# Recent Results from the short baseline neutrino oscillation experiments at CERN

D. Orestano Università Roma Tre and INFN

> CAPP 98 CERN June 8-12 1998

**Motivation** 

u contribution to Hot Dark Matter?  $\Rightarrow$  mass range of interest  $1 < m_{\nu} < 10 \text{ eV}$ 

Solar  $\nu$  MSW interpretation & mass hierarchy hypothesis  $\Rightarrow 1 < m_{\nu_{\mu}} < 10 \text{ meV}$  $1 < m_{\nu_{\tau}} < 10 \text{ eV}$ 

$$\downarrow 1 < \Delta m_{\nu_\mu\nu_\tau}^2 < 100 \ {\rm eV}^2$$

Neutrino oscillations

Necessary conditions:

- massive neutrinos
- mixing (mass eigenstates  $\neq$  flavour eigenstates)

For 2 flavours mixing:  $P_{\nu_{\alpha} \to \nu_{\beta}}(L) = \sin^2(2\theta) \sin^2(\pi \frac{L}{\lambda})$ 

where 
$$\lambda({
m km})=2.48rac{E({
m GeV})}{\Delta m^2({
m eV}^2)}$$

 $\Downarrow$ 

Short baseline (  $\langle L \rangle \approx$ 1 km) accelerator experiments ( $\langle E_{\nu_{\mu}} \rangle \approx 25$  GeV) are sensitive to  $\nu_{\mu} \rightarrow \nu_{\tau}$  oscillations in the range  $1 < \Delta m_{\nu_{\mu}\nu_{\tau}}^2 < 100 \text{ eV}^2$ 

 $\downarrow$ 





| Neutrino              | $\langle E_{\nu} \rangle [GeV]$ | rel. abund.               | $\langle E_{\nu} \rangle [GeV]$ | rel. abund. |  |
|-----------------------|---------------------------------|---------------------------|---------------------------------|-------------|--|
| $ u_{\mu} $           | 23.5                            | 1.0                       | 41.5                            | 1.0         |  |
| $\overline{ u}_{\mu}$ | 22.7                            | 0.054                     | 51.5                            | 0.027       |  |
| $ u_e $               | 36.9                            | 0.0086                    | 55.6                            | 0.0134      |  |
| $\overline{ u}_e$     | 31.3                            | 0.0026                    | 52.1                            | 0.0018      |  |
| $\nu_{	au}$           | $\sim 35$                       | $\simeq 5 \times 10^{-6}$ |                                 |             |  |

#### The signal

- $\nu_{\mu} \rightarrow \nu_{\tau}$  oscillation  $\Leftrightarrow$  appearance of  $\nu_{\tau}$  in a  $\nu_{\mu}$  beam
- $\nu_{\tau}$  identified via its charged current (CC) interaction

$$\nu_{\tau} \mathcal{N} \to \tau^{-} X$$

 $\Rightarrow \tau$  appearance

- $\tau$  identified through its decay properties:
  - lifetime  $\approx$  0.3 ps  $\Rightarrow$  secondary vertex
  - mass  $\approx$  1.8 GeV/c<sup>2</sup>  $\Rightarrow$  high  $P_{\perp}$  decay products
  - neutrino(s) in the final state  $\Rightarrow$  missing  $P_{\perp}$

| au decay modes                                  | BR  |
|-------------------------------------------------|-----|
| $	au^- 	o \mu^-  u_	au \overline{ u_\mu}$       | 17% |
| $\tau^- \to e^- \nu_\tau \overline{\nu_e}$      | 18% |
| $	au^- 	o h^-(n\pi^0) u_	au$                    | 50% |
| $	au^-  ightarrow h^- h^+ h^- (n \pi^0)  u_	au$ | 15% |

### $\tau$ identification





#### *Capp* 98



detector

emulsion scanning

efficiency

1 $\mu$  analysis

 $0\mu$  analysis

results



detector

kinematics

data simulator

electron channel

 $\pi^- \text{ channel}$ 

 $3\pi$  channel

results









1. other subdetectors

 $\Rightarrow$  prediction of track location and slope

2. automatic scan-back of the track







- select events with 2 muons in the final state ( 2% of  $u_{\mu}$ CC)
- locate the 2 muon tracks in emulsions
- scan the emulsions looking for a kink



Yield in agreement with Monte Carlo expectations assuming

 $\sigma_{charm}/\sigma_{CC} = 5\%$ 

| Run (Year)      | 1995          | 1996           |  |
|-----------------|---------------|----------------|--|
| Expected events | $7.4 \pm 0.7$ | $15.4 \pm 2.2$ |  |
| Found events    | 8             | 17             |  |

 $\eta(kink)$ 

 $\Downarrow$ 







$$\tau^- \to \mu^- \nu_\tau \overline{\nu}_\mu \quad BR = 17\%$$

- identify the muon track and require  $P_{\mu} < 30 \; {\rm GeV} \label{eq:p_phi}$
- veto other leptons at the primary vertex
- require a kink along the muon track with  $P_{\perp} = \Delta \theta P_{\mu} \geq 250 \; {\rm MeV/c}$
- Background

$$\overline{\nu}_{\mu,e}CC \to D^- \to \mu^-$$

with  $\mu^+ \mbox{ or } e^+$  not identified

 $1.6 \times 10^{-6}$ 



$$\tau^- \to h^-(n\pi^0)\nu_\tau \quad BR = 50\%$$

- identify the hadron candidate track and require  $1 < P_h < 20 \; {\rm GeV}$
- veto leptons at the primary vertex
- require a kink along the hadron track with  $P_{\perp} = \Delta \theta P_h \ge 250 \text{ MeV/c}$
- Background
  - $2\times 10^{-5}$  from white kinks
  - $2\times 10^{-6}$  from charm production



| Run (Year)                 | 1994* | 1995 <sup>*</sup> | 1996 | 1997 | ALL  |
|----------------------------|-------|-------------------|------|------|------|
| p.o.t. ( $	imes 10^{19}$ ) | 0.8   | 1.2               | 1.4  | 1.7  | 5.1  |
| $ u_{\mu}$ CC              | 120k  | 200k              | 230k | 290k | 840k |
| $1\mu$ prediction          | 67k   | 111k              | 130k | 151k | 459k |
| $1\mu$ scanned $\%$        | 63    | 34                | 56   | 0    | 33   |
| $1\mu$ located             | 18k   | 18k               | 30k  | 0    | 66k  |
| $0\mu$ prediction          | 18k   | 28k               | 32k  | 38k  | 116k |
| $0\mu$ scanned $\%$        | 50    | 29                | 0    | 0    | 15   |
| $0\mu$ located             | 3.4k  | 3.7k              | 0    | 0    | 7.1k |

No  $\tau$  decay observed,  $N_\tau(P=1)=3804$ 

 $\Downarrow$ 

 $P(
u_{\mu} 
ightarrow 
u_{ au}) < 6.3 imes 10^{-4}$  (90% C.L.)

\* CERN-EP/98-73





• Drift Chambers (target and momentum measurement)

Momentum resolution  $\sim$  3.5% (p < 10 GeV/c)

• Transition Radiation Detector (TRD) for  $e^{\pm}$  identification

 $\pi$  rejection  $\simeq 10^3$  @  $\varepsilon(e) \geq 90\%$  for isolated tracks

• Lead glass Electromagnetic Calorimeter

$$\frac{\sigma(E)}{E} = (1.04 \pm 0.01)\% + \frac{(3.22 \pm 0.07)\%}{\sqrt{E(GeV)}}$$

Muon Chambers

arepsilon~pprox 97% for  $p_{\mu}~>$  5 GeV/c

### kinematical method to search for $u_{\mu} ightarrow u_{ au}$

1. Transverse plane triangle  $\rightarrow \vec{p}_{\perp}^{\ l} + \vec{p}_{\perp}^{\ H} + \vec{p}_{\perp}^{\ m} = 0$ 

Background:  $u_{\mu,e}$  CC Signal:  $u_{\tau}$  CC



2 independent variables for the triangle shape for example  $\Phi_{mh}$  and  $\Phi_{lh}$ , or  $\rho_i = p_{\perp}^i / (p_{\perp}^{\ m} + p_{\perp}^{\ l} + p_{\perp}^{\ H})$ 1 variable for the scale  $m_{\perp} = \sqrt{(\vec{p}_{\perp}^{\ m} + \vec{p}_{\perp}^{\ l})^2 - (\vec{p}_{\perp}^{\ H})^2}$ 

#### 2. Isolation of Candidate wrt hadronic jet



Manuel Marie Data Simulator

- 1. Difficulties with Monte Carlo
  - Modelling of detector (nuclear secondary interactions)
  - Modelling of "physics" (fragmentation for  $\nu$  interactions)

 $\Rightarrow$  efficiency calculations and background predictions cannot be

based on MC only

 $\Rightarrow$  use **Data** to correct MC evaluations

- 2. Data Simulator: compare
  - a MC sample (MCS) and
  - a Data sample (DS) of  $\nu_{\mu}$ CC
  - First replace the identified  $\mu$  in MCS and DS samples by a MC l
  - (a) Replace  $\mu \rightarrow \nu$  yields a "Fake NC"
  - (b) Replace  $\mu \rightarrow e$  yields a "Fake  $\nu_e$ CC"
  - (c) Replace  $\mu \rightarrow \tau$  yields a "Fake  $\nu_{\tau}$ CC"
  - Perform full analysis in three samples: MC, MCS & DS
  - Compute efficiency for signal and background as:



VIEND OF CHARACTER AND A CONTRACTOR CHARNEL

$$\tau^- \to e^- \nu_\tau \overline{\nu}_e \quad BR = 17\%$$

#### 1. candidate selection

- one (and only one) electron from the primary vertex
   ID provided by the combined information of TRD, PRS and ECAL
- isolated from any positive track in the event (  $m_{\pm} \geq 0.12~{\rm GeV}$  )

### $\Rightarrow$ 2% of NC and 37% of $\nu_e {\rm CC}$

- 2. NC background rejected by
  - requiring the electron isolation wrt the hadronic jet
- 3.  $\nu_e$ CC background rejected by
  - an upper cut on the electron  $Q_T$  wrt the jet
  - requiring  $0.2 < m_{\perp} < 1.8~{\rm GeV}$
  - a likelihood function built using the other transverse plane variables, the electron momentum and the total visible energy





$$au$$
  $\pi^-$  channel  $au$   $\pi^ \pi^-$  channel  $au$   $\pi^- \to \pi^- (K^-, 
ho^-) 
u_ au$   $BR = 38\%$ 

#### 1. candidate selection

- no primary leptons, or high  $P_{\perp}$  tracks escaping detector acceptance
- choose  $\pi^-$  as the most isolated negative track in the event

$$\Rightarrow 8.5\%$$
 of NC,  $0.34\%$  of  $\nu_{\mu} {\rm CC}$  ,  $0.6\%$  of  $\nu_e {\rm CC}$ 

- 2. NC and CC residual backgrounds rejected by
  - a likelihood function built using  $Q_T$ , m\_ ,  $\rho_m$ ,  $Y_b j$  and  $P_{\perp}^H$



| $\mathcal{L}$ | $N_{\tau}$ | Exp. Bkgd.                   | Data |
|---------------|------------|------------------------------|------|
| 7-9           | 664        | $2.3 \pm 0.8$                | 3    |
| 9-11          | 234        | $1.1\substack{+0.8 \\ -0.6}$ | 2    |
| > 11          | 1133       | $1.1\substack{+0.7 \\ -0.5}$ | 0    |



$$au$$
 Number of  $au$   $au$ 

- apply lepton veto (see  $\pi^-$  channel)
- a likelihood ratio is defined to favour the correct choice of the 3 candidate tracks in  $\tau$  decays (in the hypothesis  $\tau \to A_1 \nu \to \rho \pi \nu \to \pi \pi \pi \nu$ )



Likelihood ratio

#### 2. NC and CC rejection

- apply cuts on the transverse plane variables and on  ${\cal Q}_{\cal T}$
- use the same likelihood ratio



 $\Rightarrow$  5 events in data, expect  $7.0 \pm 2.7$ , for  $N_{ au} = 1011$ 



## News Octation MAgine Desix

- 1. '95 Analysis (180k  $u_{\mu}$ CC)
  - CERN-EP/98-57 (to be published in Physics Letters B)

$$P(\nu_{\mu} \to \nu_{\tau}) < 2.1 \times 10^{-3} (90\% C.L.)$$

2. Updated Analysis('96: 380k  $\nu_{\mu} {\rm CC}$ , '97 382k  $\nu_{\mu} {\rm CC}$ )

| channel                                  | $N_{	au}$ | est. backg                  | obs. | analysis |
|------------------------------------------|-----------|-----------------------------|------|----------|
| $\tau \to e \text{ DIS}$                 | 2910      | $8.1 \pm 1.4$               | 7    | 95-97    |
| $\tau \to e \ \mathrm{LM}$               | 218       | 0.5 $^{+0.6}_{-0.2}$        | 0    | 95       |
| $	au 	o h^-(\pi^0)$ DIS                  | 2032      | $4.5 \pm 1.4$               | 5    | 95-97    |
| $	au 	o h^-(\pi^0) \ { m LM}$            | 198       | 0.1 $\substack{+0.3\\-0.1}$ | 1    | 95       |
| au  ightarrow  ho DIS                    | 128       | 0.5 $^{+2.1}_{-0.3}$        | 0    | 95       |
| $	au  ightarrow 3\pi$ DIS                | 1011      | $7\pm2.7$                   | 5    | 95-96    |
| $	au  ightarrow 3\pi (n\pi^0) \ { m LM}$ | 108       | 0.4 $^{+0.6}_{-0.4}$        | 0    | 95       |

 $\Downarrow$ 

$$P(
u_{\mu} 
ightarrow 
u_{ au}) < 1.1 imes 10^{-3}$$
 (90% C.L.)





*Capp* 98

### Conclusions

- Chorus data taking is finished in 1997, Nomad is still taking data
- The analysis is in progress for both experiments
- Chorus has shown that automatic scanning procedures are reliable and fast

 $\Rightarrow$  the emulsion technique can be used also in the search for rare events

 Nomad has shown that kinematical criteria can be used in the \(\tau\) identification at least for large mixing angles

 $\Rightarrow$  a valid technique for the future long baseline experiments