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Abstract

Quantum annealing was recently found experimentally in a disordered spin 1/2 magnet to be

more e�ective than its classical, thermal counterpart. Comparing classical and quantum Monte Carlo

annealing protocols on the random two-dimensional Ising model we con�rm the superiority of quantum

relative to classical annealing. We also propose a theory of quantum annealing, based on a cascade

of Landau-Zener tunneling events, which rationalizes these �ndings. For both classical and quantum

annealing, the residual energy after annealing decreases only as a logarithm, to an exponent ��, of

the annealing time � , but the quantum case has a larger value for � which makes it faster.
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Annealing of disordered and complex systems towards their optimal state is a central problem in

statistical physics, with impact in a large variety of areas. The unknown ground state of a system

can be approximated by slow-rate cooling of a real or �ctitious temperature: the slower the cooling,

the closer the approximation. [1,2] While this kind of standard classical annealing (CA) has been

extensively investigated over the last two decades [1{3], and is routinely used in a variety of techno-

logical applications, such as chip circuitry design, the premium on any alternative better optimization

algorithms would certainly be enormous.

Recent results of Brooke et al. [4,5], on the spin 1/2 disordered Ising ferromagnet LiHo0:44Y0:56F4

suggested however that a di�erent, quantum annealing (QA) procedure works surprisingly better than

classical annealing. In QA, temperature is replaced by a quantum mechanical kinetic Hamiltonian

term { in the speci�c case a transverse magnetic �eld � mixing the up and down spin states at each

site. Initially the quantum perturbation starts out so large in magnitude as to completely disorder

the system even at zero temperature. When the transverse �eld is subsequently reduced to zero at

some slow rate 1=� , the system is \annealed" towards its ground state, much in the same way as

when its temperature is reduced to zero in CA. The question is which of the two, CA or QA, works

better, and how and why. Experimental comparison of the properties displayed by the same system

transported from the same initial state A { a classical high-T state { to the same nominal �nal state

B { a low-T glassy state { through two di�erent routes in the [T,�] plane, presents evidence that QA,

the \quantum route" from A to B, yields with the same \cooling" rate, a state B apparently closer

to the ground state than CA, the classical one. The data however do not clarify how, and even less

why, that should be so.

Thought-provoking theoretical suggestions and exempli�cations of QA, made by various groups

over the past decade [6{10], have stimulated considerable interest in that direction. They have not

really answered these questions however, and a theoretical discussion of the relative merits of CA

and QA is very desirable. To this end it is imperative to carry out a direct comparative test on a

suÆciently representative benchmark system, such as a glass. Moreover it is mandatory to lay the

bases of a theory of the processes underlying QA. The issues are pressing, both because the physical

underpinnings of QA call to be explored, and because of the practical potential of QA in the �elds of

optimization in complex systems, should QA turn out to be (as recently shown in a protein folding

model [9]) actually superior. Our work is meant as a step aimed at �lling these gaps.

En route, open issues are found even in the context of plain CA, where the very rate of decay

of the residual energy above the actual ground state energy as a function of the annealing rate

1=� is controversial. Whereas general theoretical arguments by Huse and Fisher [3] predict a slow

logarithmic convergence �res(�) = Efinal(�)�EGS � log��(�), with � � 2, early simulations [11], but
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also more recent studies [12,13], favor a di�erent form, such as power-law, �res(�) � ���, or stretched

exponential. The question remains whether the discrepancy between simulations and theory is real,

or only apparent.

Our work proceeded in three steps. First, we chose a benchmark system, the Ising spin glass, where

we carried out CA and QA, and compared the results to �nd that QA is indeed faster. Second, we

focused on the residual energy in CA, to �nd deviations from power law decay versus rate 1=� that

are quite compatible at very slow rates with the Huse-Fisher asymptotically logarithmic decay. Third,

we built a theory of QA of a spin glass based on the idea of a cascade of level crossings, each with its

associated Landau-Zener probability to miss the ground state. That theory suggests an asymptotic

decay of residual energy with QA rate that is again logarithmic as in CA, but governed by somewhat

di�erent exponents that makes it faster.

Step 1. Benchmarking quantum versus classical annealing. At the outset, we selected the two-

dimensional (2D) random Ising model as an appropriate realistic test case, a choice dictated by several

reasons. Firstly we were directly inspired by Brooke et al's experimental system, also a disordered

Ising magnet. A second and main reason is that, although technically a polynomial problem [14]

and not a spin glass at any T > 0, the 2D random Ising model is nonetheless of prohibitively large

complexity, with a large continuum of metastable minima above the ground state as in a true glass [15].

A �nal reason is that the exact classical ground state energy of this model is numerically accessible

via the Branch and Cut algorithm [16] up to suÆciently large lattice sizes � 100 � 100, permitting

an absolutely precise measure of the residual energy after every annealing protocol, which in turn

provides the superior accuracy needed to study the asymptotic behavior.

The Edwards-Anderson Hamiltonian of an Ising spin glass in transverse �eld

H = �
X
hiji

Jij�
z
i �

z
j � �

X
i

�xi ; (1)

where nearest-neighbor spins hiji of a d-dimensional cubic lattice interact with a random exchange

coupling Jij , � is the transverse �eld inducing transitions between the two states, " and #, of each

spin, and �xi ; �
z
i are Pauli matrices of the spin 1/2 on site i. The problem is to anneal this system as

close as possible to its classical, � = 0, ground state. In CA [1,2], there is no tranverse �eld and no

quantum mechanics (� = 0): one starts with a suÆciently high temperature T0, which is then reduced

linearly to zero in a time � . In QA, T is instead �xed to zero or some small value, and one starts with

a transverse �eld �0 suÆciently large to throw the system in a \disordered" quantum paramagnetic

state, decreasing � linearly to zero, again in a time � . Since carrying out real time annealing is

computationally out of the question for the large systems addressed here, we carried out annealing

as a function, as customary, of the �ctitious \time' represented by the number of Monte Carlo steps.
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Our implementation of CA was a standard Metropolis Monte Carlo (MC). That for QA was a Path

Integral Monte Carlo (PIMC) [8,9] scheme for a quantum system at a small �nite temperature T . The

2D quantum Ising model is �rst mapped on a (2+1)D classical model consisting of P ferromagnetically

coupled Trotter replicas of the original lattice, at temperature PT [17]. At the beginning, when �

is large, the replicas are only weakly coupled; as � decreases to zero the ferromagnetic coupling gets

stronger and stronger, eventually forcing all replicas into the same con�guration. At the end of either

annealing cycle the system, unable to negotiate all barriers in the �nite time � , remains generally

trapped at energy Efinal = EGS + �res, higher than the ground state value EGS . The eÆciency of

each protocol is measured by the decrease of the average residual energy �res(�) as a function of �

[11].

For a given 2D lattice size L� L, (L up to 80) we took a realization of the random couplings Jij ,

drawn from a 
at distribution in the interval (�2; 2), and for that we got at the outset the exact

classical ground state energy EGS by the Branch and Cut algorithm [16]. Keeping the couplings �xed,

we then carried out a suÆcient number of repeated annealings, (45 for the 80� 80 lattice), both CA

and QA. The annealing parameters T (CA) or � (QA) were decreased stepwise from the initial value

of T0 = 3 or �0 = 2:5 down to zero, with a total of � MC steps per spin. In QA we used �xed values

of PT = 1; 1:5; 2 at several P values, and prepared the initial state (same for all replicas) by classical

annealing from a temperature of 3.0 down to the corresponding value of PT . In all cases the residual

energy �res(�) was calculated by subtracting EGS from the averaged �nal annealed energies.

Fig. 1 shows the residual energy, for both CA and QA for the 80 � 80 lattice, plotted against

the inverse annealing rate � , in fact the actual Monte Carlo computer time. QA appears de�nitely

superior to CA, with a lower residual energy for large � . This theoretical �nding goes very much in the

same direction as the experimental evidence of a signi�cantly faster frequency-dependent relaxations

observed after QA of the disordered magnet [4]. The � dependence of our QA data does depend on

the chosen values of P and T , particularly upon the value of PT , whose optimal value appears to be

around PT = 1. An increase of P for a �xed value of PT , see inset in Fig. 1, ceases to be e�ective

beyond a certain characteristic length (which depends on PT ) in the imaginary time direction, . The

computational cost increases linearly with P , and the choice P = 20 (corresponding to T = 0:05),

was found to be optimal up to the largest values of � used. Another property (not shown in Fig.

1) of the CA results is that residual energies obtained for di�erent sizes 32 < L < 80, or even for

di�erent realizations of the couplings Jij are remarkably size independent and self-averaging, and all

fall essentially on top of the CA curve in Fig. 1.

Step 2. Asymptotic behavior of classical annealing. A feature evident in our �res(�) CA data, is

its gentle but consistent deviation from a pure power law, suggesting serious reconsideration of all
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the earlier power law claims [11,12]. Since the slope (or apparent power) systematically declines for

increasing � , it is natural to ask whether it will asymptotically extrapolate to zero in accordance with

the Huse-Fisher logarithmic law [3]. Writing that in the form �
�1=�
res = A log(
�) and replacing time

with number of Monte Carlo steps, we can plot the CA data as in Fig. 2. The extrapolated behavior

is indeed compatible with a Huse-Fisher straight line. However, as Fig. 2 shows, it proves impossible

to extract a value for the exponent �, in particular to establish if � � 2 [3] is any better, as one could

have expected.

Step 3. Landau-Zener theory of quantum annealing. In order to shed some light on the actual

asymptotic form of residual energy in QA, and eventually rationalize why that might be superior, we

start o� with a cartoon of the instantaneous energy spectrum of (1) versus � in Fig. 3, suggested

by small systems exact diagonalizations. For suÆciently large initial � >> jJij j the ground state,

generally nondegenerate [18], must have a �nite excitation gap. Imagine following the Schr�odinger

evolution of an initial ground state wavefunction j	�0(t = 0)i while reducing � gradually to zero as a

function of time [10]. The instantaneous gap of our disordered magnet will close as � decreases through

the quantum critical point �c [19,20]. After that, ground state level crossings begin. The arrows in the

cartoon point to two crossings (really avoided crossings [18], the problem possessing no symmetry).

Each instantaneous ground state crossing is associated with tunneling of the whole system between

two valleys { say from a broader but shallower valley to a narrower but deeper one, taking place when

kinetic energy diminishes { and represents a major crisis in the otherwise quasi-adiabatic evolution

caused by the time-dependent decrease of �(t). For suÆciently slow annealing, each tunneling event

can be treated as a Landau-Zener (LZ) problem [21,22], see inset in Fig. 3. The probability P (�)

that the system, starting in the lower state jbi at high � will continue non-adiabatically onto the

higher branch as � is reduced with time is given by P (�) = exp (��=�c) where �c, the characteristic

tunneling time, is �c = (�h��0)=(2��
2). Here � is the tunneling amplitude between the two states jai

and jbi (whose splitting at crossing is 2j�j), and � is the relative slope of the two crossing branches

as a function of � [21,22]. One can estimate � � e�dab=�(�), where dab is a suitable distance between

states a and b (in the Ising case, the number of spins that are 
ipped in the tunneling process, Nflip

[20]), and �(�) is a typical wavefunction localization length, which must vanish as �! 0, �(�) � ��.

The tunneling time becomes exponentially large for small �, �� � e2dab=�
�

, and an exceedingly small

width � � of each tunneling event justi�es treating the multiple crossings as a cascade of independent

single LZ events.

Once the system fails, with a probability P�(�) = e��=�� , to follow the ground state at the LZ

crossing occurring at �, it will eventually attain an average excitation energy Eex(�) > 0. Letting

Z(�)d� be the number of LZ crossings which take place between � and � + d�, the average residual

energy can be estimated to be
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�res(�) =

Z �c

0

d� Z(�)Eex(�) e
��=�� ; (2)

where �c marks the �rst level crossing. The large � behavior of this expression is dominated by the

�! 0 behavior of Z(�)Eex(�), and ��. Assuming Z(�)Eex(�) � �!, and �� � eA=�
�

we get �nally a

residual energy which vanishes as the inverse power of the rate logarithm �res(�) � log��QA(�), with

an exponent �QA = (1 + !)=�. The exponents ! and � are not obvious. A WKB expression for the

decay of a wavefunction inside a barrier suggests � = 1=2. The average excitation energy attained

by missing the ground state \track" at � should scale as �2 for small �, as all eigenvalues start out

as �2 for � ! 0. The total number of LZ crossings occurring from 0 to � should not be larger than

the total number of classical states in the energy window (EGS ; EGS + �), i.e. � �(0)�, (�(0) being

their density [15]), so that the density of crossings Z(� ! 0) ! �(0), at most. This yields ! = 2 as

our most reasonable estimate. In the end, we conclude that �QA = (1 + !)=� can be as large as 6

for a spin glass, and in any case above the classical Huse-Fisher bound � � 2 [3]. Hence, quantum

annealing of the Ising spin glass is predicted to be again logarithmically accurate, not fundamentally

di�erent in that from classical annealing. We expect that a quantum computation based on QA will

not, therefore, transform a hard NP-complete computational problem into a polynomial one. On the

contrary, the above reasoning suggests a logarithmically slow annealing to apply also to the present

2D Ising case, which is not NP-complete [14].

The slowing down e�ect of the LZ cascade illustrated above is particularly severe in problems,

like the Ising spin glass we have considered, where the classical spectrum has a gapless continuum of

excitations above the ground state. Satis�ability problems, for which much more encouraging results

were recently presented [10] di�er from the Ising spin glass in that they possess a discrete classical

spectrum and a �nite excitation gap. We observe that in general a gap will cut o� the LZ cascade

precisely in the dangerous low-� region, and that may eliminate the logarithmic slowing down of QA.

Nonetheless, even in the gapless case, the advantage of QA over CA is far from negligible, due

to the generally larger exponent �QA of the logarithm. To get an idea of the order of magnitudes

involved, consider the relative increase of annealing time (� 0=�) needed to improve the accuracy of

a certain annealing, say with � � 106 (in appropriate units) by a factor 10. In CA (� = 2), this

would require (� 0=�) � �10
1=��1 � 1013. In QA (� = 6), the same result would be accomplished with

(� 0=�) � 102:8, quite a dramatic saving of computer e�ort. The PIMC version of QA is moreover very

easy to implement on a parallel computer, and that provides an extra advantage.

In summary, our test of QA in the disordered Ising magnet indicates a faster convergence than

CA; and a time-dependent cascade of Landau-Zener tunneling events across barriers is pinpointed as

the crucial ingredient of QA. Optimization by QA of a vast variety of problems beyond statistical
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mechanics, of course after a suitable �ctitious kinetic energy operator is identi�ed case by case, is an

open avenue, and stands as a worthy challenge for the future.
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FIG. 1. Comparison of the residual energy per site for an 80� 80 disordered 2D Ising model after classical
and quantum annealing. The QA data shown correspond to the optimal value of PT = 1, with T = 0:05
and P = 20 Trotter slices. For fair comparison, the actual inverse annealing rate � used in the QA has been
rescaled (multiplied by P ) so that points at the same � require the same computer time. The lower residual
energy signi�es that QA is superior to CA. Inset: unrescaled QA data for the same system for increasing
values of P . Note the satisfactory convergence for P = 20.
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FIG. 2. The same CA data as in Fig. 1 re-plotted (see text) so as to fall on a straight line if obeying the
Huse-Fisher logarithmic law. While the Huse-Fisher form is seen to be asymptotically compatible with the
data, extraction of a value for the exponent � is impossible.
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FIG. 3. Cartoon of the lowest instantaneous eigenvalues of a (�nite-size) Ising glass as a function of the
transverse �eld �, or of a generic complex system as a function of its zero-point kinetic energy �. Note
two avoided crossing of the ground state, marked by arrows, and enlarged in the upper insets. Lower inset:
Schematic of a Landau-Zener crossing. At each crossing the system will follow adiabatically the ground state
only if � is reduced suÆciently slowly. The in�nite system will exhibit an in�nite cascade of crossings as
�! 0.
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