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Abstract

This article is an illustration of the construction of coherent and generalized intelligent

states which has been recently proposed by us for an arbitrary quantum system [1]. We treat

the quantum system submitted to the in�nite square well potential and the nonlinear oscillators.

By means of the analytical representation of the coherent states �a la Gazeau-Klauder and those

�a la Klauder-Perelomov, we derive the generalized intelligent states in analytical ways.
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1 Introduction

The concept of coherent states (CS) has been successfully used in the last decade in many di�er-

ent contexts of theoretical and experimental physics, in particular quantum optics [2� 4]. They

were �rst introduced for the harmonic oscillator (described by the Weyl-Heisenberg algebra) by

Schr�odinger [5] :

It is well known that, for the harmonic oscillator case, there are three equivalent de�nitions

of the coherent states jzi :
D1 : The elements of the set fjzi ; z 2 Cg are the eigenstates of the annihilation operator a�

a� jzi = z jzi (1)

D2 : The coherent state jzi is the orbit of the ground state j0i under the Weyl-Heisenberg

displacement operator

jzi = D (z) j0i = exp
�
za+ � za�

� j0i (2)

Here [a�; a+] = 1 and (a�)y = a+: In view of this commutation relation, both the de�nitions

D1 and D2 are equivalent.

D3 : Finally, the (CS) jzi saturate the Heisenberg uncertainty relation

2�X�P = 1 (3)

with the position X and momentum P operators are given as usual by

X =
1p
2

�
a+ + a�

�
and P =

ip
2

�
a+ � a�

�
: (4)

Furthermore, the (CS) jzi satisfy the following properties:

P1 : The map z 2 C!jzi 2 L2 (R) is continuous.

P2 : The family of coherent states resolve the unity. Indeed, we have

Z
jzi hzj d� (z) = I d� (z) =

d2z

�
=

1

�
dRe (z) d Im (z) (5)

This property provides the useful analytic representation, known as the Fock-Bargmann analytic

representation, in which a� and a+ are represented respectively by @z and z and the arbitrary

state j i is represented by the function  (z) = exp
� jzj2

2

�
hz j i where z is the complex conjugate

of z.

P3 : The coherent states family is temporally stable. Indeed

e�iHt jzi =
���ze�i!tE (6)

P4 : They provide the classical-quantum correspondence.
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The generalization of the above de�nitions for other potentials di�erent from the harmonic

oscillator, was proposed recently by Gazeau and Klauder. They give a general scheme leading to

coherent states for an arbitrary quantum system [6] (see also [7; 8]) by using the de�nition D1:

A direct illustration of this construction was given in [9] for a particle trapped in the in�nite

square well and in P�oschl-Teller potentials. Using the de�nition D2, the coherent states �a la

Klauder-Perelomov for the P�oschl-Teller potentials was given in [10]. To extend the third de�-

nition, we have solved the eigenvalue equation of states minimizing the Robertson-Schr�odinger

uncertainty relation (which extend the Heisenberg one) for an arbitrary quantum system [1; 11].

The resulting states are called the generalized intelligent states. We have shown that these states

include the Gazeau-Klauder coherent one.

Recently, we gave the extension of the above three de�nitions for an arbitrary quantum sys-

tem and as an application, we treated a quantum system evolving in the P�oschl-Teller potentials

[12].

The main purpose of this paper is to give other illustrations for the construction of coher-

ent and generalized intelligent states for quantum systems, trapped in the in�nite square well

potentials and nonlinear oscillators.

We start by introducing in section 2, the Gazeau-Klauder coherent states (de�nition D1),

Klauder-Perelomov (de�nitionD2) and generalized intelligent states (de�nitionD3) for an exact

solvable quantum system. Sections 3 and 4 are respectively, devoted to the in�nite square well

potential and the x4�anharmonic oscillator. Concluding remarks are given at the end of this

work.

2 General considerations

In this section, we give the general scheme to follow in order to construct the coherent states

�a la Gazeau-Klauder, �a la Klauder-Perelomov and the one's called generalized intelligent states

for an arbitrary quantum system.

2.1 Gazeau-Klauder coherent states

To begin, we choose a Hamiltonian H admitting nondegenerate discrete in�nite spectrum en,

such that the fundamental energy e0 = 0 and the others fe1; e2::::eng are in increasing order i.e.,
en+1 > en. The eigenstates j ni of H are orthogonal and satisfying

H j ni = en j ni : (7)

The Hamiltonian H can be factorized as

H = A+A� (8)

where A+ and A� are the creation and annihilation operators respectively. They act on the

states j ni as
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A� j ni =
p
ene

i�(en�en�1) j n�1i (9)

A+ j ni =
p
en+1e

�i�(en+1�en) j n+1i ; (10)

where � is a parameter belonging to R:

The exponential factor appearing in the above equations produces only a phase factor, and

ensures, as we will see, the temporal stability of the states which will be constructed in what

follows.

The commutator of A� and A+ takes the form

�
A�; A+� = G(N); (11)

where G(N) acts on j ni as

G(N) j ni = (en+1 � en) j ni : (12)

Note that the operator N 6= A+A� = H and it satis�es the following commutation relations

�
A�; N

�
= A� ;

�
A+; N

�
= �A+ (13)

The so-called Gazeau-Klauder coherent states [6; 7] are de�ned as the eigenstates of the annihi-

lation operators A�. Let us denote them by jz; �i : They satisfy the eigenvalue equation

A� jz; �i = z jz; �i ; z 2 C: (14)

The solutions of (14) are given by

jz; �i = N ( jzj )
+1X
n=0

zne�i�enp
E(n)

j ni (15)

where the function E(n) is de�ned by

E(n) =

(
1 for n = 0
e1e2::::en for n 6= 0

(16)

and N ( jzj ) the normalization constant, which can be computed by using the normalization

condition hz; � j z; �i = 1: We obtain

N ( jzj ) =
 1X
n=0

jzj2n
E (n)

!� 1
2

: (17)

It is then clear that the coherent states equation (15) are continuous in z 2 C and � 2 R and

are temporally stable under the evolution operator. Indeed

e�iHt jz; �i = jz; �+ ti : (18)
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This property is ensured by the presence of the phase factor in equations (9) and (10) :

In order to prove that the Gazeau-Klauder states resolves the identity, one must �nd a

measure d�(z) such that

Z
jz; �i hz; �j d�(z) = IH =

1X
n=0

j ni h nj ; (19)

where the integral is over the disk fz 2 C; jzj < Rg, and R the radius of convergence de�ned as

R= lim
n!1

n

q
E(n): (20)

Writing d�(z) as

d�(z) = [N ( jzj )]�2 h(r2)rdrd� ; z = rei�; (21)

and integrating over the whole plane, the resolution of the identity is then equivalent to the

determination of the function h(u) satisfying

Z +1

0
h(u) un�1du =

E(n� 1)

�
: (22)

So, it is clear that h(u) is the inverse Mellin transform [13] of the function ��1E(n� 1)

h(u) =
1

2�i

Z c+i1

c�i1
E(s� 1)

�
u�sds ; c 2 R: (23)

Then it is obvious that the explicit computation of the function h(u) requires the explicit knowl-

edge of the spectrum of the system under study. Two applications of such computation will be

given in sections 3 and 4.

Using Eq (14), one obtains the main value of the Hamiltonian H in the states jz; �i

hz; �jH jz; �i = jzj2 ; (24)

this relation is known as the action identity.

Finally, we remark that the coherent states jz; �i can be written as an operator U(z) acting

on the ground state (up to normalization constant) as

jz; �i = U(z) j 0i where U(z) = exp

�
z
N

H
A+
�
: (25)

Note that the operator U(z) is not unitary and cannot be seen as a displacement operator in

the Klauder-Perelomov's sense. Hence, the resulting coherent states, also, cannot be interpreted

as the Klauder-Perelomov's one.

2.2 Klauder-Perelomov coherent states

Following the de�nition D2, the coherent states of Klauder-Perelomov type for an arbitrary

quantum system are de�ned by

jz; �i = exp(zA+ � zA�) j 0i ; z 2 C: (26)
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Using the action of the annihilation and creation operators on the Hilbert space

H = fj ni ; n = 0; 1; 2; :::g one can show that the states jz; �i can be written as

jz; �i =
+1X
n=0

zncn (jzj)
q
E(n)e�i�en j ni : (27)

The quantities cn (jzj) are de�ned by

cn (jzj) =
+1X
j=0

�
� jzj2

�j
(n+ 2j)!

�(n+ 1; j) (28)

where

�(n+ 1; j) =
n+1X
i1=1

ei1

i1+1X
i2=1

ei2 ::::

ij�1+1X
ij=1

eij ; and � (n+ 1; 0) = 1 (29)

One can verify that the �'s satisfy the following relation

� (n+ 1; j) � � (n; j) = en+1� (n+ 2; j � 1) : (30)

Using this recurrence formula, it is not diÆcult to show that the cn (jzj = r)0s satisfy the following

di�erential equation

r
dcn (r)

dr
= cn�1 (r)� ncn (r)� en+1r

2cn+1 (r) : (31)

The solution of this di�erential equation leads to the explicit expression of the coherent states

of Klauder-Perelomov's type for an arbitrary quantum system. Here also, we note that the

solutions are intimately related to the spectrum of the system under study. Solutions in the

cases corresponding to nonlinear oscillators (with an x4�interaction) and the in�nite square well
potential will be treated in the sequel of this paper.

2.3 Generalized intelligent states

These states are known as those minimizing the so-called Robertson-Schr�odinger uncertainty

relation [14; 15] (for more details see [1] where they were constructed for an exact solvable

system) and generalize the Gazeau-Klauder ones. In what follows, we give a short review of

their main characteristics.

We introduce two hermitian operators de�ned in terms of the operators A� and A+ as follows

W =
1p
2
(A� +A+) ; P =

ip
2
(A+ �A�) (32)

which satisfy the commutation relation

[W;P ] = iG(N) � iG (33)

where the operator G is de�ned by (12) :
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It is well known that for two hermitian operators W and P satisfying the non-canonical

commutation relation (33), the variances (�W )2 and (�P )2 satisfy the Robertson-Schr�odinger

uncertainty relation

(�W )2 (�P )2 � 1

4

�
hGi2 + hF i2

�
(34)

where the operator F is de�ned by

F = fW � hW i ; P � hP ig (35)

and its mean value is expressed by

hF i = i
h�
�A+�2 � ��A��2i (36)

in terms of the variances of A� and A+.

The symbol f; g ; appearing in equation (35) ; stands for the anticommutator and the uncer-

tainty relation (34) is a generalization of the well-known Heisenberg one.

The so-called generalized intelligent states are obtained when the equality in the Robertson-

Schr�odinger uncertainty relation is realized [16] (see also [17; 18]): They satisfy the eigenvalue

equations

(W + i�P ) jz; �; �i = z
p
2 jz; �; �i ; �; z 2 C: (37)

Using equation (32), the above equation can be rewritten as

�
(1� �)A+ + (1 + �)A�

� jz; �; �i = 2z jz; �; �i : (38)

For the generalized intelligent states, solutions of (38), the variances of W and P are

(�W )2 = j�j� ; (�P )2 =
1

j�j� (39)

with

� =
1

2

q
hGi2 + hF i2: (40)

The main values of G and F , in the generalized intelligent states can be expressed in terms of

the variances of P as follows

hGi = 2Re(�) (�P )2 (41)

hF i = 2 Im(�) (�P )2 : (42)

Clearly, for j�j = 1, we have

(�W )2 = (�P )2 (43)

The states satisfying (38) ; with j�j = 1; are called the generalized coherent states. The complete

classi�cation of the solutions of (38) was considered in [1] for an exact solvable quantum system.
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In what follows we give the main results of this classi�cation which will be adopted to the

quantum systems considered in this work.

Solutions of equation (38) for � 6= �1; are given by

jz; �; �i =
+1X
n=0

an(z) j ni (44)

where

an(z) = a0
(2z)n

(1 + �)n
p
E(n)

2
64 X
h=0(1)[n2 ]

(�1)h
�
1� �2

�h
(2z)2h

�(n; h)

3
75 e�i�en (45)

The symbol
�
n
2

�
stands for the integer part of n

2 and the function � (n; h) is de�ned by

� (n; h) =

n�(2h�1)X
j1=1

ej1

2
4n�(2h�3)X

j2=j1+2

ej2 :::

2
4:::

2
4 n�1X
jh=jh�1+2

ejh

3
5 :::

3
5 :::

3
5 : (46)

The states jz; �; �i can be written, in a compact form, as the action of the operator U(�; z) on

the ground state j 0i of H as

jz; �; �i = U(�; z) j 0i (47)

where U(�; z) is de�ned (up to normalization constant) as

U (z; �) =
+1X
n=0

��
2z

1 + �

�
1

H
A+ +

�
�� 1

�+ 1

�
1

H

�
A+�2�n (48)

For more details, we invite the reader to see reference [1]. It is clear that the generalized

intelligent states (44) obtained by the minimization of the Robertson-Schr�odinger uncertainty

relation are di�erent from the others introduced before, for an arbitrary quantum system, the

de�nitions D1; D2 and D3 lead to inequivalent families of states except, of course, for the

harmonic oscillator case. All these matters will be adapted in what follows to two interesting

quantum mechanical systems: the in�nite square well potential and the anharmonic oscillators.

3 In�nite square well potential

In this section, we will give the coherent and generalized intelligent states for a quantum system

trapped in an in�nite square well potential by exploiting the results of the previous section.

3.1 Gazeau-Klauder coherent states

Let us recall the eigenvalues and eigenvectors of the Hamiltonian H corresponding to a quantum

system submitted to the in�nite square well potential. Indeed, H acts on j ni as

H j ni = en j ni where en = n(n+ 2): (49)

8



The lowering and raising operators A� and A+act on j ni now as follows

A� j ni =
q
n(n+ 2)ei�(2n+1) j n�1i (50)

A+ j ni =
q
(n+ 1)(n+ 3)e�i�(2n+3) j n+1i (51)

and the Hamiltonian H can be factorized as

H = A+A�: (52)

The number operator (N 6= A+A� = H) acts on j ni as follows

N j ni = n j ni (53)

and the commutation relation between A� and A+ is given by

�
A�; A+� = G(N) (54)

where G(N) is de�ned as

G(N) = (2N + 3) (55)

The Hilbert space H for the in�nite square well potential is easily constructed in the same way

as the standard harmonic oscillator. This space is spanned by the states

j ni = (A+)
np

E(n)
ei�en j 0i (56)

where

E(n) =
n! (n+ 2)!

2
: (57)

The Gazeau-Klauder coherent states equation (15) becomes

jz; �i = N ( jzj )
+1X
n=0

zn
p
2e�i�n(n+2)p

� (n+ 1) � (n+ 3)
j ni (58)

where the normalization constant is

N ( jzj ) =
h
0F1

�
3; jzj2

�i� 1
2
: (59)

The Gazeau-Klauder coherent states for the system under study are normalized but they are

not orthogonal to each other. Indeed, we have

hz; �j z0; �i = 0F1(3; zz
0)r

0F1

�
3; jzj2

�
0F1

�
3; jz0j2

� (60)

The set of states (58) are overcomplete in respect to the measure
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d�(z) =
2

�
I2(2r)K1(2r)rdrd� ; z = rei� (61)

where I�(x) and K�(x) are respectively the modi�ed Bessel functions of the �rst and second

kinds.

By using this last property, one can represent the state space as the Hilbert space of analytic

function in the whole plane. So, for a normalized state

j	i =
+1X
n=0

bn j ni one gets

	(z; �) �
q

0F1(3; jzj2)hz; � j	i

=
+1X
n=0

bn
zn
p
2ei�n(n+2)p

� (n+ 1) � (n+ 3)
: (62)

Then, it is obvious that for the state j ni we associate

 n(z; �) =
zn
p
2ei�n(n+2)p

� (n+ 1) � (n+ 3)
(63)

The operators A�; A+ and G(N) act on the Hilbert space of analytic functions as �rst order

di�erential operators

A+ = z ; A� = z
d2

dz2
+ 3

d

dz
and G(N) = 2z

d

dz
+ 3 (64)

It is easy to verify that the actions of A+; A� and G (N) on  n(z; �) lead to

A+ n(z; �) =
q
(n+ 1) (n+ 3)e�i�(2n+3) n+1 (z; �) (65)

A� n(z; �) =
q
n (n+ 2)ei�(2n+1) n�1 (z; �) (66)

G (N) n(z; �) = (2n+ 3) n (z; �) : (67)

It is obvious that the coherent states constructed here are temporally stable and satisfy Eq (24).

Finally, we remark that the coherent states jz; �i can be written as an operator U(z) acting

on the ground state j 0i (up to normalization constant)

U(z) = exp

�
z

1

N + 2
A+
�

(68)

such that we have

jz; �i = U(z) j 0i : (69)

As we mentioned, in section 1, the operator U(z) Eq. (68) is not unitary. The analytic repre-

sentation of the coherent states �a la Gazeau-Klauder introduced here is important since it will

be used to derive the generalized intelligent states in an analytical way.
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3.2 Klauder-Perelomov coherent states

The coherent states �a la Klauder-Perelomov for an arbitrary quantum system are de�ned in

the subsection (2:2) : We have shown that their explicit expressions depend on the spectrum

structure of the system. Here, we will solve the di�erential equation (31) for the spectrum of the

in�nite square well potential. Indeed for en = n(n+ 2) the cn 's coeÆcient admit the solution

cn(r) =
1

n!
(cosh(r))�3

�
tanh (r)

r

�n
: (70)

The coherent states of Klauder-Perelomov's type takes the form

jz; �i =
�
1� tanh2 (jzj)

�3
2
+1X
n=0

�
z tanh (jzj)

jzj
�n �(n+ 1) (n+ 2)

2

� 1
2

e�i�n(n+2) j ni : (71)

By setting � = z tanh(jzj)
jzj , we obtain

j�; �i �
�
1� j�j2

�3
2
+1X
n=0

�n
�
(n+ 1) (n+ 2)

2

� 1
2

e�i�n(n+2) j ni : (72)

We note that the parameter � belongs to the unit disk D = f�2 C; j�j < 1g :
The states j�; �i ; are temporally stable. Indeed we have

e�iHt j�; �i = j�; �+ ti : (73)

From Eq (72) ; one can see that the Klauder-Perelomov coherent states are normalized but not

orthogonal to each other

h�; �j � 0 ; �0i =
r�

1� j�j2
�3 �

1� j� 0 j2
�3 +1X

n=0

�
��

0

�n
n!

� (n+ 3)

2
e�i(�

0��)n(n+2): (74)

The measure ensuring the identity resolution of j�; �i takes the form

d� (�) =
2

�

d2��
1� j�j2

�2 : (75)

Then we can express any coherent states in terms of the others

j � 0 ; �0i =
Z
j�; �i h�; �j � 0 ; �0id� (�) : (76)

For any state j�i =
+1X
n=0

cn j ni in the Hilbert space, one can construct the analytic function:

�(�;�) =
�
1� j�j2

�� 3
2
D
�; �

���	i = +1X
n=0

�n

s
(n+ 1)(n+ 2)

2
cne

i�n(n+2): (77)

Here, the j ni state is represented by the function

 0n(�; �) = �n

s
(n+ 1)(n+ 2)

2
ei�n(n+2): (78)
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The operators A� and G(N) act on the Hilbert space of analytic functions �(�;�) as �rst-order

di�erential operators

A+ = �2
d

d�
+ 3� ; A� =

d

d�
and G(N) = 2�

d

d�
+ 3 (79)

By a simple computation, one can verify

A+ 0n(�; �) =
q
(n+ 1) (n+ 3)e�i�(2n+3) 0n+1(�; �) (80)

A� 0n(�; �) =
q
n (n+ 2)ei�(2n+1) 0n�1(�; �) (81)

G (N) 0n(�; �) = (2n+ 3) 0n(�; �): (82)

Finally, we note that the above analytic representations will be the main tool by means of which

we can get the analytic solutions of generalized intelligent states.

3.3 Generalized intelligent states

In this part, we will use the analytic representation of the coherent states introduced before in

subsections (3:1) and (3:2), in order to obtain the generalized intelligent states in an analytical

way.

3.3.1 Gazeau-Klauder analytic representation

In this representation, we de�ne the Hilbert space as a space of functions S which are holomorphic

in the complex plane. The scalar product is given by

hf jgi =
Z
f(z)g(z)d�(z) (83)

where d�(z) is the measure de�ned by Eq (61) :

By introducing the analytic function

	(z0;�;�)(z) =
q

0F1(3; jzj2)hz; �
��z0; �; �� (84)

we can convert the eigenvalue equation

�
(1� �)A+ + (1 + �)A�

� ��z0; �; �� = 2z0
��z0; �; �� (85)

into the second-order linear homogeneous di�erential equation"
(1 + �)

 
z
d2

dz2
+ 3

d

dz

!
+ (1� �) z � 2z0

#
	(z0;�) (z) = 0: (86)

First, we consider the general case � 6= �1. Setting

	(z0;�) (z) = exp

�
�
q

��1
�+1z

�
F(z0;�)(z): (87)
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Equation (86) can be transformed into the Kummer equation

"
Z
d2

dZ2
+ (3� Z)

d

dZ
�
�
3
2 � z0p

�2�1
�#
F(z0;�) (z) = 0 (88)

where Z = �2
q

��1
�+1z:

Then the solutions of equation (86) are given by

	(z0;�) (z) = exp

�
�
q

��1
�+1z

�
1F1

�
3
2 � z0p

�2�1 ; 3;�2
q

��1
�+1z

�
(89)

or

	(z0;�) (z) = exp

�
�
q

��1
�+1z

�
z�2 1F1

�
�1

2 � z0p
�2�1 ;�1;�2

q
��1
�+1z

�
: (90)

The �rst solution (89) is always analytic, but the second (90) is not. Because the hypergeometric

function 1F1(a; b; z) satis�es the equation

1F1(a; b; z) = ez 1F1(b� a; b;�z) (91)

the upper and lower signs in equation (89) are equivalent.

By using the properties of this hypergeometric functions, we conclude that the squeezing

parameter � obeys to the condition

s������ 1

�+ 1

���� < 1, Re(�) > 0 (92)

which traduce the restriction on � imposed by the positivity of the commutator [A�; A+] =

2N + 3 (see equations (53) and (54)).

We consider now the degenerate cases � = �1: For the case � = �1 equation (86) does

not have any normalized analytic solution (the operator A+ does not have any eigenstate). For

� = 1; using the power series of 1F1(a; b; z), we get

	(z0;�=1) (z) = 0F1(3; zz
0): (93)

The result (93) coincides with the solution (58) (up to normalization constant). Then we recover

the in�nite square well coherent states de�ned as the A� eigenstates (Gazeau-Klauder coherent

states).

3.3.2 Klauder-Perelomov analytic representation

In this representation the Hilbert space is equipped with the following scalar product

hf jgi =
Z
f(�)g(�)d�(�): (94)

Note that the integration is over the unit disk D = f�2 C; j�j < 1g and the measure is de�ned

by equation (75) :
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To solve the eigenvalue equation (38) we introduce the analytic function

�(�0;�) (�) =

r�
1� j�j2

��3h�; � ��� 0; �; �� : (95)

The equation (38) is then converted to the following di�erential equation

�h
(1� �)�2 + (1 + �)

i d
d�

+ 3(1� �)� � 2� 0
�
�(�0;�)(�) = 0: (96)

Admissible values of � and � 0 are determined by the requirements that the functions �(�0;�)(�)

should be analytic in the unit disk. The solutions of Eq (96) are

�(�0;�)(�) = A (j�j)
 
1 +

�
�� 1

�+ 1

� 1
2

�

!�+  
1�

�
�� 1

�+ 1

� 1
2

�

!��

(97)

where

�� = �3

2
� � 0p

�2 � 1
(98)

and A (j�j) is a normalization constant. The condition of analyticity requires

������ 1

�+ 1

���� < 1, Re � > 0: (99)

If Re� < 0, the functions �(�0;�)(�) cannot be analytic in the unit disk.

The decomposition of the generalized intelligent states j� 0; �; �i over the Hilbert orthonormal

basis fj nig can be obtained by expanding the function �(�0;�)(�) into a power series in �: This

can be done by using the following relations

Y
l=�1

 
1 +

�
�� 1

�+ 1

� 1
2

�

!� 3
2
+l

�0p
�2�1

=
+1X
n=0

�n

0
@2
s
�� 1

�+ 1

1
A

n

P (�+�n;���n)
n (0): (100)

Then, the function �(�
0

;�)(�) can be expanded in terms of the Jacobi polynomials P
(�;�)
n (x).

Using the relation between the hypergeometric function and Jacobi polynomials [19] we can

show that

��� 0; �; �� = A (j�j)
+1X
n=0

�
n!

(n+ 2)!

� 1
2
�
n!�(�+ � n+ 1)

�(�+ + 1)

�0@2
s
�� 1

�+ 1

1
A

n

�

2F1(�n;�n� 2;�+ � n+ 1;
1

2
)e�i�n(n+2) j ni (101)

or

��� 0; �; �� = A (j�j)
+1X
n=0

�
n!

(n+ 2)!

� 1
2

0
@2
s
�� 1

�+ 1

1
A

n

P (�+�n;���n)
n (0)e�i�n(n+2) j ni : (102)
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The generalized intelligent states �(�0;�)(�) (Eq (97)) and 	(z0;�)(z) (Eq (89)) are related through

a Laplace transform [20]. In fact, equation (96) can be written as

�h
(1 + �)�2 + (1� �)

i d
d�
� 3

(1 � �)

�
+ 2� 0

�
�(�0;�)

�
1

�

�
= 0 (103)

Using

�(�0;�)

�
1

�

�
=
��3p
2

Z +1

0
z2	(�0;�)(z)e

� z
� dz; (104)

it is easy to see that the eigenvalue equation (103) becomes

"
(1 + �)

 
z
d2

dz2
+ 3

d

dz

!
+ (1� �) z � 2� 0

#
	(�0;�) (z) = 0: (105)

We note that this last di�erential equation coincides for � 0 = z0 with that given by equation

(86).

4 x
4
�anharmonic oscillator

Let us recall briey the general structure of the Hamiltonian eigenvalues and eigenvectors for

the one-dimensional nonlinear oscillators. Indeed, we are interested to the Hamiltonian which

has the form

H = a+a� +
"

4

�
a� + a+

�4 � c0 (106)

where a+ and a� are the creation and annihilation operators for the harmonic oscillator and the

parameter " is positive. The quantity c0 is de�ned as follows

c0 =
3

4
"� 21

8
"2: (107)

The Hamiltonian H can be factorized in the following form [21]

H = A+
" A

�
" (108)

where (A�" )y = A+
" and the operator A�" is de�ned as a function of a� and a+, for more details

see [21] :

The energy levels are given by [21] (see also [22])

en = n+
3

2
"
�
n2 + n

�
: (109)

The Hilbert space H is spanned by the states

jn; "i = (A+
" )

np
E(n)

ei�en j0; "i ; n 2 N (110)

where j0; "i is the ground state and the function E(n) is de�ned by
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E(n) =

8<
:

1 if n = 0�
3"
2

�n �(n+1)�(n+2+ 2
3"
)

�(2+ 2
3"
)

if n 6= 0
(111)

The action of the annihilation and creation operators are de�ned as follows:

A+
" jn; "i =

s�
3"

2

�
(n+ 1)

�
n+ 2 +

2

3"

�
e�i�(en+1�en) jn+ 1; "i (112)

A�" jn; "i =

s�
3"

2

�
n

�
n+ 1 +

2

3"

�
ei�(en�en�1) jn� 1; "i : (113)

We de�ne the number operator N as

N jn; "i = n jn; "i (114)

The operator N is di�erent from the product A+
" A

�
" (= H).

4.1 Gazeau-Klauder coherent states

Following the construction introduced before, the Gazeau-Klauder coherent states obey to the

eigenvalue equation (14) :

A simple computation leads to

jz; �i = N ( jzj )
1X
n=0

vuuut �
�
2 + 2

3"

�
(3")n � (n+ 1) �

�
n+ 2 + 2

3"

� �zp2�n e�i�en jn; "i (115)

where

N ( jzj ) =
�
0F1

�
2 +

2

3"
;
2

3"
jzj2

��� 1
2

: (116)

Remark that the coherent states jz; �i are continuously labelled by z and �, and the radius of

convergence is in�nite. The measure in respect which we have an overcomplete set of coherent

states is

d� (z) =
4

3�"
I(1+ 2

3")

�
2
q

2
3"r

�
K( 12+

1
3" )

�
2
q

2
3"r

�
rdrd� z = rei�: (117)

The overlapping between two x4�anharmonic oscillator coherent states is given by

hz; � ��z0; �� = 0F1

�
2 + 2

3" ;
2
3"zz

0
�

r
0F1

�
2
3" + 2; 2

3" jzj2
�
0
F1

�
2
3" + 2; 2

3" jz0j2
� : (118)

The Gazeau-Klauder coherent states provide a representation of any state

j�i =
+1X
n=0

dn jn; "i in the Hilbert space by an entire function
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� (z; �) =

s
0F1

�
2 +

2

3"
;
2

3"
jzj2

�
hz; � j�i

=
+1X
n=0

vuuut �
�
2 + 2

3"

�
(3")n � (n+ 1) �

�
n+ 2 + 2

3"

� �zp2�n dnei�en : (119)

The state jn; "i is represented by

�(n;") (z; �) =

s
0F1

�
2 +

2

3"
;
2

3"
jzj2

�
hz; � jn; "i

=

vuuut �
�
2 + 2

3"

�
(3")n � (n+ 1) �

�
n+ 2 + 2

3"

� �zp2�n ei�en (120)

The operators A�" and G"(N) = [A�" ; A+
" ] = 3"(N + 1) + 1 act in the Hilbert space of analytic

functions � (z; �) as linear di�erential operators

A+
" = z; A�" =

3"

2
z
d2

dz2
+ (1 + 3")

d

dz
and G" (N) = 3"z

d

dz
+ (1 + 3") (121)

with the following actions

A+
" �(n;") (z; �) =

s�
3"

2

�
(n+ 1)

�
n+ 2 +

2

3"

�
e�i�(en+1�en)�(n+1;") (z; �)

(122)

A�" �(n;") (z; �) =

s�
3"

2

�
n

�
n+ 1 +

2

3"

�
ei�(en�en�1)�(n�1;") (z; �) (123)

G"(N)�(n;") (z; �) = (1 + 3" (n+ 1))�(n;") (z; �) : (124)

Using the relation (25) ; we can write

jz; �i = exp

�
z

2

3"(N + 1) + 2
A+
"

�
j0; "i : (125)

Note that when " ! 0, it is obvious that x4�anharmonic oscillator leads to the harmonic

oscillator Hamiltonian. Indeed, using the formula

lim
"!0

exp

�
3"

2

�n �(n+ 2 + 2
3")

�(2 + 2
3")

= 1; (126)

the Gazeau-Klauder coherent states Eq. (115) becomes

jz; �i = exp

 
�jzj

2

2

!
+1X
n=0

znp
n!
e�i�n jn; 0i : (127)

We remark also that for the special case when " = 2
3 we get all the results obtained for the

in�nite square well potential.
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4.2 Klauder-Perelomov coherent states

Following the de�nition D2 the coherent states of Klauder-Perelomov type for the nonlinear

oscillators are de�ned as

jz; �i = exp(zA+
" � zA�" ) j0; "i ; z 2 C: (128)

After a more or less complicated manipulation, or by applying the results of section 1 one has

jz; �i =
+1X
n=0

Zncn (jZj)
q
F (n)e�i�en jn; "i (129)

where

Z =

r
3"

2
z and F (n) =

�(n+ 1)�(n+ 2 + 2
3")

�(2 + 2
3")

: (130)

The quantities cn (jZj) are de�ned by

cn (jZj) =
+1X
j=0

�
� jZj2

�j
(n+ 2j)!

�(n+ 1; j) (131)

where

�(n+ 1; j) =
n+1X
i1=1

e0i1
i1+1X
i2=1

e0i2 ::::
ij�1+1X
ij=1

e0ij ; and � (n+ 1; 0) = 1 (132)

with

e0n =
2

3"
en: (133)

We can verify that the �'s satisfy the following relation

� (n+ 1; j) � � (n; j) = (n+ 1)

�
n+ 2 +

2

3"

�
� (n+ 2; j � 1) : (134)

Remark that here we have the same relations that one obtained in section 1 (see (30)) with

a minor modi�cation. Using the recurrence formula (134), it is not diÆcult to show that the

cn (jZj)0s satisfy the following di�erential equation

jZj dcn (jZj)
dr

= cn�1 (jZj)� ncn (jZj)� (n+ 1)

�
n+ 2 +

2

3"

�
jZj2 cn+1 (jZj) : (135)

Setting

cn (jZj) = 1

n! jZjnAn (jZj) (136)

the di�erential equation (135) takes the simple form

dAn (jZj)
d jZj = nAn�1 (jZj)�

�
n+ 2 +

2

3"

�
An+1 (jZj) : (137)

It comes that the solutions of (137) are
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An (jZj) = [cosh(jZj)]�n�2� 2
3" [sinh(jZj)]n (138)

Finally the coherent states Eq. (128) are given by

j�; �i �
�
1� j�j2

�1+ 1
3"

+1X
n=0

�np
n!

2
4�

�
n+ 2 + 2

3"

�
�(2 + 2

3")

3
5

1
2

e�i�en jn; "i (139)

where � = Z tanh(jZj)
jZj ; and they form an overcomplete set in respect to measure

d� (�) =

�
1

�
+

2

3"�

�
d2��

1� j�j2
�2 : (140)

The kernel h�; �j � 0 ; �0i is easily evaluated from (139)

h�; �j � 0 ; �0i =

r�
1� j�j2

�1+ 1
3"
�
1� j� 0 j2

�1+ 1
3"

+1X
n=0

�
��

0

�n
n!

�
2
4�

�
n+ 2 + 2

3"

�
�(2 + 2

3")

3
5 e�i(�0��)n(n+2): (141)

For an arbitrary state j'i =
+1X
n=0

fn jn; "i 2 H, one can construct the analytic function

'(�;�) =
�
1� j�j2

��1� 1
3"
D
�; �

���'i = +1X
n=0

�n

2
4�

�
n+ 2 + 2

3"

�
�(2 + 2

3")

3
5

1
2

fne
i�en (142)

with

j'i =
Z
j�; �i

�
1� j�j2

�1+ 1
3"
'(�;�)d� (�) : (143)

In particular, for the states jn; "i we associate the monomial

�0(n;")(�; �) = �n

2
4�

�
n+ 2 + 2

3"

�
�(2 + 2

3")

3
5

1
2

ei�en : (144)

The creation A+
" annihilation A�" and G"(N) operators act on the Hilbert space of analytic

functions '(�;�) as follows

A+
" =

r
3"

2

�
�2

d

d�
+ (2 +

2

3"
)�

�
; A�" =

r
3"

2

d

d�
(145)

and

G"(N) = 3"

�
�
d

d�
+ 1 +

1

3"

�
: (146)

One can verify that
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A+
" �

0
(n;")(�; �) =

s�
3"

2

�
(n+ 1)

�
n+ 2 +

2

3"

�
e�i�(en+1�en)�0(n+1;")(�; �)

(147)

A�" �
0
(n;")(�; �) =

s�
3"

2

�
n

�
n+ 1 +

2

3"

�
ei�(en�en�1)�0(n�1;")(�; �) (148)

G" (N)�0(n;")(�; �) = (1 + 3" (n+ 1))�0(n;")(�; �): (149)

Now, let us discuss the limit "! 0:

By using the formula (126) ; the coherent states Eq. (139) takes the form

jz; �i = exp

 
�jzj

2

2

!
+1X
n=0

znp
n!
e�i�n jn; 0i (150)

and the measure, Eq. (140) ; becomes

lim
"!0

d� (�) = d� (z) =
1

�
d2z; (151)

we note also that for "! 0 the representation of the operators A+
" and A�" reduces to creation

and annihilation ones of the harmonic oscillator (Weyl-Heisenberg algebra). Indeed, we have

A+
" ! a+ � z ; A�" ! a� � d

dz
and G"(N)! I (152)

4.3 Generalized intelligent states

Having the analytical representation of the Gazeau-Klauder and Klauder-Perelo-mov coherent

states, we can derive the generalized intelligent states, for the x4�anharmonic oscillator, in an

analytical way.

4.3.1 Gazeau-Klauder analytic representation

The Hilbert space, in this representation, is the space of analytic function f� (z; �)g equipped

with the scalar product Eq. (83) ; where the measure d� (z) is given by (117) :

To solve the eigenvalue equation (38) in the case of x4�anharmonic oscillators, we introduce

the function

�(z0;�;�) (z; �) =

s
0F1

�
2 +

2

3"
;
2

3"
jzj2

�
hz; � ��z0; �; �� : (153)

Then the eigenvalue equation (38) ; is converted to the second-order homogenous di�erential

equation

(�
(1 + �)

3"

2

�"
2

3"
(1 + 3")

d

dz
+ z

d2

dz2

#
+ (1� �) z

)
�(z0;�)(z) = 2z0�(z0;�)(z): (154)

20



By means of simple substitutions, the above equation is reduced to the Kummer equation for

the conuent hypergeometric function 1F1 (a; b; z) [19] and we arrive to the following solution

�(z0;�)(z) = exp (cz) 1F1 (a; b;�2cz) (155)

where

a = 1 +
1

3"
� 2z0p

(�2 � 1) 6"
, b =

2

3"
+ 2 and c = �

s�
�� 1

�+ 1

�
2

3"
: (156)

We note that the generalized intelligent states for the harmonic oscillator can be obtained from

the equation (155) in the limit "! 0 (or from the di�erential equation (154) by setting " = 0).

Thus, we have

�(z0;�)(z) = �(z0;�)(0) exp

 
2z0

1 + �
z +

�
�� 1

�+ 1

�
z2

2

!
(157)

where �(z0;�)(0) is the normalization constant.

4.3.2 Klauder-Perelomov analytic representation

In this representation, the Hilbert space is equipped with the scalar product given by (94) and

the measure d�(�) is given by (140) :

By introducing the analytic function

'(�0;�) (�) =
�
1� j�j2

��1� 1
3" h�; � ��� 0; �; �� (158)

we convert the eigenvalue equation (38) into the di�erential equation

"h
(1� �)�2 + (1 + �)

i d
d�

+ (1� �)

�
2 +

2

3"

�
� � 2

r
2

3"
� 0
#
'(�0;�)(�) = 0: (159)

In the general case where � 6= �1; the solution of the equation (159) is

'(�0;�)(�) = B (j�j)
 
1 +

�
�� 1

�+ 1

� 1
2

�

!�+  
1�

�
�� 1

�+ 1

� 1
2

�

!��

(160)

where

�� = �1� 1

3"
� 2� 0p

(�2 � 1) 6"
(161)

and B (j�j) is a normalization constant.

The condition of the analyticity of the solution '(�0;�)(�) in the unit disk is satis�ed when we

have

������ 1

�+ 1

���� < 1, Re � > 0: (162)

In order to obtain the decomposition of the generalized intelligent states j� 0; �; �i over the
Hilbert orthonormal basis fjn; "ig, we expand the function '(�0;�)(�) into a power series in � in

the same way that was discussed previously for the in�nite square well potential. This can be

done by using the following relations
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Y
l=�1

 
1 +

�
�� 1

�+ 1

� 1
2

�

!�1� 1
3"
+l

2�0p
(�2�1)6"

=
+1X
n=0

�n

0
@2
s
�� 1

�+ 1

1
A

n

P (�+�n;���n)
n (0) (163)

where P
(�;�)
n (x) is the Jacobi polynomials [19].

Using the relation between the hypergeometric function and the Jacobi polynomials [19], one

can show that

��� 0; �; �� = B (j�j)
+1X
n=0

�
n!

(n+ 2)!

� 1
2
�
n!�(�+ � n+ 1)

�(�+ + 1)

�
� (164)

0
@2
s
�� 1

�+ 1

1
A

n

2F1(�n;�n� 2;�+ � n+ 1;
1

2
)e�i�en j ni :

The two generalized intelligent states �(z0;�)(z) (Eq (155)) and '(�0;�)(�) (Eq (160)) are related

as in the previous case (i.e., the in�nite square well potential) through the Laplace transform.

5 Concluding remarks

In this paper, we constructed the coherent states (�a la Gazeau-Klauder and �a la Klauder-

Perelomov) and the generalized intelligent states for an arbitrary quantum systems. As an

illustration of our construction, we treated the system of a free particle in the in�nite square

well potential and the x4�nonlinear oscillators. We showed the advantage of the analytic rep-

resentations of Gazeau-Klauder as well as Klauder-Perelomov coherent states in obtaining the

generalized intelligent states in analytical ways. Finally, one can see that our results could be

extended to other exactly solvable quantum systems like, for instance, Coulomb, hyperbolic

Rosen-Morse, Eckart and trigonometric Rosen-Morse potentials. This extension is under study.
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