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Abstract

We study the e�ects of charge polarization on the extended physical properties of superlat-

tices, such as transmission coeÆcients and valence band structure. We consider both linear and

parabolic modulation of the band edge. Based on the theory of �nite periodic systems (TFPS),

analytic expressions and high precision calculations of the relevant physical quantities for n-cell

systems are obtained. New and also well-known features of these systems are identi�ed. Besides

the well-known energy bandstructure, we also have the �eld bandstructure, with interesting char-

acteristics. Wider �eld gaps at stronger internal electric �elds and higher density of �eld bands

for larger layer widths are some of these characteristics. Well de�ned level density asymmetries

identify the minibands induced by charge polarization or the so-called Quantum Con�ning Stark

E�ect. We present the n-cell transmission amplitudes, transmission coeÆcients and miniband

structures for di�erent values of the relevant parameters.
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I. INTRODUCTION

The spontaneous dielectric polarization and the piezoelectric response observed inMg doped

(AlxGa1�xN=GaN)n and (InxGa1�xN=GaN)n superlattices, and heterostructures, lead to the

existence of localized 2D electron and hole gases on the opposite interfaces of the quantum

wells1. Therefore, to the conduction- and valence-band bending. This e�ect denoted as the

quantum con�ned Stark e�ect (QCSE) has important consequences on the extended superlattice

properties like the miniband structure, intraband eigenfunctions and eigenvalues, and the intra-

and inter-band transitions1{14. The understanding and description of this e�ect is important

for the overwhelming number of applications, both in optoelectronic and electronic, based on

the nitrides' properties and their emission spectra.

To study the e�ects of charge polarization on the transmission properties and band struc-

ture, we shall consider two types of potential pro�les: one with linear and the other with

parabolic modulation of the band-edge. Solving the single-cell problem, and using the rigorous

and compact formulas of the theory of �nite periodic systems (TFPS)15, we can obtain analytic

expressions and perform high precision calculations of scattering amplitudes and the resonant

band structure. We will present the n-cell transmission amplitudes, transmission coeÆcients

and miniband structures from di�erent points of view: As a function of the energy and also

as a function of the internal electric �eld strength. We analyze the e�ect of the layer width,

especially on the reduction of the recombination energy. We will also show that, in the linear

case and for a �xed Fermi energy, a very appealing �eld bandstructure is obtained when the

internal electric �eld is varied. Our purpose is to o�er a theoretical description of the way in

which the extended properties depend on the internal electric �eld and on the layer widths.

For these systems, three characteristic energy regions can be distinguished. In each region

the consequences on the extended physical properties are clearly recognized. In the lowest

energy region (E < aF in the linear case and E < E1 in the parabolic case, see �gure 1), the

potential barrier e�ectively increases and pushes up the allowed states and reduce their density.

Depending on the speci�c physical parameters, some extremely thin and stable minibands (with

band-widths of the order of 10�7eV ) are found. In the highest energy region the potential barrier

e�ectively diminishes, and as a consequence more and wider minibands appear.

We shall present here the principal theoretical expressions that will then be applied to our

speci�c and particular cases. In Section II we obtain some general results for the transmission

amplitudes for the linear and parablic potential modulations. In section III we present the trans-

mission coeÆcients and the minibands as a function of the electric �eld and other superlattice

parameters and conclude with a discussion on the results.
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II. TRANSMISSION COEFFICIENTS AND BANDSTRUCTURE

To calculate the transmission amplitudes we need to solve the Schr�odinger equation of the

multilayer system, in the one channel 1D approximation commonly used when the transverse

translational invariance holds. We are interested in solving that equation for the speci�c super-

lattice potential pro�les shown in �gure 2, where the well-known square barrier potential shapes

(produced by the alternating semiconductor layers) are modi�ed by the internal electric �eld

generated by charge polarization. Non-linear modulation of the potential pro�le has also been

suggested recently by Goepfert et al. after solving numerically the Poisson's equation3. In the

linear case, and in the e�ective mass approximation, the valence band potential will be taken as

(the subindices l and h stand for low and high potential regions)

Vl(z) = zF for z < a

and

Vh(z) = �zF +�Ec + 2aF for z > a;

In the non-linear case the potential will be taken as

Vl(z) = �E1

z2o
(z � zo)

2 + E1 for z < a

and

Vh(z) = 4
�Ev �E1

a2
(z � zo � a)2 + E2 for z > a:

Here �Ev refers to the valence band o�set, F = eE is the electric force, a the layer width,

and zo = a=2: The parameters E1; E2 and F depend on the charge polarization strength. To

solve the Schr�odinger problem and to understand the quantum con�ned Stark e�ect, we use the

strategy and formulas of the theory of �nite periodic systems16, i.e. we �rst solve the single-cell

problem and obtain the single-cell transmission amplitude t; we then use relations like

tn =
t�

Un�1t� � Un�2

to determine physical quantities of the whole system, i.e. to determine the extended physical

properties, here Un is the Chebyshev polynomial of the second kind. The superlattice band-

structure maintains a close relation with the resonant behavior of the superlattice transmission

coeÆcient

Tn =

���� t�

Un�1t� � Un�2

����
2

This quantity provides all the information on the allowed and forbidden energy regions as well

as on the internal electric �elds where the particle is transmited or becomes localized. It is
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then of great and relevant value to study the way in which the di�erent parameters a�ect the

n-cell trasmission coeÆcient. Using the previous analytic formulas, these quantities, including

the intraband energy levels, can be calculated accurately.

All we need is to solve the single-cell Schr�odinger problem as exactly as possible. It is well

known that using the WKB aproximation, the wave functions are written either as

'(z) = a ei
R z

p(z)dz + b e�i
R z

p(z)dz (1)

with p(z) =
q
2m(E � V (z))=�h2 for the classically allowed energy regions or as

'(z) = a e
R z

q(z)dz + b e�
R z

q(z)dz (2)

with q(z) =
q
2m(V (z)�E)=�h2 for the classically forbidden regions.

For both the linearly modulated potential in �gure 1(a) and the non-linear potential in �gure

1(b), it has been possible to obtain the analytic expression for the transmission amplitudes at

each of the energy regions. To illustrate and introduce the notation we write here the transmis-

sion amplitude for the lowest energy region of the potential shown in �gure 1(a), which is given

by

t = e�iP0a [eQl;z1z2
+Qh;z1z2 (1 + i)(rlh;a + qha + qla)(�rhl;2a + qh2a + ikh2a) (3)

�e�Ql;z1z2
�Qh;z1z2 (1� i)(�rlh;a + qha + qla)(�rhl;2a + qh2a � iph2a)

e�Ql;z1z2
+Qh;z1z2 (1� i)(rlh;a + qha � qla)(�rhl;2a + qh2a + iph2a)

�eQl;z1z2
�Qh;z1z2 (1 + i)(rlh;a + qha � qla)(�rhl;2a + qh2a � iph2a)]

�1

(4i
p
pl2a qh2a qha pla)

Here

Pj;z1z2 =

Z z2

z1

pj(z)dz;

Qj;z1z2 =

Z z2

z1

qj(z)dz;

pjz = pj(z) =
q
2m(E � Vj(z))=�h

2 j = l; h

qjz = qj(z) =
q
2m(Vj(z)�E)=�h2 j = l;

and

rlh;a =
1

2�h2

 
m�

l V
0

l (a)

p2l (a)
+
m�

hV
0

h(a)

q2h(a)

!

Similar expressions are obtained for each energy region and for the two types of potential pro�les.

Given these transmission amplitudes we are able to determine the Superlattice band-structure

and the n-cell tranmission coeÆcients.
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Before discussing the n-cell results it is worth having a look at the behavior of the single-

cell transmission coeÆcient. In �gure 3 we have the single-cell transmission coeÆcients for

both types of potential pro�les. The charge polarization e�ect is visible precisely in the energy

region where the band-edge modulation (BEM) occurs. For the linear case, the reduction of

the potential barrier leads to the appearance of a giant resonance, which for superlattices will

become a miniband. In the single-cell problem the monotonous increasing of the transmission

amplitude breaks (see �gure 3(a)). A similar resonance appears for the non-linear case. For

this system, the single-cell transmission coeÆcient has a resonant behavior due to the shallow

potential well in the upper part of the potential barrier. This e�ect is certainly related with the

high-performance and conductance enhancement experimentally observed7;6;10;9;8.

III. INTERNAL ELECTRIC FIELD EFFECTS ON THE N-CELL PROPERTIES

In this Section, we will present some results for the bandstructure and transmission coef-

�cients for n-cell AlxGa1�xN=GaNsuperlattices. We shall start (�gures 4, 5 and 6) analyzing

the bandstructure, similarities and di�erences, in the hole-spectra for the two types of band-

edge modulation considered here (linear and parabolic) and with the reported results. We then

look, for �xed layer width, at the �eld e�ect on the band structure (�gure 7) and present the

very appealing resonant behavior of the transmission coeÆcient as function of the electric �eld.

Simple but illustrative examples of the �eld-bandstructure will be presented in �gures 8 and 9.

We discuss the reduction of the emission energy and �nally we shall present the transmission

coeÆcients for the linear and parabolic potential pro�les for di�erente layer widths and di�erent

internal electric �eld intensity..

In �gures 4 and 5, we present the bandstructure for both linear and non-linear modulation

of the band-edge. In �gure 4, we consider a potential pro�le with parabolic modulation and in

�gure 5 the linear case. For these �gures we choose the parameters in such a way that we can

compare between the two types of potential and also with the speci�c examples reported in the

literature for Al0:2Ga0:8N=GaN superlattices. The layer width in both cases is a = 20�A. While

in the linear case we shall consider a valence band o�set �Ev = 0:12eV; (which corresponds to

x = 0:2 when the bowing parameter is 1:3). In this case the highest point in the potential barrier

is at �Ev + aF: For a = 20�A and F = 0:001 this maxima is at Eb = 0:14eV: In the parabolic

case we will consider the parameters used in Ref. [3] with maxima and minima of the parabolas

at E1 = 0:012eV and E2 = 0:127eV , respectively and the barrier height at Eb = 0:14eV: These

systems are to some extent equivalent. What do we obtain for their bandstructures?

In the parabolic case, for energies between 0 and 0:15eV we have two minibands while in

the linear case we have three. In both cases there is a miniband in the energy region of the

upper part of the potential barrier, where the barrier width diminishes. The presence of these
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minibands depends entirely on the modulation of the band-edges. Very precise experiments may

identify these minibands because there is an interesting feature in this type of minibands. The

density of levels is asymmetric with higher density in the upper miniband edge. While in the

minibands of the intermediate region the level density is basically symmetric. In �gure 6, we

plot the transmission coeÆcients in a normal miniband and the transmission coeÆcient in the

miniband induced by the band edge modulation. The bands in the upper parts of the barrier

and those in the intermediate energy regions of the parabolic and linear cases in �gures 4 and 5

(E1 < E < �Ev;and aF < E < �Ev + aF; respectively) have similar position and widths. The

most important di�erence between these two �gures is the presence in the linear case and the

absence in the parabolic, of a very thin low energy band of highly stable states. In �gure 7, this

miniband is pushed up when the electric �eld is increased.

We notice that the position of the lowest band in Ref. [2] corresponds aproximately to our

second band in �gure 5. In �gures 4 and 5 the bandstructures were plotted for �nite superlattices.

In this case, for n = 14. It is well known that increasing the number of cells n the only e�ect

that results is the increasing of the intraband level density. It is worth noticing that the level

density in the minibands, in the upper part of the potential region, is asymmetric, with higher

density at higher energies.

As shown in �gure 7, interesting band displacements are observed when the electric �eld

strength varies. Increasing the electric �eld, the minibands in the intermediate energy region

(aF < E < aF +�Ev) shift to higher energies while the band widths remain almost constant.

Changing F from 0:0001eV=�A to 0:001eV=�A, the bands experience a displacement of 20meV: In

the high energy region (E2 < E < �Ev) we observe that, while the shift is still toward higher

energies, their width grows appreciably.

Fixing the particle's energy, other interesting property in the �eld dependent bandstructure

is found. This property, reminiscent of the optical bandstructure, is related to the bandstructure

dispacement produced when the internal electric �eld E = F=e or, equivalently, when the charge

concentration changes. In �gures 8 and 9, transmission coeÆcients for di�erent energies and layer

widths are plotted as functions of the electric �eld. In these �gures it is apparent a bandstructure

displacement when the particle's energy varies. In �gure 8 the particle's energy is kept constant.

Big changes in the �eld-band-structure can be observed. As could be expected, for wider layers

the bands are thinner and move to lower energies. The bands at higher internal electric �elds are

also thinner than those at lower electric �elds, eventually the transmission coeÆcient vanishes

and the particle localizes with no transmission. On the other hand, if we now �x the layer width,

as in �gure 9, and vary the particle's energy, we observe that by increasing linearly the energy,

the �eld-band-structure displaces alsmost linearly with rather small e�ects in the band widths.

Notice that for electric �elds beyond, say E=a, there is no more transmission, and again the

particle localizes.

An interesting feature of the QCSE mentioned in the literature is the strong dependence of
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the emission energy on the quantum well thickness4;5. This e�ect can be observed (see �gure

10) when the electric �eld is �xed and we determine the bandstructure for di�erent layer widths.

The emission energy depends on the electron and hole spectra as well as on the energy distance

between the valence and the conductance bands, which as seen in �gure 11 become closer in the

presence of internal electric �elds. In principle, the change in the emission energy is basically

given by

�aF +�Ee +�Eh

For F � 10�4 and a = 20�A, the contribution of the �rst term is of the order of 2meV while the

hole band shift �Eh is of the order of 10meV: This agrees well with the experimental results

in Ref.[5]. Notice and recall that when the hole-miniband moves to lower energies the electron

miniband moves to higher energies, reducing the emission energy.

Finally, in �gure 12 we have the transmission coeÆcient plotted as functions of the particles

energy for di�erent internal electric �elds, i.e. di�erent polarized charge concentrations. In this

�gure we �x the layer width as a = 100�A. Increasing the internal electric �eld the product aF

grows and the potential pro�le modi�es as can be seen in 12(a): As a consequence the energy

levels are pushed up and, at the same time, the minibands in the upper part of the potential

barrier become narrower. To observe minibands at lower energies we need to reduce the barrier

width as can be seen in �gure 5 where we show the transmission coeÆcients for a = 20�A.

In general, both types of potential pro�les, the linear and the parabolic potential modulation,

with almost equivalent physical parameters in the sense mentioned above, provide trasmission

coeÆcients and bandstructures with similar features, except at very low energies.

IV. CONCLUSIONS

We solved the superlattice Schr�odinger equation for systems whose potential pro�le is mod-

i�ed by charge polarization in opposite interfaces. The band structure and transmission coeÆ-

cients are calculated with the highest precision possible. While in the lower and intermediate

energy regions narrow and thin minibands occur, in the upper energy regions the number of

minibands increases and their widths also. With the solutions reported here, one can determine

band displacements, the intra-band energy levels (including the resonance widths) for di�erent

layer widths and internal electric �elds, hence the time of life of the excited particles. The results

obtained here are relevant for design of optoelectronic and electronic-devices.
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FIGURES

FIG. 1. The linear and parabolic modulation of the potential pro�le produce additional

repulsion and a wider potential barrier in the lower energy part and a smaller barrier width in

the upper parts.

FIG. 2. Superlattices with linear (a) and parabolic (b) band-edge modulation studied in this

work.

FIG. 3. The reduction of the barrier width in the upper part of the barrier leads to a beautiful

resonant e�ect in single-barrier transmission coeÆcients. In (a) the potential is linear. In (b)

we have the transmission for a potential barrier with parabolic modulation. Due to the valley

produced in its upper part, the single cell transmission coeÆcients have a resonant behavior.

FIG. 4. The band structure in the parabolic modulated superlattice. The potential parame-

ters are indicated in the �gure. In (c) we have a characteristic bandstructure in the upper part

of the potential. The asymmetry, reected in the increase of resonant states at higher energies,

is a consequence of the barrier narrowing.

FIG. 5. The band structure in the linear modulated superlattice. The potential parameters

are indicated in the �gure. In this case a very narrow band of quite stable states, shown in (c),

is present.

FIG. 6. A symmetric and an asymmetric band. The asymmetric bands, at energies close to

the band o�set, are characteristic of these types of systems.

FIG. 7. The blue shift of the hole-spectra when the internal electric �eld increases.

FIG. 8. A band structure as a function of the internal electric �eld for di�erent values of the

layer width a. In these graphs the particle energy is kept �xed.

FIG. 9. A band structure as a function of the internal electric �eld for di�erent values of the

particle's energy. In these graphs the layer width is kept �xed.
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FIG. 10. The reduction of the recombination energy in the charge-polarized superlattices

observed here when the layer width increases. At the same time the band-widths become

extremely narrow and the associated states more stable.

FIG. 11. The conduction and the valence-band edges modulation and its e�ect on the recom-

bination energy. A desplacement to higher energies in the hole-spectra implies a displacement

of the electron states in the valence band, and viceversa.

FIG. 12. The bandstructures for di�erent potential pro�les induced by di�erent degrees of

charge polarization strengths.
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