREVIOUS,P,NEXT=.TRUE.) ! (9)

CALL FIND_PATCH(P°/„PREVIOUS,P,NEXT=.FALSE.) ! (1 1)

END SUBROUTINE MAKE_SIAMESE

Let us go one by one through the above routine keeping in mind the topology of the Siamese rings. The
routine MAKE_SIAMESE will transfer the MAD-like independent beam line PSR_REV into a new layout
called TWIN. The only difference will be that the fibres of the “jointed” region will contain data belonging
to PSR rather than clones as they do now. Most codes, at present, can only handle clones, that is to say,
copies of a magnet. This is inappropriate for common beam lines or recirculators. In a common beam line,
the common magnets are the same entities, not clones (identical twins) which can theoretically be powered
on their own. The entire virtue of the fibre construct is to ensure our ability on the computer to create
true common structures rather than clones with horrible logic mimicking the true system. This is the case,
unfortunately, o f all present design codes.

We will now describe line by line what PTC is doing in this routine:

1. Here, TW IN is nullified and then initialized. TW IN is a dummy variable; it is used to pass PSR(2)
from the main program.

2. The pointers P and PN are set at the beginning of the two existing lattices.

3. The first 3 elements of TW IN must belong to ring PSR. Therefore the fibre are created and the data is
pointed to rather than cloned. This is done by the routine APPEND_POINT which was first written
for recirculators.

4. We now clone around the lattice until we reach the last 3 elements. This operation is similar to the
duplication of a beam line in traditional codes.

5. The operations of item 3 are repeated on the last 3 elements.

6 . The new ring TW IN is now closed rather than remaining a terminated beam line.

7. The pointer P is set at the beginning of TWIN.

8 . We move to the fourth element which belongs only to TWIN.

9. A patch is computed between element 3 and 4. The patch is set on element 4 with the keyword
“N EX T=. TRUE.” .

10. We again travel down the cloned part of the lattice.

11. A patch is computed between last cloned element and the following pointed element. The patch is put
on the pointed element with the keyword “NEXT=.FALSE.” .

The reader may wonder what the patch is doing since both rings have the same energy and the elements
are perfectly lined up. Actually the x and z coordinates of the backward and forward propagators are defined
differently. A rotation of 180 degrees around the y-axis is necessary to glue a forward and backward fibre.
In our example, the only effect of the patch was the rotation by 180 degrees.

B.2 Example 2: Making a Figure “8”
The following horror is only a slight modification of the previous example. Here rather than having two rings
sharing a common section, we turn the entire thing into a single object with the topology of a “figure 8 .” It
is still a closed ring but with a common section: a big dog bone.

We do not need to describe the making of this object in great detail since it is similar to the previous
example. Here the original standard lattices PSR and PSR_REV can be exterminated on exit. Ideally, in
the future version of M AD-X, these rings would have never existed in the first place. The sole survivor is
the final layout FIGURE_8 .

SUBROUTINE MAKE_FIGURE_8(PSR,PSR_REV, FIGURE_8)
USE MAD_LIKE
IMPLICIT NONE
TYPE(LAYOUT) PSR,PSR_REV,FIGURE_8
TYPE(FIBRE), POINTER : : P,PN
INTEGER I

FIGURE_8=0; CALL SET_UP(FIGURE_8);

NULLIFY(P); P=>PSR7END
DO I = l ,2
P=>P=PREVIOUS
ENDDO
WRITE(6, >) P7.PREVIOUS7.MAG7.NAME, P7.MAG7.NAME

DO I=l,PSR7.N
CALL APPEND(FIGURE_8,P)
P=>P7NEXT;
ENDDO

NULLIFY(P); P=>FIGURE_87START
DO I = l ,6
WRITE(6, >) P7.MAG7.NAME
CALL APPEND_POINT(FIGURE_8, P)
P=>P7NEXT;
ENDDO

NULLIFY(P); P=>PSR_REV7START;
DO I = l ,3
P=>P7NEXT;
ENDDO
WRITE(6, >) P7.MAG7.NAME

DO I=4,PSR7.N-3
CALL APPEND(FIGURE_8,P)
P=>P7NEXT;
ENDDO

FIGURE_87CLOSED=. TRUE. ; CALL RING_L(FIGURE_8, . TRUE.) ;

P=>FIGURE_87START
PN=>P7NEXT
DO I=l,FIGURE_87.N
IF(P7.DIR/=PN7.DIR) CALL FIND_PATCH(P,PN,NEXT=.TRUE.)
P=>P7NEXT
PN=>PN7NEXT
ENDDO

END SUBROUTINE MAKE_FIGURE_8

This concludes our set of crazy examples.

2 FILE B Y FILE DESCRIPTION
We will list the standard commands more or less on a file by file basis. The reader is invited to look at the
original routines.

C A few aspects of FPP and PTC
We will describe a few types and a few conventions of FPP and PTC used in this document.

C .l ELEMENT and ELEMENTP: EL and ELP
The ELEMENT and the ELEMENTP are actually defined in module S_DEF-ELEMENT. Generally we will
use EL for a generic ELEMENT and ELP for a generic polymorphic element. We give here the polymorphic
ELEMENTP for reference. In the definition of ELEMENT, polymorphic entities are replaced by their real@8
equivalent, for example real_8 becomes real@8 and TY P E (D R IF T lP) becomes TY P E (D R IF T l). Only the
logical knob is peculiar to ELEMENTP; all the rest can be found in type ELEMENT as well. Notice that
in PTC, double precisions are defined as real(dp). “dp” is itself defined in a module containing constants.

TYPE ELEMENTP
INTEGER, POINTER : : KIND ! WHAT IT IS
LOGICAL, POINTER : : KNOB ! FALSE IF NO KNOB
CHARACTER(16), POINTER : : NAME,VORNAME ! IDENTIFICATION NAME AND FIRST NAME
LOGICAL, POINTER : : PERMFRINGE

TYPE(REAL_8), POINTER : : L ! LENGTH OF INTEGRATION OFTEN SAME AS LD, CAN BE ZERO
TYPE(REAL_8), DIMENSION(:) , POINTER : : AN,BN !MULTIPOLE COMPONENT
TYPE(REAL_8), POINTER:: FINT,HGAP !FRINGE FUDGE FOR MAD
TYPE(REAL_8), POINTER:: H1,H2 !BOUNDARY FUDGE FOR MAD
!
TYPE(REAL_8), POINTER : : VOLT, FREQ, PHAS ! CAVITY INFORMATION
REAL(DP), POINTER : : DELTA_E ! CAVITY ENERGY GAIN
!
TYPE(REAL_8), POINTER : : B_SOL
LOGICAL, POINTER : : THIN

! MISALIGNEMENTS AND ROTATION
LOGICAL, POINTER : : MIS,EXACTMIS
REAL(DP), DIMENSION(:) , POINTER : : D,R

TYPE(MAGNET_CHART), POINTER : : P

! TYPES OF POLYMORPHIC MAGNETS
TYPE(FITTED_MAGNETP), POINTER : : BEND
TYPE(DRIFTIP), POINTER : : DO
TYPE(DKD2P), POINTER : : K2
TYPE(KICKT3P), POINTER : : K3
TYPE(CAV4P), POINTER : : C4
TYPE(SOL5P), POINTER : : S5
TYPE(KTKP), POINTER : : T6
TYPE(TKTFP), POINTER : : T7
TYPE(NSMIP), POINTER : : S8
TYPE(SSMIP), POINTER : : S9
TYPE(TEAPOTP), POINTER : : TP1O
TYPE(MONP), POINTER : : MON14
TYPE(ESEPTUMP), POINTER : : SEP15
TYPE(STREXP), POINTER : : K16
TYPE(SOLTP), POINTER : : S17
TYPE(USER1P), POINTER : : U1
TYPE(USER2P), POINTER : : U2

MACHIDA’ S FITTED MAGNET
DRIFT
INTEGRATOR
THIN KICK
DRIFT
CAVITY
INTEGRATOR SIXTRACK STYLE
INTEGRATOR THICK FAST
NORMAL SMI
SKEW SMI
SECTOR BEND WITH CYLINDRICAL GEOMETRY
MONITOR OR INSTRUMENT
ELECTROSTATIC SEPARATOR
EXACT STRAIGHT INTEGRATOR
SOLENOID SIXTRACK STYLE AS IN TYPE(KTKP)
USER DEFINED
USER DEFINED

Here type MAGNET_CHART contains mostly information about the internal chart of a magnet:

TYPE MAGNET_CHART
TYPE(MAGNET_FRAME), POINTER:: F
INTEGER, POINTER : : CHARGE ! PROPAGATOR
INTEGER, POINTER : : DIR ! PROPAGATOR
REAL(DP), POINTER : : LD,B0,LC ! REAL(DP), POINTER : : TILTD ! INTERNAL FRAME
REAL(DP), POINTER : : BETA0, GAMMA0I, GAMBET, P0C
REAL(DP), DIMENSION(:) , POINTER : : EDGE
! INTEGER, POINTER : : TOTALPATH
LOGICAL, POINTER : : EXACT,RADIATION,NOCAVITY
LOGICAL, POINTER : : FRINGE,TIME
!
INTEGER, POINTER : : METHOD,NST
INTEGER, POINTER : : NMUL

END TYPE MAGNET_CHART

Please notice the appearance of type M A G N E TFRA M E within M A G N ETCH ART. It is dehned as:

TYPE MAGNET_FRAME
REAL(DP), POINTER,DIMENSION(: , :) : : ENT
REAL(DP), POINTER,DIMENSION(:) : : A
REAL(DP), POINTER,DIMENSION(: , :) : : EXI
REAL(DP), POINTER,DIMENSION(:) : : B
REAL(DP), POINTER,DIMENSION(: , :) : : MID
REAL(DP), POINTER,DIMENSION(:) : : O

END TYPE MAGNET_FRAME

The frames of reference in M A G N E TFR A M E are normally equal to that of the hbre in which the magnet
sits. However, as one misaligns a magnet, M A G N E TFR A M E contains the true position of the magnet in
space.

C.2 Real*8 array X(6)
Generally we will use X to designate a real@8 array. Thus X means

REAL(DP) X (6)

C.3 Real Polymorph Array Y (6)
Generally we will use Y to designate a polymorphic array. Thus Y means

TYPE(REAL_8) Y (6)

C.4 Beam Envelope Array YS(6)
Generally we will use YS to designate a beam envelope array. Thus YS means

TYPE(ENV_8) YS(6)

It is dehned in the FPP package as

TYPE ENV_8
TYPE(REAL_8) V
TYPE(REAL_8) E(NDIM2)
TYPE(REAL_8) SIGMA0(NDIM2)
TYPE(REAL_8) SIGMAF(NDIM2)

END TYPE ENV_8

! INTERNAL FRAME
!

! STATE

! METHOD OF INTEGRATION 2 ,4 ,0 R 6 YOSHIDA
! NUMBER OF MULTIPOLE

Routines involving the beam envelopes now support parameter dependence. However this is a
tricky topic because the theory is only linear; therefore the parameter dependent fixed point
with classical radiation must be provided to P T C prior to calculation. So beware: we hope to
document these subtleties eventually. See Sect. R.2.5 .

The code includes stochastic effects only from elements whose ideal bending angle (EL%P%B0) is non
zero. This is to ensure a self-consistent result when parameter dependence is turned on. This can be relaxed
by setting the global variable STOCHJN_REC to true.

C.4.1 Definition of Beam Envelope

The beam envelope YS in PTC is a collection of quadratic moments and the linear map. Theoretically one
can write a one-turn map for the moments:

(xax b)imal = ^ 2 M aiM bj {xiXj) + B ab
l,j

Deterministic Stochastic

= ¿ T Mai {{XiXj) = B%} Mbj . (14)

Form in PTC

The map M is stored implicitly in the polymorph Y S(6)%V. The stochastic kick B^b, added to the initial
envelope if any, IS located in YS(a)%E(b). The arrays Y S (a)% SIG M A0(b) and Y S (a)% S IG M A F (b)
contain the initial and final tracked envelopes respectively. The equilibrium beam is obtained by solving the
equation

(xax b)™ = Y Mai { (X iX jC + B °-} M bj . (15)
i,3

This equation is solved by normal form techniques.

C .4.2 Normalizing the Beam Envelope in PTC

The normal form corresponding to type ENV_8 is type BEAMENVELOPE of FPP.

TYPE BEAMENVELOPE
TYPE (DAMAP) TRANSPOSE
TYPE (TAYLOR) BIJ

RADIATION NORMALIZATION
TRANSPOSE OF MAP WHICH ACTS ON POLYNOMIALS
REPRESENTS THE STOCHASTIC KICK AT THE END OF THE TURN
ENV_F=M ENV_F M~T + B
EQUILIBRIUM BEAM SIZES IN RESONANCE BASIS
EQUILIBRIUM BEAM SIZES

TYPE (PBRESONANCE) BIJNR
TYPE (TAYLOR) SIJ0
REAL(DP) EMITTANCE(3),TUNE(3),DAMPING(3)
LOGICAL AUTO, STOCHASTIC
REAL(DP) KICK(3)
TYPE (DAMAP) STOCH

END TYPE BEAMENVELOPE

Therefore one can produce the equilibrium beam envelope with the syntax

ENV=YS

where ENV is of type BEAMENVELOPE. The equilibrium beam sizes, an exact linear concept, are in
ENV%SIJ0. The equilibrium emittances are in ENVMEMITTANCE. These are not exact linear concepts.
They depend critically on the smallness of the damping decrements compared to the tunes and all the linear
resonances. The calculation of the equilibrium emittances in PTC uses a projection of the operator B ab along
the eigen-directions of the map M . This can be shown to be equivalent to the Chao[9] theory of radiation—
a better theory than Sands but nevertheless not as good as the beam envelope approach.

The normalization routine can also produce the information necessary to produce the stochastic kicks of
a Monte Carlo calculation. This could be useful in brute force simulations. That information is stored in
ENVMKICK and ENVMSTOCH. It is triggered by the logical ENVMSTOCHASTIC.

C. 5 T he Type D AM AP: M
We will use M to denote a generic DAMAP. The DAMAP is defined as

TYPE DAMAP
TYPE (TAYLOR) V(NDIM2)

END TYPE DAMAP

The DAMAP is a collection of 2, 4, or 6 Taylor series. Many operations are permitted on the DAMAP.
These operations are part of the FPP package, not of PTC per se. However there is one type of convenient
initialization operation permitted in PTC which involves a polymorphic array Y (6), a DAMAP M and an
orbit X (6) which is generally the closed orbit:

Y=NPARA
Y=X+M

Here the polymorphic array Y is prepared as before with Y=N PA R A where NPARA is the special integer
computed by the INIT routine. We remind the reader that NPARA+1 is the location of the first system
parameter of TPSA, i.e., of something that is not part of X (6). The DAMAP M is added to the fixed point
and Y (6) is properly initialized. Notice that M can be a 4 or 6 dimensional map in PTC. Generally this
syntax is used if M is actually a canonical transformation normalizing the map (in a ring) or defining the
distribution (in a linac).

C.6 T he Type NORM ALFORM
We will use NORMAL in this manual. The concept of normal forms is central to ring perturbation theory.
A normal form is triggered by the assignment:

NORMAL = M

However it is also possible for convenience to write

NORMAL = Y

The basic idea of a normal form is to rewrite a map, around its fixed point, i.e., a DAMAP, as

M = A o R o A - 1 . (16)

Basically an object of type NORMALFORM contains A, R as well as other useful goodies. NORMALFORM
is defined as

TYPE NORMALFORM
TYPE (DAMAP) A_T
TYPE (DAMAP) At
TYPE (REVERSEDRAGTFINN) A
TYPE (DRAGTFINN) NORMAL
TYPE (DAMAP) DHDJ
REAL(8) TUNE(NDIM).DAMPING(NDIM)
INTEGER NORD,JTUNE
INTEGER NRES,M(NDIM,NRESO),PLANE(NDIM)
LOGICAL AUTO

END TYPE NORMALFORM

NORMAL%A_T and NORMALMNORMAL contain A and R respectively. Other things are described in
our presentation on FPP which can be found in the Appendix B.
(h t t p : / / b c l . l b l . gov/CBP_pages/ ed u cation al/T P S A _D A /In trod u ction .htm l)

C.7 T he Type UNIVERSAL_TAYLOR
The type U N IVERSALTAYLOR is a convenient type for storing permanently some important Taylor series.
This can be used in lieu of printing the series on a file. This was suggested by David Sagan of Cornell.

http://bcl.lbl.gov/CBP_pages/educational/TPSA_DA/Introduction.html

TYPE UNIVERSAL_TAYLOR
INTEGER, POINTER:: N,NV ! Number of coefficients and number of variables
REAL(DP), POINTER :: C(:) ! Coefficients C(N)
INTEGER, POINTER:: J(:,:) ! Exponents of each coefficient J(N,NV)

END TYPE UNIVERSAL_TAYLOR

The following syntax is permissible:

TYPE (UNIVERSAL_TAYLOR) U
TYPE (TAYLOR) T1,T2

U=0 ! NULLIFIES
U=T1

T2=U
U = -l ! DESTROYS U

In the above example, the Taylor series T1 is stored in U and resurrected later in T2. O f course, calls to
INIT are permissible between these two lines: that is the entire raison d ’etre of the UNIVERSAL_TAYLOR
type.

C.8 T he Module Precision_Constants
This module contains the whole pile of constants used by FPP and PTC including two Ruth/Yoshida sets
of constants that dehned the fourth and sixth order symplectic integrators of PTC. FD1, FD2, FK1, and
FK2 are constants related to the fourth order Ruth-Yoshida integrator. YOSK(0:4) and YOSD(4) are used
in the sixth order Yoshida scheme.

It also contains some routines that are used to access the console (unit=5 or 6). This is done so that
neither FPP nor PTC calls the console directly. This might become important if these codes are to be linked
to a Windows style application.

C.9 T he Module File_Handler
The hle a_scratch_size.f90 contains three modules. Besides the module scratch_size that dehnes the sizes o f the
scratch variables of FPP and Precision_Constants dehned above, this hle contains the module File_Handler.
This module is a convenient hle handling module in case one would like to open and close hles. Failure to
use this facility may lead to conflict between a user’s own hle and the hles that PTC may open. The syntax
is rather easy.

MF=NEWFILE
OPEN(UNIT=MF, FILE=’ STOCH.TXT’ , STATUS=’ UNKNOWN’)

MF=CLOSEFILE

MF is an integer which will contain the hle unit number. MF=CLOSEFILE will close the unit MF and
return its negative. At this points units from 20 to 99 are used by File_Handler; it should be enough for
most usage. We should add that for safety, the following initialization should be done:

NEWFILE=MF=.FALSE.
CLOSEFILE=MF=. FALSE.

In PTC this is done in the compulsory routine MAKE_STATES, thus the user need not worry. It is
also possible for the hle handler to reserve certain hles for GUI applications. For example, the popular GUI
W IN TERACTER commercial package uses units 40,41, and 42. Thus File_handler never uses these hles.
This is done in the array “winterhle” which can be modihed to accommodate other reserved unit.

D Sa_ROTATION_MIS.f90: Th e Module Rotation_mis
The module Rotation_Mis manipulates the R 3 representation of the Euclidean group, in other words the
usual one acting on geometrical hgures.

D .l Basic Description of t he Module
In Sect. A .2 .2 , we introduced the techniques for making a magnet into a thin compressed element. These
were used directly in the hrst versions of P TC . At that time only the dynamical versions of the Euclidean
operators were used. The purpose of the module Rotation_mis is to rewrite these operators in R 3 and then
use the local isomorphism between the dynamical and R 3 operators for near-identity maps. Therefore let us
start with what used to precede the call to T R A C K (C % M A G ,X) in the old P TC version:

CALL R0T_XZ(C7.CHART7.ALPHA/2.D0 ,X , C7.MAG7.P7.BETA0,0UR,C7.MAG7.P7.TIME)
CALL TRANSZ(C7.CHART7.L/2.D0 ,X , C7.MAG7.P7.BETA0,0UR,C7.MAG7.P7.TIME)
CALL R0T_YZ (C7.MAG7.R (1) ,X , C7.MAG7.P7.BETA0, 0U, C7.MAG7.P7.TIME)
CALL R0T_XZ (C7.MAG7.R(2) , X , C7.MAG7.P7.BETA 0, 0U, C7.MAG7.P7.TIME)
CALL R0T_XY(C7.MAG7.R(3),X,0U)
CALL TRANS (C7.MAG7.D, X , C7.MAG7.P7.BETA 0, 0U, C7.MAG7.P7.TIME)
CALL TRANSZ(-C7.CHART7.L/2.D0 ,X , C7.MAG7.P7.BETA0,0UR,C7.MAG7.P7.TIME)
CALL R0T_XZ(-C7.CHART7.ALPHA/2. D0 ,X , C7.MAG7.P7.BETA0,0UR,C7.MAG7.P7.TIME)

In Lie map order, these calls correspond to the map:

Tent = exp (: - &&L y :j exp ^: L Pz :

x exp (: rxL x :) exp (: - 'y L y

x ex^ - : L pz ^ exp (: &&L y :) • (1<)

In the obsolete versions of P TC , the operators used in Equation (17) are the dynamical operators of Equation
(26). The purpose of the module Rotation_mis is to manipulate sequences of dynamical operations such as
those of Equation (17) into a standard factorized order. The manipulations are done in the ordinary R 3
Euclidean group and then the result is transferred to dynamical operators. Therefore the old sequence of
above is replaced by a standardized sequence

CALL R0T_YZ (C7.CHART7.ANG_IN(1) , X , C7.MAG7.P7.BETA 0, 0U, C7.MAG7.P7.TIME)
CALL R0T_XZ (C7.CHART7.ANG_IN (2) ,X , C7.MAG7.P7.BETA 0, 0U, C7.MAG7.P7.TIME)
CALL R0T_XY(C7.CHART7.ANG_IN(3) ,X ,0U)
CALL TRANS(C7.CHART7.D_IN, X , C7.MAG7.P7.BETA0, 0U,C7.MAG7.P7.TIME)

Thus P T C now ignores the dynamical expanded calls and instead use a standard ordering:

Tent = exp (: ^X” Lx :) exp (: - ^ nLy :) exp (: ^ L z :) exp (: e ln ■ p :) • (18)

The passage between Equations (17) and (18) is done entirely in R 3. For that purpose a new type in
Rotation_mis is created. It is the type matrix_PTC:

TYPE MATRIX_PTC
REAL(DP) R(D,D)
REAL(DP) T(D)

END TYPE

This type represents the following map:

T (x) = R x = d • (19)

And of course the composition obeys the usual rules:

(T o T i)(X) = R 2R i X + R 2di + d2 • (20)

The Lie operators associated to these objects operate in the reverse order:

T2 O T = 7 72. (2 1)

Amongst a whole slew of routines, PTC provides a routine for the factorization of any operator of type
matrix_PTC into a standard product, namely:

T (x) = R 3R 2R iX = e
where R, = exp (3iL i) . (22)

The factorization in Equation (22) corresponds to the Lie ordering of Equation (18) and thus to PTC
standard ordering. Thus we can identify the quantities 3i and the vector e with one another.

When a hbre is misaligned, PTC calls the routine FACTORIZE_ROTATION of the module Rotation_mis.
The inputs are the standard misalignments of the magnet. Then it computes (j3in, e in ̂ and (j3out,e out^
for the entrance and exit operator respectively.

CALL FACT0RIZE_R0TATI0N(S1, S27.CHART7.L, S27.CHART7.ALPHA, S27.CHART7.D_IN, L
L S27.CHART7.ANG_IN, S27.CHART7.D_0UT, S27.CHART7.ANG_0UT)

CALL ADJUST_INTERNAL(S2)

These new misalignments are properties of the chart and not of the magnet since they depend on the layout
length CHARTML and the layout angle CHARTMALPHA.

Obviously there are a lot of operators and tools inside module Rotation_mis. Undoubtedly more could,
and will be, added. The user could, for example, redeDne the meaning of MAGMR(3) and MAGMD(3) to
correspond to some other parameterization of the Euclidean group: Euler’s angles are not unique. In that
case, he could actually change PTC, or perhaps better, write a (Rotation_mis) routine which preprocesses
his deDnition into the MAGMR(3) and the MAGMD(3) of present PTC. In addition the routines in this
module can be used for complex patching and survey adjustments.

Finally, because the Euclidean group is global in R 3 and because the misalignments lead to maps near the
identity, the FACTORIZE_ROTATION call works well on 180° Dbres as well. In other words the excluded
phase space is always minimal. (See Sect. G.4.4 on the topic of “decompression.”)

D.2 Operations on Type Matrix .P TC
Let us use the notation M for a Matrix_PTC object and r for a real number. L_i (i=1,2,3) represents the
generator of rotations in SO(3). V_i (i=1,2,3) represents an array of real numbers often multiplying the
generators of rotation.

INTERFACE ASSIGNMENT (=)
MODULE PROCEDURE EQUAL
MODULE PROCEDURE EQUALINT
MODULE PROCEDURE EQUALD

END INTERFACE

M2=M1
M2=0 (Z e r o e s M), M = -1 ,-2 ,0 R - 3 (C re a te s L _ 1 ,2 , 3) , M=1 Makes an i d e n t i t y m a tr ix
M2=r1 makes a t r a n s la t io n o f le n g th r in th e 3 rd d i r e c t i o n (a d r i f t) ;

INTERFACE OPERATOR (*)
MODULE PROCEDURE MUL
MODULE PROCEDURE MULR
MODULE PROCEDURE RMUL

END INTERFACE

M3=M2*M1
M3=rl*M2
M3=M1*r2

INTERFACE OPERATOR (* *)
END INTERFACE

MODULE PROCEDURE POW M3=M1**n2 b u t o n ly n = -1 i s a c c e p te d (in v e r s e)

INTERFACE OPERATOR (/)
MODULE PROCEDURE DIVR

END INTERFACE
! M3=M1%R/r2 (T r a n s la t io n p a r t s e t t o z e r o)

INTERFACE OPERATOR (-)
MODULE PROCEDURE SUB ! M3=M2-M1 (M a tr ix p a r t o n ly ; T r a n s la t io n p a r t s e t t o z e r o)
MODULE PROCEDURE USUB ! M2=-M1 (M a tr ix p a r t o n ly ; T r a n s la t io n p a r t s e t t o z e r o)

END INTERFACE

INTERFACE OPERATOR (+)
MODULE PROCEDURE ADD ! M3=M2+M1 (M a tr ix p a r t o n ly ; T r a n s la t io n p a r t s e t t o z e r o)
MODULE PROCEDURE UADD ! M2 M1

END INTERFACE

INTERFACE EXP
MODULE PROCEDURE EXPMAT ! M2=exp(M1)

MODULE PROCEDURE EXPVEC
MODULE PROCEDURE EXPVEC2
MODULE PROCEDURE TEXPVEC

END INTERFACE

M 2= exp (V l_i L _ i)
M 3= exp (-V 2_l L _ l) ex p (-V 2 _ 2 L _ 2)e x p (-V 2 _ 3 L _ 3)e x p (V l_ i L _ i)
M2= exp (V 2_3 L_3) exp (V 2_2 L_2) e x p (V 2 _ l L _ l) i f IFAC=l

INTERFACE TEXP
MODULE PROCEDURE EXPMAT
MODULE PROCEDURE EXPVEC
MODULE PROCEDURE EXPVEC2
MODULE PROCEDURE TEXPVEC

END INTERFACE

! Same r o u t in e s as above

Just as an example, we can look at some parts of the subroutine FACTORIZE-ROTATION which is used
in the misalignment of a magnet.

CALL R0T_XZ(C%L0CAL%ALPHA/2.D0 ,X , C%MAG%P%BETAO,OUR,C%MAG%P%TIME)
CALL TRANSZ(C%L0CAL%L/2.D0 ,X , C%MAG%P%BETA0,0UR,C%MAG%P%TIME)
CALL R0T_YZ (C°/0MAG°/0r (l) ,X ,C 1 M AG1P1BETAO, OU, C%MAG%P%TIME)
CALL R0T_XZ(ClM AGlr(2) ,X,C%MAG%P%BETA0, 0U,C%MAG%P%TIME)
CALL R0T_XY(C%MAG%r(3),X,0U)
CALL TRANS(C%MAG%d, X, C1MAG1P1BETA0, 0U, C%MAG%P%TIME)
CALL TRANSZ(-C%L0CAL%L/2.D0 ,X , C%MAG%P%BETA0,0UR,C%MAG%P%TIME)

CALL R0T_XZ(-C%L0CAL%ALPHA/2.D0 ,X , C%MAG%P%BETA0,0UR,C%MAG%P%TIME)

¡MAKE MAGNET THICK AGAIN
¡MAKE MAGNET THICK AGAIN

r o t a t io n s

! t r a n s l a t io n
¡MAKE MAGNET THIN

¡MAKE MAGNET THIN

a = y * * (- 1) * t _ d * * (- 1) *R *t_d *y !
a i= y * t_ d * R * * (- 1) * t _ d * * (- 1) * y * * (- 1) !

c a l l f a c t o r iz e _ m 2 (a ,b e t a _ in)
t _ i n =a l t
c a l l f a c t o r iz e _ m 2 (a i ,b e t a _ o u t)
t _ o u t = a i l t
b e t a _ in (2)= - b e t a _ in (2) ! PTC co n v e n t io n
b e t a _ o u t (2) = - b e t a _ o u t (2) ! PTC co n v e n t io n

SO (3) r e p r e s e n t a t io n o f th e above dyn a m ica l code

3
4

Here we can see in green the old code of PTC appearing as a comment in FACTORIZE_ROTATION.
The first line of actual code,

a= y**(_1) (- l) * R * t _ d * y

is a succession of operations on matrix_PTC types in SO(3) using the overloaded operators described in
this section. The map “a” is the SO(3) representation of the dynamical sequence commented out. In the
dynamical sequence, certain maps can be ill-defined, in particular the first one which is a rotation by half
the layout angle a. As explained in Sect. G.4.4, near a =) this map is completely meaningless since it
represents backwards propagation even though the misalignments are small and the total misalignment map
is certainly an operator near the identity. The SO(3) representation does not have this problem and thus
“a” is well-defined. The map “a” is then factorized again in the standard order of PTC. The result is used
in the tracking routine MIS_FIB where the dynamical operators resurface.

E Sb_EXTEND_POLY.f90
This file contains two modules : the module S_extend_poly and the module ANBN. S_extend_poly extends a
few of the FPP interfaces and assignments to things specific to PTC. It is described here in detail.

The module ANBN solves Maxwell’s equation for the “exact sector bend.” It is well known that the
regular harmonic solution for multipoles is the correct solution for a straight (infinite) element. For an
element with rotational (cyclotron-like) symmetry, corrections proportional to power of EL%P%B0 must be
introduced. ANBN solves this problem to a user-specified order when the code boots in the compulsory
routine MAKE_STATES of Sect. I. It is used in the element TE APO T (See Sect. K.4.9).

E .l T he Explosive Functions
PTC, in exact mode, is likely to encounter square roots. Therefore to prevent disastrous overflows, we have
explicitely replaced the real square root by a new function R O O T(X). In addition, in wiggler calculations,
hyperbolic functions do appear and require special treatment. We list here the four beasts presently defined:

REAL(DP) FUNCTION ROOT(X)
REAL(DP) FUNCTION SINEHX_X(X)
REAL(DP) FUNCTION COSEH(X)
REAL(DP) FUNCTION SINEH(X)

REPLACES SQRT(X)
REPLACES SINH(X)/X
REPLACES COSH(X)
REPLACES SINH(X)

These functions for arguments exceeding some values (and for roots of negatives) set the global parameter
negative CHECK_STABLE to false. It is then intercepted by the routine TRACK_FIBRE_R of module
S_TRACKING. Tracking is then interrupted.

E.2 T he REAL_8 Type
This is found in the file f_definition.f90 of the FPP package. It is displayed here for completeness.

TYPE REAL_8
TYPE (TAYLOR) T
REAL(DP) R
INTEGER KIND
INTEGER I
REAL(DP) S
LOGICAL : : ALLOC

END TYPE REAL_8

IF TAYLOR
IF REAL
0 , 1 , 2 ,3 (l=REAL,2=TAYLOR,3=TAYLOR KNOB, 0=SPECIAL)
USED FOR KNOBS AND KIND=0
SCALING FOR KNOBS AND KIND=0
IF TAYLOR IS ALLOCATED IN DA-PACKAGE

E.3 The (=) Assignment
We list the routines which define the interfaces for the (=) assignment. The reader can then look them up
easily.

E.3.1 R EAL_8R EAL6: Y = X

Y = X is permitted. The definition is the obvious one if the array Y is made of k ind=l or kind=2 polymorphs.
However, if prior to this assignment, the assignment Y=N PA R A is used, then Y = X will produce

Y (i) = X (i) = Xi
Y (i) = X (i) for i > NPARA . (23)

In the above equation, xi is simply a monomial in the ith variable in the TPSA package. See also Sect. E.4
for another PTC way to initialize a polymorph in terms of a DAMAP.

E .3 .2 R EAL6R EAL_8: X = Y

This allows the X = Y assignments. It puts simply the real part of Y (i) into X (i).

This allows the Y2=Y 1 assignments: one array of polymorphs is copied into another one.

E .3.4 E N Y 8 M A P : Y S = M

This allows the copying of a map M in the part of YS which contains the “ray,” which is just the Taylor
map. This is used only in a hxed point routine for the beam envelope (in So_FITTING.f90).

E.3.5 R E A L6E N V _8: X = Y S

This simply permits one to dump the constant part of the map Y S(6)% V into the polymorphic array X (6).

E .3.6 Initializing an Envelope with E N V 8 T or E N V _8B E N V : Y S = T or Y S = E N V

This routines feed the quadratic part of a Taylor series T in the YS(6)%SIGMA0(6) array. It works as
follows:

6

if J ^ T i jx ixJ = ^ T ij = YS(i)MSIGMA0(j) (24)
i,3

This uses the operator .PAR. of FPP. Thus the array T ij is a polynomial in the polymorphic knobs.
The purpose of this routine is to initialize an envelope YS with the initial value of the quadratic moments

(xix j } stored as the coefficients T ij of T. For example, if ENV is a normal form of the beam envelope
(type beamenvelope), then the equilibrium beam sizes are in ENV%SIJ0. One can initialize YS using the
assignment YS=ENV%SIJ0. This is a hrst step towards the propagation of a beam envelope.

One can also use the syntax Y S=EN V which will automatically invoke YS=ENV%SIJ0.

E.3.7 Extracting the Tracked Envelope with TE N V _8: T = Y S

Whenever an envelope YS is tracked, at the end of a tracking call, PTC evaluates the hnal moments using
Equation (14) and stores the results in Y S(6)%SIGM AF(6). As in Sect. E.3.6, the following polynomial is
created.

6

if xix j = ^ T ij = YS(i)M SIGM AF(j) (25)
i,j

using the syntax T =Y S . T is of type Taylor.

E.4 The Operator)
The following lines are permissible in PTC.

Y=NPARA ! Makes the f i r s t NPARA polymorph KIND=0
Y=NORMAL°/,A_T+X ! Adding a r e a l array w ith a DAMAP; only allow ed in PTC
CALL TRACK(LAYOUT,Y, I ,J , STATE)

The line Y =N O R M A L% A _T+X or Y =X+N O R M A L% A _T add to a map an array of six double precision
numbers. In general this allows the addition of the hxed point to a DAMAP such as the transformation A
of a normal form. It is important to precede this by the Y=N PAR A assignment. This will create REAL_8
variables of kind=0. It should be said that Taylor series are assigned here to a kind=0 polymorph; this is
normally forbidden by FPP. Here PTC overrules this restriction setting the FPP variable “INSANE_PTC”
to true in the MAKE_STATES routine.

E.5 The PRINT and DAPRINT Interface
E.5.1 Printing and Reading Arrays

The statement

CALL PRINT(Y,MF) or CALL DAPRINT(Y,MF)

will print on hle number MF the 6 variables of Y for human or machine consumption.

One can use “CALL PRIN T(YS,M F)” or “CALL DAPRINT(YS,M F)” to print the entire content of a beam
envelope for human consumption.

E.6 The ALLOC and A L L Interface
E.6.1 Allocating Arrays

Calls to ALLO C(Y) and KILL(Y) will allocate the polymorphic array or kill it. These are constructor and
destructor routines for the polymorphic arrays. The same syntax works on beam envelopes: ALLOC(YS)
and KILL(YS). The functions are extensions of similar procedures in the FPP package.

E.7 T he Context Routine
Call to CONTEXT(STRING) replaces all the lower case letters of STRING with upper case letters:

character*5 ggg
ggg=’RTssi’
call context(ggg)
write(6,*) ggg

This produces RTSS1.

Sc_i_POL_TEMPLATE.f90 and Sg_i_template_MY_KIND.f90
Please read this chapter later as it will make little sense at this stage. This is its proper
position in the P T C hierarchy but not in a pedagogical sense!

Sg_i_template_MY_KIND.f90 (i= l or 2) contains the modules USER_KINDi where “i” is either 1 or 2.
Obviously, these blank templates cannot be tracked, but they act as a guide as well as being necessary for
compilation. The reader can consult the hle Sg_2_arbitrary.f90 for an actual implementation of a WIGGler
in USER2. In addition, we show how one can connect internal variables of these user kinds to the type
POL_BLOCK. This is done in ELP_POL_USER1 and ELP_POL_USER2. In the template, the variable
INTERNAL of the template is also associated to the VOLT variable of POL_BLOCK.

Furthermore one can modify the helds USER1 and USER2 of a POL_BLOCK to provide a flexible
connection to anything in the user dehned element. The helds are dehned in Sc_i_POL_TEMPLATE.f90.
Again, in our example, USER1 and USER2 connect to the variable INTERNAL. This is the safest way
to deal with the interaction of PO L_B LO CK and the user defined kinds. However, USER1
and USER2 also provide an automatic interface tO The arrays A N and B N of EL and ELP.

Generally the user dehned element should be written for real (dp) variables, REAL_8 polymorphs, and
ENV_8 envelopes. This will ensure that the map based theory carries over. This is essential, as we should
not have to point out here.

There are two very useful types in PTC whose properties and functions should also work for a user
dehned element: POL_BLOCK and W ORK. Once more, we must provide the methods manually which will
enforce a certain degree of inheritance. We will discuss this PTC-specihc in the following two sections.

F .l Dealing with POL_BLOCK
POL_BLOCKs are very useful in dealing with polymorphic variables. First let us write down the USER1P
element as dehned in the template:

TYPE USER1P
TYPE(MAGNET_CHART) P
TYPE(REAL_8), POINTER : :L ! MUST ALWAYS BE THERE
TYPE(REAL_8), DIMENSIONS), POINTER : : AN,BN !M u ltip o le component

! (OPTIONAL but always d efin ed)
! ADD INTERNAL STUFF HERE AS POINTERS
!
TYPE(REAL_8), POINTER ::INTERNAL ! Example o f a v a r ia b le s p e c i f ic to u se r lp

END TYPE USER1P

The variable P of type MAGNET_CHART is always present. It passes important knowledge between EL-
EMENTP and USER1P. The variable L is always there. It is dehned, allocated and killed in S_DEF.ELEMENT.
The variables AN and BN are also handled in the same module. You may use them if you have some mul
tipoles in your element. These objects will be automatically handled by POL_BLOCK, MUL_BLOCK, and
W ORK as if your element was KIND2 or KIND6 . For example, it assumes that AN and BN are used directly
in the tracking loop (unlike KIND7 and KIND10) and that these are variables scaled by P0C.

The really new thing here is the variable INTERNAL. In a real application, we would have perhaps several
such variables. Let us see how the routine ELP_POL_USER1 handles its interaction with a POL_BLOCK.

SUBROUTINE ELP_POL_USER1(S2,S1,DONEIT)
IMPLICIT NONE
TYPE (POL_BLOCK),INTENT(IN): : S1
TYPE(USERlP), INTENT(INOUT): : S2

LOGICAL,INTENT(INOUT): : DONEIT

! ONE CAN LINK INTERNAL POLYMORPHS TO PART OF POL_BLOCK WHICH IS NOT USED
! HERE THE VARIABLE "INTERNAL" IS LINKED TO VOLT

IF(S1=IVOLT>0) THEN

S27.INTERNAL7.I=S17.IV0LT+S17.NPARA
S27.INTERNAL7.S=S17.SV0LT
S27.INTERNAL7.KIND=3
D0NEIT=.TRUE.
IF(S17.SET_TPSAFIT) THEN

S27.INTERNAL7.R=S27.INTERNAL7.R+S27.INTERNAL7.S*S17.TPSAFIT(S17.IV0LT)
ENDIF

END IF

! OR TRY
IF(S17.USER17.IINTERNAL>0) THEN

S27.INTERNAL7.I=S17.USER17.IINTERNAL+S17.NPARA
S27.INTERNAL7.S=S17.USER17.SINTERNAL
S27INTERNAL7KIND=3
D0NEIT=.TRUE.
IF(S17SET_TPSAFIT) THEN

S27.INTERNAL7.R=S27.INTERNAL7.R+S27.INTERNAL7.S*S17.TPSAFIT(S17.USER17.IINTERNAL)
ENDIF

ENDIF

END SUBR0UTINE ELP_P0L_USER1

The first part shows a case where the variable INTERNAL is tied to VOLT of ELP. One can connect
single variables to VOLT, PHAS, FREQ, and B_SOL. Otherwise one can connect a variable of USER1 by
using the type POL_BLOCK1. The template connection routine is in Sc_POL_TEMPLATE.f90. Here is the
entire template module as an example.

M0DULE S_P0L_USER1
IMPLICIT N0NE
PRIVATE BLP0L1_0

TYPE P0L_BL0CK1
INTEGER IINTERNAL
REAL(DP) SINTERNAL

END TYPE P0L_BL0CK1

INTERFACE ASSIGNMENT (=)
M0DULE PR0CEDURE BLP0L1_0

END INTERFACE

C0NTAINS

SUBR0UTINE BLP0L1_0(S2,S1)
IMPLICIT N0NE
TYPE (P0L_BL0CK1),INTENT(IN0UT):: S2
INTEGER,INTENT(IN):: S1

S27SINTERNAL=1.D0
S 27IINTERNAL=0

END SUBR0UTINE BLP0L1_0

END M0DULE S_P0L_USER1

For example, if one want to make the variable INTERNAL the first parameter, then the syntax

P0LB=NPARA; P0LB7.USER17.IINTERNAL=1;

should work.

.2 Dealing with W O R K
A variable of type W ORK can be used to set up energy patches and rescale variables by some energy-like
quantity such as POC. In PTC, it is automatically assumed that the AN and BN arrays are scaled by the
POC of the ELEMENT. This is not true of the voltage. Now suppose that W ORK is set to some energy
POC_NEW, i.e., WORK%POC=POC_NEW, then the assignment

P=W0RK

where P is a fibre will call the routine

SUBROUTINE SCALE_USER1R(S2, P0C_0LD, P0C_NEW)
IMPLICIT NONE
TYPE(USERl), INTENT(INOUT): : S2
REAL(DP),INTENT(IN): : P0C_0LD,P0C_NEW

! EXAMPLE
S2=INTERNAL= S2=INTERNAL*P0C_0LD/P0C_NEW

END SUBR0UTINE SCALE_USER1R

as well as its polymorphic counterpart. Of course this is user-specified code and it could be anything. N .B .
If the work field W O R K Q R E S C A L E is set to false, then the rescaling routines are not called.

G Sd_EUCLIDEAN.f90
This file contains the module S_EUCLIDEAN. The module S_EUCLIDEAN deals with the dynamical oper
ators of the Euclidean group.

The module S_EUCLIDEAN contains various operators that will give the FIBRE type all its power as a
“dynamical object.”

The Euclidean group is simply the group of translations and rotations in 3-dimensional space. In regular
3-dimensional affine space, these are the usual translations and rotations. They are given by the usual Lie
operators of translation and rotation. In the following table we list both the time-Hamiltonian and the
dynamical (or layout) operators corresponding to the Euclidean transformations:

Operators Time Dynamical
: Px : _ - fx
: Py : _ - dy

p i : p i : _ _ a_
dx

py : py : ___ d_
dy

Pz : pz : d
_ dz

L x : yPz - ZPy :

Ly : xpz - zpx :
Lz : xpy - ypx :

: \ / (1 + t y - p i - py

!\J (1 + ^)2

c\ / (& + t)2

'y_ (26)

p i - py

- p i - py
: xpy — ypx :

Here the notation of Dragt is used for Poisson bracket operator. The time operators are the usual ones; if
restricted to position space they simply translate and rotate a geometrical figure in 3-dimensions. Of course,
in the Hamiltonian framework, they also rotate the momenta.

The amazing thing about the operators of Equation (26) is that the time and dynamical versions have
the same Lie algebra; but maybe not so surprising22 since they represent the same physical process albeit
on different objects. These operators and the time operators act on the map of a compressed magnet
isomorphically in the neighborhood of the identity, i.e., for small misalignments. One notices that three of
the dynamical Lie operators are identical to their time-like equivalent. These are the operators which move
the magnet in the transverse plane. Obviously the x and y translations as well as the x - y rotation are
decoupled neatly from the longitudinal direction. On the other hand, anything coupling with the longitudinal
is nonlinear. In fact all these nonlinear operators are drifts (free space propagators); one drift in Cartesian
coordinates and two drifts in polar, one around the y-axis and one around the x-axis.

Before we describe the dynamical operators in PTC, it is important to understand the concept of a
“compressed” map. Often the idea of a thin lens comes to mind. Certainly a thin lens is thin! But it is not
really compressed: it is thin by design and has no length. The compressed element is an element which is
sandwiched between negative drifts, i.e., negative Euclidean operators so that from a layout point of view it
has zero length and it is straight like a kicker. It looks like a thin lens. However it is still an exact map. For
example, if we take a straight element of ideal layout length L p , then the reader will agree that the map

+ (L f) o O o + (- L f) ° M o D (— L p) o O - 1 O D (L p) (27)

Compressed M

is unchanged by the drifts D sandwiching M provided o is identity. However if we put a member of the
dynamical Euclidean group instead of O , the map M will transform correctly, that is to say, like its associated
3-dimensional shape. This is why we say that the time and the dynamical operators act isomorphically on
the compressed map23 D (- L p /2) o M o D (- L p /2). We will now list these operators as they are defined in
PTC. All the operators in PTC move the magnet actively. Thus a translation of dx moves the magnet in
the positive x-direction by dx. An x — y rotation of angle a turns the magnet towards the y direction by a.
PTC has x — y, x — z , and y — z rotations.
N .B . P TC no longer uses Equation (27) directly. However it does use it in module Rotation_mis
while manipulating SO (3) operators.

22 A ctu ally the isom orphism depends crucially on the isotrop ic nature o f free space. It w ould fall apart if the m agnets were
not i m m a s d in free space. Still m agnets cou ld b e m isaligned but one cou ld not w illy-nilly com m ute transverse translations
and forward propagation because the transverse m om enta and H , w hich is pz , w ou ld not com m ute.

23 O ne could consider the com pressed m aps as parts o f a different bu t m athem atically equivalent atlas; this is precisely the
kind o f flexibility M ichelotti a llu d o l to in his “ tw o m inor com m ents” in page 10 o f his book .

G .l Coping wit h t he Square Root
Before describing in some detail the operators of S_EUCLIDEAN, we point out the existence of a “dynamical
aperture” check within it. The following objects are dehned in S_EXTEND_POLY:

LOGICAL : : R00T_CHECK=.TRUE.
LOGICAL : : CHECK_STABLE=.TRUE.
PRIVATE ROOTR INTERFACE ROOT

MODULE PROCEDURE ROOTR
END INTERFACE

It is a fact that the Euclidean operators include “square roots” in the exact option; one needs only to look
at the collection of Lie operators in Equation (26) to convince oneself of the potential trouble. Therefore
it is necessary to have a global flag to stop tracking whenever the argument of this square root is less than
zero. The reader will notice that all square roots of PTC, for the type real(dp), have been replaced by the
function “R O O T.” This function is just

REAL(DP) FUNCTION ROOTR(X)
IMPLICIT NONE
REAL(DP),INTENT(IN): :X

IF (X <= 0 . DO. AND. ROOT_CHECK) THEN
ROOTR=1. DO
CHECK_STABLE=. FALSE.

ELSE
ROOTR=SQRT(X)

END IF

END FUNCTION ROOTR

Tracking terminates if CHECK_STABLE is false. Without this, PTC could crash during any type of dynamic
aperture search. This check is equivalent to the infamous Teapot check on the velocity of a particle exceeding
the speed of light. It is a paradox that, in the “exact” option of PTC, one needs to check such things; indeed
this corresponds to a particle reversing its direction of propagation within a fibre. In that case, the equations
of motion are invalid. Thus both PTC (EXACT_M ODEL=.TRUE.) and Teapot are actually detecting a
logical inconsistency. The laws of logic tell us that false may imply false as well as true. This is exactly what
happens in this case.

The logical EXACT, generally derived from EXACTM IS (see Sect. I.6.7), ensures that the drift (pz) is
handled with the square root. If false, then the small angle approximation is used for the drift. The logical
CTIME is derived from ELMTIME. In that case the time of flight is computed rather than the path length.

G.3 Rotating an Element: ROT_YZ, ROT_XZ, and R O T_XY
These are the three rotations corresponding to L x, —L y, and L z o f table (26). These transformations have
the syntax:

ROT_YZ(A,X,B,EXACT, CTIME)
ROT_XZ(A,X,B,EXACT, CTIME)
ROT_XY(A,X,EXACT)

G.2 Translating an Element: TRANS (A, X, B, EXACT, CTIME)
The call TRANS(A,X,B,EXACT,CTIME), in Lie operator language, produces the map

T (A) = exp (: d ip x + A 2py + A 3pz :)

where A is a real(dp) angle. The x — y rotation, which is in the transverse plane, does not affect time or
path length. However it can be evaluated approximately as we will see. The y — z and x — z rotations24
involve the logical CTIME; if true, time is computed, otherwise path length is computed. We remind the
reader that these rotations are actually drifts in polar coordinates.

G .3.1 The Rotation R O T _X Y in the Transverse Plane

Now let us look at the exact and approximate versions of ROT_XY. The code is given by

SUBROUTINE ROT_XYR(A,X,EXACT)
IMPLICIT NONE
REAL(DP),INTENT(INOUT): : X (6)
REAL(DP) XN(4)
REAL(DP),INTENT(IN): : A
LOGICAL,INTENT(IN): : EXACT

IF(EXACT) THEN
XN(1)=COS(A)*X(1)+SIN(A)*X(3)
XN(3)=COS(A)*X(3)-SIN(A)*X(1)
XN(2)=COS(A)*X(2)+SIN(A)*X(4)
XN(4)=COS(A)>X(4)-SIN(A)>X(2)
X(1)=XN(1)
X(2)=XN(2)
X(3)=XN(3)
X(4)=XN(4)

ELSE
X(1)=X(1)+A*HALF*X(3)
X (4)=X (4) -A>HALF>X(2)
X(2)=X(2)+A>X(4)
X (3)=X (3)-A>X (1)
X(1)=X(1)+A*HALF*X(3)
X (4)=X (4) -A>HALF>X(2)

END IF

END SUBROUTINE ROT_XYR

The reader may wonder why the approximate ROT_XY has this strange form: we want the prescription
reversible that is to say R (—a) = R ^1(a). This property, if true for any operator, will ensure that a drift
stays invariant under a misalignment.

G .3.2 The Rotations R O T _X Z and R O T _Y Z
These two rotations involve the longitudinal direction z. We will list here ROT_XZ also known in Dragt’s
circles as PROT. It is also found, although totally cluttered, in the main tracking loop of TEAPO T. It is
given by

SUBROUTINE ROT_XZR(A,X,B,EXACT,CTIME)
IMPLICIT NONE
REAL(DP),INTENT(INOUT):: X (6)
REAL(DP) X N (6),P Z ,P T
REAL(DP),INTENT(IN): : A,B
LOGICAL,INTENT(IN): : EXACT,CTIME
IF(EXACT) THEN

IF(CTIME) THEN
PZ=R O O T(O N E +TW O *X (5)/B +X (5)**2-X (2)**2-X (4)**2)
PT=ONE-X(2)$TAN(A)/PZ
X N (1)= X (1)/C O S (A)/P T
XN (2)=X (2)*C O S(A)+SIN (A)*P Z
X N (3)= X (3)+ X (4)*X (1)*T A N (A)/P Z /P T
X N (6)=X (6)+ X (1)*T A N (A)/P Z /P T *(O N E /B + X (5))

ELSE
P Z = R O O T ((O N E + X (5))**2 -X (2)**2 -X (4)**2)

24T h e x — z rotation is D ragt’s fam ous P R O T . It is used in the file Sh_DEF_KIN D.f90 since it is n e e ie d in the exact parallel
face bend. It is also central to the exact sector bend integrator as in the typ e and the cod e T E A P O T ; there it was m ore
convenient to re-im plem ent it under the interface nam e S P R O T for the sam e reason that z-translations are re -im plem en t«l as
D R IF T .

PT=0NE-X(2)*TAN (A)/PZ
X N (1)= X (1)/C 0 S (A)/P T
X N (2)=X (2)*C 0S (A)+S IN (A)*P Z
X N (3)= X (3)+ X (4)*X (1)*T A N (A)/P Z /P T
X N (6)= X (6)+ (0 N E + X (5))*X (1)*T A N (A)/P Z /P T

ENDIF
X (1)= X N (1)
X (2)= X N (2)
X (3) XN(3)
X (6)= X N (6)

ELSE
IF(CTIME) THEN

PZ=R00T(0N E+TW 0*X(5)/B+X(5)**2)
X (2)=X (2)+A *P Z
X (6)= X (6)+ A * X (1)* (0 N E /B + X (5))/P Z

ELSE
X (2)= X (2)+ A *(0 N E + X (5))
X (6)= X (6)+ A *X (1)

ENDIF
ENDIF

END SUBR0UTINE R0T_XZR

In the small angle approximation the tilt o f an element is simply a translation of the momentum by
A(1 + S).

G.4 A Matter of Perspective: Are we Patching Here?
G .4.1 Defining Patching

First of all we define patching. Patching refers to the connection between two elements. The rays at the
exit plane of an element are transported to the entrance plane of the following element. In PTC, in a
standard survey mode, all the elements, including drifts, are patched to one another automatically. In fact
it is assumed that no patches are needed; this is how a standard “M AD ” survey is done. But this is not
necessarily the case. One simple example is that of the extraction from one beam line to another.

In Figure 15, we show two beam lines inspired by an actual problem. The black line shows the ideal
trajectory of a 10 GEV muon. The green line shows the trajectory of a 4 GEV muon. At the beginning both
particles are in the “10 GEV” line and share the first magnet (magnet 1). The 10 GEV particle continues
towards magnet 2. The 4 GEV particle is bent further by magnet 1 and thus leaves the 10 GEV beam line
as it propagates towards magnet 3— the first magnet of its dedicated beam line. PTC handles this kind of
beam line switching naturally thanks to the fibre bundle structure of the layout.

Part of the problem is to transfer the 4 GEV ray from point A to point C. More precisely to express
the rays in the orange frame at point C. Geometrically one sees a first translation from A to B in a frame
which is perpendicular to line AB. This is just a drift of length d. The next step is a rotation around B of
angle a in the x — z plane, i.e., ROT_XZ. Finally the only thing left to do is a simple translation h in the x
direction. All these operation can be deduced from geometry, from the position of the exit plane at A and

the entrance plane at C. The reader can imagine other combinations of operators producing the same results.
The “geometrical” connections are called patches and they are useful when dealing with strange beam lines.

G .4.2 A n Example: First, Using the Compression Trick

The following three sections are perhaps not truly germane to the present version of PTC. Obviously by using
the local isomorphism between SO(3) and the dynamical operators we are de-facto replacing compression by
patching. Nevertheless it is still instructive to go through the presentation because PT C in fact compresses
in SO(3).

Now let us come back to misalignments. Are we patching there too? The answer is yes; however the trick
of the “compressed element” permits us to hide this “under the carpet.” Let us see on an example how our
theory is indeed equivalent to a set of patches. Consider the following rotation of a straight element. Here
we will first use the “compressed element trick.” The reader will notice that for this example it is easier to
compress the element at the entrance. Using the Lie operator order, we can thus rotate the map using the
formula9

M e = y e M V - 1 y _e V
C o m p r e s s e d

R o t a t e d C o m p r e s s e d M a p
where

No = exp Qx^j(1 + S)2 - p£ - P2y ̂

V = exp : 0 12\ (1 + S) - p2x - p2 : . (29)

Here O 12 is obviously the distance between O 1 and O 2 .

Figure 16: Rotating a Straight Element at the Entrance Face

G .4.3 Same Example: Now, Using Patching

Of course, in this case, it is also possible to use the figure and derive the patches from the geometry. We get
the following equivalent result.

M o = y o M y -o T i (B C)D (C 0 2)
where

% (B C) = exp (: B C px :)

D (C 02) = exp ^: C 0 2 \j(1 + S)2 - p i - py

B C = O 12 sin Q

C O 2 = 0 12 (1 — cos Q). (30)

Clearly Equation (30) is the result of a patching operation. We rotate back from the exit frame to the BC
frame. We then translate in the ^-direction to C. Finally we drift to O2. Now the fun part is to see how

the manipulation of the Lie operators in Equation (29) gives the same results. Better, because of the local
isomorphism, it does not matter if we use the time or the dynamical operators. Here we chose the dynamical
since they are certainly those to be used in the tracking code. So let us see if Equation (29) is identical to
Equation (30). If it is, then we must have

exp(: - 0 12pz :) y~o exp(: 0 12pz :) = y~o exp(: B C px :)exp (: C 0 2pz :)
^ y e exp (: - O 12Pz :) y~o exp (: O 12Pz :) = exp (: BCpx :) exp (: C O 2Pz :)

^ exp (: - O 12y 0pz :) exp (: O 12pz :) = exp (: BCpx = C O 2pz :) . (31)

However we have

y epz = ^ p j (32)

and substituting in Equation (31) and equating the Lie operators, which all commute:

—O i2 \J(1 = 5)2 - (px cos - = pz sin -) 2 - p j = O 12pz = C O 2pz = BCpx

^ - \ ! (1 = 5)2 - (px cos - = pz sin -) 2 - p j = (sin - px - cos -p z)

The reader can square the above expression on both sides of the equal sign and check indeed that this
equality holds.

Remarkably, the reader will notice that the present version of P T C would produce exactly the ordering
of Equation (30). Of course it is not done through an analytical derivation as in this section. Instead
the operators in the compression formulas are re-factored in the module Rotatiommis using some iterative
algorithms in SO(3).

G .4.4 Failure of Compression: Decompression!

We now discuss why PTC, using module Rotation_mis, goes back and forth between the dynamical Euclidean
group and the ordinary R 3 representation.

Figure 17: Why Dynamical Compression fails in general

The reader will notice that ROT_XZ diverges for & = 90o; thus the dynamical representation is not
global. This means that if the layout angle of a bend is around 180° then the entire compression approach
fails. Thus generally, for big magnets, one should re-express the theory around 180°. The magnets should
be “decompressed” into 180° bends. Although one could support this in PTC it is better to use a different
approach altogether.

Figure 17 shows the difference between compression and decompression. For this magnet, of layout
angle) - e, we displayed a distribution of incoming rays which are propagating forward in the layout. The
red part corresponds to rays lost by compression into a thin magnet. This is because these rays would
suddenly propagate backwards, something forbidden in the ^-parameterized Hamiltonian. However, if a
“decompression” technique is used, then the blue rays are lost.

Thus we do need the two approaches in a code capable of handling large bending angles unless the
isomorphism to SO(3) is used. This is why PTC does all its compression work in SO(3).

G.5 Routines of Sd_EUCLIDEAN
This module contains simply the Euclidean group operators: Drifts and Rotations. The so-called “NEW
ROUTINES” are never used in the present version of PTC. In these routines, the input parameters (angles
and lengths) are polymorphs. With these routines and complex programming in S_DEF_KIND, one could
imagine making the actual length of a magnet a true polymorph. For a short discussion of P T C ’s inability
to make the integration length L a true polymorph, please read Sect . 0 .1 .

INTERFACE TRANS
MODULE PROCEDURE TRANSR
MODULE PROCEDURE TRANSP
MODULE PROCEDURE TRANSP_P ! NEW ROUTINES WITH POLYMORPHS ONLY
MODULE PROCEDURE TRANSS
MODULE PROCEDURE TRANSS_S ! NEW ROUTINES WITH POLYMORPHS ONLY

INTERFACE ROT_XZ
MODULE PROCEDURE ROT_XZR
MODULE PROCEDURE ROT_XZP
MODULE PROCEDURE ROT_XZP_P ! NEW ROUTINES WITH POLYMORPHS ONLY
MODULE PROCEDURE ROT_XZS
MODULE PROCEDURE ROT_XZS_S ! NEW ROUTINES WITH POLYMORPHS ONLY

INTERFACE ROT_YZ
MODULE PROCEDURE ROT_YZR
MODULE PROCEDURE ROT_YZP
MODULE PROCEDURE ROT_YZP_P ! NEW ROUTINES WITH POLYMORPHS ONLY
MODULE PROCEDURE ROT_YZS
MODULE PROCEDURE ROT_YZS_S ! NEW ROUTINES WITH POLYMORPHS ONLY

INTERFACE ROT_XY
MODULE PROCEDURE ROT_XYR
MODULE PROCEDURE ROT_XYP
MODULE PROCEDURE ROT_XYP_P ! NEW ROUTINES WITH POLYMORPHS ONLY
MODULE PROCEDURE ROT_XYS
MODULE PROCEDURE ROT_XYS_S ! NEW ROUTINES WITH POLYMORPHS ONLY

SUBROUTINE R0T_YZR(A,X,B,EXACT, CTIME)
SUBROUTINE R0T_YZP(A,X,B,EXACT, CTIME)
SUBROUTINE R0T_YZP_P(A,X,B,EXACT, CTIME)
SUBROUTINE R0T_YZS(A,Y,B,EXACT, CTIME)
SUBROUTINE R0T_YZS_S(A,Y,B,EXACT, CTIME)
SUBROUTINE TRANSR(A,X,B,EXACT.CTIME)
SUBROUTINE TRANSP(A,X,B,EXACT.CTIME)
SUBROUTINE TRANSP_P(A,X,B,EXACT, CTIME)
SUBROUTINE TRANSS(A,Y,B,EXACT.CTIME)
SUBROUTINE TRANSS_S(A,Y,B,EXACT, CTIME)
SUBROUTINE R0T_XYR(A,X,EXACT)
SUBROUTINE R0T_XYP(A,X,EXACT)
SUBROUTINE R0T_XYP_P(A,X,EXACT)
SUBROUTINE R0T_XYS(A,Y,EXACT)
SUBROUTINE R0T_XYS_S(A,Y,EXACT)
SUBROUTINE R0T_XZR(A,X,B,EXACT, CTIME)
SUBROUTINE R0T_XZP(A,X,B,EXACT, CTIME)
SUBROUTINE R0T_XZP_P(A,X,B,EXACT, CTIME)
SUBROUTINE R0T_XZS(A,Y,B,EXACT, CTIME)
SUBROUTINE R0T_XZS_S(A,Y,B,EXACT, CTIME)

H Se_FRAME.f90
This module contains all the geometric operations associated with the charts. It was written very early, in
collaboration with Aimin Xiao, while trying to use PTC for some useful HERA calculations.

H .l T he Charts and t he Patehes
This type contains the information which locates the ideal position of an element in 3-dimensional space. It
is given by

TYPE CHART
TYPE(MAGNET_FRAME), POINTER
REAL(DP), POINTER
REAL(DP), POINTER
REAL(DP), POINTER
! FIBRE MISALIGNMENTS
REAL(DP), DIMENSIONS) ,
REAL(DP), DIMENSIONS) ,

END TYPE CHART

F
A_XY
L
ALPHA

=> NOW ALWAYS TRUE!
POINTER:: D_IN,ANG_IN
POINTER:

where the M AGNET-FRAM E is dehned as

TYPE MAGNET FRAME

D_OUT, ANG_OUT

REAL(DP), POINTER,DIMENSIONS ,) : : ENT
REAL(DP), POINTER, DIMENSIONS) A
REAL(DP), POINTER,DIMENSIONS ,) : : EXI
REAL(DP), POINTER,DIMENSIONS ,) : : MID
REAL(DP), POINTER, DIMENSIONS) O

REAL(DP), POINTER,DIMENSIONS)

END TYPE MAGNET_FRAME

Figure 18 shows the charts attached to an element. The map (subroutine TRACK(EL,X) of Sect. L) must
send a ray from the purple affine basis (A,ENT) to the green exit affine basis (B,ENT). Whoever programs
new elements must ensure that this is the default for an element of PTC. If necessary, internal patches deep
inside the coding for the magnet must be used. This is why module S_DEF_KIND contains calls to ROT_XZ
in the routines for type STR E X - the correct parallel face bend. The length L of the chart must coincide with

the Cartesian length ELMLC while the path length along the arc corresponds to ELMLD. Finally ALPHA
is ELMPMBO@ELMPMLD. The above conditions are assumed to be true during the execution of a standard
survey. Finally the angle A_XY allows a rotation of the yellow hgure in the case of a non planar bend (non
zero ELMTILTD). Actually there is a simple planar usage of A_XY, namely A _XY =) : it corresponds to an
outward bend.

Finally the variables (D_IN,ANGJN) and (D_OUT,ANG_OUT) are the actual displacements and rota
tions at the entrance and exit of the hbre. They are symbolically represented by the purple dash arrows.
They are computed on the basis of the arrays MAGMR(3) and MAGMD(3) as explained in Sect. D.

TYPE PATCH
LOGICAL, POINTER:: PATCH
LOGICAL, POINTER:: ENERGY
LOGICAL, POINTER:: TIME
REAL(DP), POINTER:: A_T,B_T
REAL(DP),DIMENSION(:) , POINTER:: A_D, B_D, A_ANG, B_ANG

END TYPE PATCH

The patch variables are used in the layout tracking if patching is necessary. For example it is useful when
connecting beam lines as shown in Sect. G.4.1. Patches are also necessary when a vertical bump is put in
place. In such a case, standard surveys are not reliable. Finally, in advanced forms of design, it might be
useful to position magnets using some CAD tools. This is the case of spreaders in muon colliders. For such
rings the CAD program will create the layout; putting the magnets may require patching.

In addition, PTC supports energy and temporal patches. The energy patch is useful if the reference
ELMPMBETAO is upgraded along a beam line. A non-trivial example of this can be seen in Sect. L.4.5.
In that case the momenta and the energy variable X (5) are rescaled according to the new and old energy,
i.e., according to the present and the following magnet settings. The temporal patch is a trivial change of
reference time. The variable X (6) loses a quantity A T at the entrance and B_T at the exit of the magnet.

In summary, the variables (A,ENT), (O,MID), and (B,EXI) deDne three affine bases attached to the
beam pipe. They locate the element in space. The variables L and ALPHA characterize the yellow plane of
the magnet. At the center of this plane lies the affine basis at] . This is where a magnet is compressed for
misalignment purposes. Finally the patches are variables used in the main tracking loop to perform certain
adjustments if the exit chart of one element does not connect smoothly with the entrance chart of the element
that follows it: beam line transfer, vertical bumps, CAD produced layout, reference energy changes, etc...

H.2 Subroutines of S_FRAME
There are some potentially very useful routines in module S_FRAME. These routines include those needed
for a standard survey, some routines which allow the displacement of entire layouts and some routines for
patching. The patching routine FIND_PATCH_B, which is overloaded later to act on a hbre, is particularly
important in a non trivial lattice.

We list here the routines and their interfaces:

INTERFACE ASSIGNMENT (=)
MODULE PROCEDURE ZERO._CHART
MODULE PROCEDURE ZERO._PATCH

INTERFACE EQUAL
MODULE PROCEDURE COPY _CHART
MODULE PROCEDURE COPY _PATCH

INTERFACE COPY
MODULE PROCEDURE COPY _CHART1
MODULE PROCEDURE COPY _PATCH1

INTERFACE GEO_ROT
MODULE PROCEDURE GEO_ROTA
MODULE PROCEDURE GEO_ROTB
MODULE PROCEDURE GEO_ROTV

INTERFACE FIND_PATCH
MODULE PROCEDURE FIND _PATCH_B

SUBROUTINE COPY_PATCH(B,A) ! B<-A
SUBROUTINE COPY_CHART(B,A) ! B<-A
SUBROUTINE COPY_CHARTl(A,B) ! A-LB
SUBROUTINE COPY_PATCHl(A,B) ! A-LB
SUBROUTINE ZERO_PATCH(F,R) !R=0 NULLIFIES AND ALLOCATES ; R=-l DEALLOCATES
SUBROUTINE ZERO_CHART(F,R) !R=0 NULLIFIES AND ALLOCATES ; R=-l DEALLOCATES

SUBROUTINE COPY_VECTOR(R,F) ! R%ENT,R1.MID)R1.EXI -> F7.ENT)F%MID,F1.EXI
SUBROUTINE GEO_TRA(A,ENT,D,I) ! ADDS/SUBTRACTS D TO A WHERE D IS EXPRESSED IN THE ENT FRAME
SUBROUTINE GEO_AVE(ENT,A,EXI,B,MID,O) ! FINDS MID AND O
SUBROUTINE GEO_ROTA(ENT,A,I) ! ROTATES FRAME ENT BY A(3) IN THE PTC OR REVERSE PTC ORDER
SUBROUTINE GEO_ROTB(ENT,EXI,A_XY,A_XZ,A_YZ) ! ROTATES ENT INTO EXI
SUBROUTINE GEO_ROTV(V,A) ! ROTATES V BY ANGLES A(3) IN PTC ORDER
SUBROUTINE ROTATE_V(E,F,DIRVER) ! ROTATES EXIT INTO ENTRANCE OR VICE VERSA (FOR SURVEY)
SUBROUTINE ROTATE_C(E,F,DIRVER) ! PUTS E AT THE END OF F FOR SURVEY PURPOSES. E AND F MUST HAVE SAME DIRVER
SUBROUTINE ROTATE_E(A,ENT,O,MID,B,EXI,B_LAT,ROT) ! THIS ROUTINE IS USED IN ROTATE_E
SUBROUTINE FIND_PATCH_B(A,ENT,B,EXI,D,ANG) ! FINDS PATCH BETWEEN ENT AND EXI : INTERFACED LATER FOR FIBRES

I Sf_STATUS.f90
This module is primarily concerned with dehnitions and the operations on internal states. It contains the
routines which initialize PTC, including the states, the integration methods and the Maxwellian template for
the B-held in cylindrical geometry. A few important types are dehned here, which are in order of increasing
importance, TILTING, W ORK, POL.BLOCK and MAGNET_CHART.

Finally two operations on the ray are conveniently located here: DTILTD and B2PERP. These are
respectively the design tilts and the B “̂ used in the computation of radiation effects.

1.1 Constants of Sf_STATUS.f90
There are a few useful variables dehned in Sf_STATUS.f90. We list them here.

1. Integers KIND0 to KIND16 are the standard magnets. They will be described in Sect. K.

2. KINDFITTED refers to an experimental htted magnet. It is dehned in the hle Sg_0_FITTED.f90. It
is not yet documented.

3. KINDUSER1 and KINDUSER2 refer to user dehned elements. One can compile PTC with an empty
template or hll it in with an element.

4. DRIFTJKICK.DRIFT, MATRIXJKICKJMATRIX and KICK_SIXTRACK_KICK are KIND2, KIND7
and KIND6 respectively. Although, for example, DRIFT_KICK_DRIFT is equal to KIND2, the routine
which creates the element in the module MAD_LIKE may assign a kind different from KIND2 to the
element. For this reason, it is better to use DRIFT_KICK_DRIFT since the name is more representative
of the properties of the element created.

5. In connection with item 4, PTC has three variables that are used in the MAD-like language of Sect. Q
to indicate the type of model desired by the user. There are also three pointers which automatically
assign a better name to these variables while keeping backward compatibility.

INTEGER, TARGET
INTEGER, TARGET
INTEGER, TARGET
INTEGER, POINTER
INTEGER, POINTER
INTEGER, POINTER

MADKIND2=KIND2
MADKIND3N=KIND3
MADKIND3S=KIND3

MADTHICK
MADTHIN_NORMAL
MADTHIN SKEW

MADTHICK=>MADKIND2
MADTHIN_NORMAL=>MADKIND3N
MADTHIN_SKEW=>MADKIND3S

The global variable EXACT_MODEL, if true, enforces the correct treatment for the body of the
magnet. We support the straight elements, including the standard rectangular bends and the sector
bend. This is useful particularly in small machines although it might also be necessary in strongly
focusing interaction regions and other extreme situations. This flag is used at creation time. Once an
element is created, it is not possible to change its model with a simple flag.

The logical STOCH_IN_REC removes any attempt to evaluate stochastic effects in elements with a
vanishing EL%P%B0. This is necessary if one wants parameter dependence of the beam envelope. PTC
has expressions which are only valid in elements with big and rather constant bending. Generally it does
not hurt to evaluate this effect in straight elements as well, however, the formula is not differentiable
around zero B-held. The user can force the evaluation by setting STOCH_IN_REC to TRUE. In such
a case, the parameter dependence of the beam envelope using TPSA (FPP) will be slightly off. This
happens because, in straight elements, the stochastic effect is evaluated as a “double precision” entity
rather than as a polymorph. Therefore the dependence of that quantity on knobs or phase space is
ignored.

6

7

. NMAX, set to 20, is used in types and routines for manipulating AN and BN. Although PTC has
no software limitation on the size of NMUL, the highest multipole in a magnet, these user-friendly
routines are limited to NMAX. NMAX can be changed but the code must be recompiled.

9. SECTOR_B of type B_CYL contains the solution of Maxwell’s equations for a magnet of cylindrical
geometry to order SECTOR_NMUL, which has a default value of 4. This is used in KIND10 (type
TEAPO T). The equations are solved by the module ANBN using a TPSA based technique described
in [5], Interlude XIV, p.362.

10. MADKIND2 selects the kind of integration methods used for the usual magnets in Sn_MAD_LIKE.f90;
this module contains the MAD-like input of PTC. MADKIND2 is defaulted to DRIFT_KICK_DRIFT,
which is described in Sect. K. (There are also the more dangerous MADKIND3N and MADKIND3S.
See Sect. Q.)

11. MADLENGTH is a logical. Rectangular bends accept the Cartesian length in MAD. It is defaulted to
false for the MAD-like input of PTC, which means that rectangular bends accept the ideal arc length
by default.

12. MAD is another logical. It is defaulted to false. It is connected to normal and skew multipole input in
the MAD-like input of PTC.

mad = true ^ B v /(Bp) = -x n~1
v (i _ i)i

n v '

mad = false ^ B v /(B p) = bn x n _1 (33)
n

13. The integers NSTD and METD refer to the default values of the number of integration steps and the
order if relevant to the kind of magnet used. The defaults are NSTD=1 and M ETD=2.

14. Three logical variables SETKNOB, KNOB and INSANE_PTC belong to the FPP package. In the
FPP package SETKNOB is set to false for security (no knob can be changed) and KNOB is set to
true (parametric dependence is always on). In PTC the situation is reversed. KNOB should always be
false. It is controlled by a unary = . (See Sect. I.6 .6). SETKNOB is set to true. It allows the change of
a parametric variable. The user could reverse this situation and default SETKNOB to false. In such
a case, the user must make SETKNOB true whenever he is changing the real value of a parametric
knob. (Not recommended!)

INSANE_PTC permits the setting of a Taylor into a virgin REAL_8 polymorph (kind=0). It is normally
false in FPP but true in PTC. (See Sect. E.4)

15. The character array ind_stoc(6), dehned by MAKE_STATES, is used in connection with the opera
tors .PAR. and .SUB. Feel free to use it if needed.

ind_stoc(1)=’100000’
ind_stoc(2)=’010000’
ind_stoc(3)=’001000’
ind_stoc(4)=’000100’
ind_stoc(5)=’000010’
ind_stoc(6)=’000001’

16. M E T H O D _l,..., METHOD_4, METHOD-F as well as the logical NEW_METHOD are part of Dve
user deDned symplectic integrators; arrays are Dlled up corresponding to these methods. See Sect. 1.8.

17. TILT is of TYPE(TILTING). It is deDned in the module S_status but it is used only in the MAD-like
input. See again Sect. Q. In the present module the equality of two objects of type TILTING is deDned
in the obvious way in the routine EQUALTILT.

18. The eternal states described in Sect. I.6.2 are all constants of PTC.

1.2 TYPE W O R K
This type is used to retrieve and set the mass and energy-like variables of the elements. It will be described
later in conjunction with the modules S_DEF-ELEMENT and S_FAMILY.

1.3 TYPE POL_BLOCK
Type POL_BLOCK is used to assign and retrieve polymorphic attributes to and from a layout. It will be
described later in conjunction with the modules S_DEF-ELEMENT and S_FAMILY.

1.4 TYPE M AG N E T-CH A R T
Type M A G N E TC H AR T is used to provide a certain level of inheritance between the general abstract
ELEMENT (or ELEMENTP) and a particular element such as TE APO T or USER1. More importantly it
contains the geometry of the element, which in PTC, is not necessarily that of the hbre. This type also
contains a pointer to the direction of propagation of the hbre in which the magnet sits. The same is true for
the charge: PTC also has a switch for the sign of the charge.

1.5 TYPE INTERNAL-STATE
This type is dehned as follows:

TYPE INTERNAL_STATE
LOGICAL TOTALPATH.TIME,RADIATION, NOCAVITY, FRINGE, EXACTMIS
LOGICAL PARA_IN, ONLY_4D, DELTA

END TYPE

It contains a series of logicals which tell the various tracking routines how to behave.

1. TOTALPATH ensures a computation of the total path length or total time of Oight

2. TIME selects time of Oight rather than path length. (cT to be precise)

3. RADIATION turns on classical radiation.

4. NOCAVITY forces the code to ignore RF cavities. It has also implications on the normal form if
performed in three degrees of freedom.

5. FRINGE turns on quadrupole fringe helds based on the b2 and a2 components in the element.

6 . EXACTMIS if true forces the misalignments to be treated exactly.
The following Oags are strictly related to TPSA calculations:

7. If PARAJN is true TPSA knobs are included in the calculation. It is activated by a unary = on a
state.
(As in TRACK(PSR.Y.l.+DEFAULT))

8 . If ONLY_4D is true, then neither path length nor time is a TPSA variable. This means that the phase
space dimension in the normal form will be 4. Also X (5) will not be TPSA unless DELTA is also true.
See next item.

9. If DELTA is true, then ONLY_4D is also true. However, in this case, X (5) is the 5th TPSA variable. The
phase space dimension in the normal form will also be 4; momentum compaction cannot be computed.

1.6 Defined States and Operations on States
In this section we described the built-in states of PTC and the operations allowed on them.

1.6.1 The Basic States

The basic states are used to create new states using operations defined in Sf_STATUS.f90. We now list them.

1. DEFAULT: all the logicals of the state are false.

2. TOTALPATH: Only TOTALPATH is true.

3. RADIATION: Only RADIATION is true.

4. NOCAVITY: Only NOCAVITY is true.

5. FRINGE: Only FRINGE is true.

6 . TIME: Only TIME is true.

7. EXACTMIS: Only EXACTM IS is true.

8 . ONLY_4D: ONLY_4D and NOCAVITY are true. A cavity cannot be tracked without path length or
time of flight.

9. DELTA: DELTA, ONLY.4D and NOCAVITY are true.

1.6.2 The Eternal Basic States

The basic states can be modified. However a copy of the original value is kept in the eternal states. They
are

• DEFAULT0

• TOTALPATH0

• RADIATION0

• NOCAVITY0

• F INGE0

• TIME0

• EXACTMIS0

• ONLY_4D0

• DELTA0

These states cannot be modified, they are FORTRAN constants. For example, ONLY_4D0 is defined as:

TYPE(INTERNAL_STATE), PARAMETER : : 0NLY_4D0 = INTERNAL_STATE

Here “t” stands for true and “f ” for false.

1.6.3 M A K E2STATES: Initializes P T C and Solves Maxwell’s Equations

Every main program using PTC must start with a call to MAKE_STATES. There are two possible interfaces.

CALL MAKE_STATES(particle) ! P a r t ic le i s a lo g i c a l

or as

CALL MAKE_STATES(muonfactor) ! M uonfactor i s a r e a l * 8

Particle is true for an electron (positron actually) and false for a proton. The other case is equivalent to
an electron but with a scale factor of “muonfactor” for the mass.

This subroutine sets all the fundamental internal states of Sect. I.6.1 equal to the eternal states of
Sect. I.6.2. In addition, it solves Maxwell’s equations in polar coordinates to order SECTOR_NMUL ([5],
Interlude XIV, p.362.). Please set SECTOR_NMUL to the desired order prior to calling MAKE_STATES.

Now we show how the state DEFAULT can be modified.

1.6.4 Addition of States: S 1+S 2

S1+S2 is performed by the function ADD. Each logical will be joined by the boolean operator .OR. For
example,

ADD/FRINGE = S1/FRINGE.0R.S27FRINGE

Then the following corrections are performed on the hnal state:

IF(ADD/DELTA) THEN
ADD70NLY_4D = T ! T stands fo r .TRUE. and F fo r .FALSE.
ADD7N0CAVITY = T

ENDIF
IF(ADD/0NLY_4D) THEN

ADD7T0TALPATH = F
ADD7RADIATI0N = F
ADD7N0CAVITY = T

ENDIF

If we want to track in the default state with fringe Delds, we can simply invoke TRACK (PSR, Y, 1 , DEFAULT+FRINGE) .

1.6.5 Subtraction of States: S1-S2

S1-S2 is performed by the function SUB. It takes away a certain property. Suppose that the DEFAULT
state has been redeDned by the user to be DEFAULT%FRINGE=.TRUE. We will see later how this is
done. Then we may want to track temporarily without quadrupole fringe Delds. This can be done with
the call TRACK(PSR,Y,1,DEFAULT-FRINGE0). The user should see that TRACK(PSR,Y,1,DEFAULT-FRINGE)
rather than TRACK (PSR, Y,1,DEFAULT-FRINGE0) might do more than just removing fringe Delds. This is
because a state such as F INGE might have been updated to include other things common to all states
while FRINGEO is an eternal state. See Sect. I.6.10.

1.6.6 Unary Plus: + S 1

The unary plus is performed by the function PARA_REMA. It sets S1%PARA_IN to true. Tracking will be
done with parametric dependence.

1.6.7 S T A T E Q E X A C T M IS versus E L E M E N T Q E X A C T M IS

When misalignments are put in an element or a Dbre, the 3-d arrays ELMD and ELMR are Dlled in and
the appropriate CHART arrays are computed. By default, the logical ELMEXACTMIS is set to AL-
WAYS_EXACTMIS, which is a global variable. This means that misalignments are done with exact formulas
if ALWAYS_EXACTMIS is true; otherwise all the angles and lengths are assumed to be small and simpler
linear formulas are used.

It is possible to track with all misalignments done exactly. This is achieved with the state EXACTMIS.
For example, TRACK(PSR,Y,1,DEFAULT+EXACTMIS) forces the exact computation of misalignments. If an
element is set with ELMEXACTMIS = .TRUE. then it cannot be overwritten by a state whose EXACTMIS
is false since the logicals are joined by an “or.”

1.6.8 ST A T E Q FR IN G E versus E L E M E N T Q P E R M F R IN G E

The logical ELMPERMFRINGE forces an element to always have the quadrupole fringes turned on. This is
useful in colliders where the IP quadrupoles may have important quadrupole fringe Delds: one turns them on
“permanently” using this logical. The rules controlling STATEMFRINGE and ELEMENTMPERMFRINGE
are identical to those of Sect. I.6.7. In addition it is possible to use the global logical ALWAYS_FRINGE to
force ELEMENTMPE MF INGE to be turned on for all the created magnets.

1.6.9 Printing a State: P R IN T S

Sometimes, in a debugging mode, it is useful to print a state to see if everything is going as planned! The
syntax is simply c a l l p r in t (s t a t e , file_n u m b er). See an example below in Sect. I.6.10.

1.6.10 U P D A TE .STATES

After the basic states have been created, they can all be modihed on the basis of a new DEFAULT state.
This example was used in Sect. A.2.1.

CALL MAKE.STATES(. FALSE.)
EXACT_MODEL=.TRUE.
DEFAULT=DEFAULT+NOCAVITY+EXACTMIS
CALL UPDATE.STATES
MADLENGTH=.FALSE.

CALL PRINT(DEFAULT,6)

We used the print routine for a state. The output is

* * * * * * * * * * * * S ta te Summary * * * * * * * * * * * * * * * *
MADTHICK => KIND = 32 DRIFT-KICK-DRIFT
Rectangular Bend: input arc len gth (rho alpha)
D efa u lt in te g r a tio n method 6

D efa u lt in te g r a tio n ste p s 10
T his i s a proton

EXACT.MODEL = TRUE
TOTALPATH = FALSE
EXACTMIS = TRUE
RADIATION = FALSE
NOCAVITY = TRUE
TIME = FALSE
FRINGE = FALSE
PARA.IN = FALSE
ONLY.4D = FALSE
DELTA = FALSE

Updating states is not compulsory, but it sometimes make sense to update all the states. They then share
all the same default properties.

1.6.11 C L E A R S TATES

This subroutines forces all the states to return to their “eternal” value. One simply calls CLEAR_STATES
without any arguments.

1.7 Initializing FPP within PTC: INIT
1.7.1 IN IT in FPP

The polymorphic package is normally initialized by calling a routine in the module polymorphic_complextaylor.
There are two types of calls. The hrst call is a plain TPSA call. It is invoked by

CALL INIT(NO1,NP1,PACKAGE)

Here NO1 is the degree of the TPSA polynomials and NP1 is the number of variables. PACKAGE is true
if Berz’s package is used.

However, being accelerator physicists, we may want to tell the FPP package that we are dealing with
“differential algebraic maps” rather than just doing plain TPSA. This is done with the call

CALL INIT(NO1,ND1,NP1,NDPT1,PACKAGE)

Here ND1 is the number of degrees of freedom. NP1 is the number of parametric variables. NDPT1 is either
0, 2@ND1-1, or 2@ND1. If non zero, then the last plane is non-oscillatory and NDPT1 is the position of
the constant energy-like variable. In that case, a Jordan normal form is performed in the last plane and
momentum compaction is computed.

The reader will notice that using a direct call to FPP is rather tedious within the context of PTC. For
example, in PTC the constant energy-like variable is always X (5). Therefore, NDPT1 is either 0 or 5.
Someone used to MAD or Marylie notation might choose 6 . The code would go nuts!

Instead we have dehned internal states. These internal states imply a certain choice of the FPP call to
INIT. We automate this using a routine in the module S_status. Thus one uses

CALL INIT(STATE,NO1,NP1,PACKAGE, ND2, NPARA)

There are two output variables ND2 and NPARA. ND2 is just the dimension of phase space: 4 or 6 is PTC.
NPARA controls the location of the hrst knob, it is the (NPARA = 1)th variable of the TPSA package. This
quantity in PTC will be 4, 5, or 6 . It is best explained by an example from our PSR runs.

W RITE(6,’ (6 (G 1 4 .7)) ’) X
CALL INITCDEFAULT, 2 ,l,B E R Z,N D 2, NPARA)
CALL ALLOC(Y);
Y=NPARA
Y=X ! MAKES Y = CLOSED ORBIT + IDENTITY
CALL PRINT(Y,6)

The result is an identity map around the closed orbit. We remind the reader that the DEFAULT state was set
to DEFAULT+NOCAVITY+EXACTMIS.

- .4 4 3 1 0 5 6 E -0 4 - .1182941 E -0 5 .0000000 .0000000 .0000000 .2008143E -04

e t a l l 1 , NO = 2 , NV = 7 , INA = 304

I COEFFICIENT ORDER EXPONENTS
NO = 2 NV = 7

0 - 0 . 4431055933810007E -04 0 0 0 0 0 0 0
1 1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

- 2 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e t a l l 1 , NO = 2 , NV = 7 , INA = 305

I COEFFICIENT ORDER EXPONENTS
NO = 2 NV = 7

0 - 0 . 1182941098476823E -05 0 0 0 0 0 0
1 1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

2 0 . 0

e t a l l 1 , NO = 2 , NV = 7 , INA = 306

I COEFFICIENT ORDER EXPONENTS
NO = 2 NV = 7

1 1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

- 1 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e t a l l 1 , NO = 2 , NV = 7 , INA = 307

I COEFFICIENT ORDER EXPONENTS
NO = 2 NV =

1 1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- 1 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7
0 0 0 1 0 0 0

0 0 0 0 0 0 0

e t a l l 1 , NO = 2 , NV = 7 , INA = 308

I COEFFICIENT ORDER EXPONENTS
NO = 2 NV = 7

1 1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

- 1 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e t a l l 1 , NO 4 2 , NV 4 7 , ina 4 3 0 9

I COEFFICIENT ORDER EXPONENTS
NO 4 2 NV 4 7

1 1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

- 1 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

If we replace the above call to INIT with the following one

CALL INIT(DEFAULT+ONLY_4D, 2 , 1 , BERZ, ND2, NPARA)

then the result is the identical except for the longitudinal plane:

0 . 000000000000000E+000
0 . 000000000000000E+000

These variables are no longer Taylor series and NPARA=4. Finally

CALL INIT(DEFAULT+ONLY_4D+DELTA, 2 , 1 , BERZ, ND2, NPARA)

will give N PARA=5 and the result is

ETALL , NO 4 2 , NV 4 6 , INA 4 244

I COEFFICIENT ORDER EXPONENTS
NO 4 2 NV 4 6

1 1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

- 1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 . 000000000000000E+000

1.8 User Defined Integrators or Strange s-Dependence
These user-dehned methods can be used with KIND2(DKD2), KINDIO(TEAPOT), KIND16(STREX), and
the cavity KIND4(CAV4) which are built out of a two-step integrator as explained in Sects. K.4.2, K.4.9 ,
K.4.12 and K.4.4. They can also be used in the user dehned types USER1 and USER2 if so desired.

A general step of integration is given by

y S P N (M e th o d) L L
M (—) = exp (: SPD(i, Method) ~^Hi : j exp (: SPK(i, M e t h o d) : j • (34)

Let us do a simple example.

CALL MAKE_METH0D(10) ! The arrays SPD and SPK are i n i t i a l i z e d
J4METH0D_1
D0 1 4 1 ,1 0

S P K (I ,J)4 1 /9 .D 0
S P D (I ,J)4 1 /1 0 .D 0

ENDD0
SPK(1 0 ,J)40 .D 0

In this example each step of integration cannot contain more than 10 operators. Of course it can have
less and this is achieved by simply setting SPN(METHOD_1) to something less than 10. Here however, we
created a method with 10 drifts and 9 kicks. This method is trivially quadratic due to reversal symmetry.
The user can deallocate and start again within a run using the command “KILL_METHOD.” The logical
NEW_METHOD is set to TRUE or FALSE indicating the presence or absence of user-dehned methods.

These user-dehned methods serve a dual purpose. Obviously one can try new integration methods without
reprogramming PTC. It is well-known in the mathematical community that the Yoshida original schemes
are not very efficient for Hamiltonians of the type T(p) + V (4). One can now try other things.

Perhaps more importantly for large machines these user-dehned schemes allow a person to create a
tailored s-distribution of the multipole content. This is necessary, for example, when dealing with the I
quadrupoles of the LHC at CE N. Of course for that application one uses a single step of integration with
a complex distribution of kicks described by the array SPK.

J Sg_0_FITTED.f90
This is a fitted element not yet completed. It allows the magnetic field data of a magnet, in polar coordinates,
to be entered in PTC and tracked. At the moment we simply interpolate between data points and perform
non-symplectic tracking. It is also possible to track using a “pseudo-symplectic” algorithm. An approximate
interpolated vector potential is constructed that reproduces the main effects of the field; a first order implicit
method is then used. This vector potential is not differentiable at the grid points and thus the method is only
locally symplectic but globally area preserving. The tracking algorithms are reliable for very large magnet
apertures. Of course these magnets are implicitly “exact” in a kinematical sense.

This type of interpolated map does not permit the production of Taylor maps reliable beyond linear
maps. Perhaps in the future more fancy algorithms will be implemented if there is a need.

K Sh_DEF_KIND.f90
This is the module containing the basic tracking routines of PTC. This list is bound to increase as more
standard magnets are included. This list does not include the user dehned types USER1 and USER2 which
are fully active elements of PTC if they have been fully and correctly implemented by the user.

K .l List of Magnet Types
First let us list these types (for the polymorphic type, simply add the letter “P” at the end, i.e., DRIFT1
becomes DRIFT1P). The integer at the end of the name has a mnemonic value (“1” in DRIFT1 reminds us
that drifts are KIND1).

1. DRIFT1 : A drift, either approximate or exact. In canonical variables, it is the drift which carries the
burden of the approximation rather than the multipole kick. Mathematically it makes no difference.

2. DKD2 : A second, fourth or sixth order integrator of the Drift-Kick-Drift type. It uses the expanded
Hamiltonian; hence quadrupoles and bends become “linear elements.” It does not handle any ex
act elements anymore. Drift-kick-drift exact elements are handled either by type STREX or type
TEAPOT.

3. KICKT3: A thin lens multipole kick, which should be avoided since it has no length.

4. CAV4: An RF cavity. It can have a length.

5. SOL5 is a solenoid. It can also contain multipoles. It is in the expanded Hamiltonian framework.

6 . KTK: This is a second order Kick-Matrix-Kick integrator. The matrix is delta-dependent and the path
length is quadratic in the tranverse variables. This is the code SixTrack. It is slow because the matrix
must be recomputed. It uses COSY-INFINITY techniques in the transverse plane (exponential of Lie
matrices) and a special integrated exponential in the longitudinal plane. It supports EXACT_MODEL
only if the magnet is straight.

7. T K T F : This is almost your usual Matrix-Kick-Matrix. The matrix does not depend on delta. Therefore
it is very fast. To be more precise, the splitting is Matrix-Correction-Kick-Correction-Matrix. The
Hamiltonian of the correction is

H pi = p i Pi = pi
2(1 = S)

? p i = p iF _ S ^ ^ (35)

Of course, the delta-dependence is approximate in this case and depends on the number of integration
steps. PTC supports 3 types of second order integration. The two more complex types are fourth and
sixth order respectively in the action of the matrix on the kick and on the correction. This is achieved
by a Simpson and a Bode type integrator. It supports EXACT_MODEL only if the magnet is straight.

8 . NSMI: This is a single normal multipole kick: it is here to mimic a SixTrack capability. Just like
KICKT3, it should be avoided.

9. SSMI: This is a single skew multipole kick: it is here to mimic a SixTrack capability. Just like KICKT3,
it should be avoided.

2

10. TEAPO T: This is a sector bend (normal entry bend) with cylindrical geometry. Imagine a perfect
cyclotron and slice it like a wheel of Parmesan. This type of bend requires solving Maxwell’s equations
in cylindrical coordinates. We call it TE APO T in honor of the first symplectic integrator which did
this magnet correctly for a constant field. The code Teapot however did not solve Maxwell’s equation
for small bending radii: but the implementation was otherwise correctly done. One can add the fake
wedges of M AD to this magnet. In PTC, we must emphasize, rectangular bends are not sector bends
with wedges, although one can certainly create such objects with type TEAPO T.

11. MON: This is just a monitor in both planes. It is actually a drift that records x and y in the center.

12. ESEPTUM: This is the electric septum of MAD. It supports the exact and expanded Hamiltonian. To
avoid crashing in the polymorphism part, functions such as sinh(x)/x are evaluated by inhnite Taylor
series a la COSY-INFINITY near zero. This is not a major problem, hopefully, since septa are not
numerous in a lattice almost by dehnition.

13. STREX: This a straight element of the exact variety. It can be a rectangular bend (i.e. Cartesian
geometry) with the MAD style wedges at the end. PTC also supports a true rectangular bend for
which the sum of the entrance and exit angle must equal the total bending angle.

14. SOLT: This is a solenoid handled with the techniques of type KTK. It is interesting since the source
code shows how one can use the techniques developed in this paper for the SixTrack integrator on an
arbitrary delta-dependent quadratic Hamiltonian.

15. USER1 and USER2: these are two user dehned elements.

K.2 Inheritance of Element Properties: Delegation in FORTRAN90
FORTRAN90 does not support inheritance directly as C4—= does; what we will do here is perhaps closer
to composition or forward delegation in JAVA. We needed to provide a sort of inheritance to manage the
various similarities between the various kind of magnets. Here it is best to give a specihc example. Consider
an ELEMENTP (see Sect. C.1) and suppose that we know that this element is “quadrupole-like” in nature.
This means that the variable ELP%BN(2) is allocated. However, looking at the list of possible elements, it
appears that several elements are potential quadrupole-like elements: DKD2, KICKT3,SOL5, KTK, TKTF,
NSMI, TEAPO T, SOLT, and STREX. In fact, some of these elements are really different models for the same
physical type of object. Now suppose that we want to hnd the parametric dependence on the quadrupole
component of ELP. How do we do it? Here it is in an expanded form (not recommended, use POL_BLOCK
instead):

NULLIFY(P)
CALL M0VE_T0(PSR,P,2)
P7.MAGP=BN(2)7.KIND=3 ! Here ELP i s P7MAGP
P7.MAGP7.BN (2) 7I=NPARA+1
CALL TRACK(PSR,Y,1,+DEFAULT)

The important point is that this syntax25 will always work for an element which is quadrupole-like because
we manage to make sure that BN(2) always points to the quadrupole-like variable of this element. O f course,
the array BN must be allocated to order 2. This is not necessarily the case if the element is a dipole kick of
KIND2 (Again use POL_BLOCK instead to avoid these issues).

How is this achieved in PTC? Let us concentrate on the above example. Here the ELPMKIND was KIND2.
This means that the magnet type was DKD2P. The dehnition of DKD2P is

TYPE DKD2P
TYPE(MAGNET_CHART), POINTER:: P
TYPE(REAL_8), POINTER : :L
TYPE(REAL_8), DIMENSION(:) , POINTER : : AN,BN !M u ltip o le component
TYPE(REAL_8), POINTER:: FINT,HGAP !FRINGE FUDGE FOR MAD
TYPE(REAL_8), POINTER:: H1,H2

END TYPE DKD2P

We notice a few things. First DKD2P contains P of type MAGNET_CHART. All magnets in the module
S_DEF_KIND contain a P of type MAGNET_CHART. It is dehned as

TYPE MAGNET_CHART
TYPE(MAGNET_FRAME), POINTER:: F
INTEGER.POINTER :: CHARGE ! PROPAGATOR
INTEGER,POINTER :: DIR ! PROPAGATOR
REAL(DP), POINTER :: LD,BO,LC !
REAL(DP), POINTER :: TILTD ! INTERNAL FRAME

25T h e P O L _B L O C K typ e handles all the com p lex issues autom atically. It is always better to change m agnets through high
level routines unless on e knows exactly the inner works o f the specific typ e o f P T C under analysis.

REAL(DP), POINTER :: BETAO,GAMMAOI,GAMBET,POC
REAL(DP), DIMENSION(:), POINTER :: EDGE
/
INTEGER, POINTER :: TOTALPATH
LOGICAL, POINTER :: EXACT,RADIATION,NOCAVITY
LOGICAL, POINTER :: FRINGE,TIME
/
INTEGER, POINTER :: METHOD,NST
INTEGER, POINTER :: NMUL

END TYPE MAGNET_CHART

! INTERNAL FRAME

! STATE

! METHOD OF INTEGRATION 2,4,OR 6 YOSHIDA
! NUMBER OF MULTIPOLE

When PTC creates an element of any kind, it sets the pointer P in a magnet type such as DKD2P to point
directly to the equivalent object in ELEMENTP. This communicates the object P of type MAGNET_CHART
to the ELEMENT. Ultimately this permits the connection with the quantity CHART of type CHART in
the hbre.

In addition, AN, BN, L, B_SOL, VOLT, etc.. also exist in ELEMENTP and are pointed at from a
compatible magnet. This piece of code is not in the module S_def_kind but in the module S_elements. This
is because ELEMENT and ELEMENTP are not yet dehned in S_def_kind. Nevertheless we can show the
actual pointing operation for KIND2 done in the routine SETFAMILYP(EL)26:

SELECT CASECEL7.KIND)
CASE(KINDl)

i f (. not.ASSOCIATED(EL7D0))ALL0CATE(EL7D0)
EL7D07P=>EL7P
EL7D07L=>EL7L

CASE(KIND2)
i f (. not.ASSOCIATED(EL7K2))ALL0CATE(EL7K2)
EL7K27P=>EL7P
EL7K27L=>EL7L
IF(EL7P7NMUL==0) CALL ZER0_ANBN(EL,l)
EL7K27AN=>EL7AN
EL7K27BN=>EL7BN
EL7K27FINT=>EL7FINT
EL7K27HGAP=>EL7HGAP EL7K27Hl=>EL7Hl
EL7K27H2=>EL7H2

The hrst line EL% K2% P=>EL% P connects the MAGNET_CHART in EL and the magnet under consider
ation; notice that K2 is the object of type DKD2P embedded in ELEMENTP. (See Sect. C .l) The beauty
o f this construction is that the code using the BN(2) of the element W 2 does not care about the model
DKD2P. All other things being equal we could have used TK TFP for example. O f course if W 2 is a marker
or a cavity, the user gets either a PTC exception27, a system exception due to a crash, or just plain aberrant
behavior.

K.3 Some Maintenance Routines: Zeroing, ALLOC and A L L
The maintenance routines of this module are almost of no concern to the user. Of course if someone wanted
to add a new type of magnet, then paying close attention to the most complex case in this module would be
very useful. So we will list them.

K .3.1 The (=) Assignment

The routines ZEROR.KTK, ZEROP_KTK, ZERO R.TKT7, ZEROP.TKT7, ZEROR_TEAPOT, ZERO P.TEAPOT,
ZEROR_MON, ZEROR_MON, ZEROR_STREX, ZEROP_STREX,ZEROR_SOL, ZEROP_SOL, ZEROR.CAV4,
and ZEROP_CAV4 permit the nullihcation of the pointers of KTK, KTKP, TKT7, TKT7P, TEAPOT,

26Here EL is actually E L E M E N T P : it is a dum m y o f typ e E L E M E N T P in the code.
27If Etienne Forest c m stim ulate him self to program the exceptions.

TEAPOTP, MON, MONP, STREX, STREXP, SOLT,SOLTP, CAV4, and CAV4P respectively using the
syntax magnet=0. If the assignment m agnet=-l is used, then an existing magnet is destroyed. Polymorphic
variables are first deallocated in TK T7P (FPP function KILL) and then the pointers are also deallocated. In
K TKP and SOLTP (SixTrack style integrators) the polymorphic variables are deallocated locally before exit
ing the tracking routine since the delta-dependent matrix is constantly recomputed. The reader should look
at the code. These assignments are used in the module S_DEF_ELEMENT because equivalent operations
exist for ELEMENT and ELEMENTP.

K .3.2 More Interfaces for A LLO C and KILL

Again we have eight routines corresponding to the magnets of Sect. K.3.1: ALLOCKTK, ALLOCTKT7,
ALLOCSOL, ALLOCTEAPOT, KILLKTK, KILLTKT7, KILLSOL, and KILLTEAPOT. They perform the
allocation and killing for the polymorphic variables. They are used constantly for a KTKP or SOLTP magnet
for reasons explained above. For a TK T7 magnet, since the matrix is constant, the routines are only used if
parametric dependence on BN(2) is required; however they are used in the module S_DEF-ELEMENT when
a TK T7 is created or destroyed since its polymorphic matrix is global.

The reader will perhaps conclude that this is a lot of garbage: indeed maintenance is not pleasant in
FORTRAN90 because we do not have automatic constructors and destructors. All of this spells “mess” for
the programmer. On the other hand, as we explained before, it is not clear that the present approach is not
ultimately the best anyway: forward delegation rather than multiple inheritance or simply visitor functions.

K.4 More about the Magnets
O f course the best manual is the code itself (it cannot lie) but it is not too eloquent, like a village idiot!

What follows is hardly better, but here it is anyway. First we remind the reader of the connection between
S = (p — po)/p0 and Se = (E — E 0)/(p0c):

(1 + S)2 = 1 + ^ + SE • (36)

The time of flight cT is canonically conjugate to —Se while path length is conjugate to -S .
In what follows we emphasize the S-dependent Hamiltonians for the magnets out of pure laziness; these

produce path length rather than time of flight.

K .4.1 D R IFT1: Drift

Well this is a drift! Drifts come in two flavors: exact and expanded. The exact Hamiltonian is given by the
formula:

H = - y ¡ (1 + á)2 - p2 _ p i . (37)

The expanded Hamiltonian is

p2 + p2
H = t r + i r - á - (38)

Incidentally, the expression in Equation (38) gives us

(x\ y ') = (& + g) (P2,P i% , (3 :)

which, in turn, leads to a multipole kick of the variables (x ', y') proportional to 1 / (1 + á): this is the usual
non-canonical result.

K .4 .2 D K D 2: Drift-Kick-Drift Element

This is the “classic” TRACYII-SixTrack Hamiltonian in the non-exact expanded mode. The Hamiltonian of
the body of such a magnet is given by

p2 + p2 xS x 2
H = V T + p fi — S + — - + f i + 3 (x ,„)6(1 + S) Pd 6Pd

3 (x ,y) = Re ttKn+ bn% (x + * y) " j • (40)

PTC can integrate this Hamiltonian using the second, fourth, and sixth order splitting method of Yoshida.
The Yoshida method takes the fundamental second order method and builds higher order schemes using it.
The second order scheme is simply:

S2(dz) = exp ^: - y H i ^ exp ^ : - d z H 2 :^ exp ^: - y H i ^ • (41)

Higher order schemes are based on this fundamental second order method. For example, the fourth order
method, which is equivalent here to Ruth’s old integrator, is simply:

S4(dz) = S2(50dz)S2(51 dz)S2 (50dz) (42)

5o = 1

5i

2 - ^ 2

s/2

2 - ^ 2

It is possible to incorporate radiation correctly in the Yoshida hierarchy of integrators. However in PTC
radiation is incorporated in the lowest order because it is a small effect.

The entire map for the magnet, in the expanded model, is

M (L) = R~1 o Q (02) o F °ut o B (L) o %2” o Q(di) o R xy (43)

where R xy is a layout rotation28 o f angle ELMTILTD, Q(0i) mimics the entrance and exit angle29 o f an
arbitrary bend. F2"^°ut is the quadrupole fringe field from any b2 or a2 found in the bend. PTC uses a
symplectic rendition of the famous Lee-Whiting formula; the same as used by SAD. Finally B (L) is the body
o f the magnet integrated using Yoshida’s method.

What about EXACT_MODEL? In the most recent version of PTC type DKD2 handles only the expanded
Hamiltonian elements. The exact integration are handled by types STREX, TEAPO T, KTK, and TKTF.
STREX handles straight elements of all types. TE APO T handles bends of “cyclotronic” symmetry, i.e.,
mostly invariant along the ideal trajectory, and finally TK TF and KTK handle straight elements without
any ideal bending using a different split from STREX, namely the kick-matrix splits.

N.B. For all the multipole-like elements which can have a dipole geometry, we added the parameters
FINT, HGAP, H1, and H2 of MAD. The implementation of the (FINT,HGAP) and the (H1,H2) effects are
explained in two technical notes which will be published with this manual. In the original SLAC-75 report,
these expressions are either quoted as results of private derivations or obscure notes. Since we would like
PTC and eventually M AD-X to be unambiguous in their modeling and open to criticisms, we went through
the trouble of re-deriving and analyzing the sources of these effects.

K .4 .3 K IC K T 3: Thin Multipole Kick

This element is a pure thin multipole kick. It is not recommended at all. It applies the map

exp ^: - R e ^ ̂ (? ^ (x = iy f^ j : j (44)

to a ray. Such an element cannot radiate.

K .4 .4 C A V 4: R F Cavity

This element can represent a thin or thick cavity. The thin cavity kick is represented by the expression:
28T his is used to ind icate that the bend is perhaps a vertical bend. T heoretica lly it can b e any angle. It is N O T an error tilt.
29T his thin qu adru pole trick is not “physical.” It is an accidental feature o f a first order correct calculation. T h e focusing in

the horizontal p lane is purely dynam ical. T h e focusing in the vertical plane is a result o f applyin g M axw ell’s equations. T h e
effects are equal and o f op posite sign, w hat are the deep reasons? A sk the devil!

IF(EL/P/NOCAVITY) RETURN
EL°/„DELTA_E=X(5)
X (5)= X(5)-EL/P/DIR+EL/P/CHARGE*EL/VOLT*1. D-3*DSIN(TWOPI*EL°/0FREQ*X(6)/CLIGHT+EL0/0PHAS)/EL0/0P0/„POC
EL/DELTA_E=(X(5)-EL/DELTA_E)+EL/P/POC

The variable EL%DELTA_E records the change of energy at a cavity. It is useful during radiation as it
gives us the energy loss/gain. Notice that during radiation the new synchronous orbit will be found and the
hsh structure of the bucket will appear naturally as an output of the simulation; as it does in a real ring.
Thus ELMPHAS is a design input phase, not a phase resulting from radiation. The units for ELMVOLT are
M V and those of ELMPMPOC are GeV.

Recently, we also added a thick cavity which can be integrated using the same integration methods as
KIND2. This is controlled by the parameter THIN of type CAV4. In addition we added the experimental
fringe held which is not yet documented nor is it debugged. (There are issues of cavity wavelength and wave
types which complicate matters.%

K .4.5 SOL5: The Combined Function Solenoid

This is an ideal solenoid in the expanded Hamiltonian framework. The Hamiltonian is given by:

H = 2 (T T y { + f y) + (!>» “ I x) } “ S + 3 (x - y)

, 2 L z
+ c ,/ , ^ + 3 (x ,y) . (45)2(1 + 5) 2(1 + S) 8(1 + S)

Hi H H3 Hi

The term 3 (x, y) is a regular multipole term. The term in L z is a delta-dependent rotation around the
z-axis. It commutes with the rest of the solenoid but not with 3 . Therefore this element can be integrated
using a four-term Yoshida scheme. This is what PTC does. It supports second, fourth, and sixth order
Yoshida integrators.

SOL5 does not support the EXACT_MODEL option except in the drift part. In that case, the calls to
the drift in the integrator use the full drift Hamiltonian.

K .4 .6 K T K : Delta-dependent Quadratic Hamiltonian and Multipole Kicks

This is a new and very interesting method: it is the thick element of SixTrack. It support the straight
exact element in the same way as type TKTF, so please look at Sect. K.4.7 for an explanation of the
EXACT_MODEL option. This new method solves the expanded Hamiltonian of Equation (4O) using a
different splitting method. We can rewrite Equation (4O) as

H = l + t - - + f ? - S + ? (x 2 - y2) + 3 - f (x 2 - y2) + /exact . (46)2(1 + S) pd 2pd 2 v____ 2_
H i H h 3

O f course this is the same Hamiltonian as in Equation (4O) but a different30 “model” for the integration.
The quantity Cexact is the missing part of the square root for a drift that is needed in the exact option
for a straight element. This enters as a third term of the integrator split. Unlike type TK TF discussed in
Sect. K.4.7, this term is only used in the exact option.

It should be obvious that H i can be solved exactly in the transverse plane. It is a delta-dependent matrix.
This is at the center of codes such as RACETRACK, PATRICIA and TRACY. However Ripken and Schmidt
noticed that this Hamiltonian admits a quadratic path length as its exact solution in the longitudinal plane.
It can be interpreted as the expansion of the standard Pythagoras formula in cylindrical coordinates for the
path length. However Hamiltonian theory teaches us here that it is pointless and even incorrect (it violates
the symplectic condition% to go beyond the second order term.

30 A ctu ally I am a proponent o f the Talm an way o f look ing at m odelling, to other w ords I view the m eth od o f integration as
part o f the m odel, A ll accelerator physicists d o this to som e extent w ithout acknow ledging it, Thus, in that sense, Equations
(40) and (46) are not describing the sam e m odel,

Ripken and Schmidt painfully derived all the quadratic path lengths for the basic magnets. When analytic
formulas are used, one must distinguish between focusing quadrupoles, defocusing quadrupoles, various kinds
o f bends, etc.. this is because the solution in terms of real functions is not possible without branching. For
example a focusing element may require a cosine while the defocusing one requires a hyperbolic cosine. All
o f this is a mess, but it was religiously implemented by them. However branching is a killer for polymorphic
parametric dependence on the quadrupole strength.

Here we adopted a novel solution. First, the transverse dynamics can be evaluated exactly for a given
value of delta using the exponential of the Lie matrix corresponding to H i : a mini-COSY-INFINITY is
written just for this purpose.

The longitudinal is a bit trickier. Rather than having the exponential of a Lie operator acting on the
identity map (inexact COSY-INFINITY technique in this particular case), one can actually write the path
length as the “integrated exponential” (e ~ l) of a Lie matrix acting on the space of quadratic polynomials
in the transverse variables. This problem is solvable and of finite dimension. It should be pointed out that
functions like the integrated exponential and sin#*)/* appear in analytical formulas as well and cannot be
treated directly by TPSA techniques. This is another problem in addition to branching.

By actually computing these exponentials using the formal Taylor series, PTC can get all the parametric
dependence so elusive in the ipken-Schmidt approach. It is however slow since the transverse matrix and
the quadratic polynomials must be recomputed31 all the time.

The integrator for the body is obtained using the splitting

This integration method gets the so-called linear elements exactly for the expanded Hamiltonian. The total
map for the magnet (body, fringe effects, etc.) is given also by Equation (43).

K .4 .7 T K T F : Quadratic Hamiltonian, Delta-Corrections, and Multipole Kicks

In the last section we discussed the exact treatment of the quadratic delta-dependent Hamiltonian. It is slow
because recomputation is necessary whenever delta changes. To alleviate this problem, consider yet another
split of H .

H f p | + i _ ^ + x* + y _ (_ , | | ± 4 _ 4 + c i
A, 2a, 2 ' 2 (1 + i)

H i H2

= 3 - 6 (* 2 - y2) • (48)

h 3

This option supports EXACT_MODEL if the design curvature is zero (p^ = 0); in such a case the term
/ exact in Equation (48) supplements the missing part of the drift, i.e., o f the square root.

PTC supports three methods of integration for this element. First it permits the usual second order
integrator implemented as

exp (: - y H i ^ exp ^: - y H 2 ^ exp ^: -d z H 3 ^ exp ^: - y H 2 ^ exp ^: - y H i ^ (49)

The higher order methods are not Yoshida integrators but biased methods. What is a biased method?
Consider the above Hamiltonian with smallness parameters a, ft, and e:

H = aeH i = fte (H = H 3) (50)

A bias integrator seeks an approximate solution Bntk such that

B (n ,k) = exp(: ds H :) = 0 (e n+1), (51)
31A ctu ally it m ust b e recom puted if delta changes. H owever P T C recom putes all the tim e to avoid horrible logic. A nyw ay

m agnet typ e T K T F w ill resolve these issues.

but the error terms in en+1 are not evenly distributed between a and 0. In our case, we have:

Error = Ok+i (0 a k) + On + 1 (a 0 n) + ... (52)

Let us list the three methods we have. They are of type B(2, 2), B(2, 4), and B(2, 6). The hrst method is
not biased since n = 7, in fact it is just our second order split and it is given by (49). The next method is
based on a third order Simpson (1,4,1) rule and the error is given by

Error = O 5(0 a 4) + O3(a 0 2) + ... (53)

This means that the “phase advance” effect of the linear map on H 2 = H 3 is computed to fourth order locally.
The cross-terms in H 2 and H 3 alone are only accurate to third order locally (second order integrator).

Finally, we also have B(2, 6); this is a fifth order Bode (7,32,12,32,7) scheme. The phase advance effect
is locally sixth order.

These methods are quite efficient in accelerators. In PTC they are triggered by EL%P%METHOD=2,4,
or 6 . All of them support radiation. Once more the total map for the magnet (body, fringe effects, etc.) is
given by Equation (43).

K .4 .8 N SM I and SSM I: Single Multipole Thin Kicks

These are SixTrack leftovers. Like the magnet KICKT3 these objects have no length and cannot radiate.
We do not recommend their use.

K .4 .9 T E A P O T : The Exact Sector Bend

This is a normal entry bend with cylindrical symmetry. This kind of bend is the pie slice of a perfect
cyclotron, that is to say, a system with rotational symmetry around the y-axis. Although it is possible
to create a parallel face bend with type TEAPO T, by using wedges, PTC makes a distinction between a
rectangular bend created with wedges and a true Cartesian bend (handled by STREX, Sect. K.4.12). If you
add wedges to a bend of type TEAPO T, you are saying that the bend, in its center, is essentially invariant
along the “0 ” direction and thus obeys Maxwell’s equation in polar coordinates. Conversely, if a normal
entry bend is created by adding wedges to a true “RBEND” of type STREX, you are saying that the center
of the bend is translationally invariant and thus obeys Maxwell’s equation in Cartesian coordinates. This
distinction is unknown to MAD. More can be found on this topic in Sect. K.4.12.

For the record, type TE APO T is defined as

TYPE TEAPOT
TYPE(MAGNET_CHART), POINTER:: P
REAL(DP), POINTER : :L

DIMENSIONS), POINTER
DIMENSION(:) , POINTER

REAL(DP),
REAL(DP),
LOGICAL,
REAL(DP),
REAL(DP),

AN,BN
BF_X,BF_Y

POINTER
POINTER
POINTER

DRIFTKICK
FINT,HGAP
H1,H2

MULTIPOLE COMPONENT
B FIELD POLYNOMIAL
SPLIT FLAG

! FRINGE FUDGE FOR MAD
! FRINGE FUDGE FOR MAD

END TYPE TEAPOT

As we stated earlier, AN and BN are not used directly but through BF_X and BF_Y. This is because
Maxwell’s equations are harder to solve in a cylindrical geometry than in a Cartesian one. In addition, we
have the flag DRIFTKICK which relates to the two possible splits of the Hamiltonian which we now explain.

Let us write the Hamiltonian for the body of the TE APO T magnet with two different splits:

H 1= J J (1 + S) — p2 = p“2 + V (x ,y ; pd 1) ^ The Teapot Code Split

Pd,

T\ T2

1 + - W (l + 6 f - p i = pi = bi X + — = 3 (x ,y ; p ^) - bi x + — .
6Pd 6Pd

Hn

The Teapot code (DRIFTKICK=.TRU E.) split uses the standard ROT_XZ (drift in polar coordinates
called SPROT in S_DEF_KIND) and a multipole kick. In PTC the ideal orbit and the computed orbit do
not match perfectly if this is used unless BN(1) is adjusted and differs slightly from EL%P%B0. With the
Teapot split it is possible to even do a straight element; of course this is not recommended. The other split
(DRIFTKICK=.FALSE.) is an “exact bend-multipole” split. The horizontal bend is handled exactly. Notice
that it may even differ from the ideal bend since there is no assumption that bi = pd.

PTC must compute a template from which it extracts the B-field from the multipole components. The
potential V in the limit of p—1 going to zero becomes the regular harmonic expansion of Equation (40).
However for finite values of p—l , the potential V obeys the equation:

/ 8 2 8 2 8 \ 8 I
P = x) ^ 2 = ITT - ^ ^ V = 0 • (++)s8 x2 8 y2 8x) 8x

The field, scaled by po/q is then given by

• & 8 V
Pd + x 8x
& 8

Pd + x 8 y
0 .

V

Equation (55) is solved in the module ANBN to order SECTORJNMUL. It is solved by an iterative procedure
for p—1 = 1. In fact, the beginning of the iteration is the usual harmonic solution for straight elements. The
solution for an arbitrary pd can be regained due to the fact that each successive iterate depends on one extra
power of p—l . The ugly details can be found in reference [5], Interlude XIV.

In module ANBN, the solution must be tied to a physical definition, a measurement so to speak. Thus
we define the usual an and bn as follows:

Sector _Nmul
„n— I

• r ” = X
n= 1

Sector_Ni
bl=” = ^ bnxn- \ (56)

av,x
n 1

Sector _Nmul

Then, on the basis of Equation (56), V is computed to order SECTOR_NMUL.
Module ANBN provides the template. Each time the multipole components of an exact sector bend are

changed, the power series for bx and by are recomputed (BF_X,BF_Y).
The symplectic integration proceeds in the usual two-terms Yoshida for the two possible splits. Finally

the full map in PTC for this element is:

M (L) = R ——y o F ?ut o F£ut o B (L) o F2,n o F {n o R xy (57)

This is similar to the full map for the exact parallel face bend in Equation (60).
Again we repeat, it is possible to add a wedge to this element. The wedge is an exact sector bend of field

BN(1) which modifies the geometry so that the entrance and exit angles can be different. This is described
in [5] and it is compatible with MAD. This gymnastic is barely PTC compliant.

K .4 .10 M O N : Monitors

This type is just a drift in the middle of which is read an x and a y position. The definition of the element
is just:

TYPE MON
TYPE(MAGNET_CHART), POINTER : : P
REAL(DP) , POINTER : :L ! MONITOR AND INSTRUMENT OF MAD
REAL(DP), POINTER : : X ,Y

END TYPE MON

K .4.11 E SE P T U M : Electric Septum

This is an electric septum defined in PTC as

TYPE ESEPTUM !
TYPE(MAGNET_CHART), POINTER : : P
REAL(DP) , POINTER : :L
REAL(DP) , POINTER ::VOLT ! VOLTAGE IN MV/M

END TYPE ESEPTUM

Here we give exceptionally the time rather than the pathlength Hamiltonian, so pt is actually the variable
X (5) of PTC:

/ / & \ 2 & ^ ^
\ T + Pt + k y) _ -32~2 _ p l _ Py where Pt = ---------- (58)
V^O) Py9y Poc

Obviously, one sets fiO = 1 to obtain the pathlength H . In PTC this magnet, as in MAD, has a straight
geometry. The codes supports the exact and approximate option. In both cases the map is computed exactly
since the Hamiltonian in Equation (58) is exactly solvable.

K .4.12 S T R E X : The Exact Generic Rectangular Bend

This type represents a magnet with a Cartesian internal geometry that can be potentially a dipole with
curved layout geometry. MAD-8,9,X do not differentiate between rectangular and sector bends. One goes
from one to the other by wedges sandwiching a sector bend (type TEAPO T in PTC). Although this is also
permitted by PTC, it is actually discouraged. PTC forces you to decide on the nature of the symmetries in
the center of the magnet. This is explained in detail in [5]. Here we will show with one pictorial example, in
Figure 19, the difference between the two type of bends.

Type STREX is defined as

TYPE STREX
TYPE(MAGNET_CHART), POINTER:: P
REAL(DP), POINTER ::L
REAL(DP), DIMENSION(:), POINTER :: AN,BN ! MULTIPOLE COMPONENT
LOGICAL, POINTER :: DRIFTKICK,LIKEMAD
REAL(DP), POINTER:: FINT,HGAP ! FRINGE FUDGE FOR MAD
REAL(DP), POINTER:: H1,H2 ! BOUNDARY FUDGES FROM MAD
END TYPE STREX

The flag DRIFTKICK also appears in type STREX and the meaning is the same as in type TEAPO T. In
the case of STREX, the symmetry of the body is Cartesian, the Hamiltonian for the body is always:

H -^ (1 = S)2 _ p l _ py = 3 (x, y) ^ DRIFTKICK = true

-^ (1 = S)2 _ p l _ p2 = b1x = 3 (x, y) _ blX ^ DRIFTKICK = false

3 (x, y) = Re ^ ^ (? ^ (x = ty)” j . (59)

The expressions for the multipole components are correct since this bend has Cartesian geometry by assump
tion. If the ideal bending angle is zero, this is just a straight element done with the exact body Hamiltonian.
The entire Yoshida apparatus applies to it as well.

To understand the difference between MAD and PTC with regard to true parallel face bends, it is best to
look at a simple example. In Figure 19, the two bends displayed have an entrance angle eq = 0 and an exit
angle e 2 = & where a is the total bending angle. For the first case, LIKEM AD=.TRUE., PTC constructs
this bend using a wedge glued to a true Cartesian bend. In PTC this can be done with type TEAPO T,
in which case the glueing is done on a sector bend or on type STREX, as it is the case here. These two

approaches are not equivalent if there are multipole components in the body of the bend simply because
pd-dependent Maxwellian effects must be included in type TEAPO T.

If LIKEMAD=.FALSE., then PTC truly constructs a parallel face bend. One should notice that for this
bend the sum of the entrance and exit angles must always be equal to the total bending angle. Moreover
the case LIKEMAD=.FALSE. is very interesting since it is a rare case of L = L c = Ld; it also shows very
clearly that L is truly an internal variable whose meaning is detail-dependent while L c and Ld are layout
variables describing the desired geometry of the element. The total map for the magnet is

M (L) = R “ 1 o R xz(£ l% o F ?ut o F20ut ° B (L) o F*" o F t o R xz(e2) o R xy (60)

R xz is a dynamical rotation: the famous PROT of Dragt. %l ln ôut is the fringe field due to bl , which
acts mostly in the vertical plane and %^"^out is the quadrupole fringe field from any b2 or a2. Here we see
explicitely that in a more exact treatment of a bend, the thin quadrupole trick does not appear.

K .4 .13 SOLT: Delta-dependent Quadratic Hamiltonian with a Solenoidal Term and Multipole
Kicks

This type is very similar to type SOL5 except that the quadratic part, including the erect quadrupole
component, is solved using the techniques of Sect. K.4.6. The reader should convince himself that it is not
that easy to write a matrix integrator of the type TK TF for a solenoid. We will not discuss this type any
further at this stage.

L Si_DEF_ELEMENT.f90
We are now in the core of PTC. This is where ELEMENT and ELEMENTP are dehned and managed.
While the layout and hbre types are important, they would fall flat on their face if a standard element was
not properly defined.

L .l Constants and Internal Routines of Si_DEF_ELEMENT.f90
There are a few routines that perform hidden operations.

L.1.1 ZE R O _A N B N

This routines initializes AN and BN arrays if the syntax EL=N is used, see L.4.1.

L.1.2 A L W A Y S _E X A C T M IS and ALW A YS_FR IN G E

These two variables can be changed by the user during execution. ALWAYS_EXACTMIS ensures that exact
Euclidean operators are being used in the misalignments. ALWAYS_FRINGE forces quadrupole fringe fields
(Lee-Whiting formulas) to be always turned on.

L.1.3 The Logical FEED_P0C

This logical is used in connection with type W ORK. Please look at Sect. L.4.3.

L.1.4 BER Z and E T IE N N E

What can be simpler: BERZ=.TRUE. and ETIENNE=.NOT.BERZ! Joke aside this is the convenient flag
used when calling the TPSA package with the interface INIT (see Sect. I.7). BERZ refers to the LBNL
version of Martin Berz’s “DA-Package.” ETIENNE refers to an experimental version of a similar package.
ETIENNE (newda.f90) was written for low order and many variables. Attempts to speed it up failed. So
please avoid ETIENNE32 for the moment.

L.1.5 M O D JN(I,J)

This is the regular FORTRAN MOD(I,J) routine except that it returns J instead of 0 when I is a multiple
of J. It is used in the layout tracking routines.

L.1.6 R ESE T31(E LP), T P S A F IT (L N V), and SE T_TP SA FIT

The real allocatable targeted array “TPSAFIT(LN V)” is used to store the changes to polymorphic knobs.
SET_TPSAFIT is used by type POL_BLOCK to distinguish between the assignments of knobs in FPP
versus the setting of the knobs in PTC using the data in TPSAFIT(LNV). It is a global targeted logical.
Both TPSAFIT(LNV) and SET.TPSAFIT are used if USE.TPSAFIT is true, which it is by default. The
user has the flexibility to change that, but it is not advised unless some TPSA and ordinary fitting is used
simultaneously.

The subroutine RESET31 removes all parametric polymorphic variables, i.e., KIND=3 from ELP. Every
thing returns to KIND=1. It is used in the routine KILL_PARA on a LAYOUT. KILL_PARA(PSR) removes
all parametric knobs from the PSR lattice; see Sect. O.I.3.

L.1.7 V E R B O SE and G EN

These are two logicals which should not be changed from their defaults. VERBOSE is a printing flag set to
false. GEN is a more important flag restricting the computation of the matrix part of KIND7 (type TK TF)
to cases when it is absolutely necessary. It avoids unnecessary calls to the COSY-INFINITY like routines of
type TK TF. Please do not touch it.

32T h e m oral o f the stop" is this: if the Taylor series is sparse, it is hard to beat the Berz. P arole d ’Etienne!

L.2 Types whose functionality is defined in Si_DEF_ELEMENT.f90
O f course this module defines ELEMENT and ELEMENTP. We will assume that this is known at this stage
(please see Sect. C .l). In addition, the following types are crucial in module S_DEF_ELEMENT:

1. The type MUL_BLOCK: this permits the easy assignment and retrieval of multipole components to
and from an ELEMENT(P).

TYPE MUL_BLOCK
! s t u f f fo r s e t t in g m u ltip o le

REAL(DP) AN(NMAX),BN(NMAX)
INTEGER NMUL, NATURAL, ADD

END TYPE MUL_BLOCK

2. Type W ORK: this type can fetch and assign energy like variables to an ELEMENT(P). The definition
is

TYPE WORK
REAL(DP) BETA0, ENERGY, KINETIC,P0C, BRHO, GAMMA0I, GAMBET
REAL(DP) MASS
LOGICAL RESCALE

END TYPE W0RK

It is actually defined in the module S_status, but it is used primarily in the module S_DEF_ELEMENT.

3. Finally type POL_BLOCK: it allows the creation of knobs in an ELEMENTP. It is actually defined in
the module S_status as well, but it is used primarily in the module S_DEF.ELEMENT. It also allows
the scanning of a family (ELPMNAME) and family members (ELMVORNAME) in a layout. Finally
it even permits the setting of the knobs based on the global array TPSAFIT(LNV). It is a powerful
type but a little complex. It facilitates the use of polymorphism.

TYPE P0L_BL0CK
CHARACTER*16 NAME, VORNAME
! STUFF FOR SETTING MAGNET USING GLOBAL ARRAY TPSAFIT
REAL(DP), DIMENSION(:) , POINTER : : TPSAFIT
LOGICAL, POINTER : : SET_TPSAFIT
! STUFF FOR PARAMETER DEPENDENCE
INTEGER NPARA
INTEGER IAN(NMAX), IBN(NMAX)
REAL(DP) SAN(NMAX), SBN(NMAX)
INTEGER IVOLT, IFREQ, IPHAS
INTEGER IB_SOL
REAL(DP) SVOLT, SFREQ, SPHAS
REAL(DP) SB_SOL
TYPE(POL_BLOCK1) USER1
TYPE(POL_BLOCK2) USER2

END TYPE POL_BLOCK

L.3 Copying ELEMENT and ELEMENTP: CO P Y and EQUAL
There are three routines: one to copy ELEMENT into ELEMENTP, ELEMENTP into ELEMENT, and
finally ELEMENT into ELEMENT. The syntax is simple. For example if we want to copy EL into ELP we
simply write

CALL COPY(EL,ELP)

or

CALL EQUAL(ELP,EL)

It should be pointed out that if ELP is a new variable, it must be constructed using some syntax as
explained Sect. L.4.

ELP=0
CALL COPY(EL,ELP)

In PTC a type ELEMENT is created hrst and then copied into an equivalent ELEMENTP.

L.4 T he Assignment (=)
We will list the various possible assignments and the routines which overload the (=) assignment.

L.4.1 E L (P)= IN T E G E R : ZERO_EL and ZERO_ELP

ZERO_EL (ZERO_ELP) initializes EL (ELP) with the syntax EL=N with N > 0. This calls the constructor
for the magnet. The destructor is invoked with “EL=-1” .

The syntax EL=N is permitted to create an ELEMENT with EL%MUL=N, i.e., multipoles are assigned
to order b! and . The private routine ZERO_ANBN is called for this purpose.

L.4.2 E L (P)=S T A T E : M A G S T A T E and M A G P S T A T E

In the module S_TRACKING (hle Sm_TRACKING.f90, see Sect. P) the layout tracking routines must pass
the state to the ELEMENT. This is done with the following structure:

EL = K ! PRESENT STATE PASSED to the rou tin e
CALL TRACK(EL,X)
EL = DEFAULT

Here we simplihed a bit, but the reader can check in Sm_TRACKING.f90 and he will see indeed this type
of structure (see Sect. P.2). The magnet is put in the present state K (whatever that is) and then it reverts
to default.

The routine MAGSTATE is quite trivial:

SUBROUTINE MAGSTATE(EL,S)
IMPLICIT NONE
TYPE(ELEMENT), INTENT(INOUT): : EL
TYPE(INTERNAL_STATE), INTENT(IN): : S

IF(S7TOTALPATH) THEN
EL=TOTALPATH=l

ELSE
EL=TOTALPATH=0

ENDIF

EL7RADIATION=S7RADIATION
EL7TIME=S7TIME
EL7NOCAVITY=S7NOCAVITY
EL7FRINGE=S7FRINGE

END SUBROUTINE MAGSTATE

L.4.3 The T y p e(W O R K): Design Energy

PTC can deal with different design energies in each magnet. This is because the PATCH in the type FIBRE
can also patch energy as well as geometry. One can easily retrieve and change this data using a variable of
type W ORK. It is quite remarkable that if the EXACT_MODEL option is used in PTC and the total time
is used (TOTALPATH state), then a particle can be accelerated with a single reference energy (real way) or
with an updated energy. The results then agree perfectly. If fake models are used, then only the updated
energy method is reliable. This is why it is constantly used in standard codes. If relative time is used, then
one must used the updated energy method and watch out for thick cavities. The situation is subtle. The

important point is that PTC can deal with an exact solution so that fudges can be calibrated and bench
marked.

To perform this kind of work one must be able to read the design energy of a magnet and change it: this
is done with a object of type W ORK dehned in Sect. L.2.

TYPE(WORK) ENERGY_DATA
TYPE(FIBRE), POINTER : : P ! THIS POINTER IS USED TO LOCATE A PARTICULAR FIBRE

NULLIFY(P)
CALL MOVE_TO(PSR,P,2)
WRITE(6 , *) "THE NAME IS " ,P7MAG7NAME

ENERGY_DATA=P7MAG
P0C_OLD=P7MAG7P0C
NEW_ENERGY=ENERGY_DATA7MASS + l .D -3 > ENERGY_DATA=KINETIC
ENERGY_DATA=0
ENERGY_DATA=NEW_ENERGY
P=ENERGY_DATA

In the line “E N E R G YD A TA =PM M A G ,” PMMAG communicates its design information to ENERGY_DATA
of type W ORK (Here “P” is the hbre). Then the kinetic energy is reduced by a factor of 1000 and stored into
the real variable NEW_ENERGY. Then E N ERG YD ATA is zeroed by assigning the integer 0 to it. Finally
the assignment ENERGY_DATA=NEW_ENERGY hlls all the helds of E N ERG YD ATA on the basis of the
new total energy. This assignment always adds the real value on the right hand side to the total energy and
recomputes the W ORK variable. If one does not zero the work variable prior to assigning a new energy,
then the right hand side is simply added to the old energy. It is possible to use the momentum P0C rather
than the energy if the global variable FEED_P0C is set to TRUE. It is false by default.

The new reference energy data is passed to the hbre P with P=E N E R G Y D A TA . This is dehned much
later in module S_FAMILY. This involves several steps. First the new reference energy is passed to the
magnet PMMAG and the polymorphic version PMMAGP. This is done in the routines EL_WORK and
ELP_WORK. In these routines, the AN and BN arrays as well as B_SOL are rescaled if applicable. In
addition, the rescaling routines of the USER1 and USER2 (user-dehned types) are called. Of course these
routines may be doing nothing. It should be pointed out that in PTC the cavity used the unscaled voltage,
thus nothing happens in relation with RF cavities. Now besides the magnet, P%CHART%ENERGY is set
to T UE in the chart of the associated hbre. This means that this magnet has an energy patch.

The syntax E N E R G Y D A TA =P is also acceptable for convenience. The information is extracted from
PMMAG. In addition, the rescaling of variables triggered by an energy change can be ignored by a unary (=):
P = = E N E R G Y D A T A . The unary plus sets the variable ENERGYDATAM RESCALE to false- something
one can do manually as well.

L.4.4 The Type(M U L _B L O C K): Changing the A N and B N

One may want to change the values of A N and B N for all sorts of reasons. The type MUL_BLOCK facilitates
the task. There are several ways to hll in a MUL_BLOCK. First we can simply initialize a variable of type
M U YBLO CK using

TYPE(MUL_BLOCK) MUL_DATA

MUL_DATA = P7MAG ! Overloaded with BL_EL or BL_ELP

With this syntax, one copies the PMMAGMAN and PMMAGMBN into the corresponding arrays of MUL_DATA.
The maximum size of the arrays is given by NMAX, defaulted33 to 20 in PTC. For convenience the syntax
MUL_DATA = P is also acceptable. The data is extracted from PMMAG.

33P T C has no lim it for E L % N M U L , how ever ob jects o f typ e M U L _B L O C K are l i m i t s to N M A X . T his cou ld b e re la x rf but
not w ithout som e small reprogram m ing.

One can also set up a M U /B L O C K of arbitrary size MUL_BLOCK%NMUL (no bigger than NM AX)
with the syntax:

MUL_DATA = NMUL ! Overloaded w ith BL_0

Finally, one can set a magnet using a MUL_BLOCK:

P7.MAG = MUL_DATA ! Overloaded with EL_BL or ELP_BL

This may involve far more than copying. First the value of MUL_DATA%NMUL may be larger than PMMAG
in which case the dynamical arrays in PMMAG must be enlarged. This is done internally using the routine
ADD described in Sect. L.6. Finally for magnet types TK TF (KIND7) and TEAPO T (KIND10), the arrays
ELMAN and ELPMBN are not used directly and thus a call to special routines are necessary to recompute
the matrices for TK TF and the Helds for the exact sector bend TEAPO T.

The syntax

P 4 MUL_DATA ! Overloaded w ith f ib r e _ b l in f i l e Sm _T racking.f90

is also possible; this is equivalent to PMMAG=MUL_DATA; PMMAGP=MUL_DATA; .

Unary + on a M U L_B LO C K

ather than overwriting the array of a magnet, one can add to the existing multipole components using a
unary = . The syntax, applicable to ELEMENT, ELEMENTP, and FIBRE, is just

P7MAG 4 +MUL_DATA ! UNARYP_BL d e fin e s the unary +

L.4.5 Example of Non-Trivial Use of Types M U L _B L O C K and W O R K

In the following example, we color coded the various sections.

• In red, we display the reading of original energy data in the variable energy_data of type WORK.

• In green, we change energy_data. Now it corresponds to a particle with a kinetic energy a thousand
times smaller.

• In orange, we reset the magnet (EL and ELP) and the Hbre from W 3 to W8. On the second example,
we reset the magnet only.

• In purple, we adjust the deHnition of relative time if TOTALPATH is false. This is very interesting.
Obviously in a real machine TOTALPATH is always true! It shows again that the more one fakes the
physics, the harder it gets to do things correctly.

• In turquoise, we set up the energy patches. In the layout tracking routine, an energy patch at the
end of element 3 and element 8 will adjust the momenta and the energy variables on the basis of the
subsequent element. See Sect. P.2.

• In dark red, we call a layout routine which copies the ELEMENT of each Hbre into the equivalent
ELEMENTP. In doing so, the entire line is upgraded for regular real number tracking and for polymorph
tracking (only in the second example).

• Finally in blue we track the closed orbit in two segments. We stop in the middle of the insane insertion
to check that indeed things are pretty wild in there.

Despite the fact that the value of X (5), SE/poc, reaches the extraordinary value of 20.58, the code returns
correctly to the closed orbit. Even better, a subsequent computation of the one-turn map at position 1, seems
unaffected by the insane insertion. Both the usage of SBEND (type TE A PO T) or RBEND (type STREX)
return the results of Dragt’s paper. Now, as Richard Talman would say, this is exact.

Predictably, non-exact magnets go haywire. Do not try this with E X A C T _M O D E L =.F A L S E .!

energy_data=p"/„mag
beta0=energy_data"/„betaO
pOc _ old=energy _data"/„p0c

energy_data"/0energy= 0. dO
energy_data= energy_data"/0mass+l. d-3*energy_data"/„kinetic
p0c_new=energy_data"/op0c
do i=3,8

p=energy_data
if(.not.default/totalpath)then
p°/.PATCH°/0time=. true.
p°/.PATCH°/0b_t=p0/omag0/oP0/old* (l . dO/betaO-1. dO/p/mag/P/betaO)

endif
p=>p"/„next
enddo
x(:)=O.dO
CALL TRACK(PSR,x,1,6,DEFAULT+TIME)
WRITE(6,%) X
CALL TRACK(PSR,x , 6,PSR°/„n+1,DEFAULT+TIME)
WRITE(6,%) X

The results are

1 .465684947001223E -016 1 . 776356839400250E -015 0 . 000000000000000E+000
0.000000000000000E +000 2 0 .58371 3595116 7 3 .425792 9826253 53E -010
2 . 482054817439483E -016 - 3 . 976603433443070E -017 0 . 000000000000000E+000
0 . 000000000000000E+000 0 . 000000000000000E+000 3 . 426300576592212E -009

Now just as an example, let us do it the longer and more dangerous way.

energy_data=p/mag
betaO=energy_data"/„betaO
pOc _ old=energy _data"/„pOc
energy_data"/„energy= O . dO
energy_data= energy_data"/„mass+1. d-3*energy_data"/„kinetic
pOc_new=energy_data"/„pOc
betaO_new=energy_data"/„betaO
do i 3,8
p°/„mag°/0betaO=betaO_new
p°/„mag°/0pOc=pOc_new
mul p/mag
if (p0/„mag°/onmul>O) then
do k= 1, p0/„mag°/onmul
mul"/„bn(k)= mul/bn(k)%pOc _old/pOc _new
muT/0an(k)=muT/„an(k)*pOc_old/pOc_new
enddo

p/mag mul
endif
if(.not.default/totalpath)then
p°/.PATCH°/0time=. true.
p°/.PATCH°/0b_ t=p0/omag0/oP0/old* (1. dO/betaO-1. dO/p/mag/P/betaO)

endif
p°/.PATCH°/0energy=. true.
p=>p"/„next
enddo
call EL_TO_ELP(psr)
x(:)=O.dO
CALL TRACK(PSR,x,1,6,DEFAULT+TIME)
WRITE(6,%) X
CALL TRACK(PSR,x , 6,PSR°/„n+1,DEFAULT+TIME)
WRITE(6,%) X

The above example is more dangerous because we assume explicitely that the only type of magnets are those
with A N and B N arrays. For example, if a user specihed magnet is present, it will be ignored completely.
On the other hand the assignment “FIBRE=W O RK ,” as used in the hrst example (p=energy_data), will
invoke the appropriate scaling rules implemented by the user through scale_userl or scale_user2. Again,
PTC emphasizes the object-oriented nature of that flow and provides methods which hide the inside of an
element. However the user can violate the inner guts of a magnet if he so desires.

It is a good time to remember the importance of the flow once more. The algorithms based
on T P S A /P olym orp h ic /D A maps are all single particle algorithms acting on the flow properly
extended. Thus the flow through a magnet must be made into an object; this is why we have
the FIBR E. Algorithms cannot be visitor functions on the magnet but on the flow. Analytical
calculations (based on maps or Hamiltonians) need the inner details of the magnets and must
thus be visitor functions of any private type. The failure to see the importance of the flow
leads automatically to a flawed class structure.

L.4.6 Setting the Knobs Using a PO L_B LO CK : Routines BLPOL_0 and ELP_POL

This new type is critical for managing knobs easily. In this section we describe its interaction with the
ELEMENTP. In Sect. O we will see how it can be used to scan entire layouts and turn into polymorphic
knobs a family of magnets as well as individual magnets. Perhaps as we describe here the interaction of a
PO LB LO C K with a single ELEMENTP, the reader will imagine easily the kind of scanning possible on the
layout.

Before we start we must remind the reader the properties of polymorphs deeply buried into the FPP
package. A real polymorph is defined as (in definition.f90)

TYPE REAL_ 8

TYPE (TAYLOR) T
REAL(DP) R
INTEGER KIND
INTEGER I
REAL(DP) S
LOGICAL : : ALLOC

END TYPE REAL_ 8

Denoting a polymorph as P , the important points here are the variables P % I and P % S . If P % K IN D = 3,
i.e., we have a knob, then FPP will always set P to the following object:

P = r + s Xi
where r = P % R , s = P % S , i = P % I (6 l)

Here the variable x i is the ith variable of the TPSA package being used (Berz’s normally). The variable
P %S is a compromise designed to be used in generic tracking codes such as PTC. For example if there is
a special relation between the various multipole components, it would not be included in PTC per se. By
contrast special codes which solve Maxwell’s equations for each magnet may be polymorphic from top to
bottom. In such codes the variable P % S would be useless and even discouraged. In PTC we tolerate its
existence and use it if necessary.

Now, let us see how to set knobs on an example. In this section, we set the knobs of magnets whose
position in the layout is known.

CALL INIT(DEFAULT+DELTA,2 ,1,BERZ,ND2,NPARA)
CALL ALLOC(NORMAL); CALL ALLOC(Y);
NULLIFY(P)
CALL MOVE_TO(PSR,P,2)

P7.MAGP=VORNAME= " JELLO"
P7.MAG7.VORNAME=" JELLO"
POLB=NPARA
POLB7.NAME=P7.MAGP7.NAME
POLB7.VORNAME=P7.MAG7.VORNAME
POLB7IBN(2)=1
PSR=POLB

IF TAYLOR
IF REAL
0 , 1 , 2 ,3 (1=REAL, 2=TAYLOR, 3=TAYLOR KNOB, 0=SPECIAL)
USED FOR KNOBS AND KIND=0
SCALING FOR KNOBS AND KIND=0
IF TAYLOR IS ALLOCATED IN DA-PACKAGE

X (:)= 0 .D 0
Y=NPARA
Y=X
CALL TRACK(PSR,Y,1,+DEFAULT)
NORMAL=Y
CALL PRINT(NORMAL7DHDJ7V(1) , 6)

In the above code, the TPSA package is initialized to order 2 and with 1 knob. Then the POL_BLOCK
variable is initialized with NPARA. This is important; it will allow PTC to tell FPP the exact location of
the knobs. FPP has a knowledge of phase space which, in the case of delta being a parameter (internal state
DEFAULT+DELTA), conflicts with PTC. In that case, for PTC the knobs start at 6 while for FPP knobs
start at 5. This is why the quantity NPARA is crucial since it is not always equal to ND2.

ETALL 1 , NO = 2 , NV = 6 , INA = 272

I COEFFICIENT ORDER EXPONENTS
NO = 2 NV =

0 0 .254102 8124202 658
1 -0 .9 2 8 1 7 0 3 9 9 9 6 3 2 9 0 1
1 0 .1507923216684006

- 3 0 .000000 0000000 00

6

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

The normal and skew sextupoles are declared as the first and second knob respectively. Finally the call
PSR=POLB communicates this information to the layout PSR.

The reader will notice that we set the first name of the second element to JELLO. This is the only
QD in the lattice with VORNAM E=JELLO. In addition, we set the VORNAME of POL_BLOCK also to
“JELLO.” PTC will notice that POLBMVORNAME = ' ' and thus will try a perfect match. Therefore this
particular run will produce the dependence of tune as a function of the quadrupole strength of the first QD
and not of the full family.

To get the full family, one simply leaves the field POL_BLOCK%VORNAME blank.

P7MAGP7VORNAME=" JELLO"
P7MAG7VORNAME="JELLO"
POLB=NPARA
POLB7NAME=P7MAGP7NAME
POLB7IBN(2)=1
PSR=POLB

X (:)= 0 .D 0
Y=NPARA
Y=X
CALL TRACK(PSR,Y,1,+DEFAULT)
NORMAL=Y
CALL PRINT(NORMAL7DHDJ7V(1) , 6)

The result is then

ETALL 1 , NO = 2 , NV = 6 , INA = 272

I COEFFICIENT ORDER EXPONENTS
NO = 2 NV = 6

0 0 .254102 8124202 658 0 0 0 0 0 0
1 -0 .9 2 8 1 7 0 3 9 9 9 6 3 2 9 0 1 0 0 0 0 1 0

1 1 .507923216684005 0 0 0 0 0 1
- 3 0 .000000 0000000 00 0 0 0 0 0 0

Predictably, due to the periodicity of the lattice, this hrst order result is ten times larger. Remember
that PTC ignores lower case letters and blanks. But for safety, using capitals with no blanks is certainly
recommended.

Let us return to our example, and use the normal sextupole component of this single QD to kill the
horizontal chromaticity.

NULLIFY(P)
CALL M0VE_T0(PSR,P,2) P7.MAGP7.V0RNAME="JELL0"
P7.MAG7.V0RNAME=" JELLO "
P0LB=NPARA
P0LB7NAME=P7MAGP7NAME
P0LB7V0RNAME=P7MAG7V0RNAME
P0LB7IBN(3)=1
PSR=P0LB

CALL TRACK(PSR,Y,1,+DEFAULT)
N0RMAL=Y CALL PRINT(N0RMAL7DHDJ7V(1),6)
TPSAFIT(:) = 0 . DO
TPSAFIT(1)=-(N0RMAL7DHDJ7V(1).SUB.>000010’)/(N0RMAL7DHDJ7V(1).SUB.>000011’)
WRITE(6 , *) " TPSAFIT(1) = " , TPSAFIT(1)

SET_TPSAFIT=. TRUE. ! F0R ASSIGNING TPSAFIT

PSR=P0LB ! ASSIGNING

CALL KILL(N0RMAL); CALL K IL L (Y);

TPSAFIT is a targeted global array. Each type POL_BLOCK points to it by default. The user could
change this but, in the absence of good reasons, one may as well use TPSAFIT. The above red line is a simple
extraction of the BN(3) necessary to kill the chromaticity. This is exact for an ideal machine. Obviously in
a non-ideal machine it would be part of a Dtting do-loop which would include a call to FIN D O RB IT . (See
Sect. R.2)

Now we follow this code, with the following lines:

CALL INIT(DEFAULT+DELTA,2 , 0 ,BERZ,ND2,NPARA)
CALL ALL0C(N0RMAL); CALL ALL0C(Y);

Y=NPARA
Y=X ! MAKES Y = CL0SED 0RBIT + IDENTITY MAP
CALL TRACK(PSR,Y,1,DEFAULT)
N0RMAL=Y
CALL PRINT(N0RMAL7DHDJ7V(1), 6)

First, in dark red, the global targeted logical SET_TPSAFIT is set to true. This means that now the array
TPSAFIT will be used to correct the strength of the magnets on the basis o f the information already contained
in the variable POLB. Then again POLB is assigned to the magnet QD with VO R N A M E=’JELLO’ , but
this time TPSAFIT is loaded in. The chromaticity, computed once more, is now nearly zero. The result of
this code is

ETALL 1, NO = 3, NV = 6, INA = 273

I COEFFICIENT ORDER EXPONENTS
NO 3 NV 6

0 0.,2541028124202658 0 0 0 0 0 0
1 -0.,9281703999632901 0 0 0 0 1 0
1 0.. 1255822091885237E-15 0 0 0 0 0 1
2 0. 7695358029965638E-01 2 0 0 0 0 0
2 0. 8834874115176436E-17 1 1 0 0 0 0
2 0. 7695358029965638E-01 0 2 0 0 0 0
2 0. 2675634631832561 0 0 2 0 0 0

2 0.2675634631832561 0 0 0 2 0 0
2 1.045593753641231 0 0 0 0 2 0
2 0.7340570869703674 0 0 0 0 1 1
2 -0.5356864274082178E-31 0 0 0 0 0 2
11 0.000000000000000 0 0 0 0 0

TPSAFIT(l) = 1.26443898770064
Berz’s Package

NO ND ND2 NP NDPT NV
2 2 4 1 0 5

ETALL 1, NO = 2, NV = 5, INA = 272

I COEFFICIENT ORDER EXPONENTS
NO 2 NV 5

0 0.2541028124202654 0 0 0 0 0
1 0.3887344610677632E-14 0 0 0 0 1
-2 0.000000000000000 0 0 0 0 0

N .B . You cannot feed different PO L_BLO CKs in succession to the same ELEM EN TP. If PTC
detects such an attempt, pray that it stops you. It should. You can however wipe out all the
knobs from a layout with the K IL L _P A R A (L A Y O U T) routine and start again with a different
set of T P SA knobs.

L.4.7 E L = X (6) : Subroutine M IS_, MIS_P, and FIBRE_M IS for Misalignments

We have already seen this assignment in our discussion of the layout in the PSR example. This routine
allocates the translation and rotation arrays of EL and Dlls them up. It uses the syntax:

EL=X

which MIS_ implements as

DO 1=1,3
EL7D(I)=X(I)
EL7.R(I)=X(3+I)

ENDDO

The reader should notice that the logical variable ELMMIS is not changed by this routine. Thus the
misalignment is still inactive. In addition the ELEMENT logical ELMEXACTMIS is also FALSE by default.
A similar routine, MIS_P, handles the polymorphic element ELP with the same syntax: E LP=X.

Of course, this is very dangerous since one could have different misalignments in EL and ELP. For this
reason, it is safer to assign the element direction on a fibre. Thus if P is a fibre, the assignment

P=X

will, through the subroutine FIBRE_MIS of module S_FAMILY perform

P7MAG =X
P7MAGP =X
P7MAG7MIS = .TRUE.
P7MAGP7MIS = .TRUE.

CALL FACTORIZE_ROTATION(S1, S27CHART7L, S27CHART7ALPHA, S27CHART7D_IN, &
& S27CHART7ANG_IN, S27CHART7D_OUT, S27CHART=ANG_OUT)

CALL ADJUST_INTERNAL(S2)

The call to FACTORIZE_ROTATION has been explained in Sect. D. ADJUSTJNTERNAL adjusts the
MAGNET_CHART of each element: the magnet is located in absolute space. Finally a user may call the
routine MISALIGN_FIBRE(P,X) rather than the equal sign (=) that it overloads.

L.5 The SETFAMILY Interface: Pointing from ELEMENT to Magnet Types
This is a routine which is never called by a “standard user.” If a user wishes to add a new type of magnet,
then this routine must be extended. We show part of the polymorphic version SETFAMILYP. In particular
it is interesting to look at the two thick matrix methods. Here is the part of SETFAMILYP dealing with
them:

CASE(KIND6)
IFCELIPIEXACT.AND. EL%P%B0/=0 . DO) THEN

WRITE(6 ,*) " EXACT BEND OPTION NOT SUPPORTED FOR KIND " , EL7KIND
IPAUSE=MYPAUSE(777)

ENDIF
IFC.NOT.ASSOCIATEDCEL1T6)) THEN

ALLOCATECEL7T6)
EL1T6=0

ELSE
EL1T6=-1
EL1T6=0

ENDIF
EL1T61P=>EL%P
EL1T61L=>EL1L
IFCEL7P7NMUL==0) THEN

WRITE(6 ,*) "ERROR ON T 6 : SLOW THICK "
IPAUSE=MYPAUSEC0)

ENDIF
EL7T67AN=>EL7AN
EL7T67BN=>EL7BN
EL1T61FINT=>EL1FINT
EL7T67HGAP=>EL7HGAP
EL7T67H1=>EL7H1
EL7T67H2=>EL7H2
NULLIFYCEL7T6°7MATX); ALLOCATECEL7T67MATXC2,3)) ;
NULLIFY(EL7T67MATY); ALLOCATECEL7T67MATYC2,3)) ;
NULLIFY CEL7T67LX); ALLOCATECEL7T67LXC6)) ;
NULLIFY CEL7T67LY); ALLOCATECEL7T67LYC3)) ;

CASECKIND7)
IF CEL7P7EXACT. AND. EL7P7B0/=0 . D0) THEN

WRITEC6,*) " EXACT BEND OPTION NOT SUPPORTED FOR KIND " , EL7KIND
IPAUSE=MYPAUSE C777)

ENDIF
! IF C. NOT.ASSOCIATED CEL7T7))ALLOCATECEL7T7)
IFC.NOT.ASSOCIATEDCEL7T7)) THEN

ALLOCATECEL7T7)
EL7T7 0

ELSE
EL7T7 -1
EL7T7 0

ENDIF
EL7T77P >EL7P
EL7T77L >EL7L
IFCEL7P7NMUL 0) THEN

WRITEC6,*) "ERROR ON T7: FAST THICK "
IPAUSE=MYPAUSEC0)

ENDIF
EL7T77AN >EL7AN
EL7T77BN >EL7BN
EL7T77FINT >EL7FINT
EL7T77HGAP >EL7HGAP
EL7T77H1 >EL7H1
EL7T77H2 >EL7H2
NULLIFY CEL7T77MATX); ALLOCATECEL7T77MATXC2,3));
NULLIFY CEL7T77MATY); ALLOCATE CEL7T77MATYC2, 3)) ;
NULLIFY CEL7T77LX); ALLOCATECEL7T77LXC3)) ;
NULLIFYCEL7T77RMATX);ALLOCATECEL7T77RMATXC2,3));
NULLIFYCEL7T77RMATY);ALLOCATECEL7T77RMATYC2,3));
NULLIFYCEL7T77RLX); ALLOCATECEL7T77RLXC3)) ;
IFCGEN) CALL GETMAT7CEL7T7)

The reader will remember (see Sect. K.4.6) that for the slow element KTK the code must recompute the ma
trix (EL%T6%M ATX and EL%T6%M ATY) and the quadratic polynomial (EL%T6%LX and EL%T6%LY)
for the path length all the time! This means that the polymorphic variables associated to these pointers
should be constructed (ALLOC of FPP) and destroyed (KILL of FPP) inside the tracking routines for the
magnet ELMT6. The reader can check that this is the case by looking at INTKTKD and INTKTKS of
Sh_DEF_KIND.f90.

This situation is to be contrasted with type TK TF and type TEAPO T (see Sects. K.4.7 and Sect. K.4.9).
For TK TF the matrix of an element is computed once and for all in SETFAMILY by the call GET-
M AT7(EL%T7). Therefore the polymorphic variables are constructed using ALLOC(EL%T7). In the track
ing routines INTTKT7D and INTTKT7S one can check that calls to ALLOC or KILL are performed only

if the length EL%T7%L or the quadrupole strength EL%T7%BN(2) are knobs. In that case the matrix is
computed with parametric dependence. Then, upon exiting, it is restored to its original state. In the case
o f TEAPO T, the exact sector bend, the an and bn are not used directly in the tracking for speed reasons.
Maxwell’s equations are solved and the held is computed once and for all in terms of an and bn dehned
by Equation (56). Thus PTC recomputes the held only if polymorphic knobs are needed as in the case of
TKTF.

Finally, it is interesting to look at KINDUSER1. Here SETFAMILY does the minimal generic amount
of work:

CASE(KINDUSERl)
if(.not.ASSOCIATED(EL'Ul)) THEN

ALLOCATE (EL"/„U l)
EL°/„Ul=0

ELSE
EL°/„Ul=-l
EL°/„Ul=0

ENDIF
EL°/0Ul0/0P=>EL°/0P
EL°/0Ul0/0L=>EL°/0L
IF(EL°/oP°/oNMUL==0) CALL ZERO_ANBN(EL,l)
EL°/0Ul°/0AN= > EL/AN
EL°/0Ul°/0BN= > EL/BN
CALL POINTERS_USERl(EL"/„Ul)
CALL ALLOC(EL"/„Ul) ! In Polymorphic version only

The arrays AN and BN should be present even if not used at all. User dehned helds are allocated in
POINTERS.USER1 while the polymorphs are constructed by CALL ALLOC(ELM Ul).

L.6 Adding Multipole Components: ADD
When htting or simulating errors it is common to extend the multipole content of a magnet. This is a little
tricky in PTC because the arrays are dynamically allocated to order ELMNMUL. For example, if we want
to put an octupole inside QD of the PSR ring, the following logic would provoke a system exception/crash
or an aberrant behavior:

QD7.MAG7NMUL=4
QD7MAG7BN(4)=l.d0

The array QD%M AG%BN(4) was only dehned as QD%M AG%BN(1:2). Thefore, PTC provides the routine
interface ADD for ELEMENT and ELEMENTP. The correct syntax is thus

CALL ADD(QD7MAG, 4 , l , l . d 0)

Generally the input is

ADD(EL, ±N , i, A)

ELMBN(N) 1 _ f i * ELMBN(N) = A if N > 0
e l % a n (n) j _ \ i * ELMAn (-N) + A if N < 0

The routine ADD takes care of the allocation and deallocation details for the user including resetting pointers.
This includes automatically the user dehned elements KINDUSE 1 and KINDUSE 2. The call can also be
done on the hbre itself:

CALL A D D (Q D ,4 ,l ,l .d 0)

in which case MAG and M AGP are changed.

M Sj_ELEMENTS.f90
This module is very simple after all the hard work put into the basic modules. It creates the interface for the
magnet calls TRACK(EL,X), TRACK(ELP,Y), and TRACK(ELP,YS). The reader should look at the module:
it contains three routines: T RACKR, TRACKP, and T RACK S. For convenience, TRACKR is presented here:

SUBROUTINE TRACKR(EL,X)
IMPLICIT NONE
INTEGER IPAUSE, MYPAUSE
REAL(DP),INTENT(INOUT):: X(6)
TYPE(ELEMENT),INTENT(INOUT):: EL

SELECT CASE(EL10KIND)
CASE(KINDO)
CASE(KINDl)

CALL TRACK(EL7„DO,X)
CASE(KIND2)

CALL TRACK(EL7K2,X)
CASE(KIND3)

CALL TRACK(EL7K3,X)
CASE(KIND4)

CALL TRACK(EL7C4,X)
CASE(KIND5)

CALL TRACK(EL7S5,X)
CASE(KIND6)

CALL TRACK(EL7T6,X)
CASE(KIND7)

CALL TRACK(EL7T7,X)
CASE(KIND8)

CALL TRACK(EL7S8,X)
CASE(KIND9)

CALL TRACK(EL7S9,X)
CASE(KINDlO)

CALL TRACK(EL7TPlO,X)
CASE(KINDll:KIND14)

CALL TRACK(EL7MON14,X)
CASE(KINDl5)

CALL TRACK(EL7SEP15,X)
CASE(KINDl6)

CALL TRACK(EL7Kl6,X)
CASE(KINDl7)

CALL TRACK(EL7Sl7,X)
CASE(KINDFITTED)

CALL TRACK(EL7BEND,X)
CASE(KINDUSERl)

CALL TRACK(EL7Ul,X)
CASE(KINDUSER2)

CALL TRACK(EL7U2,X)
CASE DEFAULT

WRITE(6,*) EL7KIND,11 NOT SUPPORTED "
IPAUSE=MYPAUSE(O)

END SELECT
END SUBROUTINE TRACKR

This routine is just a “multiple goto” to the appropriate magnet routine in module S_DEF_KIND. It is quite
trivial to see how one would add a new magnet.

N Sk_LINK_LIST.f90
In this section we take a look at the routines manipulating the fundamental type FIBRE and the linked
list LAYOUT built upon the fibre. We also list the routines of the module which include some FLAT file
capability. We explain why printing the flat file of a fibre bundle is not as easy as a that of a standard lattice.

N .l T he fundamental types — BRE and LAYOUT
We have already outlined the major aspects of the linked list used in PTC; these objects are defined in the
fibre_bundle module in the file Sk_LINK_LIST.f90. For the record, here are again the actual types. First we
start with type FIBRE:

TYPE FIBRE
! BELOW ARE THE DATA CARRIED BY THE NODE
INTEGER,POINTER : :DIR
REAL(DP).POINTER : :P0C,BETA0
TYPE(PATCH).POINTER : :PATCH
TYPE(CHART).POINTER : : CHART
TYPE (ELEMENT). POINTER : : MAG
TYPE (ELEMENTP).POINTER : : MAGP
! END OF DATA
! POINTER TO THE MAGNETS ON EACH SIDE OF THIS NODE
TYPE (FIBRE).POINTER : : PREVIOUS
TYPE (FIBRE).POINTER : : NEXT
! POINTING TO PARENT LAYOUT AND PARENT FIBRE DATA
TYPE (LAYOUT).POINTER : : PARENT_LAYOUT
TYPE (FIBRE).POINTER
TYPE (FIBRE).POINTER
TYPE (FIBRE).POINTER

END TYPE FIBRE

PARENT_PATCH
PARENT_CHART
PARENT_MAG

A fibre is the actual node of the list. It is recursively defined with pointers to the adjacent fibres.
Mathematically the most important variable of the fibre is the chart. This is a complete reversal from
standard accelerator physics. In standard accelerator physics, the connection between the coordinates on
the magnet is deduced solely from the so-called “geometry of the magnet.” Thus there is no need for a
chart. In addition, standard accelerator physics, suffering from acute Courant-Snyderitis, assumes a smooth
connection between the outside space and the internal coordinates of the magnets. It does not do this on
physical grounds, but because it tries to impose a smooth Hamiltonian structure on the “s” dependent flow.
This violates completely the object-orientedness of the magnet-flow when it is realizable.

As we said before, this is reflected in the CLASSIC classes. There is no fibre and when a discontinuous
patch is needed, it is introduced as an ad hoc element in the beam line.

Here, in PTC, as well as in the original C + + classes that Bengtsson dreamt up in collaboration with
Forest, the geometrical nature of the fibre reigns supreme. The next step is to introduce a magnet, namely
EL and/or ELP. The propagator of the full fibre, if well-defined, inherits properties from the chart itself.
In other words a magnet exists first as a piece of material junk. It can be rotated, translated and drawn.
The chart provides the connection between this magnet/junk and the external three dimensional space.
Obviously this exists independently of the existence of single particle propagators associated to EL and/or
ELP. It is a remarkable mathematical feature that these propagators, under certain conditions, inherit the
transformational properties of the chart. Of course PTC is set up to take advantage of this.

In type FIBRE, there are a few other quantities of interest. In addition to CHART, there is of course
PATCH. Patch contains the various patches necessary, if the previous fibre was not smoothly joined to the
present one. In recirculators, the distinction between a fibre and a magnet is glaring. Indeed the magnet
may be traversed many times, but the patches needed to enter the following fibre may differ turn after turn.
In Figure 20, the particle passes several times through the “common bend.” Each time the magnet must be
the same obviously. However the patches to the following fibre must differ. If one thinks of the fibre as the
“s” variables and the patches as s-dependent transformations bringing us to the correct local coordinates, it
should be clear how the FIB E of PTC completely solves recirculation, dog-bones, common rings and other
oddities that gave CLASSIC and MAD9 stomach burns.

The next type is the layout itself which is a linked list based on type FIBRE.

TYPE LAYOUT
CHARACTER(120), POINTER :: NAME ! IDENTIFICATION
INTEGER, POINTER :: INDEX,CHARGE ! IDENTIFICATION, CHARGE SIGN
LOGICAL,POINTER ::CLOSED
INTEGER, POINTER :: N ! TOTAL ELEMENT IN THE CHAIN
INTEGER,POINTER ::NTHIN ! NUMBER IF THIN LENSES IN COLLECTION (FOR SPEED ESTIMATES)
REAL(DP), POINTER :: THIN ! PARAMETER USED FOR AUTOMATIC CUTTING INTO THIN LENS
!POINTERS OF LINK LAYOUT
INTEGER, POINTER :: LASTPOS ! POSITION OF LAST VISITED
TYPE (FIBRE), POINTER :: LAST ! LAST VISITED

TYPE (FIBRE), POINTER
TYPE (FIBRE), POINTER
TYPE (FIBRE), POINTER
TYPE (FIBRE), POINTER

END TYPE LAYOUT

END
START
START_GROUND ! STORE THE GROUNDED VALUE OF START DURING CIRCULAR SCANNING
END GROUND ! STORE THE GROUNDED VALUE OF END DURING CIRCULAR SCANNING

Common Bend

Figure 20: Line Switch at a Common Bend

The type layout contains variables of greater and lesser improtance. As explained before, the variable
CLOSED controls the nature of the linked list: it is either terminated at both ends for a single pass system
or, for a ring, it is circular. In the Dle Sk_LINK_LIST.f90 the maintenance routines, which control the
behavior of the list, assume a terminated link list. Therefore PTC provides two routines to toggle between
a terminated and circular state. These are LINE_L and RING_L:

SUBROUTINE LINE_L(L,DONEIT)
IMPLICIT NONE

TYPE (LAYOUT) L
LOGICAL DONEIT
DONEIT=.FALSE.
IF(L°/„CLOSED) THEN

IF(ASSOCIATED(L/END/NEXT)) THEN
L°/0END0/0NEXT=>L°/0START_GROUND
DONEIT=.TRUE.

ENDIF
IF(ASSOCIATED(L°/0START°/0PREVIOUS)) THEN

L°/0START°/0PREVIOUS=>L/END_GROUND
ENDIF

ENDIF
END SUBROUTINE LINE_L

SUBROUTINE RING_L(L,DOIT)
IMPLICIT NONE TYPE (LAYOUT) L

LOGICAL DOIT
IF(L/CLOSED.AND.DOIT) THEN

IF(. NOT. (ASSOCIATED(L°/0END°/0NEXT))) THEN
L°/0START_GROUND=>L0/0END°/0NEXT ! SAVING GROUNDED POINTER
L°/0END0/0NEXT=>L°/0START

ENDIF

IF(. NOT. (ASSOCIATED(L°/0START°/0PREVIOUS))) THEN
L°/0END_GROUND=>L0/0START°/0PREVIOUS ! SAVING GROUNDED POINTER
L°/0START°/0PREVIOUS=>L°/„END

ENDIF
ENDIF

END SUBROUTINE RING_L

These two routines implement the “cutting and re-establishment” of the violet link in the hgure of
Sect. A.2.1. They are called with a logical which is local to the calling routine. There are a lot of maintenance
routines needed, and of course the number of such routines will increase. But, just for pedagogical purposes,
here is a routine which appends the copy of an existing FIBRE to a LAYOUT.

SUBROUTINE APPEND_FIBRE(L, EL)
IMPLICIT NONE

TYPE (FIBRE), INTENT(IN) :: EL
TYPE (FIBRE), POINTER :: CURRENT
TYPE (LAYOUT), TARGET,INTENT(INOUT):: L
LOGICAL DONEIT
CALL LINE_L(L,DONEIT)
L°/0N=L°/0N+1
CALL ALLOC_FIBRE(CURRENT)
CALL COPY(EL/MAGP,CURRENT/MAG)
CALL COPY(CURRENT/MAG,CURRENT/MAGP)
CALL COPY(EL/MAG,CURRENT/MAG)
CALL COPY(EL/CHART,CURRENT/CHART)
CALL COPY(EL/PATCH,CURRENT/PATCH)
CURRENT°/„DIR=EL/DIR
CURRENT°/„POC=EL/POC
CURRENT°/0BETAO=EL°/0BETAO

CURRENT°/„PARENT_LAYOUT=>L
IF(L°/„N==1) CURRENT/NEXT=> L/START
CURRENT •/. PREVIOUS = > L "/„ END ! POINT IT TO NEXT FIBRE
IF(L°/„N>1) THEN

L •/. END •/. NEXT => CURRENT !
ENDIF

L •/. END => CURRENT
IF(L°/„N==1) L°/„START=> CURRENT

L°/„LASTPOS=L/N ; L°/„LAST=>CURRENT;
CALL RING_L(L,DONEIT)

END SUBROUTINE APPEND_FIBRE

The routine APPEND_FIBRE is typically used in creating a beam line in a standard lattice. An element
(a Dbre in PTC) is taken from the list of ideal elements and cloned: this is done with the procedure interface
“C O PY ” in PTC. The ELEMENT ELMMAG, the ELEMENTP ELMMAGP, the chart ELMCHART and
the patch ELMPATCH are all cloned in variable CURRENT and appended at the end of the layout.

Of course PTC can do much more. In particular in recirculators, where certain beam lines are re-used
more than once, Dbres must not be cloned but pointed at. The following subroutine APPEND_POINT is
very useful in recirculators. In fact we used it in the examples Sects. B.1 and B.2.

SUBROUTINE APPEND_POINT(L, EL)
IMPLICIT NONE

TYPE (FIBRE),POINTER :: EL
TYPE (FIBRE), POINTER :: CURRENT
TYPE (LAYOUT), TARGET:: L
TYPE(FIBRE), POINTER :: P
LOGICAL DONEIT
NULLIFY(P);
CALL LINE_L(L,DONEIT)
L/N L/N+1

! FINDING THE VERY ORIGINAL FIBRE RECURSIVELY
P=>EL;DO WHILE(ASSOCIATED(P)) ; CURRENT"/„PARENT_MAG=>P ;P=>P"/„PARENT_MAG; ENDDO;
P=>EL;DO WHILE(ASSOCIATED(P)) ; CURRENT°/„PARENT_PATCH=>P ;P=>P°/„PARENT_PATCH; ENDDO;
P=>EL;DO WHILE(ASSOCIATED(P)) ; CURRENT°/„PARENT_CHART=>P ;P=>P°/„PARENT_CHART; ENDDO;
! END OF FINDING THE VERY ORIGINAL FIBRE

CURRENT/PARENT_LAYOUT >EL/PARENT_LAYOUT
CURRENT°/„MAG=>EL°/„MAG
CURRENT°/„MAGP=>EL°/„MAGP
CURRENT°/0CHART=>EL°/0CHART
CURRENT/PATCH >EL/PATCH
ALLOCATE(CURRENT/DIR);ALLOCATE(CURRENT/POC);ALLOCATE(CURRENT/BETAO);
CURRENT°/„DIR=EL/DIR
CURRENT/POC EL/POC
CURRENT°/0BETAO=EL°/0BETAO
IF(L°/„N==1) CURRENT°/„NEXT=> L/START
CURRENT °/„ PREVIOUS = > L °/„ END ! POINT IT TO NEXT FIBRE
IF(L°/„N>1) THEN

L °/„ END °/„ NEXT => CURRENT !
ENDIF

L °/„ END => CURRENT
IF(L°/„N==1) L°/„START=> CURRENT

L°/0LASTPOS=L°/0N ;
L°/„LAST=>CURRENT;
CALL RING_L(L,DONEIT)

END SUBROUTINE APPEND_POINT

The reader will notice the crucial differences. A fibre EL is passed to the procedure, presumably from
one of the beam lines of the recirculator defined in a traditional way. The recirculator itself is denoted by
L. Rather than cloning the fibre EL, the content of the new fibre points to the content of the existing fibre
EL. For example, if a particle revisits the same linac 4 times, then each time it enters its first quadrupole,
it actually enters the very same element of PTC, just as it does in the real machine. Of course since PTC
can handle energies and deltas X (5) without fudges, this element perform its role without problems even if
the particle has gained a tremendous amount of energy.

The reader should try to see why the syntax C U RREN T=>EL is disastrous and fails to achieve the
desired result. (Remember that EL is presumably from an existing beam line).

The PARENT_MAG, PARENT_CHART and PARENT_PATCH pointers are there to indicate that the
FIBRE contains data which originated somewhere else. It is not essential for tracking a strange beam line;
however without them, it would not be possible to copy an oddity such a recirculator. It would not be
possible for example to produce a flat file. How can that be? One can imagine a sequence of persons one
visits at certain street addresses to hand in a pamphlet. The street address, the “s” variable, is the fibre.
The person at a given address is the data inside the fibre, for example the magnet. Handing in the pamphlet
represents the tracking operation. So, if one sees that the person at address W 5 looks identical to that of
address W 19, one can certainly hand in the pamphlet. Now suppose you instruct the person at number W 5
to slap the face of any peddler (this represents a mispowering!), then do you have to worry about W 19? The
answer is obviously no. If the person at W 19 is the same person, then he will simply follow the instruction
you gave him when you “mispowered” him when talking to him at address W 5. If on the other hand W
19 is a twin of his, then he will stay put unless specifically instructed to do the same. This is how PTC
handles any complex oddities during tracking. This is why the FIBRE structure is so powerful. The real
electron does not need to know whether or not W 5 and W 19 are the same individual and neither does PTC
in simulation mode. But of course PTC, especially if linked to M AD-X, becomes like the trinity of Brahma,
Vishnu and Shiva: it creates, duplicates and annihilates lattices. So it must therefore know whether or not
W 5 and W 19 are the same object or simply twins. The PARENT pointers are a minor first step in this
direction and they were tested in FLAT file routines found in the module S_FIBRE_BUNDLE.

N.2 T he various routines of S_FIBRE_BUNDLE
At present there are four basic types of routines in this module. First we see routines that manipulate fibres
and layouts in a rather fundamental way. Whenever a link list is created, it must be accompanied by a
manipulation routine. Without these PTC would simply not function. This is the big difference between
a linked list and a simple allocatable array. The routines of the second type concern the printing of a flat
file. These routines, for the moment, work for a recirculator; they are not intended for a double Siamese
ring configuration. Nothing is fundamentally impossible here; this is not the primary function of PTC at
this time. Clearly if and when M AD-X supports fully Siamese, recirculators and other monstrosities, then
M AD-X will need C-routines of the type described here of far greater power than the meagre collection in
PTC. The third type, with a single representative, is a switching routine. This routine allows a magnet to
change kind. Again one can hardly imagine M AD-X without an arsenal of these routines. Here in PTC it is
almost useless since users could generate these things in FORTR AN90 as they need them.

The final two routines are patching routines interfacing the routine FIND_PATCH of the module S_FRAME.
These are extremely important routines. Beyond M AD-X, these routines would be central to a version of
PTC (or M AD-X) tied to a CAD program. This is the logical way to design follow-the-terrain lattices where
the optics is sometimes simpler than the civil engineering work of guiding the beam line through a tight
physical space.

INTERFACE KILL
MODULE PROCEDURE KILL _LAYOUT
MODULE PROCEDURE DEALLOC_FIBRE

INTERFACE ALLOC
MODULE PROCEDURE SET_UP

INTERFACE APPEND
MODULE PROCEDURE APPEND_FIBRE

INTERFACE MOVE_TO
MODULE PROCEDURE MOVE_TO_P
MODULE PROCEDURE MOVE_TO_NAME
MODULE PROCEDURE MOVE_TO_NAME2
MODULE PROCEDURE MOVE_FROM_TO_NAME

INTERFACE FIND_PATCH
MODULE PROCEDURE FIND _PATCH_P
MODULE PROCEDURE FIND _PATCH_0

INTERFACE ASSIGNMENT (=)
MODULE PROCEDURE NULL_IT0
! CREATION AND DESTRUCTION ROUTINES
SUBROUTINE KILL_LAYOUT(L) ! DESTROYS A LAYOUT
SUBROUTINE APPEND_FIBRE(L , EL) ! STANDARD APPEND THAT CLONES EVERYTHING
SUBROUTINE FIND_POS(L, C ,I) ! FINDS THE LOCATION " I " OF THE FIBRE C IN LAYOUT L
SUBROUTINE MOVE_TO_P(L,CURRENT,I) ! MOVES CURRENT TO THE K~TH POSITION
SUBROUTINE MOVE_FROM_TO_NAME(L,C1,POSC1,CURRENT,NAME,POS) ! MOVES FROM (C1,POSC1) TO CURRENT CALLED "NAME" (POSC1<=0 THEN FINDS POSC1)
SUBROUTINE MOVE_TO_NAME(L , CURRENT, NAME,POS) ! MOVES TO NEXT ONE IN LIST CALLED NAME
SUBROUTINE MOVE_TO_FLAT(L,CURRENT,NAME,POS)! FIND IN A SIMPLE FLAT FILE (LIKE MOVE_TO_NAME BUT STARTS WITH ONESELF AND SCAN COMPLETELY)
SUBROUTINE MOVE_TO_NAME2(L , CURRENT, NAME, VORNAME,POS) ! SAME AS MOVE_TO_NAME BUT MATCHES NAME AND VORNAME
SUBROUTINE SET_UP(L) ! SETS UP A LAYOUT: GIVES A UNIQUE NEGATIVE INDEX
SUBROUTINE DE_SET_UP(L) ! DEALLOCATES LAYOUT CONTENT
SUBROUTINE NULL_IT0(L , I) ! NULLIFIES LAYOUT CONTENT
SUBROUTINE LINE_L(L,DONEIT) ! MAKES INTO LINE TEMPORARILY
SUBROUTINE RING_L(L,DOIT) ! BRINGS BACK TO RING IF NEEDED
SUBROUTINE APPEND_MAD_LIKE(L , EL) ! USED IN MAD-LIKE INPUT
SUBROUTINE APPEND_POINT(L , EL) ! APPOINTS WITHOUT CLONING
SUBROUTINE APPEND_EMPTY(L) ! CREATES AN EMPTY FIBRE TO BE FILLED LATER
SUBROUTINE NULL_FIBRE(CURRENT) ! NULLIFIES FIBRE CONTENT
SUBROUTINE ALLOCATE_FIBRE(CURRENT) ! ALLOCATES AND NULLIFIES CURRENT’ S CONTENT
SUBROUTINE ALLOCATE_DATA_FIBRE(CURRENT) ! ALLOCATES POINTERS IN FIBRE
SUBROUTINE ALLOC_FIBRE(C) ! DOES THE FULL ALLOCATION OF FIBRE AND INITIALIZATION OF INTERNAL VARIABLES
SUBROUTINE DEALLOC_FIBRE(C) ! DESTROYS INTERNAL DATA IF IT IS NOT POINTING (I .E . NOT A PARENT)
SUBROUTINE APPEND_FLAT(L , EL, NAME) ! POINTS UNLESS CALLED "NAME" IN WHICH CASE IT CLONES
! SWITCHING ROUTINES
SUBROUTINE SWITCH_TO_KIND7(EL) ! SWITCH TO KIND7
! PATCHING FIBRES
SUBROUTINE FIND_PATCH_P(EL1,EL2,D,ANG,DIR,ENERGY_PATCH) ! COMPUTES PATCHES
SUBROUTINE FIND_PATCH_0(EL1,EL2,NEXT,ENERGY_PATCH) ! COMPUTES PATCHES
! FLAT FILES
SUBROUTINE PRINT_FLAT(L , FILEN)
SUBROUTINE READ_FLAT(L , FILEN)
SUBROUTINE READ_FULL_FIBRE(L,A,MF)
FUNCTION ANALYSE_FIBRE(EL) SUBROUTINE PRINT_P_FIBRE(L,EL,A,M F)
SUBROUTINE PRINT_BASIC(L , MF)
SUBROUTINE READ_BASIC(L , MF)
SUBROUTINE PRINT_MAG(EL, MF)
SUBROUTINE READ_MAG(EL, MF)
SUBROUTINE PRINT_MAG_CHART(EL, MF)
SUBROUTINE READ_MAG_CHART(EL, MF)
SUBROUTINE PRINT_PATCH(EL, MF)
SUBROUTINE READ_PATCH(EL, MF)

SUBROUTINE PRINT_CHART(EL,M IS, MF)
SUBROUTINE READ_CHART(EL, MIS,MF)

O Sl_FAMILY.f90
The prototype versions of PTC as well as its pre-prototype SmalLCode used allocatable arrays instead of
linked lists. These types were easier to manage but less flexible. The layout was then defined in the module
S_FAMILY within the file Sl_FAMILY.f90. These codes were not capable of handling fibre bundles and thus
were only experimental prototypes on which the magnet physics and the Taylor polymorphism could be
tested.

With the transformation of PTC into a fully fledged fibre bundle structure and the resulting complexity
o f managing our linked list, the FIBRE and the LAYOUT were put into the module S_FIBRE_BUNDLE of
Sk_LINK_LIST.f90. Thus the module S_FAMILY now contains a few layout operations (standard surveys,
translation and rotations of entire Layouts) as well as a few fibre operations (misalignments, scans for
polymorphic knobs, etc.).

O .l More on POL_BLOCK
Here we discuss the interaction of a POL_BLOCK with the full layout.

0 .1 .1 Assigning Polymorphs to a Layout with SETPOL_L: L A Y O U T =P O L _B L O C K

We revisit here the topic of Sect. L.4.6. The routine responsible for the assignment definition LAY-
OUT=POL_BLOCK is SETPOL.

The following piece of code, based on our PSR lattice, does the same work in two different ways. In the
red lines, we simply scan for all the magnets with the same name as magnet W) which happens to be QD.
Now in the section in the blue coding, we assign the name of magnet W3 to POL, we then equate POL to
PSR. PTC will scan for the members of the same family (same ELMNAME) and will power the polymorphic
knobs accordingly.

CALL INIT(DEFAULT, 5 , 2 , BERZ,ND2, NPARA)
CALL ALLOC(NORMAL)
CALL ALLOC(Y)
POLB=NPARA ;POLB=IBN(3)=l ;POLB7IAN(3)=2 ;
CALL MOVE_TO(PSR,P,2)

C=>PSR=START
DO I=l,PSR=N

IF (C7.MAGP7.NAME==P=MAGP7.NAME .AND. (. NOT. ASSOCIATED (C7.PARENT_MAG))) C7.MAGP=POLB
C=>C7NEXT
ENDDO

X (:) = 0 .D 0 ; Y=NPARA; Y=X ; CALL TRACK(PSR,Y,l,-DEFAULT) ;NORMAL=Y;
CALL PRINT(NORMAL°7DHDJ7oV(l) ,6)

The red coding can be replaced by the following blue coding:

POLB7.NAME=P7.MAGP7.NAME
PSR=POLB

When a POL_BLOCK is assigned to a fibre (C =PO LB) or equivalently to an ELEMENTP (CM M AGP=POLB),
PTC checks the NAME and the VORNAME of the POL_BLOCK. If the fields are blank, then the assignment
proceeds. If there is a NAME but no VORNAME, then it checks only the NAME. This is used when one
wants the dependence on a family. Finally if both the NAME and the VO NAME are present, then only a
perfect match results in a polymorphic assignment.

Of course the assignment PSR=POLB performs a complete scan of the lattice. The routine for the scan
checks the status of the PARENT_MAG pointer and thus assigns knobs only to the primitive fibre which
contains the original data.

Finally, it is possible to use POLB to perform the reverse operation. ather than investigate the poly
morphic dependence, one can power the magnets as a function of the polymorphic description in POLB.
Again consider a variant of the example we just displayed:

CALL INIT(DEFAULT, 3 , 2 , BERZ,ND2, NPARA)
CALL ALLOC(NORMAL);CALL ALLOC(Y);

POLB=NPARA ;POLB=IBN(3)=l ;POLB=IAN(3)=2 ;
CALL MOVE_TO(PSR,P,2)
POLB7.NAME=P7.MAGP=NAME
PSR=POLB
X (:) = 0 .D 0 ;Y=NPARA; Y=X ; CALL TRACK(PSR,Y,l,+DEFAULT) ;NORMAL=Y
CALL PRINT(NORMAL7DHDJ7V(l),6)
TPSAFIT=0.D0
TPSAFIT(l)= - (NORMAL7DHDJ7V(l).SUB. ’ 0 0 0 0 l0 0 0 ’)/(NORMAL7DHDJ7V(l).SUB.’ 0 0 00 1010 ’)
WRITE(6,*) TPSAFIT(l)

SET_TPSAFIT=. TRUE.
PSR=POLB ; CALL KILL_PARA(PSR);

CALL INIT(DEFAULT, 2 , 0 , BERZ,ND2, NPARA)
CALL ALLOC(NORMAL);CALL ALLOC(Y);
X (:) = 0 .D 0 ;Y=NPARA; Y=X ; CALL TRACK(PSR,Y,l,DEFAULT) ;NORMAL=Y
CALL PRINT(NORMAL7DHDJ7V(l),6)

Here the interesting lines are in red. The variable SET_TPSAFIT, which is a global targeted logical, is set to
true. The constructor command PO LB=NPARA automatically forces the pointer POLB%SET_TPSAFIT
to point to this global logical. It also forces the pointer POLBMTPSAFIT to point to the global arrays
TPSAFIT(LNV). Thus, the arrays TPSAFIT can be fed to the magnet on the basis of the polymorphic
information of POLB. In the above example, the horizontal chromaticity is computed and then corrected.
The result of the code is:

ETALL 1, NO = 3, NV = 8, INA = 299

I COEFFICIENT ORDER EXPONENTS

0
NO 3 NV
0.2541028124202658

8
0 0 0 0 0 0 0 0

1 -0.9281703999632887 0 0 0 0 1 0 0 0
1 0.5670943332284326E-15 0 0 0 0 0 0 1 0
2 0.7695358029965586E-01 2 0 0 0 0 0 0 0
2 0.7695358029965586E-01 0 2 0 0 0 0 0 0
2 0.2675634631832551 0 0 2 0 0 0 0 0
2 0.2675634631832551 0 0 0 2 0 0 0 0
2 1.045593753641225 0 0 0 0 2 0 0 0
2 7.340570869703631 0 0 0 0 1 0 1 0
2 -0.1525438237398347E-29 0 0 0 0 0 0 2 0
2 -0.7712950084242795E-27 0 0 0 0 0 0 0 2
11 0.000000000000000 0 0 0 0 0 0 0

TPSAFIT(l) = 0.126443898770064
Berz’s Package

NO ND ND2 NP
2 3 6 0

ETALL 1, NO 2, NV 6, INA 298

I COEFFICIENT ORDER EXPONENTS
NO 2 NV 6

0 0.2541028124202655 0 0 0 0 0 0
1 -0.3975693351829396E-15 0 0 0 0 1 0
-2 0.000000000000000 0 0 0 0 0 0

NDPT
5

NV
6

N .B . A s said in Sect. L.4.6, you cannot feed different PO L_BLO CK s in succession to the same
ELEM EN TP. If P T C detects such an attempt, pray that it stops you. It should. For example,
if you rerun the above example with S E T _T P S A F IT = .T R U E . commented out, you should get
the message

YOU CANNOT USE A POL_BLOCK AGAIN ON SAME ELEMENTP QD
PAUSE: 144

as the second P S R =P O L B is illegal. O f course it is possible, using the command K ILL_P A R A (P SR),
to reset all the knobs and start again.

O .1.2 W h y is the Polymorph ELP% L not in PO L_B LO CK ?

The careful reader may have noticed that the variable L of ELEMENTP is a polymorph. But, upon a careful
examination of type POL_BLOCK, it seems that we are making the user’s life difficult by ignoring it totally.

Welcome to P T C ’s worst variable. The variable L is truly a pointer to something related to the inner
private parts of the various elements. Basically it is the length over which integration is performed. Standard
accelerator theory, intent on using models where everything is properly confused so as to fit snuggly into
schemes a la Guignard or Courant-Snyder style formalisms, does not make a big fuss about L, LC, and LD
as PTC does. If the reader wants to see an example where all these variables are different, he should look
at Sect. Q.5.8 or Figure 19.

So, why is L a difficult variable? For example, imagine a ring has been built, with a properly defined
fibre: CHART, PATCH and ELEMENT(P) are defined and the ring closes. Now, suppose we decide to
shrink a quadrupole by 1cm at both ends. How is PTC reacting to this if it is done though the polymorph
L? Incorrectly, is the correct answer! In order for the L to be physically polymorphic, we need to use an
object PATCH as in MAGNET_PATCH to provide automatic patching on the factory bench. For speed
reasons and also because this is pushing theology to its outer limit, we refrained from giving PTC this extra
layer of automatic realism. W e will certainly regret it one day; but it can be added rather easily.

Therefore, to emphasize the lack of true polymorphism of the variable ELEMENTPML, it is kept out of
POL_BLOCK completely for the time being.

O .1.3 Removing Parameters: K ILL_PAR A

To ensure a complete removal of the knobs one uses the following call:

CALL KILL_PARA(PSR)

It is always prudent to terminate a routine using parametric dependence with a call to KILL_PARA.

0 .2 Routines extended from EL(P) to — BRE
There are few routines that are applicable to either the ELEMENT or/and the ELEMENTP. It is convenient
to provide a FIBRE interface. We list these routines now.

O.2.1 The Interface A D D : A D D P _A N B N

The reader is invited to look at Sect. L .6 where it is discussed in detail.

O .2.2 FIBRE_POL: F IB R E =P O L _B L O C K

There is a routine which allows the syntax FIBRE=POL_BLOCK. The reader probably thinks that this is
the routine called during the layout operation of Sect. O.1.1; indeed one would just need to traverse the
linked list associated to the LAYOUT and use this function. This is not the case. FIB R E =P O L_B LO C K
does not check the parentage of magnet. It is there for the user to write his own more flexible and
perhaps more dangerous scanning routines. Of course in standard lattices, all these things amount to the
same thing.

O .2.3 FIBRE_BL: F IB R E =M U L _B L O C K

This is discussed in detail in Sect. L.4.5.

O .2.4 F IB R E _W O R K : F IB R E = W O R K

This is also discussed in detail in Sect. L.4.5.

This subroutine applies misalignments to the hbre. We remind the reader that while it is possible to apply
misalignments individually to ELEMENT and ELEMENTP, it makes little sense in practice. It can be called
directly as “CALL MISALIGN_FIBRE(FIBRE,X)” or with the (=) sign interface. Here X (l:3) contains the
displacements and X(4:6) the angles of rotation.

0 .3 Copying all ELPs into ELs and Vice Versa
There are all sorts of reasons why one would like to copy all the ELEMENTs of an existing layout into their
polymorphic versions or vice versa. Typically certain kinds of twiddling or htting will use only one type of
element. For example, a TPSA ht using polymorphic knobs would act hrst on the ELEMENTP. Obviously,
if the ht is successful, the ELEMENTPs should be copied on the ELEMENTs. This is done with the syntax

CALL ELP_TO_EL(PSR)

Suppose instead that one has written an interactive htting routine and decides that the ht is going nowhere.
Then, the reverse call is possible

CALL EL_TO_ELP(PSR)

restoring all the ELEMENTPs to their pristine states presumably preserved in the ELEMENTs.

0 .4 Copying Layouts: CO P Y and EQUAL
It is possible to copy an entire layout into an new virgin linked list. This is done with the command:

CALL COPY(PSR,PSR2)

For the people whose brain works in reverse Polish notation, the reversed syntax of EQUAL can be used:
CO PY (PSR,PSR2) = EQUAL(PSR2,PSR).

With this command, a complete copy of the hbre structure is cretaed: magnet, polymorphic magnet, and
the existing chart are all faithfully duplicated. For the moment, this command works only on a standard
layout.

0 .5 Standard Surveys
PTC is capable of executing a MAD-like standard survey. In that case the internal geometry of the magnet
located in type MAGNET_CHART is used to deduce the geometry of the hbre located in type CHART of
the hbre. Again, in PTC, these things need not be the same at all.

0 .5 .1 Full Standard Survey

The call to SURVEY(PSR) will do a standard MAD-like survey of the layout PSR. By default the hrst magnet
is located at the origin of space. The three directions of space correspond to the local entrance chart of the
hrst magnet.

0 .5 .2 Partial Standard Survey

It is also possible to do a partial survey using the command

CALL SURVEY(PSR,3 ,1 4)

This will perform a survey from element 3 to l4. This generally will reproduce the result of the original
survey unless some magnets were changed. In particular one may want to change the variable ELMTILTD
in a vertical bump.

Obviously, if global coordinates are computed, the user should make sure that the ring closes and that
all vertical bumps are correctly patched. Vertical bumps are particularly annoying since rotations do not
commute in three dimensional space.

0 .6 Moving a Layout
There are two built-in routines for moving the lattice around space. These are useful if several beam lines
are present.

0 .6 .1 Rotating a Layout

A layout PSR can be rotated around a point 0M E G A (3) by a set of angles ALPHA(3) operating in the
standard PTC order using the command:

0MEGA=0.D0; ALPHA=0.D0; ALPHA (2)= 0 .1 D 0 ;
CALL ROTATE(PSR, OMEGA, ALPHA)

0 .6 .2 Moving a Layout

Figure 21: Rotating a Layout

One can also translate a layout with the syntax:

D=0.D0; D (1) = -5 .D 0 ; D (3)= 5 .D 0 ;
CALL TRANS(PSR,D)

The result of the rotation of Sect. 0.6.1 followed by the above translation is displayed in Figure 21— an
actual run of PTC on the PSR lattice.

0 .7 Routines of S_FAMILY
The routines and their interfaces are listed here. There is not much to add to the previous discussion.

INTERFACE EL_TO_ELP
MODULE PROCEDURE EL_TO_ELP_L

INTERFACE ELP_TO_EL
MODULE PROCEDURE ELP_TO_EL_L

INTERFACE SURVEY
MODULE PROCEDURE SURVEY_ONE
MODULE PROCEDURE SURVEY_EXIST_PLANAR_ L_NEW
MODULE PROCEDURE SURVEY_EXIST_PLANAR_ IJ_NEW

INTERFACE KILL_PARA
MODULE PROCEDURE KILL_PARA_L

INTERFACE ADD
MODULE PROCEDURE ADDP_ANBN

INTERFACE ASSIGNMENT (=)
MODULE PROCEDURE SETPOL_L
MODULE PROCEDURE FIBRE_WORK
MODULE PROCEDURE FIBRE_MIS
MODULE PROCEDURE FIBRE_POL
MODULE PROCEDURE FIBRE_BL
MODULE PROCEDURE BL_FIBRE
MODULE PROCEDURE WORK_FIBRE

INTERFACE EQUAL
MODULE PROCEDURE COPY_LAYOUT

INTERFACE COPY
MODULE PROCEDURE COPY_LAYOUT_I
MODULE PROCEDURE COPY_LAYOUT_IJ INTERFACE

MODULE PROCEDURE TRANS_D
INTERFACE TRANSLATE

MODULE PROCEDURE TRANS_D
INTERFACE ROTATE

MODULE PROCEDURE ROT_A
SUBROUTINE ADDP_ANBN(EL,NM,F,V) ! EXTENDS THE ADD ROUTINES FROM THE ELEMENT(P) TO THE FIBRE
SUBROUTINE FIBRE_WORK(S2,S1) ! CHANGES THE ENERGY OF THE FIBRE AND TURNS THE ENERGY PATCH ON
SUBROUTINE WORK_FIBRE(S2,S1) ! SUCKS THE ENERGY OUT OF A FIBRE BY LOOKING AT ELEMENT
SUBROUTINE FIBRE_M IS(S2,S1) ! MISALIGNS FULL FIBRE; FILLS IN CHART AND MAGNET_CHART
SUBROUTINE ADJUST_INTERNAL(S2) ! ADJUSTS FRAMES OF MAGNET_CHART ON THE BASIS OF THE MISALIGNMENTS
SUBROUTINE COPY_INTERNAL(S2) ! PUTS THE FRAMES OF THE CHART INTO THOSE OF THE MAGNET_CHART
SUBROUTINE TRANS_D(R,D) ! TRANSLATES A LAYOUT
SUBROUTINE ROT_A(R, OMEGA,A) ! ROTATES A LAYOUT AROUND OMEGA BY A (3) IN STANDARD PTC ORDER
SUBROUTINE ROTATE_FIBRE(EL1,ELO) ! PUTS EL1 AT THE END OF ELO FOR SURVEY PURPOSES. ELO AND EL1 MUST HAVE SAME EL1DIR (STANDARD SURVEY)
SUBROUTINE FIBRE_BL(S2,S1) ! PUTS A NEW MULTIPOLE BLOCK INTO FIBRE. EXTENDS ELEMENT(P) ROUTINES TO FIBRES
SUBROUTINE BL_FIBRE(S2,S1) ! SUCKS THE MULTIPOLE OUT LOOKING AT ELEMENT
SUBROUTINE SURVEY_EXIST_PLANAR_IJ_NEW(PLAN,I1,I2) ! STANDARD SURVEY FROM FIBRE # I1 TO #I2
SUBROUTINE SURVEY_EXIST_PLANAR_L_NEW(PLAN) ! CALLS ABOVE ROUTINE FROM FIBRE #1 TO OPLAN1N : STANDARD SURVEY
SUBROUTINE SURVEY_ONE(C) ! SURVEYS A SINGLE ELEMENT FILLS IN CHART AND MAGNET_CHART; LOCATES ORIGIN AT THE ENTRANCE OR EXIT
SUBROUTINE COPY_LAYOUT(R2,R1) ! COPY STANDARD LAYOUT ONLY
SUBROUTINE CO PY_LAYO UT_IJ(R1,I,J,R2) ! COPY PIECES OF A STANDARD LAYOUT FROM FIBRE # I TO #J
SUBROUTINE COPY_CHART(R1,R2) ! JUST COPIES THE CHARTS AND THE PATCHES IN IDENTICAL LAYOUTS
SUBROUTINE COPY_LAYOUT_I(R1,R2) ! COPIES IN THE COPY ORDER RATHER THAN THE LAYOUT ORDER
SUBROUTINE KILL_PARA_L(R) ! RESETS ALL THE PARAMETERS IN A LAYOUT : REMOVE POLYMORPHIC KNOBS
SUBROUTINE FIBRE_POL(S2,S1) ! SET POLYMORPH IN A FIBRE UNCONDITIONALLY
SUBROUTINE SETPOL_L(R,B) ! SET POLYMORPH IN A FULL LAYOUT ONLY IF THE MAGNET IS A PRIMITIVE PARENT
SUBROUTINE EL_TO_ELP_L(R) ! COPY ALL PRIMITIVES ELEMENT INTO ELEMENTP
SUBROUTINE ELP_TO_EL_L(R) ! COPY ALL PRIMITIVES ELEMENTP INTO ELEMENT

P Sm_TRACKING.f90
This file contains the module S_TRACKING. This module contains the fibre tracking routines and the layout
tracking routines built from them.

P.l TR A C K for a Layout
In PTC, this is just a do-loop over the fibres.

SUBROUTINE TRACK_LAY0UT_FLAG_P(R,X,I1,I2,K) ! TRACKS POLYMORPHS FROM II TO 12 IN STATE K
IMPLICIT NONE
TYPE(LAYOUT),INTENT(INOUT): : R ;TYPE(REAL_8), INTENT(INOUT): : X (6);
INTEGER, INTENT(IN): : I 1 .I 2 ; TYPE(INTERNAL_STATE) K;
INTEGER J;

TYPE (FIBRE), POINTER : : C

CALL MOVE_TO (R,C,MOD_N(I1,R7.N))

J=I1

DO WHILE(JKI2.AND. ASSOCIATED(C))

CALL TRACK(C,X,K,R1CHARGE)

C=>C7.NEXT
J=J+1

ENDDO

END SUBROUTINE TRACK_LAYOUT_FLAG_P

P.2 TR A C K for a Fibre
What follows is the routine used in tracking polymorphs with suitable comments. There is not much to add
here except, perhaps, that one should notice that energy patching is done on-the-fly in PTC. In the frontal
energy patch, PTC checks the previous fibre. PTC gives “priority” to the exit patch. By this we mean that
if two fibres follow one another, than patching is performed at the end of the first fibre rather than at the
front of the second fibre.

SUBROUTINE TRACK_FIBRE_P(C,X,K,CHARGE)
IMPLICIT NONE
TYPE(FIBRE),TARGET,INTENT(INOUT): : C
TYPE(REAL_8), INTENT(INOUT): : X(6)
INTEGER, TARGET, INTENT(IN) : : CHARGE
TYPE(INTERNAL_STATE), INTENT(IN) : : K
LOGICAL OU,PATCH, PATCHT,PATCHG, PATCHE
TYPE (FIBRE), POINTER : : CN
REAL(DP), POINTER : : PO,BO

! NEW STUFF WITH KIND=3: KNOB OF FPP IS SET TO TRUE IF NECESSARY
IF(K"/0PARA_IN) KNOB =.TRUE.
! END NEW STUFF WITH KIND 3

! DIRECTIONAL VARIABLE AND CHARGE IS PASSED TO THE ELEMENT
C%MAGP%P1.DIR=>C1.DIR
C7„MAGP7„P7„CHARGE= LCHARGE
!

! PASSING THE STATE K TO THE ELEMENT
C7MAGP K
/FRONTAL PATCH
IF(ASSOCIATED(C7PATCH)) THEN

PATCHT=C7.PATCH1.TIME ; PATCHE=C7.PATCH7.ENERGY ; PATCHG=C7.PATCH"7PATCH;
ELSE

PATCHT=.FALSE. ; PATCHE=.FALSE. ;PATCHG=.FALSE.;
ENDIF

! ENERGY PATCH

IF(PATCHE) THEN
NULLIFY(PO)¡NULLIFY(BO);
CN=>C7„PREVIOUS
IF(ASSOCIATED(CN)) THEN ! ASSOCIATED

IF(.NOT.CN°7PATCH°7ENERGY) THEN ! NO NEED TO PATCH IF PATCHED BEFORE
PO=>CN7.MAGP7.P7.POC
BO=>CN7.MAGP7.P7.BETAO

X (2)=X(2) *PO/C07MAGP7.P7.POC
X(4)=X(4) *PO/C07MAGP7.P7.POC
IF (C7.MAGP7.P7.TIME)THEN

X(5)=SQRT(ONE+TWO*X(5)/BO+X(5)**2) !X (5) = 1+DP/POC_OLD
X(5)=X(5)*PO/C7.MAGP07P7.POC-ONE !X (5) = DP/POC_NEW
X(5) = (TWO*X(5)+X(5)**2)/(SQRT(ONE/C07MAGP07P7.BETAO**2+TWO*X(5)+X(5)**2)+ONE/C07MAGP7.P7.BETAO)

ELSE
X(5) = (ONE+X(5)) *PO/C7.MAGP7.P7.POC-ONE

ENDIF
ENDIF ! NO NEED TO PATCH

ENDIF ! ASSOCIATED

ENDIF

! POSITION PATCH
IF(PATCHG) THEN

PATCH=ALWAYS_EXACT_PATCHING. OR. C7.MAGP7.P7.EXACT
CN=>C"7PREVIOUS
IF(ASSOCIATED(CN)) THEN

X(1)=CN7.DIR*C"7DIR*X(1) ;X(2)=CN7.DIR*C"7DIR*X(2) ;
ENDIF
CALL ROT_YZ (C7.PATCH7.A_ANG (1) ,X , C7.MAGP7.P7.BETAO, PATCH, C07MAGP7.P7.TIME)
CALL ROT_XZ (C7.PATCH7.A_ANG (2),X,C7.MAGP7.P7.BETAO,PATCH,C07MAGP7.P7.TIME)
CALL ROT_XY (C7.PATCH7.A_ANG (3) ,X , PATCH)
CALL TRANS(C7.PATCH7.A_D, X, C7.MAGP7.P7.BETAO, PATCH, C7.MAGP7.P7.TIME)

ENDIF
! TIME PATCH

IF(PATCHT) THEN
X(6)=X(6) -C7.PATCH7.A_T

ENDIF

! MISALIGNMENTS AT THE ENTRANCE
IF(C7.MAGP°7MIS) THEN

OU = K7.EXACTMIS.OR.C7.MAGP7.EXACTMIS
CALL MIS_FIB(C,X,OU,.TRUE.)

ENDIF

! THE ACTUAL MAGNET PROPAGATOR AS IT WOULD APPEAR IN A STANDARD CODE

CALL TRACK(C7MAGP,X)
!

! MISALIGNMENTS AT THE EXIT
IF(C7.MAGP7.MIS) THEN

CALL MIS_FIB(C,X,OU,.FALSE.)
ENDIF

/EXIT PATCH
! TIME PATCH

IF(PATCHT) THEN
X(6)=X(6) -C7.PATCH7.B_T

ENDIF

! POSITION PATCH
IF(PATCHG) THEN

CN >C7NEXT
IF(ASSOCIATED(CN)) THEN

X(1)=CN7.DIR*C"7DIR*X(1) ;X(2)=CN7.DIR*C"7DIR*X(2) ;
ENDIF
CALL ROT_YZ (C7.PATCH7.B_ANG (1) ,X , C7.MAGP7.P7.BETAO, PATCH, C7MAGP7.P7.TIME)
CALL ROT_XZ (C7.PATCH7.B_ANG (2),X,C7.MAGP7.P7.BETAO,PATCH,C7.MAGP7.P7.TIME)

CALL R0T_XY(C7.PATCH7.B_ANG(3) ,X, .TRUE.)
CALL TRANS(C7.PATCH7.B_D, X, C7.MAGP7.P7.BETAO, PATCH, C7.MAGP7.P7.TIME)

ENDIF

! ENERGY PATCH
IF(PATCHE) THEN

NULLIFY(PO)¡NULLIFY(BO);
CN=>C"7NEXT
IF(.NOT.ASSOCIATED(CN)) CN=>C
PO >CN7MAGP7P7POC
BO=>CN7«MAGP°7P°7BETAO X(2)=X(2) *C7.MAGP7.P7.POC/PO
X(4)=X (4) *C7«MAGP°7P°7POC/PO
IF (C7.MAGP7.P7.TIME)THEN

X(5)=SQRT(0NE+TW0*X(5)/C7.MAGP7.P7.BETAO+X(5)**2) !X(5) = 1+DP/POC_0LD
X(5)=X(5)*C07MAGP7.P7.POC/PO-0NE !X(5) = DP/POC_NEW
X(5)=(TW0*X(5)+X(5)**2)/(SQRT(0NE/BO**2+TW0*X(5)+X(5)**2)+0NE/BO)

ELSE
X(5)= (0NE+X(5))*C07MAGP7.P7.POC/PO-0NE

ENDIF
ENDIF

! ELEMENT IS RESTAURED T0 THE DEFAULT STATE
C7MAGP DEFAULT
! DIRECTI0NAL VARIABLE AND CHARGE ARE ELIMINATED
NULLIFY (C°7MAGP07P°7DIR)
NULLIFY (C°7MAGP07P°7CHARGE)

! KN0B IS RETURNED T0 THE PTC DEFAULT
! NEW STUFF WITH KIND=3
KN0B=. FALSE.
! END NEW STUFF WITH KIND=3

END SUBR0UTINE TRACK_FIBRE_P

P.3 The MIS_FI B Routines: Misaligning a Magnet
These routines use the arrays computed in Rotation_mis based on the compressed magnet idea and the
associated operators refactorized in the standard PTC order. The routines are quite transparent; here is the
routine MIS_FIBR, which acts on double precision numbers (ELEMENT):

SUBROUTINE MIS_FIBR(C,X,0U,ENTERING)
! MISALIGNS REAL FIBRES IN PTC ORDER FOR FORWARD AND BACKWARD FIBRES

TYPE(FIBRE), INTENT(INOUT): : C
REAL(DP), INTENT(INOUT): : X (6)
INTEGER J
LOGICAL,INTENT(IN): : OU,ENTERING

IF(C°/„DIR==1) THEN ! FORWARD PROPAGATION
IF(ENTERING) THEN

CALL ROT_YZ(C°/0CHART°/0ANG_IN(1) ,X ,C 0/0MAG0/0P0/0BETAO, OU, C/MAG/P/TIME)
CALL ROT_XZ (C°/0CHART°/0ANG_IN(2) ,X ,C 0/0MAG0/0P0/0BETAO, OU, C/MAG/P/T IME)
CALL TRANS(C°/0CHART°/0D _IN ,X , C/MAG/P/BETAO, OU.C/MAG/P/TIME)

ELSE
CALL ROT_YZ (C°/0CHART°/0ANG_OUT (1),X ,C /M AG /P/BETAO , OU, C/MAG/P/TIME)
CALL ROT_XZ(C°/0CHART°/0ANG_OUT(2),X,C/MAG/P/BETAO, OU,C/MAG/P/TIME)
CALL ROT_XY(C°/0CHART°/0ANG_OUT(3) ,X,OU)
CALL TRANS(C°/0CHART°/0D_OUT, X, C/MAG/P/BETAO, OU, C/MAG/P/TIME)

ENDIF
ELSE

IF(ENTERING) THEN ! BACKWARD PROPAGATION
C°/0CHART°/0D_OUT (1) = -C°/0CHART°/0D_OUT (1)
C°/0CHART°/0D_OUT (2) = -C°/0CHART°/0D_OUT (2)
C°/0CHART°/0ANG_OUT(3)=-C°/0CHART°/0ANG_OUT(3)
CALL TRANS(C°/0CHART°/0D_OUT, X, C/MAG/P/BETAO, OU, C/MAG/P/TIME)
CALL ROT_XY(C°/0CHART°/0ANG_OUT(3) ,X,OU)

! ROTATIONS
CALL ROT_XY (C/CHART/ANG.

! TRANSLATION

! ROTATIONS

! TRANSLATION

! TRANSLATION

CALL ROT_XZ(C°/0CHART°/0ANG_OUT(2),X,C'MAG'P'BETAO, OU,C°/„MAG0/0P°/0TIME)
CALL ROT_YZ(C0/0CHART0/0ANG_OUT(1),X,C0/0MAG0/0P0/0BETAO,OU,C0/„MAG0/0P0/0TIME) ! ROTATIONS
C°/0CHART°/0D_OUT (1) = -C°/0CHART°/0D_OUT (1)
C°/0CHART°/0D_OUT (2) = -C°/0CHART°/0D_OUT (2)
C°/0CHART°/0ANG_OUT(3)=-C°/0CHART°/0ANG_OUT(3)

ELSE
C°/0CHART°/0D_IN (1)= -C°/0CHART°/0D_ IN (1)
C°/0CHART°/0D_IN (2)= -C°/0CHART°/0D_ IN (2)
C°/0CHART°/0ANG_IN (3) =-C°/0CHART°/0ANG_IN(3)
CALL TRANS(C0/oCHART0/oD _IN ,X ,C 0/„MAG0/oP0/oBETA0,OU,C0/oMAG0/oP°/oTIME) ! TRANSLATION
CALL ROT_XY(C°/0CHART°/0ANG_IN(3),X,OU)
CALL ROT_XZ(C°/0CHART°/0ANG_IN(2) ,X,C°/0MAG0/0P°/0BETAO, OU,C°/0MAG0/0P°/0TIME)
CALL ROT_YZ(C0/oCHART0/oA N G _IN (1),X ,C 0/oMAG0/oP0/oBETA0,OU,C0/oMAG0/oP°/oTIME) ! ROTATIONS
C°/0CHART°/0D_IN (1)= -C°/0CHART°/0D_ IN (1)
C°/0CHART°/0D_IN (2)= -C°/0CHART°/0D_ IN (2)
C°/0CHART°/0ANG_IN (3) =-C°/0CHART°/0ANG_IN(3)

ENDIF
ENDIF

END SUBROUTINE MIS_FIBR

The first part of MIS_FIBR is just the plain dynamical rendition of the SO(3) operators. The second
part of the routine corresponds to reverse propagation (C% DIR=-1). Normally one would expect that the
angles and the translations simply reverse sign. This is not the case because in P T C we adopted
the accelerator physics convention of leaving the drifts alone by keeping integration lengths
positive. In doing this, the vector potential A z for example changes sign although (A x,A y)
stays invariant. W e may regret this choice! W h at else is new?

The reader uncertain of the origin of all these conventions should go back to first principles, namely, by
deriving the “s” -dependent Hamiltonian — pz in a straight magnet from the original time dependent one.
By comparing the cases of forward propagation (pz > 0) and backward propagation (pz < 0), the above
assertions will start to make sense.

P.4 The Variables ALWAYS_EXACT_PATCHING
The logical variable ALWAYS_EXACT_PATCHING is joined with the logical C%M AG%P%EXACT using
the operator .OR. If ALWAYS_EXACT_PATCHING is true, then the patching is always done exactly. This
is the safe situation. If it is false, then the logical C%M AG%P%EXACT will determine the method used
for patching.

P.5 The Routines of S_TRACKING
There is not much to say; here are the routines:

INTERFACE TRACK
MODULE PROCEDURE TRACK_LAYOUT_FLAG_R
MODULE PROCEDURE TRACK_LAYOUT_FLAG_P
MODULE PROCEDURE TRACK_LAYOUT_FLAG_S
MODULE PROCEDURE TRACK_LAYOUT_FLAG_R1
MODULE PROCEDURE TRACK_LAYOUT_FLAG_P1
MODULE PROCEDURE TRACK_LAYOUT_FLAG_S1
MODULE PROCEDURE TRACK_FIBRE_R
MODULE PROCEDURE TRACK_FIBRE_P
MODULE PROCEDURE TRACK_FIBRE_S

INTERFACE MIS_FIB MODULE PROCEDURE MIS_FIBR
MODULE PROCEDURE MIS_FIBP
MODULE PROCEDURE MIS_FIBS

SUBROUTINE TRACK_LAYOUT_FLAG_R1(R,X,II1,K) ! TRACKS DOUBLE PRECISION FROM I I 1 TO THE END OR BACK TO I I 1 IF CLOSED
SUBROUTINE TRACK_LAYOUT_FLAG_P1(R,X,II1,K) ! TRACKS POLYMORPHS FROM I I 1 TO THE END OR BACK TO I I 1 IF CLOSED
SUBROUTINE TRACK_LAYOUT_FLAG_S1(R,X,II1,K) ! TRACKS ENVELOPE FROM I I 1 TO THE END OR BACK TO I I 1 IF CLOSED
SUBROUTINE TRACK_LAYOUT_FLAG_R(R,X,I1,I2,K) ! TRACKS DOUBLE FROM I1 TO I2 IN STATE K
SUBROUTINE TRACK_LAYOUT_FLAG_P(R,X,I1,I2,K) ! TRACKS POLYMORPHS FROM I1 TO I2 IN STATE K
SUBROUTINE TRACK_LAYOUT_FLAG_S(R,X,I1,I2,K) ! TRACKS ENVELOPES FROM I1 TO I2 IN STATE K
SUBROUTINE TRACK_FIBRE_R(C,X,EXACTMIS,STATE,DIR,CHARGE,MIS) ! TRACKS DOUBLE PRECISION FROM I I 1 TO THE END OR BACK TO I I 1 IF CLOSED
SUBROUTINE TRACK_FIBRE_P(C,X,EXACTMIS,STATE,DIR,CHARGE,MIS) ! TRACKS DOUBLE PRECISION FROM I I 1 TO THE END OR BACK TO I I 1 IF CLOSED
SUBROUTINE TRACK_FIBRE_S(C,X,EXACTMIS,STATE,DIR,CHARGE,MIS) ! TRACKS DOUBLE PRECISION FROM I I 1 TO THE END OR BACK TO I I 1 IF CLOSED
SUBROUTINE MIS_FIBR(C,X,OU,ENTERING)
SUBROUTINE MIS_FIBP(C,X,OU,ENTERING) ! MISALIGNS POLYMORPHIC FIBRES IN PTC ORDER FOR FORWARD AND BACKWARD FIBRES
SUBROUTINE MIS_FIBS(C,Y,OU,ENTERING) ! MISALIGNS ENVELOPE FIBRES IN PTC ORDER FOR FORWARD AND BACKWARD FIBRES

Q Sn_MAD_LIKE.f90
This is based on a suggestion of Hiroshi Nishimura of LBNL. Since FORTRAN90 supports operator over
loading and procedure interface, and since the user of PTC is assumed to have a compiler at hand, why not
use these tools to create an input language? The advantage is that one can avoid writing a complex parser.
Here we describe this input in detail.

N .B . O f course the integration of P TC in M A D -X will take advantage of the M A D input
parser. Presumably it will be extended to take full advantage of P T C ’s novel features.

Q .l Example of t he PSR Revisited
Before we start the description, let us look again at the PSR. Here we put all the calls to the MAD-like
interface in a routine called INPUT_PSR. The main program is simply:

PROGRAM RUN_PSR
USE S_TRACKING
IMPLICIT NONE
INTEGER ND2, NPARA
TYPE(REAL_8) Y(6)
TYPE(NORMALFORM) NORMAL
TYPE(LAYOUT) PSR
REAL(DP) X (6)

CALL INPUT_PSR(PSR,2.72D0,-1.92D0);CALL SURVEY(PSR);

X =0 .d 0 ; CALL FIND_ORBIT(PSR,X,1,DEFAULT) ! DEFAULT IS A STATE

CALL INIT(DEFAULT, 3 , 0 , BERZ,ND2, NPARA)
CALL ALLOC(Y); CALL ALLOC(NORMAL); ! ALLOCATE VARIABLES
Y = NPARA
Y = X

CALL TRACK(PSR,Y,1,DEFAULT)

NORMAL = Y
WRITE(6,*) NORMAL7TUNE
CALL DAPRINT(NORMAL7DHDJ7V(1),6) ;CALL DAPRINT(NORMAL7DHDJ7V(2),6) ;

CALL K ILL(Y); CALL KILL(NORMAL);

END PROGRAM RUN_PSR

It is followed by the subroutine INPUT_PSR.

SUBROUTINE INPUT_PSR(PSR,KF0,KD0)
USE MAD_LIKE
IMPLICIT NONE
REAL(DP) KF0,KD0
TYPE(LAYOUT) PSR
TYPE(LAYOUT) CELL, MYRING
TYPE(FIBRE) D1,QD,QF,D2,B
REAL(DP) KF,KD,ANG,BRHO
INTEGER INTEGRATION_METHOD

CALL MAKE_STATES(. FALSE.)
EXACT_MODEL = .TRUE.
DEFAULT = DEFAULT + NOCAVITY + EXACTMIS

CALL UPDATE_STATES
MADLENGTH = .FALSE.

ANG = (TWOPI > 3 6 . DO / 3 6 0 . DO)
BRHO = 1.2D0 > (2 .54948D 0 / ANG)

INTEGRATION_METHOD = 6
CALL SET_MAD(BRHO = BRHO, METHOD = INTEGRATION_METHOD, STEP = 10)
MADKIND2 = KIND2

KF = KF0/BRHO; KD = KD0/BRHO;

D1 = DRIFT("D1", 2 . 28646D+00);D2 = DRIFT(MD 2 " ,0 .4 5 D + 0 0) ;
QF = QUADRUPOLE("QF",0.5D0,KF);QD = QUADRUPOLE("QD",0.5D0,KD);
B = RBEND(" B" , 2 . 54948D0,ANG)

CELL = D1 + QD + D2 + B + D2 + QF + D1; MYRING = 10 > CELL;

PSR = . RING. MYRING

CALL CLEAN_UP

END SUBROUTINE

Let us concentrate on the subroutine INPUT_PSR. First we recognize a bunch of hbres. They are the
fundamental building blocks of a beam line. They will help us construct the ideal PSR, called MYRING
here. It suffices to change QF and automatically all the QFs change in MYRING. Actually this is a very
bad way to say it: there is only one QF and every occurrence of it in MYRING points to it. The routine
which appends hbres (APPEND_MAD_LIKE) is similar in spirit to the routine APPEND_POINT discussed
in Sect. N in the context of recirculators and Siamese rings.

After the ideal object is created, we need to create a real layout, that is to say, one where QF is cloned.
This is done by the commands PSR=.RING.M YRING for a ring and with PSR=.LINE.MYRING for a single
pass system.

We will now list these simple operations.

Q.2 Operations on types LAYOUT and — BRE
The goal of the MAD-like module is to create a layout which represents the ideal layout to be tracked. It
does so by dehning operations on FIBREs and LAYOUTs. In what follows EL represent a FIBRE and BL
a layout.

Q .2.1 E L +E L

The following operation creates a layout QF_TOTAL of 2 elements:

QF_TOTAL = QF_ENT + QF_EXI

In this case we took two “quadrupoles” and join them like Siamese twins. Actually such an operation is
discouraged. O f course the addition o f elements is used all the time in creating layouts.

Q .2 .2 E L + B L and B L +E L (BL stands for a layout)

Using the layout created in Sect. Q.2.1, we can imagine the list H ALFCELL:

HALF_CELL = QF_TOTAL + D1;

The following equivalent syntax

HALF_CELL = QF_ENT + QF_EXI + D1;

also uses a temporary layout since it is equivalent to the syntax

HALF_CELL = (QF_ENT + QF_EXI) + D1;

Q .2.3 B L + B L

This is the simple addition of two layouts.

Q .2.4 N *E L and N *B L

This allows for the repetition of several elements. Thus the layout

TWO_HALF_CELL = QF_ENT + QF_EXI + D1 + QF_ENT + QF_EXI + D1;

can be obtained using

TWO_HALF_CELL = 2 > (QF_ENT + QF_EXI + D 1) ;

It is also possible to multiply a single element.

Q .2.5 -BL

It is possible to reverse a layout using the minus sign. This works as a unary operator

CELL = (QF + D1 + QD)
CELLI = -CELL
TOTAL_CELL = CELL + CELLI

or equivalently as a binary operator

CELL = (QF + D1 + QD)
TOTAL_CELL = CELL - CELL

Q.3 Am I a Dumb or Smart User?
The first thing to understand about the MAD-like input is that it is a “dumb” user interface. Those familiar
with the code TRACYII will know that this was perhaps the first code to support the concept of dumb-user
and smart-user interfaces. In a dumb user interface, we do not provide all that is possible for a magnet.
T ACYII was based on the belief that a dumb user interface should be built on the foundation of a smart
user interface. In this way complex situations could always be handled. This was so successful that, in the
2 years of the PEPB design, Robin and Bengtsson recompiled TRACYII no more than 2 or 3 times. PTC
has only this MAD-like input as a dumb-user interface. However, whatever improvements are made to the
dumb side of things, we adhere to the T ACYII idea that the core of the code is never to be compromised
by a desire for a “Joe-Six-Packs” interface.

In the case of TRACYII, this was realized by separating the lattice input file (dumb user) from the
command input file (smart user). This idea, originally from Nishimura, was turned into an uncompromising
product by Bengtsson. In PTC the same can be achieved by stripping all the core routines from any dumb
user idiosyncracies. One example common to TRACYII and PTC is the absence of quadrupoles in the core.
The reader never saw the word quadrupoles in our list of magnets: we have combined function magnets with
arbitrarily high multipoles in them. Thus a routine to handle quadrupoles cannot exist in the core, but it
can certainly exist in the dumb interface, where it invokes the more general element.

Here we will use the BEND command to show the limitations of a dumb user interface. Consider a
rectangular bend of angle ANG and arc length L, then in the MAD-LIKE interface this object could be
created simply by the command

CALL MAKE_STATES(. FALSE.)
EXACT_MODEL = MYCHOICE
DEFAULT = DEFAULT + NOCAVITY + EXACTMIS
CALL UPDATE_STATES
MADLENGTH = .FALSE.

B = RBEND(MBM,L,ANG)

This would create a rectangular bend B whose layout angle is exactly ANG. If MYCHOICE is false, then
the origin of phase space will also be sent unto itself under the action of B. This is the result of traditional
codes.

But what if MYCHOICE is true? If the integration is good enough or if the global DRIFT_KICK is false,
then for all practical purposes, the origin would also be invariant. But consider a worse case, namely, let us
introduce a quadrupole component into this rectangular bend. The MAD-like interface allows a “dumb-user”
way:

k = 0 .001d 0
B 4 RBENDCB", L,ANG).Q.K

The situation here is again trivial in the fake expanded Hamiltonian. However for MYCHOICE=true, things
are far more complex. Here PTC will simply use ANG as the nominal layout angle and will compute the
layout BO associated with it. It will then put this BO in BN(1). So far, so good, this is simply the standard
case. However the addition of K puts K into BN(2). Clearly the origin of phase space is not preserved under
B.

What does the user want? What should we put in PTC as a default? This could be argued ad inhnitum
since it becomes an important issue for small machines when details are sufficiently important that the
“dumb user” should elevate himself to the level of “smart user” or simply get out of the kitchen. There is
no way, in the absence of a concrete problem, that one can program a stupid-proof code. In any event, we
have neither the patience nor the intelligence to do it.

As an example let us suppose that in the particular problem under consideration, we would like the angle
o f the layout and the angle of the trajectory to be identical when a “design K ” is thrown in. Certainly the
“smart user” can program a new routine called “FIXBEND” which will scan the lattice to reht BN(1) to
achieve the desired result. Then, he and his colleague can revert to the “dumb user” status until someone
complains.

One must understand that the core of PTC is like a real machine. If a quadrupole coil is added along
the body of a rectangular bend in a real ring, to achieve some focusing, the magnet will not miraculously
re-adjust its bending held to ensure closure. Someone would have to write some control algorithm to adjust
the main B-held. PTC behaves the same way. The more exact the model, the more painful it becomes for
the dumb user; but it is more realistic and thus easier for the slightly more informed user. The code simply
behaves like a real machine whenever possible.

Obviously if one wants to try a smarter interface, or link the core routine with a true parser, or with a
Mathematica-like interface (as in SAD), be our guest. It is certainly a major amount of work, beyond the
skills of the authors, to create a powerful fool-proof interface. Actually, as mentioned already, PTC will be
integrated into M AD-X; the details of this and what it really means is still an issue not fully settled. M AD-X
will probably have a Oexible and powerful dumb-user interface.

Q.4 The Rules
Q .4.1 Making the States and the Logicals: M A D and M A D L E N G T H

As in a regular run of PTC, the states must have been created. Thus at a very minimum one must have
called the routine MAKE_STATES. The following logicals, defaulted to false (i.e. to PTC internal dehnition),
should be set to the desired value prior to the creation of elements:

MAD 4 .TRUE.
MADLENGTH 4 .TRUE.

The logical M AD forces the multipole dehnition of MAD; MADLENGTH refers to the Cartesian length in
a rectangular bend being used rather than the arc length. This has been discussed in some detail in Sect. I
item 11 _ 1 2 .

Q .4.2 The Subroutine SE T _M A D and M A D K IN D 2 (M A D T H IC K)

This subroutine must be executed before defining any element. There are two interfaces. The first one is

CALL SET_MAD(ENERGY,KINETIC,P0C, BRHO, BETA,N0ISY, METHOD, STEP)
MADKIND2 = KIND2 ! Or e q u iv a le n tly MADTHICK=DRIFT_KICK_DRIFT

Here ENERGY is the total energy, KINETIC is the kinetic energy, and POC is the momentum, all in GeV.
BRHO is p o/ q, BETA is v 0/ c , NOISY is true if one wants the code to send a lot of garbage to the screen.
METHOD is the default order of the method for the “thick” elements (2,4, or 6) and STEP is the default
number of integration steps.

If all the argument are in the call statement, then PTC looks for a negative input for either ENERGY,
KINETIC,POC, BRHO or BETA. The code will then compute the remaining variables. The variables are
private. However the preferred method to call SET_MAD uses the OPTIONAL construct of FORTRAN9O.
So, for example,

CALL SET_MAD(BRH0=BRH0, N0ISY=. FALSE. , METH0D=INTEGRATI0N_METH0D, STEP=10)

One selects a single variable amongst the energy-like variables and use the keyword assignment KEY-
W ORD=VALUE. Their numerical value can be retrieved using

CALL GET_ENERGY(ENERGY, GET_ENERGY, BRH0, BETA,P0C)

The routine GET_ENERGY is a passive routine which fetches the private variables set by SET_MAD.
Generally in PTC we do not recommend messing around the lattice with the MAD-like routine. The
philosophy is like that of T ACY. In the MAD-like input one concentrates on the ideal lattice. Strange
things such as changes in the reference energy of magnets should be handled by a lucidly written user routine.
Keep any code in the MAD-like phase as simple as possible. emember that generally a magnet at this
point is really a template which is cloned when the layout is created, like a factory prototype.

Finally MADKIND2 = KIND2 (or MADTHICK=DRIFT_KICK_DRIFT) tells PTC what kind of inte
gration method to use. This is supplemented with the global logical variable DRIFT_KICK which affects
type TE APO T (see Sect. K.4.9) and STREX (see Sect. K.4.12).

Q .4.3 Logicals and Integer Flags

The following global constants can be modified anytime during an input:

• FIBRE_DIR controls the direction of propagation of the fibre. It is defaulted to one: forward prop
agation. At this point the MAD-like input and the standard survey does not handle a mixture of
propagation direction. So please beware. However there is no impediment in PTC structures to mix
forward and backward propagators as Sect. B.1 exemplifies.

• FIBRE_FLIP is a logical defaulted to true. If true, the various strengths of a reversed fibre are reversed
so as to ensure that the magnet has the same propagation properties as the forward fibre. For example
a planar clockwise lattice can be turned into a counter-clockwise lattice if FIBRE_FLIP is true. If false,
then typically a stable bend becomes unstable, as a particle enters from the exit face and therefore
bends outwards.

• M AD=.true. forces the input of the multipoles following the MAD definition, defaulted false.

• MADLENGTH=.true. forces the Cartesian length for the rectangular bend, defaulted false. Notice
that this has no effect on survey since ELMPMLC and ELMPMLD are properly computed.

• MADKIND2=kind2, kind6, or kind7. This chooses the type of integrator for the general magnet,
defaulted to kind2. The nomenclature is confusing and is a left-over of SmalLCode which is the
PTC prototype. In reality the MAD-like input will jump from KIND2, KIND6 , KIND7, KIND1O and
KIND16 pretty much on its own on the basis of the internal logic of these types. See Sect. Q.4.4 for
some explanations.

• MADKIND3N=kind3 or kind8. Kind3 is always safe. Kind8 is the normal “SMI” of SixTrack. One
should be very careful using this. Certain operators we will describe later are not compatible with
kind8. Defaulted to kind3.

• MADKIND3S=kind3 or kind9. Kind3 is always safe. Kind9 is the skew “SMI” of SixTrack. One
should be very careful using this. Certain operators we will describe later are not compatible with
kind9. Defaulted to kind3.

• EXACT_MODEL forces the code to use exact square root Hamiltonian.

• METD (2,4,6) is the method of integration. It is defaulted to 2. It is set by SET_MAD and can be
locally changed by a simple assignment such as M ETD=4 for example. It is also changed by a call to
THIN_LENS once a layout is produced. Kind6 supports only M ETD=2. Some of the magnet types
also support the user dehned METHOD_i, i= l,2 ,3,4,F . These hve methods must be dehned by the user
after a MAKE_STATE call. There are no defaults for them. PTC will throw an exception or crash if
there is an attempt to use them prior to dehnition.

• NSTD this is the number of integration steps. It can be changed to any number greater or equal to
one. It is also modihed by a call to THIN_LENS.

• LIKEMAD is a private logical controlling the appearance of wedges in type STREX. See Figure 19 for
a pictorial explanation.

Q .4.4 M ore on M A D K IN D s

PTC started as SmalLCode where a lot of the integrators were tested. The nomenclature of the MAD-like
input, particularly the abuse of the word “KIND2” to mean anything DRIFT-KICK-DRIFT was hne in
SmalLcode but is confusing in PTC. If a user prefers a more readable code, he may want to use the following
names, dehned through assignments and pointing operations in module S_STATUS:

DRIFT_KICK_DRIFT = KIND2
MATRIX_KICK_MATRIX = KIND7
KICK_SIXTRACK_KICK = KIND6

MADTHICK => MADKIND2
MADTHIN_NORMAL => MADKIND3N
MADTHIN_SKEW => MADKIND3S

This change of nomenclature is useful simply because “MADKIND2” and “KIND2” in the MAD-like language
of PTC do not refer to KIND2 anymore. So here are the rules.

First if the EXACTJtfODEL is false, then PTC acts in the old way: KIND2 means KIND2, KIND6
means KIND6 and KIND7 means KIND7.

Things gets more complex if EXACT_MODEL is true. If a straight element is generated (EL%P%B0=0),
like a quadrupole, then M ADTHICK=DRIFT_KICK_DRIFT will use STREX (KIND16). KICK_SIXTRACK_KICK
will use KIND7 and KICK_SIXTRACK_KICK will use KIND6 .

If one the other hand we are dealing with a BEND, either BEND or SBEND, then things get more
messy. DRIFTJKICK_DRIFT will direct the element to either KIND10 (TEAPO T) if SBEND or KIND16
(STREX) if RBEND. The split used in this case will be controlled by the global parameter DRIFT_KICK.
However if either KICK.SIXTRACKJKICK or KICK_SIXTRACK_KICK is used for MADTHICK, then we
have a problem because PTC has no integration methods for a split where the expanded Hamiltonian is
solved exactly when EXACT_MODEL is true and E L% P% B 0/=0. One could in the case of a sector bend
generate such a split, but it is not supported by PTC. In the case of the true RBEND, it is not possible
because there are no analytic solutions to our knowledge in the presence of a quadrupole component. So
what does PTC do? In this case PTC switches from KIND6 or KIND7 to KIND10 or KIND16 automatically.
In addition, since the user intended to have the body as exact as possible, PTC chooses the integration split
using the constant bend solution (driftkick=.FALSE.) rather than the drift-kick split.

Users can overwrite these defaults of course. In addition, M AD-X will probably have an assortment of
default and global commands providing more “automatic flexibility” than PTC as well as P T C ’s hands-on
capability to override any annoying default.

Q .4.5 Cleaning Up

Then at the end, we recommend killing the hbres used in the MAD-LIKE input.

PSR=.RING.PSR

CALL CLEAN_UP

This clean up must happen after the true layout has been created. PTC keeps a linked list (MAD_LIST)
containing all the hbres created by commands such as “D = DRIFT(” D” ,L = l.dO).” Thus, after these hbres
have been cloned into the true layout, one can exterminate them.

Q.5 T he Elements
We now describe the calls to create a hbre. All real quantities must be double precision!

Q .5.1 The Marker

This is the simplest element of all. For example an element with name SYM is created with

SYM = MARKER("SYM")

Q .5 .2 The Drift

D = DRIFTO'D" ,L)

The drift is affected by the EXACT_MODEL variable. The variable L is a keyword of the optional construct.
Thus one can also write

D = DRIFTO'D" ,L = 0 .5 d 0)

Q .5 .3 The Monitors and the Instruments

This is a simple element which is essentially a drift o f length L with a measure of the positions x and y at
the center. The syntax is quite obvious:

M0 N1 = MONITORO'MONl",L)
M0 N2 = HMONITORO'HMON",L)
M0N3 = VMONITOR("VMON",L)
CAM = INSTRUMENT("CAMERA",L)

PTC reproduces M A D ’s full monitors, horizontal monitors, vertical monitors and instruments. There are all
the same except that their KIND are different: K IN D ll, KIND12, KIND13 and KIND14 respectively.

Q .5 .4 The Quadrupole and Tilting

This element is created with the command:

QF = QUADRUPOLE("QF",L,K1)! L and K1 are keywords o f the o p tio n a l co n stru c t .

This element can also be tilted into a skew quadrupole. The command is

QF = QUADRUPOLE("QF",L,K1,TILT);

This particular command creates a “natural tilt” turning the normal quadrupole into a skew quadrupole.
Since we use overloading the reader may have realized that TILT is not a string as in regular tracking

parsers but an object of type TILTING briefly mentioned in Sect. I.l. Thus it is possible to define operators
which acts on TILT. Consider the operator “ .IS.” (which stands for “to be” as in third person singular!):

QF = QUADRUPOLE("QF",L,K1,TILT.IS.0 . 1 d 0) ;

This literally means that the tilt is of O.ldO radian. In all cases the value of TILTD is affected. For straight
elements this is equivalent to a tilt o f the multipole components.

This is a design tilt. It is not an error tilt. Beware.

This element is supported mainly in the expanded Hamiltonian framework. If EXACT_MODEL is true, only
the drift part will be computed exactly using the usually DRIFT routines in S_DEF_KIND. The syntax of
the MAD-like command is simply:

SOLI = SOLENOID(" SOLIM,L ,K S ,T IL T);

In PTC, one can produce a solenoid with multipole components. These things must be added on the resulting
hbre directly, using for example,

SOLI = SOLENOID(mSOLIm,L ,KS,TILT)

Multipoles can be added using the ADD command of Sect. L.6 . The full solenoid with multipoles supports
methods 2,4, and 6 of the Yoshida integrators. User dehned methods are not implemented for the solenoid.

Q .5.6 Other Straight Elements

We have of course the sextupole and the octupole available through a MAD-like command:

SF 4 SEXTUPOLE("SF",L,K2)! L and K2 are keywords o f the o p tio n a l con stru c t ,
or

SF 4 SEXTUPOLE("SF",L,K2,TILT)

For octupoles, the syntax is identical

OF 4 OCTUPOLE("OF",L,K3)! L and K3 are keywords o f the o p tio n a l con stru c t .
or

OF 4 OCTUPOLE("OF",L,K3,TILT)

In both cases, the TILT.IS.ANGLE syntax is supported.

Q .5.7 M ore Straight Elements: H K IC K E R ,V K IC K E R , and K IC K E R

The syntax is simply

HKICK 4 HKICKER("HKICK",L,KICK)! L and KICK are keywords o f the o p tio n a l con stru c t .
VKICK 4 HKICKER("VKICK",L,KICK)! L and KICK are keywords o f the o p tio n a l con stru c t .

The tilt option is fully supported. The MAD convention applies for KICK: a positive KICK means a positive
kick for px and thus a negative EL%BN(1). Finally, the general kicker is obtained with the call

KICK 4 KICKER("HKICK",L,HKICK,VKICK)! L, HKICK, and VKICK are keywords
! o f the o p tio n a l con stru c t .

Q .5.8 The Rectangular Bend

The rectangular bend is created with the command

B = RBEND(MB",L,ANGLE)! L and ANGLE are keywords o f the o p tio n a l con stru c t .
or

B = RBEND("B",L,ANGLE,TILT)

It is also possible to call RBEND with the syntax

B = RBEND("B",L,ANGLE,E1)! L, ANGLE, and El are keywords o f the o p tio n a l con stru c t .
or

B = RBEND("B",L,ANGLE,E1,TILT)

B = RBEND("B",L,ANGLE,E2)! L, ANGLE, and El are keywords o f the o p tio n a l con stru c t .
or B = RBEND("B",L,ANGLE,E2,TILT)

In this case the entrance angle E l of the bend is following the MAD convention that E l is zero for ideal
parallel face bend, that is to say:

£1 = & = E l and £2 = & + E 2 (62)

where & is the total angle and £ is dehned in Figure 22.
The total bending angle is ANGLE and the exit angle is ANGLE-£1. In PTC, unlike MAD, RBEND

really means a rectangular Cartesian bend in the EXACT_MODEL option. Therefore £1, the exit angle,
must be ANGLE-£1. This bend is very interesting because it is the only element of PTC for which ELML,
ELMPMLD, and ELMPMLC are all different!

As seen in Figure 22, this is a perfect example of the generality needed to cover an arbitrary magnet.
Here the variable ELML is tied, as we said, to the inner field details of the magnet. Since the magnet is
a rectangular object, it must be integrated in Cartesian coordinates. This has nothing to do with the end
purpose of the magnet. This length L is really a “private” variable of the magnet similar to a bizarre B-field
or other strange properties that arbitrary complex magnets might have. On the other hand, ELMPMLD and
ELMPMLC are once more the variables indicating the coordinate needed to patch to the outside world.

The RBEND, obviously, supports the option EXACT_MODEL.

In that context, we remind the reader of the option LIKEM AD=.TRUE. displayed in Figure 19. This
is the case of a rectangular bend with arbitrary entrance and exit angles. This is not possible in a true
rectangular geometry. Therefore MAD-like wedges are applied. The MAD-like input for this object is

B = RBEND("B",L,ANGLE,E1,E2)! L, ANGLE, E l , and E2 are keywords o f the o p tio n a l con struct .
or

B = RBEND("B",L,ANGLE,E1,E2,TILT)

PTC sees in this case an arbitrary E l and E2; therefore it uses the wedges. In fact, even if one inputs an E2
matching the condition of the “true bend” , PTC will still use the wedges if the two keywords are present in
the call statement. This is the clue telling PTC to use M AD wedges on top o f the true rectangular bend.

Q .5.9 The Sector Bend

B = SBEND("B",L,ANGLE)! L and ANGLE are keywords o f the o p tio n a l con stru c t .
or

B = SBEND("B",L,ANGLE,TILT)

The sector bend calls the general bend routines. If EXACT_MODEL is true, then the exact sector bend
(KIND10) is used. As in the case of RBEND, it is possible to have up to two extra angles, in which case
wedges are added. The syntax is as before:

B = SBEND("B",L,ANGLE,E1,E2)! L, ANGLE, E l , and E2 are keywords o f the o p tio n a l con stru c t .
or

B = SBEND("B",L,ANGLE,E1,E2,TILT)

In this case, the angles E l and E2 are just £1 and £2.

This bend is only implemented for the approximate expanded Hamiltonian using the famous “quadrupole”
trick to create the edge angles. E l and E2 are dehned here as in the SBEND.

B = GBEND("B",L,ANGLE,E1,E2)! L, ANGLE, E l , and E2 are keywords o f the o p tio n a l con struct ,
or

B = GBEND("B",L,ANGLE,E1,E2,TILT)

GBEND does not support the option EXACT_MODEL in PTC because one must specify in PTC the nature
o f the body. Unlike in MAD, where bodies are always sector bends, in PTC one must make a choice between
RBEND or SBEND. No default is provided. Obviously, in a fancy code such as M AD-X, a flexible default
will probably be provided for backward compatibility (SBEND most likely).

Q.5.11 The R F Cavity

The RF cavity input is

CAV = RFCAVITY("CAV",L,VOLT,LAG,HARMON,REV_FREQ)! L, VOLT, LAG, HARMON, and REV_FREQ
! are keywords o f the o p tio n a l con stru c t .

These are the MAD-input definitions. Harmon is the harmonic number, LAG is the phase, REV_FREQ is
the ideal rotational frequency for one turn around the machine. VOLT is the voltage. The voltage is in
megavolts even though PTC uses GeV for energy-like variables. The variable LAG is the opposite of the
variable PHAS inside PTC. Finally, FREQ of PTC is simply HARMON*REV_FREQ.

Q .5.12 The Single Lens or SixTrack’s SM I

This is the single thin lens element of SixTrack which is supported in PTC. The call is simply, for example,

SF = S M I("S F " ,K ,3)
or

SF = SINGLE_LENS("SF",K,3)

A skew element takes a negative entry for the multipole order:

SF_SKEW = S M I ("S F _ S " ,K , -3)

These elements can be tilted in the usual manner. They are strictly multipoles of a given kind. Therefore
the addition of another multipole component to them should send an exception to the screen. For example,
the following syntax, explained below in Sect. Q.6.1, is strictly forbidden.

SF_SKEW = S M I (" S F _ S " ,K , - 3) .S .2 .d 0 ! FORBIDDEN ADDITION OF A NORMAL COMPONENT TO A SKEW "SMI"

Q .5.13 The Thin Multipole Block

O f course one can take a thick element and add a multipole block easily using the syntax described in
Sect. L.4.4. In addition a thick element with L=0.D0 becomes a true thin element. However, again for the
purpose of reading old “legacy” lattices, we support a more direct input namely through the routine

TYPE(MUL_BLOCK) BL

BL = 3
BL=BN(3) = 3 . 684068976279142D-001
B3 = m u lt ip o le _ b lo c k ("B 3 " ,B L)

The tilt option is also possible, as well as the addition of other multipoles, since this is a full block of an and
bn s.

Q.6 Operators Acting On MAD-Like Input
In this section we describe a few useful operators.

Q .6.1 Adding Multipole Components

Consider the case of a combined function sector bend. Obviously the command

B = SBEND("B",L,ANGLE)

creates a regular sector bend. Now, if as in the ALS, this magnet has a design quadrupole strength KF,
then how do we put it in easily? O f course, one could put on a smart user hat, and use the routine ADD of
Sect. L.6 . One could even dump our routines and write something more adequate to one’s taste. Please be
our guest if such a thing is needed. But, if one puts on the dumb user hat, here is the operator provided.

B = SBEND("B",L,ANGLE).Q.KF

This routine is additive. Thus the following insane call would remove the quadrupole component from a
quadrupole:

Q 4 qUADRUPOLE("B",L,KF).q.(-KF)

PTC provides this particular operator up to order 20-pole (icosapole ?) in general and up to order dodecapole
with special nomenclature. The special nomenclature is based on the mixture of Latin and Greek names
used in accelerator physics. The letter S as in .SD. stands for the skew version. Here are the special names:

1. Bend: .D. and .SD.

2. Quadrupole: .Q. and .SQ.

3. Sextupole: .S. and .SS.

4. Octupole: .O. and .SO.

5. Decapole: .DE. and .SDE.

6 . Dodecapole: .DO. and .SDO.

In general the Roman numeral is used for the name of the operator corresponding to an n-pole. For
example, the octupole has 8 poles and thus the generic operator is .VIII. As before the letter S modifies this
operator into the skew version. This number is twice the order of the vector potential A z appearing in the
Hamiltonian.

W atch out for M A D K IN D 3 N = K IN D 8 or M A D K IN D 3 S = K IN D 9 . These are the so-called
SM I of SixTrack. They are single multipoles.
For example the following syntax is acceptable:

L40. d 0 ; MADKIND3N4KIND3;
OF 4 OCTUPOLE("OF", L, KO) . Q. KF;

However the following one is a no-no: L4 0 .d 0 ; MADKIND3N4KIND8 ;
OF 4 OCTUPOLE("OF", L, KO) . Q. KF;

This will attempt to put a quadrupole component in an object which is strictly a thin normal octupole.

Q.7 The Final Step: the Creation of a Layout
The Dnal goal of this exercise is to create a layout (PSR) which can be used by PTC for tracking, map
production, map analysis, etc. This was shown in the example of Sect. Q.1

CELL 4 D1 + QD + D2 + B + D2 + QF + D1
MYRING 4 10 > CELL
PSR 4 . RING. MYRING

where CELL, RING, and MYRING are also of type LAYOUT. Therefore, after having created all these
objects to one’s satisfaction, the assignment PSR=.RING.M YRING is of crucial importance. It creates PSR
of type Layout which is the quintessential object needed by PTC. PSR is different from the other layouts in
the sense that it is made of clones: each fibre is an individual fibre and not something pointing elsewhere.
The layouts used during the construction (CELL, RING, and MYRING) are trackable but are made of fibres
pointing to the single fibre created by the Mad-like commands. They are all “single-pass” by default, i.e.,
MYRINGMCLOSED=.FALSE., so beware if you use them for fitting the bare lattice.

Finally, we remind the reader that if PS had been a single pass object, it would have been created by
PSR=.LINE.M YRING.

R So_FITTING.f90: Non-c^e Routines
This module contains examples of fitting routines using polymorphism as well as some routines to re-adjust
the number of integration steps and the method of integration. Finally we find here the fixed point finders.
Apart from the fixed point finders, which are probably in a final usable state, the other routines will evolve.
We should also say that all the routines belong to the analysis part of a tracking code, and that is why they
are not in the core of PTC.

R .l Changing t he Integration Met hod of a Magnet
O f all the various kinds of magnets, KIND2, KIND10 (TEAPO T) and KIND16 (STREX) rely the most on
the actual integration method used, especially if the DRIFTKICK variable of KIND10 and KIND16 is set
to true. Indeed these magnets should always be handled and modified using the “Talman” philosophy of
modelling. As we have said before, it is customary in accelerator physics to regard the method of integration
as part of the model. In the case of Drift-Kick-Drift integrators, it is imperative to do so. Following this line
of thought, one tries to minimize the number of thin lenses (steps of integration) while retaining the general
properties of the lattice. It is more an art than a science, but so is most of accelerator modelling.

The subroutine THINLENS helps in this regard. The syntax is simply

THI=-1
CALL THINLENS(PSR,THI)
WRITE(6 , *) THI

If the quantity THI is less than zero, then THINLENS will interactive, using a screen dialogue. If it is a
number greater than zero, it will select that particular value of THI and store it in the variable PSRMTHIN
after it has properly modified the lattice. So what is this input THI? THI corresponds approximately to the
quadrupole kick of each integration step. Inside THINLENS, the following hand waving formula is used

GG=XL* (RH0I**2+DABS(QUAD)) ! RH0I=EL7.P%B0 and QUAD = sqrt(EL7.BN(2)**2+EL%AN(2)**2)
GG=GG/THI
NTE=IDINT(GG)

The approximate integrated focusing strength is first evaluated and then divided by THI. Thus GG be
comes the number of thin lens kicks for this element. In PTC there are three methods of integration for
KIND2/KIND10/KIND16: Yoshida 2,4, and 6 . Each of these methods have a certain number of multipole
kicks per steps. PTC switches automatically from one method to the next on the basis of the private array
LIM IT(2)=(3,14) of THINLENS. If NTE is less than 3, then the second order method is used. If NTE is
between 3 and 13, then the fourth order Yoshida-Ruth is used. Finally for NTE greater or equal to 14, then
sixth order Yoshida is used.

In summary, if no magnet kind is specified, PTC will re-slice all magnets of KIND2,KIND10 and KIND16
according to the above rule.

However this routine can be called on a specific kind: KIND2, KIND6, KIND7, KIND10 or KIND16:
CALL THINLENS(PS ,THI,THISKIND). Of course the criterion for the number of thin lenses should be
different in all cases. For drift-kick integrators, one must refit known properties and perhaps look at lattice
functions, chromaticities and short term dynamic aperture. This is really the Teapot code problem. For
KIND6 , the slow thick element, it is really just a matter of multipole errors.

Obviously, we hope to move these features into M AD-X where the re-slicing can be done most effectively
thanks to the various powerful matching modules of MAD. Undoubtedly, while M AD-X will not be more
powerful than PTC model-wise, it will have defaults and reslicing routines of a far greater sophistication
than those in the present PTC. In addition, a smart user of M AD-X will be able to re-slice and re-fit a vast
array of variables to create his “thin lens” lattice using whatever powerful command M AD-X inherits from
M AD -8 or are simply added to this new version of MAD. This should be a killer code which will put an
end to the ugly exercise of transferring thick lattices from MAD (or other design codes) into particle/TPSA
pushers such as SixTrack, DESPOT or even T ACYII.

R.2 Fixed Point Routines: Polymorphi Delendi Sunt
Fixed points routines are extremely important in a tracking code such as PTC or any other code of the
integrator variety. This is because we do not have a special “reference” orbit like in matrix codes. It is in
the nature of properly written integrators to look for the correct closed orbit.

Closed orbit routines lie somewhere between analysis and tracking. In fact they are the hrst step of a
normal form: having found the closed orbit, all the normal form procedures are done around that orbit. But
of course it would be ridiculous to consider them part of the FPP package since FPP is more general than
PTC and could be used by anyone.

The real(dp) DEPS_TRACKING is a FORTRAN constant set to 1 ~ 10 and it is used in the hxed point
routines. In COSY-INFINITY style computations of both FPP and PTC (kind6 and kind7), in generating
function tracking of FPP (type genheld), in single Lie exponent searcher (type ONELIEEXPONENT of
FPP) and in hxed point routines, we use a two step process. First the code looks at the actual value of a
merit function. When this merit function drops below a certain value (such as DEPS_TRACKING), then the
code continues iterating until the merit function either settles or goes up. At this point, machine precision
has been reached. PTC has four built-in hxed point routines for convenience. All of them are called with
the interface FIND_ORBIT.

1. First it has a basic hxed point searcher: one which uses TPSA and one which does not.

(a) FIND_ORBIT_LAYOUT: CALL FIND_ORBIT(RING,X,LOC,STATE): this routine hnds the hxed
point X for the internal state “STATE.” RING is a layout and LOC is the position in the layout
where the hxed point is wanted.

(b) FIND_ORBIT_LAYOUT_NODA: CALL FIND_ORBIT(RING,X,LOC,STATE,EPS): this routine
has the same functionality as that of item (1a). However it uses numerical differentiation rather
that TPSA in the Newton search. This is done with the parameter EPS.

2. FIND_ORBIT_M_LAYOUT: CALL FIND_ORBIT(RING,Y,LOC,STATE): this is the same as the above
TPSA routine except that the map is stored in the polymorph Y (6).

3. FIND_ENV_LAYOUT: CALL FIND_ORBIT(RING,YS,X,LOC): this hnds the linear beam envelope
map in the presence of stochastic radiation.

Three of these routines (items 1a, 2, and 3) use FPP and TPSA and therefore they should not be called
in the middle of a TPSA calculation. To paraphrase Cato the Elder: Polymorphi Delendi Sunt. All external
polymorphs must be destroyed by the kill routine before calling these three routines.

In all these routines the variable STATE is optional. If ignored, PTC will try a search in the DEFAULT
state whatever it may be. The applicable KEYW ORDS are STATE and EPS (see Sect. R.2.2 for example).

R .2.1 F IN D _O R B IT _L A Y O U T (R IN G ,X , LOC, STATE)

This is the simplest routine. It was used in Sect. A.2.1 as FIND_ORBIT(PSR,X,1,DEFAULT) in the hrst
example. This routine looks at DEFAULTMNOCAVITY. It performs a linear Newton search.

• If it is true then it hnds the hxed point for the value of delta contained in X(5).

• If it is false, then it hnds a six-dimensional hxed point. In that case the routine checks for the presence
of a cavity; if none are found it throws an exception.

R .2.2 F IN D _O R B IT _L A Y O U T JN O D A (R IN G ,X , LOC, STATE, EPS)

Same functionality as the routine in Sect. R.2.1. We recommend a typical value of about 1.d-8 for EPS. A
typical call can also use the keywords:

CALL FIND_ORBIT(PSR,X,1 , STATE=DEFAULT+FRINGE, EPS=1. d -8)

R .2.3 F IN D _O R B IT JM _L A Y O U T (R IN G ,Y , LOC, STATE)

This routine is basically identical to the previous one. The only difference is that it returns the hxed point
inside the polymorph Y. In that case, the TPSA package is initialized with order 1 and no parameters. Thus
Y contains the linear map around the hxed point. Of course the map Y should enter the routine in a newly
allocated or killed state.

R .2.4 F IN D _E N V _L A Y O U T (R IN G ,Y S ,X ,L O C ,S T A T E)

The purpose of this routine is to hnd the beam envelope in the case of radiation. It replaces the old
synchrotron integral technique. It is explained in Sect. C.4. This routine tracks the state SSS

sss= (S T A T E -n o c a v ity 0 -o n ly _4 d 0 -d e lta 0)+ ra d ia tio n 0

if the input state is incompatible with a beam envelope calculation. The STATE variable can be omitted,
in that case the DEFAULT state is used for STATE. This state, sss, should contain everything which is
compatible with a beam envelope calculation.

One notices that the beam envelope in Equation (14) is a collection of quadratic moments. Quadratic
moments are dual to quadratic polynomials; thus FPP uses an equivalent quadratic polynomial to normal
ize the beam envelope. However PTC hrst computes M and B using a linear TPSA calculation. Then,
inside FIND_ENV_LAYOUT, the package is changed to second degree. This second order beam envelope is
normalized directly using an object of type BEAMENVELOPE (see Sect. C.4.2).

Therefore upon exit, the TPSA package reverts to hrst order. The map part of YS is set to the identity
around the closed orbit. The Helds YS(i)%SIGMAO(j) are set to the equilibrium beam sizes. This beam
envelope is ready to be tracked around the ring for a radiative lattice function calculation using a linear
TPSA!

As we said before, parameter dependence is a bit tricky. This routine does not support parameter
dependence. We discuss parameter dependence in the next section.

R .2.5 Parameter Dependence: F IN D _E N V E L O P E (R IN G ,Y S ,A ,F IX ,L O C ,S T A T E)

The theory of beam envelope is essentially a linear theory but valid in a nonlinear environment. It is
not an exact nonlinear theory. The map Y S(6)% V computed in a normal beam envelope run is the usual
radiative deterministic map. This is obviously an approximation. We are saying that the average of the Hrst
moment (xi) is the same as the deterministic trajectory. Secondly, having “found” the average trajectory, we
compute the map for second moments around this trajectory. The end result is then normalized using the
type BEAMENVELOPE. The situation is similar to that of spin calculations in accelerators. The standard
Held affects the spin but the spin does not affect the usual trajectory.

Because we do not have a full nonlinear34 moment theory, we cannot locate the parameter (knobs) depen
dent second order moments from a Hnal beam envelope map. However we can compute the deterministic map
as a function of the parameters. Through standard normal form techniques, we can extract the parameter
dependent Hxed closed orbit. This is done in FIND_ENVELOPE. Let us look at the actual code:

SUBROUTINE FIND_ENVELOPE_L(RING, YS,Al,FIX,LOC,STATE)
IMPLICIT NONE
TYPE(LAYOUT), INTENT(INOUT): : RING
TYPE(REAL_8),INTENT(INOUT): :A l (6)
TYPE(ENV_8),INTENT(INOUT): :YS(6)
REAL(DP),INTENT(INOUT): :F IX (6)
INTEGER, INTENT(IN) : : LOC
TYPE(INTERNAL_STATE) STATE
TYPE(REAL_8) Y(6)
TYPE(DAMAP) ID
TYPE(NORMALFORM) NORMAL

CALL ALLOC(Y); CALL ALLOC(ID);CALL ALLOC(NORMAL);

Y=6 ; Y=FIX ;
CALL TRACK(RING, Y , LOC,STATE) !
NORMAL= Y ;

34A ctu ally w e have such a theory, bu t it is a slow messy theory involving a very large operator, to fact it is an operator dual,
to the determ inistic case, to the Lie operator o f perturbation theory. T h e L ie opera tor is alm ost lower triangular (n ice); to e
m om ent opera tor is thus w orse t o ™ upper triangular (aw ful). to other w ords low m om ents are a f f e c t s by high order m om ents
unlike linear tones w hich d o not depend on ton e shifts w ith am plitude.

Y=N0RMAL=A1+FIX
A1=Y
YS=Y
CALL TRACK(RING,YS,L0C,STATE)

Y=YS
ID=Y ID=(N0RMAL=A1**(-1))*ID
Y=ID+FIX
YS=Y

CALL KILL(NORMAL); CALL KILL(ID);CALL KILL(Y);

END SUBROUTINE FIND_ENVEL0PE

The blue part shows the computation of the map around the closed orbit FIX. Then, in the green section,
the initial map Y S(6)% V is initialized as

M = A i = F I X (63)

where A i is the transformation which subtracts the parameter dependent closed orbit from a ray. It is then
tracked around for one-turn. In the red part, the map Y S(6)% V is brought back around the parameter
dependent Dxed point. This is needed because, if one simply tracks A i , then the initial coordinates are
around the parameter dependent Dxed point but at the exit they are expressed around the ordinary Dxed
point.

A call to FIND_ENVELOPE can be followed by a call to the regular tracking routine TRACK:

TYPE(BEAMENVELOPE) ENV .

ENV=YS

YS=Y
YS=ENV=SIJ0

CALL TRACK(ALS,YS,1 , 10,+STATE)
ENV=SIJ0=YS

The equilibrium envelope is computed by ENV=YS and it is then set to the array Y S (6)% E (6) with the
assignment YS=ENV%SIJO. It is then tracked. Before exiting the tracking routine, the tracked envelope is
evaluated and put into Y S(6)%SIGM A(6) using ENV%SIJO=YS. The actual evaluation of Y S(6)%SIGM A(6)
is done inside TRACK.

References
[1] C. Iselin, The MAD User’s guide, the most up-to-date version can be found at CERN and is available

on the internet.

[2] Code by K. Oide, Japanese documentation can be found on KEK internet site.

[3] A. J. Dragt, Part. Accel. 12 , 205 (1982).

[4] L. Schachinger and R. Talman, Part. Accel. 22 , 35 (1987), the authors checked TE APO T against the
PSR lattice paper of Dragt.

[5] E. Forest, Beam Dynamics: A New Attitude and Framework (Harwood Academic Publishers, Amsterdam,
The Netherlands, 1997).

[6] L. Michelotti, Intermediate Classical Dynamics with Applications to Beam Physics, Wiley Series in Beam
Physics and Accelerator Technology (Wiley, New York, 1995).

[7] V. K. Decyk and C. D. Norton and B. K. Szymanski, Introduction to Object-Oriented Concepts using
Fortran90, to be published.

[8] E. Forest and K. Hirata, Technical eport No. 92-12, KEK (unpublished).

[9] A. W. Chao, J. Appl. Phy. 50 , 595 (1979).

A Postface by Etienne Forest
No form of Nature is inferior to Art; for the arts merely imitate natural forms. . . . all arts do

the inferior things for the sake of the superior . ..

Marcus Aurelius, Meditations.

Georges Seurat: Art, Technique and Nature

In this postface, I describe mainly the attitude taken by m yself in developing P TC. P T C is perhaps a bad code fo r
several reasons. The most obvious is simply the lack o f mathematical, physical and programming skills o f the author,
mainly myself. It could be also related to using the wrong language or combination o f languages which, in turn, is
also a lack o f skills on my part. But most fundamentally the particular frame o f mind I adopted in developing P T C
is what is worth discussing and perhaps reject; i f one adopts it and combines it with a maximum level o f skills, then
there are no two ways o f producing PTC. In a sense it is the most revolutionary part o f this work and perhaps the
mo t controver ial a well in certain circle .

So my attitude has been to consider the project more as an artistic expression in the W estern sense o f the word
rather than just a mere implementation o f known algorithms. While the development o f physics since Pythagoras is
certainly related to the belief that Nature obeys laws which are mathematically beautiful, we lose track o f these things
in our everyday life. This underlying belief does not prevent us from generating ugly algorithms and dirty experiments
when they are reguired. In developing PT C , I come back to the source so to speak, and religiously seek the creation
o f an object which artistically represent what I can see in Nature. Greek logic and esthetics perhaps were predestined
to produce the David o f Michelangelo. While I am certainly not a Michelangelo, I can see similar forces which, if we
let o r elve g ided by them, will re lt in a prod ct literally fa hioned by o r own inner en e o f bea ty. It i the
principle which g ided me; other I hope can follow it with greater kill and grace.

The alleged purpose of this paper was to describe P T C - yet another computer code simulating particle
tracking. What are the bells and whistles? What are its new and interesting algorithms? What are the new
models which are perhaps embedded in it? Does it have some neat graphics? What would be a short but
accurate answer to all these questions? I can give it immediately: Nothing .

PTC has more in common with the above painting of Seurat than it has with TRANSPORT. This is not
an outrageous answer, but the plain truth. It is best to understand PTC as a work of art using techniques
in the realm of mathematics, computer science and physics to approximate a certain rendition of reality on

a canvas which happens to be made of silicon chips. On the one hand, it cannot surpass the reality which it
tries to imitate. On the other hand, as any artwork, it goes beyond the object which it imperfectly imitates
because the artwork is by itself a part of Nature. PTC has no algorithm to compute the beta function, or the
synchrotron integral, or the phase advance, or the tune shift with amplitude. Indeed if one scans the core of
the code, none of these things will be found. They are not there. There are no synchrotron integral modules.
There are no “HARMON” modules. There are no coupled formalisms. And there are no multi-summations
over Fourier modes of one’s favorite Hamiltonian. Nothing: it is just as placidly banal as the above painting.
And yet, if one adds to PTC a few lines of code, it suddenly computes all o f the above more faithfully and
more correctly than any of the typical implementation of these algorithms.

As I said PTC is about Art. In the painting of Seurat, the scene is banal: a few nineteenth century
Parisians enjoying an afternoon at the local park. PTC is banal: a computer realization of the physical
system; the creation of an object on the computer which behaves, through careful syntactic composition,
like a certain idealization of the true physical object. The issue which has interested me since 1987 and
particularly when I became conscious of Object Oriented Programming is this: On the computer silicon
canvas can we create objects which will act more or less like their physical counterpart? Or are we condemned
to implement on the computer only algorithms relevant to the objects of the physical world and then link
them cleverly by some manager as MAD has been doing since its creation?

As pointed out by Marcus Aurelius, Art fails to reproduce Nature fully. And yet the artwork may,
by a clever and paradoxical use of its own limitations, go in some direction further than one would have
anticipated. We can use the limitation of the medium to our own advantage by the use of techniques
applicable only to the restricted space in which we decide to work: the canvas of the painter or the computer
canvas of the programmer/physicist. In the case of Seurat, it is pointillism, the usage of tiny dots of primary
colors to generate secondary colors. The artist added to the actual depiction an element which is not really
present in the natural scene; but in doing so generates in the human mind emotions and pleasures which are
certainly part of Nature itself. Art does indeed inferior things for the sake of the superior as well said by
Marcus Aurelius.

I need to talk about my own canvas: the computer. The human brain is capable of more emotions and
representations than a Seurat can ever put on his canvas. In accelerator physics, I can see with pure reasoning
the passage from Newton-Maxwell to an “s” -theory, i.e., a local representation good only sometimes, like the
two dimensional hgures of Seurat. I can also imagine how an electron would suddenly see other electrons and
other collective effects that invalidates our “s” -picture. In fact I can even imagine suddenly switching back
to the Newtonian time domain and interacting with billions of particles. I can imagine things of fantastic
complexity. Unfortunately, the computer like Seurat’s canvas has some limitations and therefore it is an
illusion, as long as complex calculations are involved, to ignore these limitations.

So we must address the issue of the computer. Firstly, it is a relatively finite system, and for this reason,
it is reasonable as Seurat did to limit ourselves. PTC is centered around single particle propagators and so
are all these other tracking codes: M AD8/9, SAD, etc. Anyway, I do not want the reader to be too bold
here and lose track of my line of reasoning. So let us concentrate on the travel and tribulation of a single
particle through some accelerator.

Secondly, we interact with the computer through a language. In that sense, PTC is more like a piece of
literature than a painting. We cannot ignore the central issue of algorithmic languages versus object-oriented
languages. Although FORTRAN90/95, the language of PTC, can barely be considered object oriented, the
issue of object-orientedness cannot be ignored, it is the central artistic theme o f PTC.

My goal was to create on the silicon canvas a representation of the accelerator which, under the assumption
of single particle dynamics, will seem to behave and breathe like a real accelerator. In PTC, for example,
if a magnet is misaligned, then it is automatically correctly misaligned in all beam lines that share this
magnet. Remarkably, in PTC, this is not achieved by programming logical links between the various objects,
rather it is achieved by implementing the correct mathematical structures— fibre bundles— and using the
tools provided for us by the computer scientists to ensure a faithful representation on the silicon canvas. The
objects are ours, the computer technigues are theirs, but they are part of the same artistic composition. One
cannot ignore the other. In addition, as we shall see, if some user’s algorithm uses PTC extended definition
of the ray to compute the equivalent of the “synchrotron integrals,” then it will be correctly computed under
any possible mispowering and misaligning of the elements. PTC is a faithful representation of a part of
nature, just as Seurat’s painting is a faithful representation of some aspect of a scene. In addition, just as
pointillism adds to the natural setting a seemingly unnatural element, PTC adds properties to the ray being
tracked which do not exist in nature. In the case of PTC, thanks to a polymorphic type first dreamt up by
Bengtsson, the electron carries with itself a potential Taylor Series whose variable space is nearly infinite.

Thanks to this feature, PTC can, from a composition point of view, be restricted entirely to the creation of
types (objects) whose role is to elevate the flow through a magnet to that of a mathematical object. Once
this is done, a user can write an algorithm that will compute all the nasty objects of perturbative theory
even though PTC seems to have none of them. This is why PTC is object oriented in a satisfying way:
the objects of PTC are representations of some natural objects. As Seurat did with colors, I extended the
meaning of phase space so that all of perturbative quantities would come out for free: P T C ’s electron and
proton potentially carry Power Series on their back just as the natural ones carry spin.

The usage of C + + and object-orientedness in MAD9 and other CLASSIC-style programs did not attempt
to create objects germane to single particle dynamics. Rather, these codes emphasized the same good old
algorithms of the good old procedural programming. It is not surprising because the standard global “s” -
dependent theory of accelerator physics lends itself, in the human brain, to algorithmic manipulations.
One can imagine “turning” the crank on the Hamiltonian expressed around the closed orbit and pushing
calculation a la Guignard to the tenth order; but how many amongst you would even trust someone claiming
that his first order calculations are valid under any tracking conditions of his code? What happens to
synchrotron integrals in MAD when things are misaligned, mispowered and solenoids are all over the place?
W ho knows really?

My views have been, at least since the C + + business got underway, that the flow through the magnet
must be elevated to the status of a mathematical object. And then, it must find its counterpart on the
silicon canvas, whether painted in C+—+ or any other language. Polymorphism, Bengtsson’s pointillism, will
take care of the rest. This is achieved by a local “s” -dependent theory which is shaped around individual
magnets. The global system is then patched together. The mathematicians gave us the tools to manipulate
this object: the fibre bundle. PTC simply creates a restricted fibre bundle on the computer, one which is
relevant to particle accelerators. This structure is incompatible with standard Courant-Snyder theory and
other similar constructs like Sand’s integrals. There is nothing I can do about that except to provide an
equivalent theory which is compatible with the silicon brain. And that I did in case you have not noticed.

In PTC, if one metaphorically replaces the magnet by a person, we can say that the person appears
whole but of course incomplete as do the flat characters of Seurat’s painting. In algorithmic programming
and in the C+—+ implementations such as M AD9/CLASSIC, the person is dissected on the table: the bowels
here, the organs there, the head over here, and so on and so forth. These are the “algorithms” : an eating
algorithm, a procreation algorithm, a speaking algorithm, etc. These algorithms, as in a FORTRAN77 code,
loom over the design. The designers of CLASSIC, in particular the SLAC people, kept repeating “what
are the important algorithms and what classes do we need for the various algorithms?” Bentgsson and I
did not need to listen one second further to conclude that such a project had to fail. The resulting codes,
despite C + + and object orientedness, are to PTC what “the cubic period of Picasso” is to Seurat: abstract
art. What better proof than the fact that the accelerator group in the CERN SL division have launched the
M AD-X project, a rewrite of M AD 8, instead of further developing MAD9. What else can be said? I certainly
had nothing to do with this decision. In fact I believe that if the CLASSIC people had really been object
oriented, today I would be its greatest advocate. By objects, I mean objects derived from physics, from
nature, and not from computer science. For example, besides the SLAC insistence on “algorithms,” nothing
stuck more in my mind from that fateful FNAL pre-CLASSIC meeting, than CERN’s presentation on the
influence of C + + and object-orientedness on M AD ’s parser. Excuse me, important detail perhaps, but what
does this have to do with accelerator physics objects? So dangerous a misconception (algorithmically driven
design), followed by irrelevance (MAD parser) and cultish belief that in C + + things will be miraculously well
designed, led me to believe that this empire had collapsed before it had risen. I am sorry but an electron does
not need our computation algorithms for the tenth order momentum compaction to finds its way around a
real accelerator and therefore, a true object oriented silicon rendition of the accelerator should not either.
Focusing primarily on algorithms is incompatible with good object oriented design.

It is true that if one ignores the perturbative algorithms, then we are seemingly incapable of computing
anything but the ray itself. But this is only true if we ignore TPSA and the Hamiltonian-free techniques and
revert to the antiquated Courant-Snyder approach. I wrote a book where I explained these techniques, where
I explained our pointillism: TPSA, Taylor polymorphism, Hamiltonian-free perturbation theory, the magnet
object realized by a proper implementation of the Euclidean group acting on the magnet propagator [5] (flow),
etc.. It was not my goal to be the actual artist; I believe that the C + + proponents would have done much
better than myself, had they spent sufficient time studying the theory before jumping into C + + constructs.
PTC and FORTRAN90 are not necessarily the best choice. C + + might still be a better choice or perhaps
some other language or even a mixture of languages: I do not know. I know however from pure reasoning
that the natural system, the mathematical theory describing it, the various renditions of this theory, and

the computer— the medium used to create the art work, all impose on us extremely strict constraints. The
creation of classes in C=—H to control algorithms as in CLASSIC, where one focuses on single functions in
vitro, should not be the guiding design principle of the accelerator physics classes. This is true whether
or not we decide later to include a lot of external algorithms (through visitor classes) or through M AD 8
style modules. The combination of the blind belief in the C + + language and a reverence for the archaic
Courant-Snyder theory will lead to only overly complex programs. The silicon canvas is not the human
brain. Equivalent theories in our brain are not equivalent on the computer. This should be quite easy to
comprehend.

So PTC is my little work of art, for my own satisfaction. I created it due to an accident of circumstances;
anybody can have it. Personally, after 10 years of CLASSIC and MAD9, I have no interest in getting involved
in this debate again. The next time you hear that some beautiful C + + code gives wrong synchrotron integrals
when the cavities or the bends are misaligned or mispowered, or tilted, as I have heard already, then you
will know what I am talking about.

Etienne Forest

Acknowledgments
Besides the two individuals whose names appear on this paper and Aimin Xiao who collaborated on the very
first prototype, I would like to thank Johan Bengtsson (of parts unknown) for convincing me that, at least
in C=—H, one could go ahead and make a reasonable job of polymorphism and fibre bundles. In addition, I
acknowledge the influence of Martin Berz on this work. In practice, without his work, pretty much all of
PTC falls apart. More recently, I want to thank David Robin at ALS (LBNL) and Ross Schlueter (LBNL)
for providing real work by which these tools could be tested. Particularly I am not sure there would be
a complex polymorph without the PEEMB project on which I worked a little as an invited guest at ALS.
Also I was fortunate to try the first version of the fibre bundle PTC on an incomplete but very complex
recirculator lattice provided to me by Carol Johnstone at FNAL; I am grateful to her. I am also grateful to
David Sagan of Cornell for many suggestions and his integration of F P P /P T C within his code BMAD. I am
grateful to Alexander Zholentz and again David Robin for letting me test these ideas on a simpler but more
complete recirculator. I am not good enough to generate remotely useful code being left to myself; so the
immediate help of these people was of tremendous practical importance. Last but not least, I do not forget
Werner Herr’s advice concerning the usefulness of an early introduction of linked lists in PTC: the sooner,
the better.

B APPENDIX: THE POWERPOINT PRESENTATION OF FPP

Overview of the
Fully Polymorphic Package

FPP
Etienne Forest, KEK

With the help of
Frank Schmit (CERN),

Aimin Xiao (DESY)
and

David Robin
(LBNL)

N ew Stuff: Polymorphism supports kind=0.1.2 and now 3. Kind=3 is a knob.

Best seen with Internet Explorer 4.0 or above. Sorry!
Set your screen to 1024x768 pixels

Structure o f FPP

Tpsalieanalysis
The Tpsalie analysis module was the most upper level module
prior ro the development of the polymorphic packages. It
overloads the most advanced functions of the LieLib library.
Now we strongly recommend that the module
polymorphiccomplextaylor be included at the top whether or
not you deal with complex entities.

Let us go to an example
/ \in

Example: Taylor Expansion of sin(x)
program sine
use polymorphic_complextaylor
implicit none
real *8 x
integer NO,NV
type (taylor) xt

x=0.d0
call double_sine(x)
write(6,*)x

no=5
nv=l

Degree o f polynomials

Number o f -variables

subroutine double_sine(xO)
implici none
real*8 xO,x

x=sin(xO)
xO=x

return
end subroutine double_sine

subroutine psa_sine(xO)
use polym orphic complextaylor
implici none
type (taylor) xO,x
call alloc(x)

x=sin(xO)
xO=x

call kill(x)
return
end subroutine tpsa_sine

/ \in

There are three important steps in this program. First the real program is called and the sine function
is evaluated on the argument O.dO
Then the overloaded package is TPS A (actually tpsa.f9O only) is initiated. The value .true. Is passed
to indicate our desire to use dabnew.f, the old TPSA o f Berz. The overloading code-s respa
Old Berzio to indicate that all is OK! / \in

nds with

Results of Example...
ETALL ,N O = 5 ,N V = 1 ,IN A = 20 •*-

ORDER COEFFICIENT
NO = 5 NV = 1

1 1.000000000000000
3 ,.,1666666666666662.
5 .8333333333333333E-02
►-3 .0000000000000000

This first line indicates the name (ETALL) ,
the degree (5) , the number o f variables (1),
and the actual pointer integer used by Berz
(2O) for this particular polynomial.

EXPONENTS

As explained before, the va
as xt = O.dO + x>; the prog
sine(xt)= x> —(1/3!) x>3+|(1

riable
ram th
/5!)Xl

xt is initializes
en evaluates

Last line is a termination marker.

Only one column o f exponents since
there is only one variable (nv=1) in this run.

/ \in

Initialization of Overloaded TPSA : Init
We did not want to rewrite the old LieLib package. This is a perhaps mistake in the
long run but given its practical importance we decided to leave it as is. One drawback
is that one must write a new LieLib each time a TPSA package is written (see tree) .

Nevertheless it is not necessary to initialize the overloaded routines o f LIELIB.
In the sin(x) function example, only the TPSA packages were activated and LIELIB
was in effect unusable. LieLib was initially written to handle symplectic maps,

which are o f even dimension. Therefore initializing LieLib forces the parameter NV,
the number o f TPSA variables, to be greater or equal to 2.

Here we will show how one can use the function init to initialize the TPSA with or
without LieLib.

Structure of Init
in polymorphic_complextaylor

Old = .true.

FORTRAN90 interface in the module
polymorphiccomplextaylor

INTERFACE init
MODULE PROCEDURE in itm a p cp
MODULE PROCEDURE in ittp sacp

END INTERFACE

Potential Calls to Init: 1
There are two possible calls to init as indicated on the previous page:

1) Call init(NO,NV,Old)

2) Call init(NO,ND,NP,NDPT,Old)

The first call enables the TPSA package only. This maybe o f some interest when the
calculation has nothing to do with beam dynamics. Being in accelerator physics, I do not
use this option much. For example, in the sine function example, NV was set to 1.

The parameter Old refers to the package being used. At the moment, having only two
packages, we have:

01d=.true.

01d=.false.

Berz’ s TPSA package (LBNL/CERN) version

New TPSA package

/ \in
Potential Calls to Init:2

The call init(NO,ND,NP,NDPT,Old) initializes the tools o f LieLib, which are
overloaded in tpsalie and tpsalie analysis.

The order o f the TPSA package is then:

N V=2*N D+N P„

Number o f Parameters
(non dynamical)

Number o f Variables Number o f
Degrees o f Freedom

The parameter NDPT is presently an input. It is related to the normal form process.
It might be removed in future version. We will discuss its importance later.
The main difference betweeen tpsa alone and tpsalie + tpsalie_analysis resides in the type
damap and the physical assumption behind that damap.

/ \in

Types in TPSALIE: DAMAP

The type damap is defined as follows:
TYPE damap
type (taylor) v(ndim2)
END TYPE damap

The constant ndim2 is equal to 6. This reflects the maximum size o f the phase space
dimension we normally considers in accelerator physics. However, when the subroutine
init(N0,ND,NP,NDPT,01d) is called only 2*ND polynomials are allocated for each damaps.

In mathematical terms, the type damap represents a mapping from R NV to R 2PND where
each 2*ND (2,4,or 6) entry is a polynomial in NV variables.

It should said that these maps are truly “damap” (differential algebraic map), in other
words, when they are concatenated using the overloaded (*), the constant part is set aside.
To treat them as “ TPSA maps” , one must used the new operator (.o.). In that case, constant
parts are substituted in the polynomials.

/ \in
Example Program: Create a Rotation

program M A K E A M A P
use polym orphic_com plex tay lor
im p lic it none
real*8 T W O PI ¡defined now in definition.f90 for convenience
in teger N O ,N D ,N P,N D PT
type (dam ap) M , ID E N TITY
type (pbfield) h M---

N O =5
ND=1
N P=0
N D PT=0
C A L L IN IT(N O ,N D ,N P,N D PT,.TR U E .)

call alloc(M)
call alloc(IDENTTTY)
call alloc(H)

ID E N TITY =1 <«-

H = -0 .20d0*(T W O PI/2 .D 0)*(ID E N TITY .V (1)**2+ID EN T IT Y .V (2)**2)
M =TEX P(H , ID E N TITY)

C A L L D A PR IN T (M ,6)

ID E N H T Y = M **5

C A L L D A PR IN T (ID EN T IT Y ,6)
call kill(H)
call kill(M)
call kill (ID EN TITY)
end program M A K E A M A P

Poisson Bracket Operator will be used
to create a rotation o f tune 1/5.
The pbfield type and the function Texp
are explained momentarily.

The (=) sign has been overloaded to
create easily an identity map.

The (**) has been overloaded on maps
to produce power o f concatenation (even)
negative powers.

/ \in

Results of Rotation Program
Old Berzio

ETALL l ,N O = 5 ,N V = 2, IN A = 44

ORDER COEFFICIENT EXPONENTS
NO a 5 N V = 2

1 .3090169943749475 1 0
1 .9510565162951535 0 1
-2 .0000000000000000 0 0

ETALL 2, N O a 5 ,N V = 2 ,I N A = 45

O RDER COEFFICIENT EXPONENTS
N O a 5 N V a 2

1 -.9510565162951535 1 0
1 .3090169943749475 0 1
-2 .0000000000000000 0 0

ETALL l ,N O = 5, N V a 2, IN A a 46

EXPONENTSORDER COEFFICIENT
N O a 5 N V a 2

1 1.000000000000000 1 0
1 -.4440892098500626E-15 0 1
-2 .0000000000000000 0 0

ETALL 2, N O a 5, N V a 4 , IN A a 47

ORDER COEFFICIENT
N O a 5 N V a 2

1 .4440892098500626E-15 1 0
1 1000000000000000 0 1
-2 .0000000000000000 0 0

EXPONENTS

The map M**5
/ \in

Types in TPSALIE: Pbfield and Vecfield
The type Pbfield The type Vecfield

TYPE pbfield
type (taylor) h
Integer ifac
END TYPE pbfield

TYPE vecfield
type (taylor) v(ndim2)
Integer ifac
END TYPE vecfield

The pbfield type is a Poisson bracket operator. The exponential o f such an object
can act on a damap and produce a damap. The result is a symplectic map. The syntax
was shown in the previous example, i.e., MaTEXP(H,IDENTITY). In the notation o f Dragt,
we have MAexp(:H:)IDENTITY.

The integer ifac is usually set to zero. However if the vector field is factorized (something
we discuss later), this flag is set to +1 or -1 . (See WARNING further down)

The vecfield type is a vector field operator. The exponential o f such an object
can also act on a damap and produce a damap. The syntax is identical to that o f the
Pbfield, i.e., MaTEXP(H,IDENTITY). However this operator really does:

MAexi(H-V)IDENTITY

H is truly a a collection o f ND2 polynomials as hinted above.
/ \in

Pbfield and Vecfield: (Continue

ft is possible to convert between a vecfield object and pbfield object. For example,
i f we have:
Type (vecfield) F
Type (pbfield) H

We see here the Poisson bracket operator This is F

for a rotation followed by the equivalent
vector field gotten by the equation F=H.
The reverse equation H=F is self-
consistent only if F is a Hamiltonian o r d e r c o e f f i c i e n t e x p o n e n t s

vector field.

ETALL 1, N O = 5, N V = 2 ,I N A = 49

This is H

o r d e r c o e f f i c i e n t

N O = 5 N V = 2
l l .256637061435917 0 l
-1 .0000000000000000 0 0

ETALL i N O = 5, N V = 2, IN A = 48 ETALL 2, N O = 5 ,N V = 2, IN A = 50

o r d e r c o e f f i c i e n t

N O = 5 N V = 2
2 -.6283185307179586 2 0
2 -.6283185307179586 0 2
-2 .0000000000000000 0 0

e x p o n e n t s o r d e r c o e f f i c i e n t

N O = 5 N V = 2
1 -1.256637061435917 1 0
-1 .0000000000000000 0 0

e x p o n e n t s

/ \in
Conclusion on TPSALIE

We have looked at the main functionality o f the TPSALIE package, namely the
introduction o f a map o f ND2 dimension. This map can be concatenated with a similar
map, it can be acted upon by a Lie operator (pbfield or vecfield), etc...

Other aspects o f TPSALIE will be explained in our drtailed description o f the routines.

Now we are ready for a short glance a the analysis package, the TPSALIE_ANALYSIS.
This is truly the package containing the physics relevant to an accelerator.

/ \in

The TPSALIEANALYSIS Package
. This package is truly devoted to analysis o f damaps. Its most important type is the
normalform.

Normal forms are central concepts in the generalization o f the Courant-Snyder theory to
maps in general and also to time dependent vector fields, such as Hamiltonians. Since TPSA
allows us to compute one-tum maps e a sy , the first thing we can do is to ask about its
normal form. A normal form arises naturally when we investigate questions o f stability in a
periodic system. For example in a linear one-degree-of-freedom (N D=1) system a normal

Useful Pammeterization of Lie Maps
D R A G T -F IN N

TYPE DRAGTFINN
REAL(8) constant(ndim2)
type (damap) Linear
type (vecfield) nonlinear
type (pbfield) pb
END TYPE DRAGTFINN

This is the so-called Dragt-Finn represention o f a Lie map.
The map is represented as follows:

M= M ^expt : F2-V :) exp(: F»-V :)

Suppose we define a Drag-Finn map d f and a damap dm :
Type (dragfinn) df
Type (damap) dm

Then, through the overloading o f the assignment (=), the line df=dm will produce the
Dragt-Finn representation o f dm.

The linear near part will be sored df. linear.
The nonlinear part will be stored into df.nonlinear and the equivalent Poisson bracket operator
into dfpb
The constant part will contain the constant part o f the original map dm.

NB: The operations damap=Tex p(df.nonlinear,damap) and
damap=Tex p(df.pb,damap) are now permittee In fact the vecfieli and pbfielc types know
what they are through ifac. /\ < 1 f t

Useful Parameterization of Lie Maps
R E V E R SE -D R A G T -F IN N , O N E -L IE -E X P O N E N T

TYPE REVERSEDRAGTFINN
REAL(8) constant(NDIM2) f -» —» x f \
type (damap) Linear M = e X ^ : F " 0 - V : J e x P (: F 2 ‘ V :)
type (vecfield) nonlinear
type (pbfield) pb
END TYPE REVERSEDRAGTFINN

Everything is the same as with the Dragt-Finn representation except that the order is
reversed.

Another parametrization is the One-Lie-Exponent parameterization. The type definition is :

M=exp(: F V :)
TYPE ONELIEEXPONENT
REAL(8) CONSTANT(NDIM2),EPS
type (vecfield) vector
type (pbfield) pb The vector field is computed by an iterative
END TYPE ONELIEEXPONENT procedure which fails i fM is far from the

identity.
/ \in

The Mother of all Types: Normal Form
The Normal form is central to accelerator theory. It generalizes concepts such as the
Courant-Snyder theory to nonlinear systems, coupled systems, and radiative systems.
It also applies to hyperbolic systems as they are found near unstable fixed points
(resonance extraction for example).

Y _ exp (: N,V :) exp(: Nno-V :)

TYPE normalform
type (damap) A_T ■*
type (damap) A l]

The Normal Form Type:l
--------------------------------------T o a A for convenience

type (reversedragf nn) A
- 4

type (dragfnn) NORMAL ---------------------------------
type (damap) DHDJ
real(8) TUNE(NDIM),DAMPING(NDIM)
integer nordjtune,
integer NRES,M(NDIM,NRESO),PLANE(NDIM)
logical AUTO
END TYPE normalform

exp(Ano V I exp(A2 V0̂ Unea
^ U neaex (̂ eX̂ (" n o V)

N--------------------► N O discussed; on its way out.

The paramOer nord is usually set to NO by default. It must be between 1 and NO. It indicates
that the map is brought to its parameter dependent f xed point to order nord . Now is a good
time to discuss the parameter NDPT o f the subroutine INIT.

R o e o f NDPT: In the absence o f a cavity and radiation, the longitudinal m o o n is drift-like in
nature. In that case the energy, which is canonically conjugate to time, is a constant o f the
m o o n as well as a canonical variable. Because the longitudinal pane is normally the 3rd
degree o f freedom, the energy will be the 5th or 6th variable. The -value o f NDPT is precisely
equal to 5 or 6, i.e., depending on where the energy is. in té)

The Normal Form Type:2
When NDPT is either 5 or 6, the normal form is called a coasting beam normal form. The
transverse planes are reduced to rotations while the longitudinal pane becomes drift-like.
The time o f flight (or path lengh) increases proportionally to the energy deviation. The
coefficient o f proportionality is related to the momentum compaction.
The damap DHDJ o f the normal form contain the tunes and momentum compaction
including the nonlinear parts. They are written in Cartesian basis in the first ND entries o f
the map and in resonance basis in the last ND entries. The resonance basis will be discuss
soon.

However, if resonances can be left in the map, this is achieved by filing up the -variables
NRES and M (NDIM,NRESO). For exampe, a 3QX resonance can be left in the normal form
N by choosing:

NRES=l «*-
M (l,l)= 3 j
M (2 ,l)= 0] «-
M (3 ,l)=o J

One Resonance only

m=(3,0,0)^m-Q=3Q x

/ \in té)

The Normal Form Type:3
For convenience the tunes and damping are stored in the arrays:

TUNE(NDIM),DAMPING NDIM)

These are linear parts only; in the coasting beam normalization (NDPT=5 or 6) the
momentum compaction is stored in TUNE(3). The array DAMPING contains the damping
coefficients when the map is not symplectic (radiation).

The parameter JTUNE is used in the radiative case. When the linear part o f the map is
nonsymplectic (i.e. damping is present), it is possible to remove all nonlinear terms by
normal form. In this case JTUNE is set to one. However this is not desirable in
accelerator physics, thus the default for this option is JTUNE=0.

Finally the logical AUTO is set to .true. if the normal form should be done without user
interaction. Otherwise it should be set to .false. This affects the linear part o f the normal
form, the calculation o fA Linear.

We now go to a simple example o f a normal form!

in
Example: the Pendulum

Normalizes the map

program pendulum
use poi y m orph i c com pl extay 1 or
type (p b fe ld) h
type (taylor) ht,x,px
type (damap) M ,A
type (N O R M A LFO R M) N
integer NO,ND,NP,NDPT
R E A L *8 K ,DT,OM EGA,TW OPI

N O=4
ND=1
NP=0
NDPT=0
K=1.D0
D T A 001D 0
T W O PI=D A TA N (1.D 0)*8.D 0
O M EGA=1.D0

Call INIT(NO,ND,NP,NDPT,.true.)

M is set idendity
Hamiltonian

CALL
CALL
CALL
CALL
CALL
CALL
CALL

A L L O C (M)
A L L O C (A)
A L LO C (N)
A L LO C (H)
A LLO C (H T)
A L L O C (X)
A L L O C (P X)

M=1 * —
X =M .V (1)
P X =M .V (2)

H T =PX **2/2 .D 0+2.D 0*(T W O PI*O M E G A)**2*D SIN (X /2 .D 0)**2
DT*HT

M =TEXP(H ,M)
AUTO=.TRUE.

Lie operator for time=DT

* N -M
Put A in a damap A =N .A Creates the map

N .DH D J.V(1)=N.DH DJ.V(1)/D T
N .DH D J.V(2)=N.DH DJ.V(2)/D T

C A LL DAPRINT(N.DHDJ,6)

h Tune shift per DT,i.e.,
l/period=T_1

N .D H D J=N .D H D J*A**(-1) (See result)
C A LL DAPRINT(N.DH DJ.V(1),6)

C A LL KILL(M)
C A LL K ILL(A)
C A LL KILL(N)
C A LL KILL(H)
C A LL KILL(HT)
C A LL K ILL(X)
C A LL KILL(PX)
end program pendulum / \in

Pendulum: Theory
The Hamiltonian is given by :

>2
x + 2 (2 - -)2sin2(x/2)2

The period T o f oscillation can be expressed in terms o f the initial displacement d o f the
pendulum.

T = — -- Q
d x

r o
\ / s i n 2(d /2) -s in 2(x /2)

This period can be re-expressed so that it is easdy expandable in power o f d.
r i

i2
T= - 2 -- Q

d x
/ l - x V l - a n 2(d/2) x 2 - 16=

/ \in
Pendulum: T heory:

The tune Q is just T-1. Thus we liave T 1 = 1 -"^66 ̂ } '

This is to be compared with the result o f the program pendulum.

ETALL 1 ,N O = 4 ,N V = 2, INA = 59

ORDER COEFFICIENT
NO = 4 NV = 2

o l.ooooooooooooooi 0 0
2 -.6249999999999998E-oi 2 o
2 -. 1583143494411528E-o2 o 2
4 .32552o8333333329E-o2 4 o
4 -.1816o38638913219E-17 3 1
4 -.989464684oo72o43E-o4 2 2
4 -.2626164852475825E-19 1 3
4 -.1253171661948771E-o5 o 4
-8 .oooooooooooooooo o o

EXPONENTS

/ \in

Conclusion
In this document we have presented an overview o f the original package prior to
polymorphism. The actual code which does the overloading is easy to understand. In fact, just
a knowledge o f FORTRAN77 and a little intuition is enough to understand all the work that
was done and even modify it.

Obviously the easiest package to understand is TPSA.f90. This package overloads the
operation o f Taylor Series and nothing else. One subtlety is the creation o f scratch variables;
for example a Berz-TPSA polynomial isjust an integer pointing to a big array in Berz’ s
package. The reader can see that creating a “ scratch integer” would not be o f much help.
Therefore a routine called ASS assigns scratch TPSA polynomials to the overloading
package. (The Scratch variable scheme had to be modified to permit polymorphism)

The rest o f the package is easy to understand from a programming standpoint : just more o f
the same. However from a physics standpoint it makes sense only to those who have invested
time in map methods and their relevance to tracking codes. We could go into the theory o f
normal forms in great detail here. We hope that the examples, plus access to the relevant
references, will shed some light.

/ \in

New Things
Complex TPSA and Real

Polymorphism

Complex_Taylor.f90 : the complex
equivalent o f TPSA.f90
Real_polymorph.f90 : a type which can
change at run time.
Complex Polymorph

/ \in

Example o f Complex Type
prog ram te s tc o m p le x
U se p o ly m o rp h ic c o m p le x ta y lo r ! As usual include the upper m ost library
im p lic it none
in teger no
type (com plex tay lor) c
type (tay lor) a
double com plex i

no=4
call in it(no ,3,.true.)

call alloc(a)
call a llo c (c 0

a=l.dO
a= a+ (5.d0.m ono.'10 ')
a=sin(a)

call daprin t(a,6)

i=dcm plx(0. dO, 1. dO)

c=1.d0
c= c+ (5.d0.m ono.'10 ')
c= (exp(i*c)-exp(-i*c))/2/i

call daprin t(c,6)

end prog ram test com plex

What is INIT?

! T hat should be a the sine

/ \in 3

PROGRAM TEST_POLYMORPHISM
USE POLYMORPHIC_COMPLEXTAYLOR
IMPLICIT NONE
INTEGER NO,I,INSTEP
TYPE (REAL_8) L,K,X(2),DL

CALL ALLOC(L)
CALL ALLOC(K)
CALL ALLOc (x ,2)
CALL ALLOC(DL)

NSTEP=1000
NO=4 M ---
CALL INIT(NO, 1,2,0,.TRUE.) M -----------------------------

X(1)=0.D0 1
X(2)=0.D0
L=2.0 f M --
K=1.5
d l =l /n s t e p P

DO I=1,NSTEP
X(1)=X(1)+(DL/2.D0)*X(2)/DSQRT(1.D0-X(2)**2)
X(2)=X(2)-DL*K*X(1)
x (1)=x (1)+(DL/2.D0)*X(2)/DSQRT(1.D0-X(2)**2)
ENDDO

A Simple Example

CALL PRINT(X(1),6) I ^
CALL PRINT(X(2),6) J

X(1)=0.D0
X(2)=0.D0

DO I=1,NSTEP
X(1)=X(1)+(DL/2.D0)*X(2)/DSQRT(1.D0-X(2)*2)
X(2)=X(2)-DL*K*X(1)
x (1)=x (1)+(DL/2.D0)*X(2)/DSQRT(1.D0-X(2)*2)
ENDDO

CALL PRINT(X(1),6)
CALL PRINt (x (2)))

END PROGRAM TEST POLYMORPHISM

For security, variables are
first initialized in a sexless
state: not real, not TPSA

— i The TPSA packages are
_ initialized using INIT.

These lines initializes the
polymorph as real*8

Integrate a quadrupole in
---------------canonical variables in one degree

o f freedom

 Prints the results, which should
be real*8!

This array o f polymorph is set to integer. This operation would be
almost meaningless for a real array. In fact, when a polym orph is to
an integer, it is ready to transform itself into TPSA as well as any
polym orph i encounters.

In fact, X =2 means that X (1) will be a polynomial o f the first TPSA
variable while X (2) will be a polynomial o f the second TPSA
variable.

Thus X (1)=0.d0 means X (1)= 0.d0+x> while X (2)=0.d0 implies
X (2)= 0.d0+x2 .

/ \in

X=2

programtest_po lym orph ism
Use polym orph ic_complextay lor

integer no,i,nstep
type (real_8) L,K,x(2),DL

CALL ALLOC(L)
CALL ALLOC(K)
CALL ALLOc (x ,2)
CALL ALLOC(DL)

nstep=1000
no=4
call init(no,1,2,0,.true.)

X(1)=0.D0
X(2)=0.D0
L=2.0
K=1.5
DL=L/NSTEP

do i=1,NSTEP
X(1(=X(1)+(DL/2.D0)*X(2)/DSQRT(1.D0-X(2)**2)
X(2)=X(2)-DL*K*X(1)
X()=x(1)+(DL/2.D0)*X(2)/DSQRT(1.D0-X(2)**2)
ENDDO

Revisited Simple Example:
Polymorphism using kind=0

CALL PRINT(X(1),6)
CALL PRINT(x(20,f))

CALL RESET(L) ------------------------------
CALL RESET(K)
CALL RESET(X,2)
write(6,*) " Control Integers for X (l) and X (
read(5,*) X (l)% i , X(2)%i
write(6,*) " Control Integers for K and L "
read(5,*) K % i,L % i

X(1)=0.D0
X(2)=0.D0
L=2.0
K=1.5
DL=L/NSTEP

do i=1,NSTEP
X(1(=X(1)+(DL/2.D0)*X(2)/DSQRT(1.D0-X(2)**2)
X(2)=X(2)-DL*K*X(1)
X()=x(1)+(DL/2.D0)*X(2)/DSQRT(1.D0-X(2)**2)
ENDDO

CALL PRINT(X(1),6)
CALL PRINt (x (2),6)

End program test_po lym orph ism

A variable which is reset becom es temporarily kind=0.
Then, depending on the control integers, it will turn into
either a taylor series or a real upon assigning a real
number to it.

The other way to produce parameter dependence is a
knob (kind=3).

—Variables are reset.

The variable future TPSA
status is set here.

The variables are
initialized.

/ \in
programtest_po lym orph ism
Use polym orphic_complextaylor

integer no,i,nstep
type (real_8) L,K,x(2),DL

CALL ALLOC(L)
CALL ALLOC(K)
CALL ALLOc (x ,2)
CALL ALLOC(DL)

nstep=1000
no=4
call init(no,1,2,0,.ltrue.)

X(1)=0.D 0
X(2)=0.D 0
L=2.0
K=1.5
DL=L/NSTEP

do i=1,NSTEP
X(1(=X(1)+(DL/2.D0)*X(2)/DSQRT(1.D0-X(2)**2)
X(2)=X(2)-DL*K*X(1)
X()=x(1)+(DL/2.D0)*X(2)/DSQRT(1.D0-X(2)**2)
ENDDO

CALL PRINT(X(1),6)
CALL PRINT(x(2),f>)

K%kind=3 CALL RESET(L)
L%kind=3 CALL RESET(k)
CALL RESET(X,2) '
write(6,*) " Control Integers for X(1) and X(2) "
read(5,*) X(1)%oi, X(2)%i
write(6,*) " Control Integers for knobs K and L "
read(5,*) K % i, L%i

X(1)=0.D0
X(2)=0.D0
! L=2.0
! K=1.5
DL=L/NSTEP

do i=1,NSTEP
X(1(=X(1)+(DL/2.D0)*X(2)/DSQRT(1.D0-X(2)**2)
X(2)=X(2)-DL*K*X(1)
x(1)=x(1)+(DL/2.D0)*X(2)/DSQRT(1.D0-X(2)**2)
ENDDO

CALL PRINT(X(1),6)
CALL PRINT(x(2),f>)

End program test_po lym orph ism

Revisited Simple Example:
Polymorphism using kind=3

A variable is set kind=3.

Kind=3 act as knobs and cannot themselves change unless
the global logical setknob is set to true (defauted to false).
A knob is taken into account i f the logical knob is true
(defaulted to false). Knobs should always be used in
conjunction with TPSA calculations since even i f
knob= .false. , FPP calls the TPSA package for knobs.

-O nly X (2) is reset. Notice
that it cannot be a knob.

The variable future TPSA
status is set here.

The variables are not re
initialized anymore for
kind=3.

/ \in

program test_poly morph ism
U se polymorphic_complextaylor
implicit none
integer no,i,nstep
type (real_8) L,K,x(2),DL
type (damap) the_quad
typ e (normalform) N

CALL ALLOC(L)
CALL ALLOC(K)
CALL ALLOc (x ,2)
CALL ALLOC(DL)

nstep=1000
no=4
call init(no,1,2,0,.true.)

write(6,*) " Control Integers for X (l) and X(2) "
read(5$) X (1)% i, X(2)%i
write(6,*) " Control Integers for K and L "
read (5 ,*)K % i,L % i

X(1)=0.D0
X(2)=0.D0
L=2.0
K=1.5
DL=L/NSTEP

Analyzing the resulting map

do i=l,NSTEP
X(1)=X(1)+(DL/2.D0)*X(2)/DSQRT(1.D0-X(2)**2)
X(2)=X(2)-DL*K*X(1)
x(l)=x(l)+(DL/2.D0)*X(2)/DSQRT(1.D0-X(2)**2)
ENDDO

CALL PRINT(X(1),6)
CALL PRINt (x (2),6)
call aioc(the_quad)
call sdloc(N)
the_quad=x ^ -------------------------
n%auto=.true.
N=the_quad
call daprint(N%odhdj%ov(l) ,6)

End program test_polymorphism

 Creates a damap and a normal form.
Copies array o f polymorphs into a damap.
Normalizes map; the result in N.

/ \in
The Definition File: Constants

This file contains comments, definition o f constants and arrays, and finally definition o f
the basic types.

This imports the definition o f a taylorlow.
m o d u le d e f in itio n
u se d e fn e _ n e w d a
u se sc ra tch _ siz e
im p lic it n o n e
l og ic a l :: n ew re a d = .fa lse . ,n e w p rin t = f a l s e . , f r s t j t i m e = . t r u e .^ —
l og ic a l :: p r in t7 7 = .tru e . ,re a d 7 7 = . t r u e . .
l og ic a l :: n o _ n d u m _ ch e ck = .false .
l og ic a l :: s e tk n ob = .fa lse ., k n ob= .true.'"
do u b le c o m p le x i_
do u b le p re ci s io n R A D _ T O _ D E G _ , D E G _
p a ra m e te r (tw op i= 4 .d 0 * 1 . 5 7 0 7 9 6 3 2 6 7 9 4 8 9 6 6 1 9 2 3 1 3 2 1 6 9 1 6 3 9 7 5 d 0)
p a ra m e te r (p il= 1 .5 7 0 7 9 6 3 2 6 7 9 4 8 9 6 6 1 9 2 3 1 3 2 1 6 9 1 6 3 9 7 5 d 0 -0 .4 d 0)
p a ra m e te r (p im = 1 .5 7 0 7 9 6 3 2 6 7 9 4 8 9 6 6 1 92 3 1 32 1 69 1 6 3 9 7 5 d 0 + 0 .4 d 0)
p a ra m e te r (R A D _ T O _ D E G _ = 5 7 .2 9 5 7 7 9 5 1 3 0 8 2 3 2 0 8 7 6 7 9 8 1 5 4 8 1 4 1 0 5 2 D 0)
p a ra m e te r (D E G _ T O _ R A D _ = 0 .0 1 7 4 5 3 2 9 2 5 1 9 9 4 3 2 9 5 7 6 9 2 3 6 9 0 7 6 8 4 8 8 6 1 d 0)
in te g e r m a s te r,ln v
p a ra m e te r (ln v = 1 0 0) ^ ~

This imports the size o f scratch layers

N ew read and new prin t are a form at u sed to accom m odate a large
num ber o f variab le fo r taylorlow . They are set to false.

O ld prin ting form at u sed m ain ly by the code Sixtrack90 o f Schm idt.
T hey are set to false.

Controls the behav ior o f knobs, i.e., polym orphs kind=3

N um ber o f variab les in polynom ials.
L N V = 1 00 M axim um size o f N ew da. B e rz ’s Package is set a t nvm ax=40.

The rest o f these parameters are self evident except perhaps pil and pim . These are used
in the polymorphic implementation o f datan2 and datan2d. Essentially datan2 cannot be
extended easily to Taylor series. Instead we must used datan away from ±90° and use
dacos in the vicinity o f ±90° ; pil and pim define the meaning o f vicinity.

The Definition M e :Fundamental Types
T Y P E ta y lo r
IN T E G E R I ! in te g e r is a p o in te r in o ld d a -p a c k a g e o f B erz
ty p e (ta y lo rlo w) j ! T a y lo rlo w is th e n e w d a T a y lo r se rie s

These are the four fundamental types void o f physics and the polymorphic
ENV_8 used in a tracking code.

The type Taylor is just an ordinary taylor series. It can be created by the
old DA-package o f Berz or by newda. Technically more tpsa packages
could be brought in.

The type complextaylor contains a real and imaginary part. Standard
operations are permtoed. In

d o u b le p re c is io n s ! s c a lin g fa c to r : u se fu l in b ig t ra c lk n g co d e s
E N D T Y P E re a l_ 8

! th is is a re a l p o ly m o rp lh c ty p e
T Y P E d o u b le _ c o m p le x
ty p e (c o m p le x ta y lo r) t
d o u b le co m p le x r
l o g e a a llo c
in te g e r k in d
in te g e r i j
d o u b le p re c is io n s ! s c a lin g fa c to r : u se fu l in b ig t ra c lk n g co d e s
E N D T Y P E d o u b le _ c o m p le x

! R a (da tio n
T Y P E E N V _ 8
ty p e (R E A L _ 8) v
ty p e (R E A L _ 8) e(n d im 2)
E N D T Y P E E N V _ 8

e i n d r 5 p e ray ro r

T Y P E c o m p le x ta y lo r
ty p e (ta y lo r) r
ty p e (ta y lo r) i
E N D T Y P E c o m p le x ta y lo r

! th is is a re a l p o ly m o rp h e ty p e
T Y P E rea l_ 8
ty p e (ta y lo r) t
re a l* 8 r
l o g e a a llo c
in te g e r k in d

A linked list of scratch variables is now avalaible by setting old_scheme=falseThe Deflnhion M e :Scratch variables
T e s w hat layer o f scratch variab les is being usedinteger ndum, nd um t, ndummax

param eter (ndum=5,ndumt=6,ndummax=l 00) ! ndum is used only fo r dummy maps now
integer, param eter : : ndumussr(ndumt)=(f 72,45,22,22,22,22f) ^
! s c ra tc h v a riab les
IN T E G E R ia ssd o lu se r (n d u m t)
m te g e r D U M M Y ,te m p
m te g e r D U M u se r(n d u m t,n d u m m a x)
m te g e r ia ssO u se r(ndu m t)
m te g e r n d im 2 ,N D IM
p a ra m e te r(n d im 2 = 6)
P A R A M E T E R (N D IM = N D IM 2 /2)
m te g e r m m m m m m l,m m m m m m 2 ,m m m m m m 3 ,m m m m m m 4

Stuff in italic is now imported from
a_scratch_size.f90

N um ber o f scratch variab les in each layer

p a ra m e te r (m m m m m m l= l,m m m m m m 2 = 2 ,m m m m m m 3 = 3 ,m m m m m m 4 = 4) '
ty p e (ta y lo rlo w) D U M lu se r/n d u m t,n d u m m a x)
ty p e (ta y lo rlo w) D U M M Y 1 ,tem p i ! ,D U M l(n d u m)

Integers u sed to iden tify the state o f a po lym orph (kind)
and perform the appropriate operations.

Global scratch variables represeto perhaps the most subtie atd a t to y itg pornt o f this package. I
will first give the reasot for their existern;e. C otsider the follow m g lrne

a=(a+b)+(c+d) where a,b,c, atd d are taylor rypes.

The compiler will teed to put (a+b) is a scratch memory locatkm m> atd thet (c+ d) m a scratch
memory locatiot catied m2 . W h et the variables are real*8, thet compiler k iow s exactly what k t d
o f memory teeds to be l o c a t e d atd does it automatically. I the case o f taylor series or a ty other
timdameiital types such as complextaylor or polymorphs, the compiler is mcapable o f allocatmg by
itself the proper memory. to addtoot i f we allocate memory, we must also destroy it. This requires
a severe problem o f garbage collectiot which o t carnot do easily m FORTRAN9O. I t additiorn
a o c a t io t atd deallocatiot o f dytam ical variables (as used by the type taylorlow) slows d ow t
computatiom

The solutiot adopted here is to use g o b a l scratch variables. There are six; layers o f such variables
as mdicated by the c o ^ t a t tdumt. This could be chatge.

More on scratch variables
Consider the expression

a=(a+b)+(c+d)+(f+e)

s . s 2 s 3

S?

S5

The reader will notice that the compiler may require 5 scratch variables i f it is not too cleaver and only 3 i f cleaver.
Unfortunately, as a programmer, we have no way to overload the parentheses “ (” and “)” . This means that we
must for safety use 5 scratch variables. Since we can, o f course, overload the “ =” sign, we know that the
assignment a=(a+b)+(c+d)+(f+e) did not use more than 5 scratch variables.

In summary, when our package uses one o f the layers o f scratch variables, it checks within an assignment i f the
number used, in this case 5, exceeds the number o f the layer ndumuser(i) in the i*11 layer. I f so a severe warning is
sent.

Finally, why many layers? Several layers are needed i f new types are defined in terms o f older ones containing
taylor types. This is also true i f the user insists on using functions rather than subroutines. W e discourage this
practice but i f necessary, one must mimic the kind o f footwork when one accesses a deeper layer o f scratch
variables. I f there are not enough layers, a severe warning is sent and the user must increase the variable ndumt.

W e now show an example o f the use o f a new layer in the case o f a function o f type complextaylor ►

Simple example o f scratch layer
function tBst4(V0,w,a,h)
implicit none
type (complextaylor) tBst4
real*8, INTENT (IN):: v0,a,h
type (complextaylor), INTENT (I N) :: w
integer localmaster

I f the maximum number o f scratch variable is breached, the user can m odify
his code or add another layer. To do this a few changes need to be do through
out the package. This is explained in the next slide.

Adding a 7th Layer and Warnings
A linked list of scratch variables is now avalaible by setting old_scheme=false
To achieve this it suffices to change ndumt and add one more parameter in ndumuser.
The only changes are in definition.©!)
A ll other upgrades are automatic.

parameter (ndum=20,ndumt=7,ndummax=100)
integer, parameter :: ndumuser/ndumt)=(/20,45,22,22,22,22,20 /)

It is a simple task. It is true that one could have written a com plex garbage collection schemes, where
instead o f layers, one simply rotates through a large number o f scratch variables. The advantage o f layer
is in our ability to check using the overloaded equal sign on the adequacy o f each layer. The
check snake routine is called on routines overloading the assigment operator (=).

N.B. There are two things which are obviously dangerous.

1) A recursive function. FORTRAN90 allows it. It should work but I have not tried it. It should be
written with the same care as the example tB stt.

2) A n expression inside the call o f a function or subroutine. For example, call m y_sub(a+a,b).
Normally subroutines can be written without invoking a new l y e r o f scratch variables unlike
functions. In other words the care used in the example tBst4 is not necessary. This makes
overloading a real easy task. This is because the values passed or returned by a subroutine do not sit
in an algebraic expression. In a call such as “ call m ysu b(a+ a ,b) ” the variable a+a is an expression.
Inside the subroutine the same layer o f scratch variables will be used with the possibility that the
intermediate variable a+a will be overwritten without the user’ s knowledge. Please avoid this kind o f
syntax.

